
TIM FERNANDO

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO
DYNAMIC SEMANTICS

(Received 1 December 1998; received in revised version 23 November 2000)

ABSTRACT. Dynamic and proof-conditional approaches to discourse (exemplified by
Discourse Representation Theory and Type-Theoretical Grammar, respectively) are re-
lated through translations and transitions labeled by first-order formulas with anaphoric
twists. Type-theoretic contexts are defined relative to a signature and instantiated model-
theoretically, subject to change.

KEY WORDS: proof-conditional semantics, dynamic semantics, types, anaphora, dis-
course, natural language, truth, bisimulation

1. INTRODUCTION

Among the formal approaches to discourse semantics that have attracted
some attention are “dynamic” formalisms such as Discourse Represen-
tation Theory (DRT, Kamp and Reyle [14]) and proof-conditional pro-
grams such as Type-Theoretical Grammar (TTG, Ranta [24]). Stretching
traditions in formal logic, the former suggest

(D) a shift from truth to input/output interpretations

and the latter

(P) the insertion of proofs into well-formed formulas.

The present paper focuses on applications of (D) and (P) to anaphora,
linking the approaches in a first-order setting. Previous comparisons (e.g.
Ahn and Kolb [2]) are rigorously developed by taking up (on the one hand)
model-theoretic interpretations and (on the other) type systems.

A simple (but telling) illustration of some of the differences at stake is
provided by Geach’s notorious donkey sentence, (s), read as (t).

(s) If a farmer owns a donkey, he beats it.
(t) ∀x∀y(farmer(x) ∧ donkey(y) ∧ owns(x, y) ⊃ beats(x, y)).

A common point of departure for the approaches is the ill-formed for-
mula (q) below, obtained from a piecemeal translation of (s), interpreting

Journal of Philosophical Logic 30: 121–153, 2001.
© 2001 Kluwer Academic Publishers. Printed in the Netherlands.

122 T. FERNANDO

an indefinite description such as a farmer through existential quantifica-
tion.

(q) (∃x ∈ farmer)(∃y ∈ donkey) owns(x, y) ⊃ beats(he, it).

As reformulated in Dynamic Predicate Logic (DPL, Groenendijk and
Stokhof [11]), DRT reduces he to the variable x and it to the variable y,
resulting in (d).

(d) (∃x ∈ farmer)(∃y ∈ donkey)owns(x, y) ⊃ beats(x, y).

The trick is then to treat ∃z as a random assignment to z (familiar from
Quantified Dynamic Logic, Harel [12]), lifting the usual Tarskian satisfac-
tion relation |= between first-order formulas ϕ and models M to input/
output relations �ϕ�M on functions f, f � from variables to objects in M

such that roughly put,

f �ϕ�Mf � iff (M, f) |= ϕ with ∃-witnesses in f �.

(Details in Section 3.1 below.) By contrast, TTG extracts he and it from
a constructive proof of (q)’s premiss, (∃x ∈ farmer)(∃y ∈ donkey)
owns(x, y). That is, interpreting existential quantification (∃x ∈ A)B as
the dependent sum/product

�

�

x : A
�

B = {�a, b�|a in A and b in B[x �→ a]}

(generalizing Cartesian products) and implication A ⊃ B as the dependent
function space

�

�

z : A
�

B = {functions mapping a in A to some b

in B[z �→ a]},

TTG reduces (q) to (p), where lz and l(rz) pick out the farmer and donkey
witnesses encoded in a constructive proof z of (q)’s premiss (l and r being
�

’s left and right projections, respectively).

(p) (
�

z : (
�

x : farmer)(
�

y : donkey) owns(x, y)) beats(lz, l(rz)).

Notice that just as the clause a farmer owns a donkey is hypothetical within
(s), so too is the proof z in (p), raising the question of instantiating such
variable proofs model-theoretically.

1.1. Signatures, Rules and Interpretations

For a systematic comparison of dynamic with proof-conditional semantics,
it is convenient to fix a (many-sorted, relational) signature L consisting of
sorts (U, . . .) and relation symbols (R, . . .) with associated arities. Let us

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 123

agree to write U ∈ L0 to mean U is a sort in L, and R ∈ L(U1 · · ·Un) to
mean that R is a relation symbol in L with n arguments of sorts U1 to Un.
The L-formulas ϕ for dynamic semantics are generated from an infinite set
Var of variables x1 . . . according to

ϕ ::= ⊥ | R(x1 . . . xn) | ϕ ∧ ϕ | ϕ ⊃ ϕ | (∃x ∈ U)ϕ |

(∀x ∈ U)ϕ,

where U ∈ L0 and R ∈ L(U1 · · ·Un) for someU1, . . . , Un ∈ L0.1 With the
type-theoretic approach, the expressions are somewhat more complicated,
and are formed using a set of rules specifying what contexts are and what
judgments they license. Very roughly, ∧ and ∃ turn into

�

, while ⊃ and ∀
become

�

. And whereas a signature L fixes the possibilities for U and R,
a rule set D determines what type-theoretic terms there are in addition to
the variables x (in Var).

Just as the L-formulas ϕ of dynamic semantics are interpreted rela-
tive to the usual (many-sorted first-order) L-models, the type-theoretic
L-expressions can be interpreted on the basis of the following notion.
An L-proof interpretation (or L-interpretation, for short) is a function [[·]]
mapping

(i) every U ∈ L0 to a set [[U]]

and

(ii) every R ∈ L(U1 · · ·Un) and u1 ∈ [[U1]], . . . , un ∈ [[Un]] to a set
[[R, u1 · · · un]].

An L-interpretation [[·]] induces the many-sorted L-model M[[·]] = M that
interprets U ∈ L0 as UM = [[U]] and R ∈ L(U1 · · ·Un) as

RM = {u1 · · · un ∈ [[U1]] × · · · × [[Un]] | [[R, u1 · · · un]] �= ∅},

the intuition being that [[R, u1 · · · un]] consists of proofs of R(u1 · · · un).
Conversely, an arbitrary L-modelM can be beefed up to anL-interpretation
P (M) = [[·]]M by taking [[U]]M = UM and

[[R, u1 · · · un]]M =

�

{(R, u1 · · · un)} if RM(u1 . . . un),
∅ otherwise.

Alternatively, if we allow types to intersect, we could fix a single object
0 and set [[R, u1 · · · un]]M = {0} whenever RM(u1 . . . un). In either case,
M(P (M)) = M, although we cannot expect P (M[[·]]) ∼= [[·]] (as the sets
[[R, u1 · · · un]] could be neither empty nor singletons). Whether or not we
should be interested in [[·]] beyond M[[·]] is a natural question investigated
below. Along the way, [[·]] is extended to interpret type expressions more
complicated than those expressing RM(u1 . . . un).

124 T. FERNANDO

1.2. Outline and Note

Section 2 relates dynamic with proof-conditional semantics syntactically,
exploring translations between first-order systems that equate (d) with (p).
Section 3 takes up the semantics of these fragments, extensions to which
are considered in Section 4. Section 5 concludes by returning to the bold
proposals (D) and (P) above, characteristic of dynamic and proof-condi-
tional semantics.

Let us note at the outset that (D) and (P) are of interest beyond the
particular applications to anaphora considered below – or, for that matter,
variants involving, for example, “weak” readings of the donkey sentence
(s) that only require every donkey-owning farmer to beat some donkey s/he
owns. The hope is, however, that the present case study might throw some
light on what (D) and (P) could more generally mean.

2. TRANSLATIONS AND THE RULE SET D◦

Fix an infinite set Var of variables x and a signature L. Let the set Tm◦ of
preterms t consist of Var and its closure under the projections l and r

t ::= x | lt | rt.

Corresponding to the L-formulas ϕ (for dynamic semantics) generated in
Section 1.1 are the L-pretypes A generated from preterms t1 . . . tn accord-
ing to

A ::= ⊥ | R(t1 . . . tn) |
�

�

x : A
�

A |
�

�

x : A
�

A |
�

�

x : U
�

A |
�

�

x : U
�

A.

The present section refines the notions of L-formula and L-pretype, mak-
ing the syntactic correspondence between these precise.

2.1. The Novel Variable Condition

A technical condition onL-formulas that will play a crucial role below is to
ban a variable x from being bound (either by ∀ or ∃) after a reference to x

has already been made in a formula. More precisely, the set of L-formulas
ϕ that respect the novel variable condition (NVC) is defined inductively as
follows:

(i) the atomic L-formulas ⊥ and R(x1 . . . xn) respect NVC,
(ii) if ϕ and ψ both respect NVC, and no variable bound in ψ occurs in

ϕ (free or bound), then both ϕ ∧ ψ and ϕ ⊃ ψ respect NVC,

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 125

(iii) if ϕ respects NVC and the variable x does not occur bound in ϕ, then
both (∀x ∈ U)ϕ and (∃x ∈ U)ϕ respect NVC (for U ∈ L0).

Thus, ((∃x ∈ U)R(x)) ∧ S(x) respects NVC, but R(x) ∧ (∃x ∈ U)S(x)

does not. In ordinary predicate logic (classical or intuitionistic), NVC is
innocuous insofar as every formula can be assumed to respect NVC, by
renaming bound variables if necessary (e.g. from R(x)∧ (∃x ∈ U)S(x) to
R(x) ∧ (∃y ∈ U)S(y)). Renaming may change the meaning of a formula
in the present applications to anaphora, however (concerning which, NVC
follows a condition in Heim [13] that variables introduced for indefinites
such as a farmer be novel). We will repeatedly require L-formulas to re-
spect NVC throughout this section, reconsidering NVC semantically in
Sections 3.1 and 5.2.

2.2. From L-formulas to L-pretypes and Back

Next, we specify a translation of L-formulas to L-pretypes, systematizing
the translation of (d) to (p).2 An L-formula ϕ will be translated relative to

(i) a well-ordering < of the infinite set Var of variables, from which we
can define for every proper subset X of Var, a variable ν<X ∈ Var−X
as the<-least variable not in X (making ν<X a distinguished variable
that is X-novel)

and

(ii) a function θ from a finite subset of Var to the set Tm◦ of preterms.

The function θ need not fully specify translations of variables in ϕ. In-
deed, writing ϕ<

θ for the type-theoretic translation of ϕ, we will, with θ set
trivially to ∅, arrange

(d)<∅ = (p), where z = ν<{x, y}.

Let

⊥<
θ = ⊥,

R(x1 . . . xn)
<
θ =

�

R(θ(x1) . . . θ(xn)) if {x1 . . . xn} ⊆ dom(θ),

↑ otherwise,

where dom(θ) is the domain of θ and ↑ means undefined,3

((∃x ∈ U)ϕ)<θ =
�

�

x : U
�

ϕ<
θ∪{(x,x)},

((∀x ∈ U)ϕ)<θ =
�

�

x : U
�

ϕ<
θ∪{(x,x)}

126 T. FERNANDO

and

(ϕ ∧ ψ)<θ =
�

�

z : ϕ<
θ

�

ψ<
θ∪{(x,α(z))|(x,α)∈new(ϕ)},(1)

(ϕ ⊃ ψ)<θ =
�

�

z : ϕ<
θ

�

ψ<
θ∪{(x,α(z))|(x,α)∈new(ϕ)},(2)

where in (1) and (2),

z = ν<{y ∈ Var | y in ϕ,ψ or θ}

while new(ϕ) specifies the anaphoric possibilities offered by ϕ as follows.
The L-formulas ⊥, R(x1 . . . xn), (∀x ∈ U)ϕ and ϕ ⊃ ψ are “static” in that

new(⊥) = ∅
= new(R(x1 . . . xn))

= new((∀x ∈ U)ϕ)

= new(ϕ ⊃ ψ)

while (∃x ∈ U)ϕ and ϕ ∧ ψ are “dynamic” in that

new((∃x ∈ U)ϕ) = {(x, l)} ∪ {(y, αr) | (y, α) ∈ new(ϕ)},
new(ϕ ∧ ψ) = {(y, αl) | (y, α) ∈ new(ϕ)}∪

{(y, αr) | (y, α) ∈ new(ψ)}

(recalling that l and r are
�

’s left and right projections). Applying this
recipe to (d)<∅ = (p) shows that computing ϕ<

θ decreases the complexity
of ϕ at the expense of complicating θ

((∃x ∈ farmer)(∃y ∈ donkey) owns(x, y) ⊃ beats(x, y))<∅

=
�

�

z : ((∃x ∈ farmer)(∃y ∈ donkey) owns(x, y))<∅
�

beats(x, y)<
θ̂

=
�

�

z :
��

�

x : farmer
��

�

y : donkey
�

owns(x, y)<{(x,x),(y,y)}
��

beats(x, y)<
θ̂

=
�

�

z :
�

�

x : farmer
��

�

y : donkey
�

owns(x, y)
�

beats(lz, l(rz)),

where z = ν<{x, y} and θ̂ = {(x, lz), (y, l(rz))}.
More generally, for ϕ’s not derived from (d), there is the risk that θ may

become non-functional. Fortunately, we can restrict computations of ϕ<
θ to

pairs ϕ, θ such that

(a) ϕ respects NVC

and

(b) θ is a partial function from Var to Tm◦ with domain

dom(θ) = {x ∈ Var | x has a free but no bound
occurrence in ϕ}.

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 127

Let us call ϕ, θ convergent if the pair satisfies (a) and (b). Note that if ϕ
respects NVC, then ϕ, θϕ is convergent, where

θϕ = {(x, x) | x ∈ Var has a free but no bound
occurrence in ϕ}.

Moreover, an easy induction on ϕ establishes

PROPOSITION 1. Let ϕ, θ be a convergent pair. Then ϕ<
θ is well-defined,

and can be computed using only values ψ<
θ �

for convergent pairs ψ, θ � with
ψ a subformula of ϕ.

To reverse translations ·<θ , let us lift a partial function γ from Tm◦ to Var
to a partial function γ [·] from L-pretypes A to L-formulas γ [A] by

γ [⊥] = ⊥,

γ [R(t1 . . . tn)] =

�

R(γ (t1) . . . γ (tn)) if {t1 . . . tn} ⊆ dom(γ),
↑ otherwise,

γ
��

�

x : U
�

A
�

= (∃x ∈ U)γ x
x [A],

γ
��

�

x : U
�

A
�

= (∀x ∈ U)γ x
x [A],

γ
��

�

x : A
�

B
�

= γ [A] ∧ (γ ∗ x,A)[B],

γ
��

�

x : A
�

B
�

= γ [A] ⊃ (γ ∗ x,A)[B]

with γ x
x = γ ∪ {(x, x)} and

(γ ∗ x,A) = γ ∪ {(α(x), y) | (α, y) ∈ wen(A)},

where, paralleling new,

wen(A) = ∅ for A = ⊥, R(x1 . . . xn),
�

�

x : U
�

B

or
�

�

x : B
�

C,

wen
��

�

x : U
�

A
�

= {(l, x)} ∪ {(αr, y) | (α, y) ∈ wen(A)},

wen
��

�

x : A
�

B
�

= {(αl, y) | (α, y) ∈ wen(A)} ∪

{(αr, y) | (α, y) ∈ wen(B)}.

We have not only ∅[(p)] = (d) but

128 T. FERNANDO

PROPOSITION 2. If a pair ϕ, θ is convergent and θ is 1-1 (with inverse
θ−1), then θ−1[ϕ<

θ] = ϕ.

As with Proposition 1, Proposition 2 can be proved by induction on
L-formulas ϕ. For some intuition about the seeds θ and γ to the trans-
lations ·<θ and γ [·], we turn next to type-theoretic notions of context and
well-formedness.

2.3. Projecting Left and Right: D◦

Following Martin-Löf [19], a context is a finite sequence of variable typ-
ings x : T , built from the empty sequence �, the typings in which seep
through an arrow⇒ connecting the context (to⇒’s left) with judgments
(to⇒’s right) that the context supports.

� context

� context

� ⇒ x : T
‘x : T ’ in �

� ⇒ T type

�, x : T context
NVC�.

The side condition NVC� on the last rule above is that x is a variable in Var
different from any that occurs in � or T , bound or free. Going beyond usual
formulations, the prohibition in NVC� against reusing bound variables will
make life easier. The stipulation is, however, harmless in a sense made
precise in Section 3.2 below.

Departing somewhat more from Martin-Löf, let us introduce a symbol
wff for well-formed L-pretypes, distinguishing these from sorts inL, which
we will also take as types.4

� context

� ⇒ ⊥ wff

� ⇒ A wff

� ⇒ A type

� context

� ⇒ U type
U ∈ L0.

Notice that⇒ ought really to be decorated withL, but we will suppress the
subscript L on⇒L for simplicity. L-formulas other than⊥ can be matched
by rules for atomic L-formulas

� ⇒ t1 : U1 · · ·� ⇒ tn : Un

� ⇒ R(t1, . . . , tn) wff
R ∈ L(U1 · · ·Un)

∧ and ⊃

(∧)
�, x : A⇒ B wff � ⇒ A wff

� ⇒ (
�

x : A)B wff
,

(⊃)
�, x : A⇒ B wff � ⇒ A wff

� ⇒ (
�

x : A)B wff

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 129

and ∃x ∈ U and ∀x ∈ U

�, x : U ⇒ A wff

� ⇒ (
�

x : U)A wff
U ∈ L0,

�, x : U ⇒ A wff

� ⇒ (
�

x : U)A wff
U ∈ L0.

Terms such as lz and l(rz) in (p) can be formed from the familiar elimina-
tion rules for

�

.

� ⇒ t : (
�

x : T)A

� ⇒ lt : T

� ⇒ t : (
�

x : T)A

� ⇒ rt : A[x �→ lt]
.

Now, putting further rules aside for the moment, let D◦ denote the set of
rules above.

CONVENTIONS. L-pretypes obtained from the rules (∧) and (⊃) where
the variable x bound does not occur in B are more perspicuously written
A ∧ B and A ⊃ B, respectively. Also, for R ∈ L(U), let us write (

�

x :

R)A instead of (
�

x : U)(R(x) ∧ A), and (
�

x : R)A instead of (
�

x :

U)(R(x) ⊃ A). Thus, assuming that for some U ∈ L0, farmer, donkey
∈ L(U) and owns, beats ∈ L(U,U), the expression (p) in Section 1 is
(
�

z : A)beats(lz, l(rz)), where A unwinds to
�

�

x : U
��

�

u : farmer(x)
�

�

�

y : U
��

�

v : donkey(y)
�

owns(x, y)

for certain novel (dummy) variables u and v.

As a set of rules, D◦ induces the usual notion of a derivation. Let us collect
the D◦-derivable contexts in the set

context◦ = {� | there is a D◦-derivation of ‘� context’}

and write

‘� ⇒◦ �’ to mean there is a D◦-derivation of ‘� ⇒ �’.

Notice that if ‘� ⇒◦ �’, then � ∈ context◦. Let us gather the preterms t
that a sequence � sorts in the set

Tm◦[�] = {t | ‘� ⇒◦ t : U ’ for some U ∈ L0}

with the understanding that for � �∈ context◦, Tm◦[�] = ∅. Clearly, any
element of Tm◦[�] is either a variable or has the form lt where ‘� ⇒◦

130 T. FERNANDO

t : (
�

x : U)A’ for some U ∈ L0 and A. Now, a suitable candidate for γ
in Section 2.2 is the function ·◦� from Tm◦[�] to Var defined by

x◦� = x for x ∈ Var ∩ Tm◦[�]
(whence for some U ∈ L0, ‘� ⇒◦ x : U ’),

lt◦� = x where for some U ∈ L0

and A, ‘� ⇒◦ t : (
�

x : U)A’.

To ensure that an L-pretype A translates to an L-formula only if ‘� ⇒◦

A wff’, let us sharpen the translation ·◦�[A] of A to A◦� ,
5 defined by induc-

tion on A

⊥◦� = ⊥,

R(t1 . . . tn)
◦
� =

�

R(t1
◦
� . . . tn

◦
�) if ‘� ⇒◦ R(t1 . . . tn) wff’,

↑ otherwise

(noting that if ‘� ⇒◦ R(t1 . . . tn) wff’ then {t1 . . . tn} ⊆ Tm◦[�])

��

�

x : U
�

A
�◦

�
=

�

(∃x ∈ U)A◦�,x:U if x not in �,

↑ otherwise,
��

�

x : U
�

A
�◦

�
=

�

(∀x ∈ U)A◦�,x:U if x not in �,

↑ otherwise,
��

�

x : A
�

B
�◦

�
=

�

A◦� ∧ B◦�,x:A if x not in � nor A,
↑ otherwise,

��

�

x : A
�

B
�◦

�
=

�

A◦� ⊃ B◦�,x:A if x not in � nor A,
↑ otherwise.

PROPOSITION 3. Let � ∈ context◦ and A be an L-pretype.

(a) A◦� is defined iff ‘� ⇒◦ A wff’.
(b) If ‘� ⇒◦ A wff’ then A◦� = ·

◦
�[A].

(c) If ‘� ⇒◦ A wff’ and theta(�) is the inverse of ·◦� : Tm
◦[�] → Var

restricted to the variables that occur in A◦� ,6 then A◦�, theta(�) is
convergent and

(A◦�)
<
theta(�) ≈ A

where ≈ is equality up to renaming of variables x bound by (Qx : A)

for some Q ∈ {
�

,
�

} and A �∈ L0.

Proof. Part (a) follows by induction on L-pretypes A, parts (b) and (c)
by induction on the length of D◦-derivations. �

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 131

A simple example where A◦� �= ·
◦
�[A] is provided by � = � and A =

(
�

x : U)R(x) where R ∈ L(U �) and U �= U �. Sidestepping such sortal
complications, we get

PROPOSITION 4. Suppose L has exactly one sort. Then for every
L-formula ϕ respecting NVC, there exists � ∈ context◦ such that ‘� ⇒◦

ϕ<
theta(�) wff’ and ϕ, theta(�) is convergent, whence (ϕ<

theta(�))
◦
� = ϕ.

Proof. Let � be x1 : U, . . . , xn : U where U is the one sort of L,
and x1 . . . xn is a non-repeating list of every variable with some free but no
bound occurrence in ϕ. Observe that theta(�) is the function θϕ mentioned
before Proposition 1 in Section 2.2. �

An obvious extension of Proposition 4 is

If L has exactly one sort, then for every convergent pair ϕ, θ , there exists
� such that theta(�) = θ and ‘� ⇒◦ ϕ<

theta(�) wff’.

That assertion is demonstrably false, however, as not every such θ is of the
form theta(�) for some �. Take θ = {(x, ly), (z, lly)}.

3. INTERPRETATIONS: TRANSITIONS AND BISIMULATIONS

Next comes semantics. The notion of an L-interpretation described in
Section 1.1 points in two opposite directions. We can reduce an L-inter-
pretation [[·]] to an L-model M[[·]], relative to which L-formulas ϕ can
be interpreted dynamically. Or, going the other way, we can extend [[·]] to
interpret various constructs connected with D◦. We will pursue both direc-
tions, sequentially and then in parallel. Among the results to be established
is that whenever ‘� ⇒◦ A wff’, proof-conditional and dynamic semantics
agree in that for every “[[·]]-instantiation” ρ of �,

A is “[[·]]-true for” �, ρ iff A◦� is “M[[·]]-true for (�, ρ)◦”.

The precise statement of the equivalence is given in Lemma 6(c); but first
we must understand what the phrases in quotes mean.

3.1. Dynamic Semantics with Finite Functions

As mentioned back in the introduction, dynamic semantics interprets an
L-formula ϕ relative to an L-model M as an input/output relation �ϕ�M
between functions f and f � from variables to objects in M

f �ϕ�Mf � iff on input f , ϕ can (in M) output f �.

132 T. FERNANDO

Intuitively, the program �ϕ�M , on input f , checks if M |= ϕ[f], halting
exactly if this is so,

f ∈ dom(�ϕ�M) iff ϕ is true at f (relative to M),(3)

storing “suitable” witnesses in the output. Now, the semantic force of the
novel variable condition, NVC, on ϕ is to avoid re-assigning values to
variables, preserving (as it were) all witnesses ever found. Accordingly, it
is useful to assume that f and f � are not defined on every variable in Var
(contrary to DPL, but in line with DRT). In fact, we will make do with
finite functions, drawing f and f � from the set VarM of functions from
finite subsets of Var to the universe

�

U∈L0
UM of M

VarM =
�

�

X→
�

U∈L0

UM | X is a finite subset of Var
�

.(4)

The binary relations �ϕ�M ⊆ VarM × VarM encoding input/output pairs of
L-formulas ϕ are then given as follows.7 Keeping (3) in mind, let �⊥�M =
∅ (as ⊥ can never be true),

f �(R(x1 . . . xn)�Mf � iff f = f �, {x1 . . . xn} ⊆ dom(f) and
RM(f (x1) . . . f (xn)),

f �ϕ ∧ ψ�Mf � iff for some g, f �ϕ�Mg and g�ψ�Mf �

f �ϕ ⊃ ψ�Mf � iff f = f �and
(∀g such that f �ϕ�Mg) g ∈ dom(�ψ�M)

and, for f x
a = f ∪ {(x, a)},

f �(∃x ∈ U)ϕ�Mf � iff for some a ∈ UM, f x
a �ϕ�Mf �,

f �(∀x ∈ U)ϕ�Mf � iff f = f �and
(∀a ∈ UM) f x

a ∈ dom(�ϕ�M).

Note that if x ∈ dom(f) and f (x) �= a, then f x
a falls outside VarM and

has no chance of being in the domain of any �ϕ�M . The definition of f x
a

ensures that

whenever f �ϕ�Mf �, f ⊆ f �(5)

(with f = f � in case new(ϕ) = ∅, as defined in Section 2.2). It will
become clear shortly that the persistence described in (5) is instrumental
in matching ϕ up with a type in D◦.

That match-up involves the following standard notion from model the-
ory (e.g. Keisler [15]). A partial isomorphism between L-models M and
N (possibly the same) is a relation I ⊆ VarM × VarN such that ∅I∅, and
whenever f Ig,

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 133

(c1) for all R ∈ L(U1 · · ·Un),

f �R(x1 . . . xn)�Mf iff g�R(x1 . . . xn)�Ng,

(c2) for all a ∈ UM and x �∈ dom(f), there exists b ∈ UN such that
f x
a Ig

x
b , and

(c3) for all b ∈ UN and x �∈ dom(g), there exists a ∈ UM such that f x
a Ig

x
b .

Let us agree to write

(M, f) ∼=p (N, g) iff f Ig for some partial isomorphism I

between M and N,

shortening (M,∅) ∼=p (N,∅) to M ∼=p N . Among the many well-known
facts about partial isomorphisms is that if the universes of M and N are
countable and if for every U ∈ L0, there is an R ∈ L(U,U) such that RM

is = on U , then

M ∼=p N iff M ∼= N.

Furthermore, partial isomorphisms are exactly bisimulations (Park [22])
over (� · �M,∅) and (� · �N,∅).8 That is, a relation I ⊆ VarM × VarN such
that ∅I∅ is a partial isomorphism between M and N iff for all f Ig,

(b1) whenever f �ϕ�Mf �, there is a g� such that g�ϕ�Ng� and f �Ig�, and
(b2) whenever g�ϕ�Ng�, there is an f � such that f �ϕ�Mf � and f �Ig�.

Notice that whereas ϕ ranges over all L-formulas in (b1) and (b2), the only
L-formulas that figure in the previous clauses (c1)–(c3) defining partial
isomorphisms are of the form

R(x1 . . . xn) and (∃x ∈ U)�,(∗)

where � is an L-tautology such as ⊥ ⊃ ⊥. The discrepancy here is
accounted for by two facts (where ¬ϕ is defined as ϕ ⊃ ⊥):

(i) for every L-formula ϕ, an L-formula ψ can be assembled from
L-formulas in (∗) using only ∧ and ¬ such that

�ϕ�M = �ψ�M for every L-model M

(as �ϕ ⊃ ψ�M = �¬(ϕ ∧¬ψ)�M , �(∃x ∈ U)ϕ�M = �(∃x ∈ U)�∧

ϕ�M , and �(∀x ∈ U)ϕ�M = �¬(∃x ∈ U)¬ϕ�M),
(ii) the back-and-forth force common to (b1), (b2) and (c1)–(c3) builds

in closure under the connectives ∧ and ¬.

134 T. FERNANDO

The remainder of this section is devoted to reducing a suitable notion
of bisimulation equivalence for the rule set D◦ to ∼=p. Towards that end,
we will need to extend L-interpretations to various constructs in D◦.

3.2. Extending L-interpretations

Fix an L-interpretation [[·]] – i.e. a mapping from U ∈ L0 to a set [[U]],
and from R ∈ L(U1 · · ·Un) and u1 ∈ [[U1]] . . . un ∈ [[Un]] to a set [[R, u1
· · · un]]. Applying [[·]] to D◦, let us define for every � ∈ context◦,

(I) its set [[�]]◦ of instantiations ρ interpreting �’s variables x as ρ(x)

simultaneously (by induction on the length of a D◦-derivation) with

(II) interpretations [[T]]◦�,ρ of T such that ‘� ⇒◦ T type’ (with ρ ∈ [[�]]◦)

and (again with ρ ∈ [[�]]◦)

(III) interpretations [[t]]◦�,ρ of t such that for some T , ‘� ⇒◦ t : T ’.

The requirement that whenever ρ ∈ [[�]]◦,

if ‘� ⇒◦ t : T ’ then [[t]]◦�,ρ ∈ [[T]]
◦
�,ρ

is easily met by agreeing that

(I) [[�]]◦ = {∅},

[[�, x : T]]◦ = {ρx
t | ρ ∈ [[�]]

◦and t ∈ [[T]]◦�,ρ},

where ρx
t is ρ ∪ {(x, t)},

(II) [[⊥]]◦�,ρ = ∅,

[[U]]◦�,ρ = [[U]],

[[R(t1 . . . tn)]]
◦
�,ρ = [[R, [[t1]]

◦
�,ρ . . . [[tn]]

◦
�,ρ]]

and adopting
�

,
�

notation at the meta-level, with : replaced by ∈
(abusing the object level notation for L-formulas),

���

�

x : T
�

A
��◦

�,ρ
=

�

�

t ∈ [[T]]◦�,ρ

�

[[A]]◦�,x:T ,ρxt ,

���

�

x : T
�

A
��◦

�,ρ
=

�

�

t ∈ [[T]]◦�,ρ

�

[[A]]◦�,x:T ,ρxt ,

(III) [[x]]◦�,ρ = ρ(x),

[[lt]]◦�,ρ = l[[t]]◦�,ρ,

[[rt]]◦�,ρ = r[[t]]◦�,ρ ,

re-using l and r at the meta-language.

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 135

The definition above brings us very close to the truth equivalence men-
tioned at the beginning of this section. The impatient reader can jump to
Lemma 6(c) in the next subsection, and verify it by induction (using the
definition of (�, ρ)◦ given before the lemma). For an equivalence reaching
beyond truth and applying to transitions, a bit more work is necessary, in-
cluding some points about alphabetic invariance. Over sorts or L-pretypes
T and T �, let ∼ be the equivalence

T ∼ T � iff T and T � are identical up to renaming
of bound variables

(with the usual provisos for safe renaming). We extend ∼ to sequences of
typings (that may or may not belong to context◦) as follows

x1 : T1, . . . , xn : Tn ∼ y1 : T
�
1, . . . , ym : T

�
m

iff n = m and for 1 ≤ i ≤ n, xi = yi and Ti ∼ T �i .

The following is trivial, but nevertheless worth recording.

PROPOSITION 5. (a) If ‘� ⇒◦ A wff’ and �� ∼ �, then for some A� ∼

A, ‘�� ⇒◦ A� wff’. Similarly for ‘� ⇒◦ t : A’.
(b) Suppose ‘� ⇒◦ A wff’, ‘�� ⇒◦ A� wff’, � ∼ �� and A ∼ A�. Then

[[�]]◦ = [[��]]◦ and for every ρ ∈ [[�]]◦, [[A]]◦�,ρ = [[A
�]]◦��,ρ.

One of the upshots of Proposition 5 is that the semantics above is unaltered
by relaxing the side condition NVC� in Section 2.3 to its usual formulation
(i.e. x is not one of the variables � types). That aside, Proposition 5 will
prove useful below in conjunction with D◦ (defined using NVC�).

3.3. Transitions between Context Instantiations

The subscripts �, ρ on [[·]]◦�,ρ above are understood to belong to the set
CI◦[[·]] of context-instantiation pairs defined by

CI◦[[·]] =
�

�

� ∈ context◦
�

[[�]]◦.

From [[A]]◦�,ρ with (�, ρ) ∈ CI◦[[·]], it is a small step to binary relations [[A]]◦
on CI◦[[·]] defined by

(�, ρ)[[A]]◦(�
�, ρ �) iff ρ ⊂ ρ �, ‘� ⇒◦ A wff’ and

�� = �, x : A for some x ∈ Var

for all (�, ρ), (��, ρ �) ∈ CI◦[[·]]. That is, collecting all �’s such that ‘� ⇒◦

A wff’ in

context◦A = {� ∈ context
◦ | ‘� ⇒◦ A wff’}

136 T. FERNANDO

and pairing them with their instantiations in

CI◦[[·]](A) =
�

�

� ∈ context◦A
�

[[�]]◦,

we can characterize [[A]]◦ as
�

�

(�, ρ) ∈ CI◦[[·]](A)
�

{(�, x : A, ρx
a) | a ∈ [[A]]

◦
�,ρ

and x ∈ Var not in � nor A}.

The idea now is to relate [[·]]◦ to the input/output schemes � · �M[[·]] from
Section 3.1, where M[[·]] is the obvious L-model induced by [[·]]

UM[[·]] = [[U]],

RM[[·]] = {u1 · · · un | [[R, u1 · · · un]] �= ∅}.

For every (�, ρ) ∈ CI◦[[·]], let (�, ρ)◦ be the partial function from Var to
�

U∈L0
[[U]] given by

(�, ρ)◦ = {(t◦�, [[t]]
◦
�,ρ) | t ∈ Tm

◦[�]}

with Tm◦[�] and t◦� as defined in Section 2.3. Recalling also the definition
(4) of VarM from Section 3.1, observe that

(�, ρ)◦ ∈ VarM[[·]].

LEMMA 6. Let A be an L-pretype, [[·]] be an L-interpretation, and (�, ρ)

∈ CI◦[[·]].

(a) For every (��, ρ �) such that (�, ρ)[[A]]◦(�
�, ρ �), (�, ρ)◦�A◦��M[[·]]

(��, ρ �)◦.
(b) Conversely, for every f ∈ VarM[[·]] such that (�, ρ)◦�A◦��M[[·]]f ,

(∃a ∈ [[A]]◦�,ρ) (∀x ∈ Var not in � nor A)
f = (�, x : A, ρx

a)
◦ (whence (�, ρ)[[A]]◦(�, x : A, ρ

x
a)).

(c) Whenever ‘� ⇒◦ A wff’,

[[A]]◦�,ρ �= ∅ iff (�, ρ)◦ ∈ dom(�A◦��M[[·]]).

Proof. Part (c) is immediate from parts (a) and (b), which are proved
by induction on A (conveniently enough matching the length of D◦-deri-
vations). �

Moving from truth (analyzed in Lemma 6(c)) to transitions, let us fix an
L-interpretation [[·]]�, possibly (but not necessarily) identical to [[·]]. Given
(�, ρ) ∈ CI◦[[·]] and (��, ρ �) ∈ CI◦[[·]]� , a [[·]], [[·]]�-bisimulation is a binary
relation B ⊆ CI◦[[·]] × CI

◦
[[·]]� such that for all (�, ρ)B(��, ρ �),

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 137

(β0) Tm◦[�] = Tm◦[��],
(β1) whenever (�, ρ)[[A]]◦p, there is a q such that (��, ρ �)[[A]]�◦q and

pBq, and
(β2) whenever (��, ρ �)[[A]]�◦q, there is a p such that (�, ρ)[[A]]◦p and

pBq.
Let us write

([[·]], (�, ρ))↔ ([[·]]�, (��, ρ�)) iff (�, ρ)B(��, ρ�)

for some [[·]], [[·]]�-bisimulation B.

To relate ↔ to partial isomorphism ∼=p from Section 3.1, the following
notion of � and �� being Tm◦-coincident is useful. Define

��Tm◦��� iff Tm◦[�] = Tm◦[��]

and (∀t ∈ Tm◦[�]) t◦� = t◦��,

the point of the second conjunct being that � and �� use the same variables
t◦� = t◦�� for t ∈ Tm◦[�]. Now comes the type reduction from which
the present paper gets its title. For all L-models M and N , and context-
instantiation pairs (�, ρ) ∈ CI◦[[·]] and (��, ρ �) ∈ CI◦[[·]]� where M[[·]] = M

and M[[·]]� = N , define

(M, (�, ρ)) ≈◦ (N, (��, ρ �)) iff
(∃�̂ ∼ �)(∃�̂� ∼ ��)�̂�Tm◦��̂� and
(M, (�̂, ρ)◦) ∼=p (N, (�̂�, ρ �)◦).

The intuition behind ≈◦ is that before applying ·◦ and ∼=p, bound variables
may need to be renamed to ensure that the contexts are Tm◦-coincident.

THEOREM 7. Let [[·]] and [[·]]� be L-interpretations, possibly but not
necessarily identical. For all context-instantiation pairs (�, ρ) ∈ CI◦[[·]] and
(��, ρ �) ∈ CI◦[[·]]� ,

([[·]], (�, ρ))↔ ([[·]]�, (��, ρ �)) iff
(M[[·]], (�, ρ)) ≈◦ (M[[·]]

�, (��, ρ �)).

Proof. To simplify the notation, let us shorten M[[·]] to M, and M[[·]]�

to N . Unlike previous proofs, the present argument proceeds not by induc-
tion on A, but by co-induction, the equivalence in question breaking into
two halves.

(7a) The binary relation

{((�, ρ)◦, (��, ρ �)◦) |

([[·]], (�, ρ))↔ ([[·]]�, (��, ρ �)) and ��Tm◦���}

is a partial isomorphism between M and N .

138 T. FERNANDO

(7b) The binary relation

{((�, ρ), (��, ρ �)) ∈ CI◦[[·]] × CI
◦
[[·]]� |

(M, (�, ρ)) ≈◦ (N, (��, ρ �))}

is a [[·]], [[·]]�-bisimulation.

It is immediate from the definition of ↔ that (7b) gives the right-to-
left direction of the equivalence above. To see that (7a) yields the con-
verse, suppose ([[·]], (�, ρ))↔ ([[·]]�, (��, ρ �)). Since Tm◦[�] = Tm◦[��],
we can find �̂ ∼ � and �̂� ∼ �� such that �̂�Tm◦��̂� (by renaming bound
variables, if necessary). But by Proposition 5, [[·]]◦ and [[·]]�◦ are invari-
ant under such renaming, whence ([[·]], (�, ρ))↔ ([[·]]�, (��, ρ �)) implies
([[·]], (�̂, ρ))↔ ([[·]]�, (�̂�, ρ �)). Thus, (7a) gives (M, (�̂, ρ)◦) ∼=p (N,

(�̂�, ρ �)◦), as required.
To prove (7a), suppose

([[·]], (�, ρ))↔ ([[·]]�, (��, ρ �)) and ��Tm◦���(6)

and let π be the inverse {(t◦�, t) | t ∈ Tm◦[�]} of the function ·◦� with
domain Tm◦[�]. We are to verify clauses (c1)–(c3) in Section 3.1 defining
partial isomorphisms, with f = (�, ρ)◦ and g = (��, ρ �)◦. For (c1), if
(�, ρ)◦�R(x1 . . . xn)�M(�, ρ)◦ then by Lemma 6(b),

(�, ρ) [[R(π(x1) . . . π(xn))]]◦ (�, z : R(π(x1) . . . π(xn)), ρ
z
a)

for some z and a. By (6),

(��, ρ �) [[R(π(x1) . . . π(xn))]]
�
◦ (�

�, z : R(π(x1) . . . π(xn)), ρ
�z
b)

for some b, whence by Lemma 6(a),

(��, ρ �)◦ �R(x1 . . . xn)�N (��, ρ �)◦,

as required. Similarly for the converse. And indeed for (c2): if

(�, ρ)◦ �(∃x ∈ U
�

��M

�

�, z :
�

�

x : U
�

�, ρz
�a,p�

�◦

then by Lemma 6(b),

(�, ρ)
���

�

x : U
�

�
��

◦

�

�, z :
�

�

x : U
�

�, ρz
�a,p�

�

whence by (6),

(��, ρ �)
���

�

x : U
�

�
���

◦

�

��, z :
�

�

x : U
�

�, ρ �
z

�b,q�

�

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 139

for some b, q, where (�, z : (
�

x : U)�, ρz
�a,p�)↔ (��, z : (

�

x : U)�,

ρ �
z
�b,q�). Lemma 6(a) then gives

(��, ρ �)◦ �(∃x ∈ U)��N

�

��, z :
�

�

x : U
�

�, ρ �
z

�b,q�

�◦

,

as required. Ditto for (c3).
Proving (7b) is no harder. Suppose (M, (�, ρ)) ≈◦ (N, (��, ρ �)), say

�̂ ∼ �, �̂� ∼ ��, �̂�Tm◦��̂� and
(M, (�̂, ρ)◦) ∼=p (N, (�̂�, ρ �)◦).

(7)

Recalling clauses (β0)–(β2) above (for [[·]], [[·]]�-bisimulations), (β0) is
immediate: Tm◦[�] = Tm◦[��]. As for (β1), if (�, ρ)[[A]]◦(�, z : A, ρz

a),
then as �̂ ∼ �, Proposition 5 gives

(�̂, ρ) [[A]]◦ (�̂, y : A, ρ
y
a)

for some y, whence by Lemma 6(a),

(�̂, ρ)◦ �A◦��M (�̂, y : A, ρy
a)
◦.

By (7) and the characterization of ∼=p in terms of the bisimulation condi-
tions (b1) and (b2) in Section 3.1,

(�̂�, ρ �)◦ �A◦��N g

for some g such that (M, (�̂, y : A, ρ
y
a)
◦) ∼=p (N, g). By Lemma 6(b) and

�̂�Tm◦��̂�,

(�̂�, ρ �) [[A]]�
◦
(�̂�, y : A, ρ �

y

b)

for some b, which by �̂� ∼ �� and Proposition 5, turns to

(��, ρ �) [[A]]�
◦
(��, v : A, ρ �

v

b)

for some v. Clearly, (M, (�, z : A, ρz
a)) ≈◦ (N, (��, v : A, ρ �

v
b)), taking

care of (β1). A similar chain of implications gives (β2). �

Theorem 7 says that the extra bit an L-interpretation [[·]] has over the L-
model M[[·]] is inconsequential if, as is commonly agreed, the “essential”
structure of transitions such as those in [[·]]◦ is invariant under bisimula-
tions. Writing [[·]]◦ ↔ [[·]]�◦ for ([[·]], (�,∅)) ↔ ([[·]]�, (�,∅)), Theorem 7
specializes to

COROLLARY 8. [[·]]◦ ↔ [[·]]�◦ iff M[[·]] ∼=p M[[·]]�.

140 T. FERNANDO

We cannot expect to strengthen [[·]]◦ ↔ [[·]]�◦ to an isomorphism, as M[[·]]

forgets the proofs in [[·]]. On the other hand, as noted in Section 3.1, we can,
for countable purposes, read∼=p as∼=. And since in all cases, isomorphisms
are partial isomorphisms, Corollary 8 yields

if M[[·]] ∼=M[[·]]� then [[·]]◦ ↔ [[·]]
�
◦.(8)

4. EXTENSIONS

The two previous sections have concentrated on simple fragments of dy-
namic and proof-conditional semantics. Do the results above carry over to
extensions of these fragments? We turn first to proof-conditional seman-
tics.

4.1. D and D[Ax]

For the match-up above with L-formulas, the rule set D◦ was confined
to term constructors l and r. Obvious omissions include function appli-
cation ap, pairing �·, ·� and λ-abstraction, which figure respectively in the
elimination rule for

�

� ⇒ t :
��

x : T
�

A � ⇒ t � : T

� ⇒ ap(t, t �) : A[x �→ t �]

and the introduction rules for
�

� ⇒ t : T � ⇒ t � : A[x �→ t] �, x : T ⇒ A type

� ⇒ �t, t �� :
�
�

x : T
�

A

and for
�

�, x : T ⇒ t : A

� ⇒ λx.t :
�
�

x : T
�

A
.

In addition, from ⊥, we get a term 0 saying that ⊥ entails every well-
formed formula

� ⇒ A wff

� ⇒ 0 : ⊥ ⊃ A

and, should we wish, terms δA for double negation

� ⇒ A wff

� ⇒ δA : ¬¬A ⊃ A

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 141

(where, as usual, ¬A is A ⊃ ⊥). For reasons to become clear shortly, we
take care to attach type subscripts A onto δA.

Concentrating on the subscript-less constructs l, r, ap, �·, ·�, λ and 0
(and dropping the superscript in Tm◦), let Tm be the set of (extended)
preterms t given by

t ::= x | lt | rt | ap(t, t) | �t, t� | λx.t | 0,

from which (extended) L-pretypes are then generated as before. (We leave
“extended” out from here on, unless the contrast with the non-extended
notions is relevant.) Let D be the rule set D◦ plus the rules above excluding
those for double negation δA, and let contextD and ⇒D be defined as in
context◦ and⇒◦, with D◦ extended to D . Given an L-interpretation [[·]],
we can interpret a preterm t ∈ Tm in a model of the type free calculus
embedding [[·]], imposing a system of types on top of it so that for all
� ∈ contextD and ρ ∈ [[�]]D ,

if ‘� ⇒D t : T ’ then [[t]]D�,ρ ∈ [[T]]
D

�,ρ.

Indeed, Feferman [5] and Aczel [1] provide type-free interpretations for
dependent types, verifying rules such as β-reduction

�, x : T ⇒ t : T � � ⇒ t � : T

� ⇒ ap(λx.t, t �) = t[x �→ t �] : T �[x �→ t �]
.

Whereas l, r, ap, �·, ·�, λ and 0 can be interpreted uniformly over all types
T (by typing type-free combinators), a similar interpretation for double
negation δA is problematic. The obvious solution is to let the interpretation
of δA vary withA. If [[A]]D�,ρ �= ∅, we can set [[δA]]D�,ρ = λx.a, for some a ∈
[[A]]D�,ρ . Otherwise, [[A]]D�,ρ = ∅ and [[δA]]D�,ρ = [[0]]

D

�,ρ will do. (Notice that
this argument depends on the law of excluded middle for [[A]]D�,ρ = ∅, as
well as some choice principle.9)

More generally, a set Ax of L-pretypes that we wish to treat as axioms
might be introduced via

� ⇒ A wff

� ⇒ pA : A
A ∈ Ax(9)

(with δA amounting to the instance p¬¬A⊃A). In fact, to allowAx to include
pretypes A built from terms pB , we ought to generate the set Tm[L] of
L-preterms t simultaneously with (further extended) L-pretypes A

t ::= x | lt | rt | ap(t, t) | �t, t� | λx.t | 0 | pA,

142 T. FERNANDO

A ::= ⊥ | R(t1 . . . tn) |
�

�

x : A
�

A |
�

�

x : A
�

A |
�

�

x : U
�

A |
�

�

x : U
�

A.

Given a collection Ax of these L-pretypes, we can then define D[Ax] to
be D + (9). Ax may, of course, fail to, in any natural sense, hold in an
arbitrary L-interpretation [[·]] – especially as Ax may contain a pair A and
A ⊃ ⊥. Blatant contradictions aside, we might for every � ∈ contextD

and ρ ∈ [[�]]D , form the set D[[�, ρ]] of L-pretypes supported by �, ρ,

D[[�, ρ]] = {A | [[A]]D�,ρ �= ∅},

choosing for A ∈ D[[�, ρ]] ∩ Ax, an element of [[A]]D�,ρ to interpret pA

(relative to �, ρ).
Turning next to the preterms t that a D-context � assigns sorts, let

TmD [�] = {t | ‘� ⇒D t : U ’for some U ∈ L0},

and note that as with Tm◦[�], all terms in TmD [�] are either variables
x ∈ Var or of the form lt . But unlike Tm◦[�], if TmD [�] is non-empty,
then TmD [�] must be infinite – if only for the rather uninteresting reason
that if ‘� ⇒D t : U ’, then l�t, λx.x� ∈ TmD [�] (since ‘� ⇒D �t, λx.x� :

(
�

y : U)(⊥ ⊃ ⊥)’). This is uninteresting because [[l�t, λx.x�]]D�,ρ =
[[t]]D�,ρ for any L-interpretation [[·]]. More interesting is the D-context

x1 :
�

�

y : U
��

�

z : U
�

Succ(y, z),

x2 :
�

�

x : U
�

�

(where U ∈ L0 and Succ ∈ L(U,U)), relative to which the preterms

lx2, l(ap(x1, lx2)), l(ap(x1, l(ap(x1, lx2)))), . . . ,

t, l(ap(x1, t)), . . .

all have type U , denoting, under the obvious L-interpretation and instanti-
ation, the natural numbers 0, 1, 2, . . . , n, n+ 1, By contrast, for every
� ∈ context◦, Tm◦[�] is finite.

Now, the difficulty in extending our reduction of D◦ to D is evident.
Writing � for ⊥ ⊃ ⊥ and assuming R ∈ L(U), let � be x1 : � and �� be
x1 : (

�

y : U)(
�

z : U)R(z), both of which belong to context◦ and hence
contextD . While

Tm◦[�] = Tm◦[��] = TmD [�] = TmD [��] = ∅,

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 143

� and �� have very different wff’s:

‘�� ⇒D

�

�

x2 : U
�

R(l(ap(x1, t))) wff’

but

‘� �⇒D

�

�

x2 : U
�

R(l(ap(x1, t))) wff’

for t equal to any of x2, l(ap(x1, x2)), l(ap(x1, l(ap(x1, x2)))),
The previous example suggests a more sophisticated reduction of � ∈

contextD than TmD [�]. Writing Sk for Skolem functions,10 let

Sk[�] =
�

t | ‘� ⇒D t :
�

�

x1 : U1

�

· · ·

�

�

xn : Un

��

�

x : U
�

A’ for some

U1 . . . Un, U ∈ L0 and x1, . . . , xn, x,A
�

,

the idea being that from t : (
�

x1 : U1) · · · (
�

xn : Un)(
�

x : U)A, we
can extract the A-Skolem function

λx1 · · · λxn.l(ap(· · · ap(t, x1) · · · , xn)) :

(U1→ · · · (Un→ U) · · ·) ∼= (U1 × · · · × Un)→ U.

Sk[�] incorporates TmD [�] in that whenever ‘� ⇒D t : U ’,

‘� ⇒D �t, λx.x� :
�

�

z : U
�

�’.

The problem, however, is that Sk misses out on preterms that take proofs
as arguments,11 such as a variable of type (

�

x : U)(R(x) ⊃ (
�

y : V)�)

where R ∈ L(U) and U,V ∈ L0. To press the point, let [[·]] be an
L-interpretation such that [[U]] = {u}, [[V]] = {1, 2} and [[R, u]] = {3, 4}.
The prenex form (

�

x : U)(
�

y : V)(R(x) ⊃ �) has (up to exten-
sionality) two Skolem functions in [[·]], u �→ 1 and u �→ 2, neither of
which can (alone) match the map α : �u, 3� �→ 1, �u, 4� �→ 2 from
[[(

�

x : U)(R(x) ⊃ (
�

y : V)�)]]D� in that if S ∈ L(V) differentiates
1 from 2 in [[·]] – say, [[S, 1]] = ∅ �= [[S, 2]] – then α contains witnesses
to both (∃z ∈ V)S(z) and (∃z ∈ V)¬S(z), whereas neither u �→ 1 nor
u �→ 2 does (on its own). Although such examples may impress only read-
ers concerned with the structure of transitions up to bisimulation, there
is no denying that reification of proofs gives D considerable scope. That
said, Skolem functions have attracted some attention in the discourse liter-
ature (e.g. Schubert [26]), and carve out a fragment of D that we explore
next.

144 T. FERNANDO

4.2. D∀ and a Dynamic Universal Quantifier

A modest extension of D◦ capturing Skolem functions is the rule set D∀

consisting of D◦ and

� ⇒ t : (
�

x : U)A � ⇒ t � : U

� ⇒ ap(t, t �) : A[x �→ t �]
U ∈ L0.

Replacing D◦ by D∀, the notions context◦,⇒◦, [[·]]◦ and Tm◦ convert
smoothly into context∀,⇒∀, [[·]]∀ and Tm∀, the set of preterms at stake
being Var closed under l, r and ap. The obvious question is how to modify
the translations A◦�, reductions (�, ρ)

◦ and transitions � · � (in dynamic se-
mantics) toA∀� , (�, ρ)

∀ and �·�∀ so that, for instance, the truth equivalence
given by Lemma 6(c) becomes

PROPOSITION 9. Whenever ‘� ⇒∀ A wff’,

[[A]]∀�,ρ �= ∅ iff (�, ρ)∀ ∈ dom
�

�A∀��
∀
M[[·]]

�

for all L-interpretations [[·]] and ρ ∈ [[�]]∀.

Let us start with the translations A∀�, and see what extension to the notion of
L-formula (in dynamic semantics) that leads to.12 As with ·◦� , the definition
proceeds by induction on A (with A∀� = A◦� whenever ‘� ⇒◦ A wff’).

⊥∀� = ⊥,

R(t1 . . . tn)
∀
� =

�

R(t1
∀
� . . . tn

∀
�) if ‘� ⇒∀ R(t1 . . . tn) wff,’

↑ otherwise,
��

�

x : U
�

A
�∀

�
=

�

(∃x ∈ U)A∀�,x:U if x not in �,

↑ otherwise,
��

�

x : U
�

A
�∀

�
=

�

(∀x ∈ U)A∀�,x:U if x not in �,

↑ otherwise,
��

�

x : A
�

B
�∀

�
=

�

A∀� ∧ B∀�,x:A if x not in � nor A,
↑ otherwise,

��

�

x : A
�

B
�∀

�
=

�

A∀� ⊃ B∀�,x:A if x not in � nor A,
↑ otherwise,

where the translation t∀�, for every t such that � ⇒∀ t : U (for some
U ∈ L0), is given by

x∀� = x for x ∈ Var,

(lt)∀� = (x, sb(t)�) where ‘� ⇒∀ t :
�

�

x : U
�

A’

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 145

with sb(t) recording the substitutions in ap-subterms of t as follows

sb(x)� = ∅ for x ∈ Var
sb(lt)� = sb(t)�
sb((rt)� = sb(t)�
sb(ap(t, t �))� = sb(t)� ∪ {(x, t �

∀
�)} where ‘� ⇒∀ t � : U ’

and ‘� ⇒∀ t :
�

�

x : U
�

A’.

The difference with D◦ (Section 2.3) is the simultaneous definition of

t∀� for t such that � ⇒∀ t : U (for some U ∈ L0)

and

sb(t �)� for t � such that � ⇒∀ t � : A (for some A).

An example should clarify matters.

EXAMPLE. Assuming R ∈ L(U,U,U,U,U) and S ∈ L(U,U), let B be
�

�

x1 : U
��

�

x2 : U
��

�

y1 : U
��

�

x3 : U
�

�

�

y2 : U
�

R(x1, x2, y1, x3, y2)

and A be
�

�

z : B
��

�

z1 : U
��

�

z2 : U
�

S(t, t �),

where t is l(ap(ap(z, z1), z2)) and t � is l(ap(r(ap(ap(z, z1), z2)), t))). Then
A∀� is the L∀-formula

B∀� ∧ (∃z1 ∈ U)(∀z2 ∈ U) S(t∀�, t
�∀
�),

where B∀� = B◦� is

(∀x1 ∈ U)(∀x2 ∈ U)(∃y1 ∈ U)(∀x3 ∈ U)(∃y2 ∈ U)

R(x1, x2, y1, x3, y2),

� is z : B, z1 : U, z2 : U , and

t∀� = (y1, sb(ap(ap(z, z1), z2))�)
= (y1, sb(ap(z, z1))� ∪ {(x2, z2)})

= (y1, {(x1, z1), (x2, z2)}),

146 T. FERNANDO

t �
∀
� = (y2, sb(ap(r(ap(ap(z, z1), z2)), t))�)
= (y2, sb(r(ap(ap(z, z1), z2)))� ∪ {(x3, t

∀
�)})

= (y2, sb(ap(ap(z, z1), z2))� ∪ {(x3, t
∀
�)})

= (y2, {(x1, z1), (x2, z2), (x3, t
∀
�)}).

The translations A∀� require that the ∀-extended L-formulas – let us call
them L∀-formulas – have terms/arguments drawn not only from Var but
from the least set Var∀ satisfying the equation

Var∀ = Var ∪ (Var× Sb(Var)),

where, writing Powfin(X) for the set of finite subsets of X,

Sb(Var) = Powfin(Var× Var
∀).

To interpret elements of Var∀, let us fix an L-model M, and lift a variable
assignment f ∈ VarM to a partial function f ∀ from Var∀ to

�

U∈L0
UM

defined inductively as follows

(a) f ⊆ f ∀ (i.e., for every x ∈ dom(f), x ∈ dom(f ∀) and f ∀(x) =

f (x)), and
(b) for all x ∈ dom(f) and α ∈ Sb(Var), if for every (y, s) ∈ α,

y ∈ dom(f), s ∈ dom(f ∀) and f (y) = f ∀(s),

then (x, α) ∈ dom(f ∀) and f ∀((x, α)) = f (x).

For anaphoric uses of universally quantified variables (illustrated by the
variables x1, x2 and x3 in the example above), let us interpret s ∈ Var∀

relative not only to a variable assignment f in VarM but also a non-empty
subset F of VarM . That interpretation sF,f is defined as follows.

If s is a variable, say x, then xF,f is defined iff x ∈ dom(f), in which case xF,f is f (x).
Otherwise (s is not a variable), sF,f is defined iff there is a g ∈ F such that s ∈ dom(g∀)

and for all h ∈ F such that s ∈ dom(h∀), g∀(s) = h∀(s). In that case, sF,f is g∀(s).

Notice that xF,f is independent of F , whereas if s �∈ Var, then sF,f is
independent of f .

Now, writing Var∀M = Pow(VarM) − {∅} for the family of non-empty
subsets of VarM , let us define the input/output interpretation �ϕ�∀M of an
L∀-formula ϕ to be a binary relation on Var∀M as follows, where F,F � ∈

Var∀M .

F�R(s1 . . . sn)�
∀
MF � iff F = F � and for every f ∈ F,

si
F,f is defined for 1 ≤ i ≤ n

and RM(s1
F,f . . . sn

F,f)

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 147

and so if the arguments si are variables xi , F�R(x1 . . . xn)�
∀
MF � iff F = F �

and for every f ∈ F , f �R(x1 . . . xn)�Mf . The clauses

�⊥�∀M = ∅,

F�ϕ ∧ ψ�∀MF � iff F�ϕ�∀MG and G�ψ�∀MF �for some G,

F�ϕ ⊃ ψ�∀MF � iff F = F � and whenever F�ϕ�∀MG,

G ∈ dom(�ψ�∀M),

F�(∃x ∈ U)ϕ�∀MF � iff for some u ∈ UM,

{f x
u |f ∈ F }�ϕ�∀MF �

are pretty much as in Section 3.1 (with �(∃x ∈ U)ϕ�∀M assigning x the
same value u, regardless of the f ∈ F). The clause for ∀ diverges from
Section 3.1 if UM �= ∅,

F�(∀x ∈ U)ϕ�∀MF � iff (UM �= ∅ and for some

p : UM → Var∀M,

(∀u ∈ UM){f x
u | f ∈ F }�ϕ�∀Mp(u)

and F � =
�

{p(u) | u ∈ UM})

or (UM = ∅ and F = F �),

the intuition behind p being that it is the “image collapse” of a proof in the
dependent function space interpretation (

�

x : U) of (∀x ∈ U).
Next, given � ∈ context∀ and ρ ∈ [[�]]∀, the reduction (�, ρ)∀ ∈

Var∀
M[[·]] in Proposition 9 collects together variables assignments according

to

(�,∅)∀ = {∅},

(�, x : U, ρx
u)
∀ = {f x

u | f ∈ (�, ρ)∀},

(�, x : A, ρx
a)
∀ = {f ∪ g | f ∈ (�, ρ)∀and g ∈ (A, a)�,ρ},

where (A, a)�,ρ is, for allA and a such that ‘� ⇒∀ A wff’ and a ∈ [[A]]∀�,ρ ,
a semantically interpreted ∀-analog of the functions new and wen in Sec-
tion 2.2. To be precise, we define (A, a)�,ρ ∈ Var∀M[[·]] by induction on A,
leaving ⊥ out (as there is no a ∈ [[⊥]]∀�,ρ), treating L∀-atomic formulas
and implications “statically”

(R(t1 . . . tn), a)�,ρ = {∅},
��

�

x : A
�

B, c
�

�,ρ
= {∅}

148 T. FERNANDO

and allowing the rest to be “dynamic”
��

�

x : A
�

B, �a, b�
�

�,ρ

= {f ∪ g | f ∈ (A, a)�,ρ and g ∈ (B, b)�,x :A,ρxa
},

��

�

x : U
�

A, �u, a�
�

�,ρ

= {f x
u | f ∈ (A, a)�,x :U,ρxu

},
��

�

x : U
�

A, c
�

�,ρ

=

� �

u∈[[U]] {f
x
u | f ∈ (A, c(u))�,x :U,ρxu

} if [[U]] �= ∅,
{∅} otherwise.

NVC� guarantees that in all occurrence of f ∪ g above, dom(f) ∩ dom(g)

= ∅ (whence f ∪ g ∈ VarM[[·]]). This completes the ingredients for Propo-
sition 9, which now follows by a routine induction on D∀-derivations of
� ⇒ A wff.

It is perhaps worth noting that there is more to L∀-formulas than the
fragment Proposition 9 covers. This includes simple translations of dis-
courses such as (c) from Groenendijk and Stokhof [11].

(c) Every player chooses a pawn. He puts it on square one.
(∀x ∈ player)(∃y ∈ pawn) chooses(x, y) ∧ puts-on-sqr-one(x, y)

The interested reader is referred to Fernando [7], where the step from
f ∈ VarM to non-empty sets F ⊆ VarM of such is linked to conjunctive
branching, introduced into dynamic logic in Peleg [23] and widely found
in so-called and/or graphs for 2-person games.

5. DISCUSSION

Having associated dynamic and proof-conditional semantics (in the intro-
duction) with the intriguing proposals (D) and (P), suggesting that truth be
updated and proofs used in constructing well-formed formulas, let us con-
clude by reviewing how these ideas have fared in the synthesis attempted
above. With an eye on not only truth but context change, we pushed our
semantic analysis (in Section 3) of the translations A◦� (from Section 2)
beyond truth equivalence, Lemma 6(c), to bisimulation equivalence, Theo-
rem 7. However edifying the extra work in forming bisimulations may have
been, we carried our analysis ofA∀� (in Section 4) only up to Proposition 9,
the ∀-analog of Lemma 6(c). In falling short of the ∀-analog of Theorem 7,
we invited speculation as to whether the author had finally run out of steam
or had decided not to try the patience of his indulgent reader further. Be

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 149

that as it may, an obvious defect in the link forged between dynamic and
proof-conditional semantics is the omission of many of the rules in the
set D (defined in Section 4.1).

5.1. Derivation versus Interpretation

While we may have expelled various rules from D◦ and D∀, we also intro-
duced oracles [[·]] telling us if, for example, R(u) is true (i.e. [[R, u]] �= ∅),
whether or not there is a D-derivation settling the matter. The concept of
an interpretation independent of any derivation is manifestly as suspect as
truth independent of proof. But for any rule set D

� that is intuitionistically
justifiable (e.g. any subset of D), the incompleteness of D

�-derivations
leaves room for a notion of L-interpretation transcending those limita-
tions. Classical and constructive logicians may, of course, disagree on what
L-interpretations [[·]] there are, and on how [[·]] extends to D

�-contexts,
types and terms. But surely we can be forgiven for trying to steer clear of
these controversies, concentrating instead on matters that bear directly on
applications to discourse.

In the type reduction above, D◦-derivations and L-interpretations serve
very different purposes. D◦-derivations feed into the assembly of well-
formed formulas, while L-interpretations [[·]] provide the L-models M[[·]],
over which dynamic semantics defines input/output relations. These i/o
relations specify programs which, under the reduction above, amount to
searches for proofs in [[·]] – proofs which may or may not belong to D

�.
The link established in Theorem 7 respects the “propositions-as-types”13

intuition lost in the embedding described in Muskens [21] of DRT in clas-
sical higher-order logic. But by deleting (from D◦) all of D’s introduction
and elimination rules save those for the projections l and r, have we not
trivialized propositions-as-types? Only if we steadfastly refuse to step be-
yond the fragment D◦ of D . A well-known example lying outside D◦ but,
as it happens, within D∀ (and hence L∀) is (g).

(g) If each child is given a gift for Christmas, some child will open
?it/[her gift] today.

D∀- (
�

u : (
�

x : child)(
�

y : Xgift)given(x, y)) (
�

z : child)
op-td(z, l(ap(u, z))),

L∀- (∀x ∈ child)(∃y ∈ Xgift)given(x, y) ⊃ (∃z ∈ child)
op-td(z, (y, {(x, z)})).

Differences in empirical coverage between formalisms can be a touchy
matter, especially when trade-offs are involved (e.g. for DRT vs TTG, see
Watson [28]). Obviously, extra-logical “linguistic” considerations must en-
ter into translations of English to well-formed formulas. But it is far from

150 T. FERNANDO

clear whether to tolerate, in their absence, cases of overgeneration or of
undergeneration. In other words, should linguistics contribute constraints
or generative mechanisms? The former would suit TTG, as the inferential
possibilities TTG generates ought to be constrained by linguistic factors.
Among these factors, many have observed, is the difference in (g) above
between definite descriptions such as her gift and pronouns such as it.

5.2. NVC Revisited: A Clash of Paradigms and Beyond

By admitting formalizations of proofs relative to rule sets into proof-con-
ditional semantics, have we reduced dynamic semantics into a proof-con-
ditional fragment given by some rule set such as D◦ (or perhaps D∀)? This
would be surprising, given that proof-conditional semantics can (under
propositions-as-types) be seen as a declarative (functional) programming
language (e.g. Girard, Lafont and Taylor [10]) whereas dynamic semantics
is commonly associated with assignment-based (imperative) programs. In-
deed, the thrust of (D) has more than once been identified with a proce-
dural turn in semantics. Declarative though it may be, however, TTG is
arguably more dynamic than dynamic semantics. Type-theoretic context
change yields (in D , if not D◦) many more terms for anaphoric reference.
But then the potential of procedural programming is barely scratched by
the applications above. One of the culprits is the novel variable condition
(NVC), which bans re-assignments to variables.

Why rob procedural programming of some of its power by impos-
ing NVC? The reason can be traced to the reduction of programs in dy-
namic logic to their input/output relations. A crucial clause is relational
composition

f �ϕ ∧ ψ�Mf � iff f �ϕ�Mg and g�ψ�Mf � for some g,(10)

discarding intermediate outputs g. This is evidently at gross variance with
the retention of witnesses in

�

(witnesses to existential claims being one
of the characteristic pre-occupations of intuitionistic logic). But now, if
each output f � to �ψ�M encodes all the information in the input g, then
nothing is lost in throwing out intermediate outputs g in (10). Enter persis-
tence (5) from Section 3.1, stating that f ⊆ f � whenever f �ϕ�Mf �.

Should we then never destroy information, and enshrine persistence as
a principle of interpretation? Arguably not. While anaphoric possibilities
may multiply during a discourse, some possibilities may also drop out
(or at the very least degrade). Beyond that, non-monotonicity has become
a significant feature of various accounts of discourse interpretation (e.g.
Asher and Lascarides [3]). Nevertheless, there is a widespread feeling that
persistence has its place, immune from counter-examples of the kind just

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 151

mentioned. Some such space is afforded by the distinction drawn in Kamp
and Reyle [14] between

(i) an algorithm translating English sentences (or some syntactic analyses
thereof) into well-formed formulas

and

(ii) a scheme (e.g. � · �M) interpreting such well-formed formulas model-
theoretically.

Persistence may find a home in (ii), if not in (i). Now, the trouble with char-
acterizing DRT as a fragment of proof-conditional semantics is that, just as
intuitionistic type theory reaches far beyond D◦, the bulk of work in DRT
revolves not around the input/output relations � · �M , but on some algo-
rithm constructing logical forms for English discourse (e.g. van der Sandt
[25]).14 What impact could replacing models by proofs have on the design
of such an algorithm? Some answers are under way (e.g. Krause [18],
Krahmer and Piwek [17], Fernando [8]).

Acknowledgments

I am very grateful to an anonymous referee for taking this paper on at a
stage when it was hardly readable, and for much help in trying to get it
past that stage. I thank also Krister Segerberg for not giving up on it/me.

NOTES

1 Refinements to L-formulas will be made below. In the meantime, note that for R ∈
L(U), it is natural to abbreviate (∃x ∈ U)(R(x) ∧ A) to (∃x ∈ R)A, and (∀x ∈ U)(R(x)

⊃ A) to (∀x ∈ R)A. In particular, assuming that farmer, donkey ∈ L(U) for someU ∈ L0,
the antecedent in (d) above is recorded in abbreviated form.

2 Although (d) and (p) are written in abbreviated form, the translations operate on their
official forms in exactly the same manner.

3 The reader troubled by the use of equality = between possibly non-denoting terms
should feel free to write Kleene equality � instead.

4 The separation of wff from sorts (and relations) accords with the distinction between
propositions and properties advocated in Fox [9].

5 The notation ·◦� is being overloaded here, serving both as a function from Tm◦[�] to
Var and as a partial function from L-pretypes to L-formulas.

6 The side condition NVC� above ensures that as a function from Tm◦[�] to Var, ·◦� is
1-1, and therefore has an inverse.

7 Diffferences between these and definitions in, for example, Zeevat [29], Dekker [4]
and Vermeulen [27] are largely inessential – at least for the translations A◦� considered
below.

8 This observation is a starting point for the study of bisimulations and predicate logic
reported in Fernando [6].

152 T. FERNANDO

9 Intuitionistic versus classical logic aside, differences in the models embedding [[·]]
may, of course, lead to conflicting predictions as to whether or not [[A]]D�,ρ is inhabited. For
instance, whether or not an induction principle holds over an interpretation of arithmetic
may depend on just what functions and classes we have at our disposal. We will proceed
naively below, following the usual practice in model theory of making as little fuss as
possible about the set-theoretic universe from which models are drawn.
10 Analogously, an alternative notation for Tm is He, for Henkin witnesses.
11 A basic difference between classical and intuitionistic logic is that assuming x does

not occur free in ϕ, the equivalence

ϕ ⊃ (∃x)ψ ≡ (∃x)(ϕ ⊃ ψ)

holds in classical logic, but breaks down intuitionistically, as the x-witness in ϕ ⊃ (∃x)ψ

may well depend on the proof of ϕ (which is unavailable at the start of (∃x)(ϕ ⊃ ψ)).
Since D-derivations are intuitionistically sound, we cannot resort to prenex normal forms.
12 That extension can be motivated independently of proof-conditional semantics (Fer-

nando [7]).
13 A linguist familiar with this slogan is likely to have heard it via categorial grammar

– i.e., in connection not with TTG but with Type Logical Grammar (TLG, Morrill [20]).
TLG should not be confused with proof-conditional semantics, as proofs in TLG pertain
exclusively to parsing, lacking the truth-conditional force that D-derivations have.
14 It is perhaps in such construction algorithms where the force of a “procedural turn in

semantics” can be felt. Allied to (and at the same time constituting a twist to) dynamic
semantics is Dynamic Syntax (Kempson, Meyer-Viol and Gabbay [16]), featuring dynamic
logic in a propositional (as opposed to quantified) form, employed for representationalist
ends.

REFERENCES

1. Aczel, P.: Frege structures and the notions of proposition, truth and set, in J. Bar-
wise, H. J. Keisler, and K. Kunen (eds), The Kleene Symposium, North-Holland,
Amsterdam, 1980.

2. Ahn, R. and Kolb, H.-P.: Discourse representation meets constructive mathematics,
in L. Kálmán and L. Pólos (eds), Papers from the Second Symposium on Logic and
Language, Akademiai Kiado, Budapest, 1990.

3. Asher, N. and Lascarides, A.: Bridging, J. Semantics 15(1) (1998).
4. Dekker, P.: Transsentential Meditations: Ups and Downs in Dynamic Semantics,

ILLC Dissertation Series, Number 1, University of Amsterdam, 1993.
5. Feferman, S.: A language and axioms for explicit mathematics, in J. N. Crossley

(ed.), Algebra and Logic, Lecture Notes in Math. 450, Springer-Verlag, Berlin, 1975.
6. Fernando, T.: Bisimulations and predicate logic, J. Symbolic Logic 59(3) (1994).
7. Fernando, T.: Generalized quantifiers as second-order programs – ‘dynamically’

speaking, naturally, in P. Dekker and M. Stokhof (eds), Proc. Ninth Amsterdam
Colloquium, ILLC, University of Amsterdam, 1994.

8. Fernando, T.: Three processes in natural language interpretation, in Festschrift for
Solomon Feferman, ASL Lecture Notes, to appear.

9. Fox, Ch.: Discourse representation, type theory and property theory, in H. Bunt,
R. Muskens, and G. Rentier (eds), Proc. International Workshop on Computational
Semantics, ITK, Tilburg, 1994.

A TYPE REDUCTION FROM PROOF-CONDITIONAL TO DYNAMIC SEMANTICS 153

10. Girard, J.-Y., Lafont, Y., and Taylor, P.: Proofs and Types, Cambridge Tracts in
Theoret. Comput. Sci. 7, Cambridge University Press, 1989.

11. Groenendijk, J. and Stokhof, M.: Dynamic predicate logic, Linguistics and Philoso-
phy 14 (1991).

12. Harel, D.: Dynamic logic, in D. Gabbay and F. Guenthner (eds), Handbook of
Philosophical Logic, Vol. 2, Reidel, Dordrecht, 1984.

13. Heim, I.: The Semantics of Definite and Indefinite Noun Phrases, Dissertation, Uni-
versity of Massachusetts, Amherst, 1982. Published by Garland Press, New York,
1988.

14. Kamp, H. and Reyle, U.: From Discourse to Logic, Kluwer Academic Publishers,
Dordrecht, 1993.

15. Keisler, H. J.: Fundamentals of model theory, in J. Barwise (ed.), Handbook of
Mathematical Logic, North-Holland, Amsterdam, 1977.

16. Kempson, R., Meyer-Viol, W., and Gabbay, D.: Dynamic Syntax: The Flow of
Language Understanding, Blackwell, Oxford, 2000.

17. Krahmer, E. and Piwek, P.: Presupposition projection as proof construction, in
Computing Meaning, Kluwer Academic Publishers, Dordrecht, 1999.

18. Krause, P.: Presupposition and abduction in type theory, in E. Klein et al. (eds), Com-
putational Logic and Natural Language Processing, South Queensferry, Scotland,
1995.

19. Martin-Löf, P.: Intuitionistic Type Theory, Bibliopolis, Napoli, 1984. Notes by
Giovanni Sambin of a series of lectures given in Padua, June 1980.

20. Morrill, G. V.: Type Logical Grammar, Kluwer Academic Publishers, Dordrecht,
1994.

21. Muskens, R.: Combining Montague semantics and discourse representation, Linguis-
tics and Philosophy 19(2) (1996).

22. Park, D.: Concurrency and automata on infinite sequences, in P. Deussen (ed.), Proc.
5th GI Conference, Lecture Notes in Comput. Sci. 104, Springer-Verlag, Berlin,
1981.

23. Peleg, D.: Concurrent dynamic logic, J. Assoc. Comput. Mach. 34(2) (1987).
24. Ranta, A.: Type-Theoretical Grammar, Oxford University Press, Oxford, 1994.
25. Van der Sandt, R. A.: Presupposition projection as anaphora resolution, J. Semantics

9(4) (1992).
26. Schubert, L.: Dynamic Skolemization, in Computing Meaning, Kluwer Academic

Publishers, Dordrecht, 1999.
27. Vermeulen, C. F. M.: Explorations of the Dynamic Environment, Dissertation, Utrecht

University, 1994.
28. Watson, M.: A critique of a proof-theoretic account of anaphora, in P. Dekker

and M. Stokhof (eds), Proc. Tenth Amsterdam Colloquium, ILLC, University of
Amsterdam, 1996.

29. Zeevat, H.: A compositional approach to discourse representation theory, Linguistics
and Philosophy 12 (1989).

Computer Science,
Trinity College,
Dublin 2, Ireland
E-mail: tim.fernando@tcd.ie

