J Philos Logic (2011) 40:371-396
DOI 10.1007/s10992-010-9155-1

Constructing Situations and Time

Tim Fernando

Received: 17 February 2009 / Accepted: 30 August 2010 / Published online: 16 September 2010
© Springer Science+Business Media B.V. 2010

Abstract Situations serving as partial worlds as well as events in natural lan-
guage semantics are constructed from a type-theoretic interpretation of first-
order formulae and (after a type reduction) temporal formulae. Limitations
of the Russell-Wiener-Kamp derivation of time from events are discussed and
overcome to give a more widely applicable account of temporal granularity.
Finite situations are formulated as strings of observations, conceptualized to
persist inertially (in the absence of forces).

Keywords Situations - Events - Time - Strings - Natural language semantics -
Types

1 Introduction

Situations have been part of the toolkit of natural language semantics since at
least [29], coming to the fore in situation semantics, “the leading idea” of which
is that

the meaning of a simple declarative sentence is a relation between utter-
ances and described situations. The interpretation of a statement made
with such a sentence on a specific occasion is the described situation.
[4,p. 19]

The aforementioned relation can be construed as an instance of what is called
the character of a sentence A in [20], a function

chary : X — 2Y

T. Fernando (X))
Trinity College Dublin, Dublin, Ireland
e-mail: tfernand@tcd.ie

@ Springer

372 T. Fernando

from a set X of “contexts of use” to the family 2¥ of subsets of a set Y of
“circumstances of evaluation.” Put utterances u into X and situations s into Y,
and let

u A-describess iff s € charu(u)
so that

char (u) = {s € Y | u A-describes s} .
It is customary, at a fixed context u, to read

‘s € char 4 (1)’ as s supports the truth of A

and to interpret conjunction A as intersection N

chars,p(u) = char,(u) N charg(u) (1)
inasmuch as at u,

s supports the truth of A A B iff ssupports the truth of A and
s supports the truth of B.

In his influential critique [32] of [4], Soames argues that because of equations
such as (1), the “semantic value of a sentence at a context” cannot be a set
of “truth-supporting circumstances” whether these circumstances are possible
worlds or parts thereof, called situations. One way around Soames’ argument is
to sharpen the sets char 4 (1) of truth-supporting circumstances to types' [A]],
that do not reduce conjunction to intersection

[AA Bl # [All.N[Bl. .

Under the formulae-as-types paradigm from proof theory (e.g. [37]), [Al is
the type of proofs of A at context u

[All, = {a]aisaproof of A at context u}
and conjunctions are interpreted by pairing proofs of conjuncts
[AABl, = {{a,b)|ac[All,and b € [Bl,} .
The pairs (a, b) are ordered
(a,b) = {(a',b’) iff a=d and b =b’
so that in general,
[A A Bll, #[BA Al, whereas chary,p(u) = charg,a(u) .

Proof-theoretic interpretations of logical connectives, especially as formulated
in Intuitionistic Type Theory [22], have in recent years been applied to natural

IFor our purposes, the words set, type and collection are interchangeable, and are to be understood
within ordinary set theory in classical logic.

@ Springer

Constructing Situations and Time 373

Table 1 Ingredients for

. . Kaplan scheme Classic instance Proposed instance
evaluating the meaning of A -
Context of use Speaker, time, . .. u
Evaluation Possible world Intensional index i
circumstances
Extension Truth value € {0, 1} Type [Allw.i

language semantics (e.g. [7, 16, 28]). A basic worry expressed early on by
Sundholm is that

. it is not at all clear that one can export the ‘canonical proof-
objects’ conception of meaning outside the confined area of constructive
mathematics. In particular, the treatment of atomic sentences such as
OWN[x, y] is left intolerably vague ... and it is an open problem how
to remove that vagueness. [34, p. 503]

To address such concerns about atomic formulae A, a subscript i serving, in
Kaplan’s terms, as circumstances of evaluation is used in [12] to form the type
[AT.,.; subject to the constraint

s € [A]l,; implies s C i (for atomic A)

where C is a suitable “part-of” relation. More on C below. For now, suffice
it to say i is an “intensional index” that together with u# determines the type
[AJ.,.; in place of a truth value € {0, 1} (Table 1). The intuition is that

i supports the truth of A atu iff [All,; #9

leading to a reconstruction of the character of A relative to u as the set of
intensional indices supporting the truth of A at u.

charg(w) = {i|[Al.: # 9} (ch)

Under (ch), [A]l,; can be regarded as the set of truthmakers for the truth-
bearer determined by the triple A, u, i,> with the understanding that

the proposition A, u, i express is true iff a truthmaker for it exists.

Character and Soames’ problem aside, what use is the set [A]l,, ; of truthmakers?

The distinction between s € char 4 (1) and s € [A]l,; aligns with distinctions
independently made in [30] and [21] to analyze event prediction, causal
statements and definite descriptions, as well as truth (see Table 2).> The

2The term “truth-maker” was introduced in [24] as a neutral label for an entity that makes a
proposition or “truthbearer” true. A truthful statement need not pick out a unique truthmaker. To
extract a truthbearer from a sentence A, an utterance u and an intensional index i are required.
3To keep the context for the relations in Table 2 alike (i.e., «), one can redefine a truthmaker of A
at u to be a pair (i, s) such that s € [A]l, ;. For the comparison with Kaplan’s character in Table 1,
however, it is convenient to separate i from s.

@ Springer

374 T. Fernando

Table 2 Two relations between s and A (for some fixed, implicit context)

Schubert Kratzer Situation s
Axs s supports A index [Allys # 9
A %x%s s exemplifies A truthmaker s € [Al,.i

relation s € char 4 (u) allows for some slack between s and A insofar as it can
be expected to be persistent relative to the part-of relation C on situations

s € chars(u) and s C s’ implies s € char4(u)

(which, as noted in Section 3 below, often but not always holds). By contrast,
the fit between s and A must be tightened if we are to require

the event time of a sentence is the temporal
projection of a truthmaker of the sentence (tp)

where event time is conceived as in the analysis of tense in, for instance [29].
Fleshing out the link between the notion of time underlying (tp) and the types
[A]..; behind (ch) is the main aim of the present paper, which is organized as
follows.

In Section 2, we supply details of the types [A]l, ; for first-order formulae A,
where i is a model M (appropriate for the vocabulary of A) and u is a partial
function mapping variables to objects in the universe | M| of M. In Section 3,
we focus on the special case where the domain of u is a singleton set consisting
of a variable ranging over temporal points on which to base a Kripke semantics
for Linear Temporal Logic (LTL, e.g. [10]). The pairs and functions serving as
truthmakers in Section 2 are reduced systematically to schedules in Section 3,
where they play the role of both intensional indices and truthmakers, linked
by a part-of relation C. As truthmakers, schedules can be construed as events
[8], orderings on which are well-known to induce notions of time [18, 35, 36].
We take up these temporal notions in Section 4, introducing pre- and post-
states that lead to temporal propositions subject to inertia in Section 5, where
schedules are finitized to strings. Tables 3 and 4 summarize what lies ahead.

2 Pairs and Functions as Truthmakers

Recall that first-order formulae A are related to models M and functions u
mapping variables to objects in M by satisfaction =, with clauses such as

M,u=AAB iff Mu= A and M,u = B

Table 3 Situation in

Section 2 Section 3
Sections 2 and 3 -
Formula First-order LTL
Intensional index Model Schedule
Truthmaker Pair, function Schedule

@ Springer

Constructing Situations and Time 375

Table 4 Time in Sections 4

Section 4 Section 5
and 5 - - -
Situation Schedule String
Projection Russell-Wiener-Kamp Block compression
Bound Pre- and post-states Inertia (force)
leading to (1).
chary,g(u) = chary(u) N charg(u) (1)

Let us assume that for atomic formulae A, we have types [All,. » that are non-
empty precisely when A is =-satisfied by M, u

MuE A iff [Allum # 9. (=a)
There are any number of ways to establish the biconditional (=), including

{A} ifMu= A

LALen = {(/) otherwise)

(arguably the worst example of “armchair ontology” decried in [31]). For
arbitrary formulae A, we will not take the biconditional (=,4) for granted
by asserting say, (2), but will instead adopt proof-theoretic interpretations of
logical connectives such as

a proof of A A B is a pair (a, b) of a proof a of A and a proof b of B. (Ap)

As we shall see, such interpretations nevertheless extend (= 4) from atomic
formulae A to arbitrary first-order formulae A.

Given proofs of atomic formulae, pairs and functions are built in the
simplest case through the Cartesian product

IxJ = {{ij)|lieland je J}
and function space
I — J = set of functions with domain 7 and range J
for various sets / and J. In particular, (Ap) amounts to
[AA Bllum = [Allum % [Bllu,m 3)
and the clause
a proof of A D B is a function mapping proofs of A to proofsof B (Dp)
can be restated concisely as
[AD Blum = [ANum — [Blum - 4)

For quantification (Vx) A and (3x) A, it is convenient to work with dependent
forms [[,.; J(i) and), , J(i) of I — J and I x J (respectively), where J is a

iel

@ Springer

376 T. Fernando

set-valued function with domain 7. We put functions that map i € I to objects
in J (i) into

[T7o) = { f:l = JJG) | f) e J@) foreachi e 1}

iel iel

and input/output pairs for such functions into
Y e = {(i, jlielandje f(i)} .
iel

Notice that if J is the constant function mapping each i € I to J(i) = J, then

[[/o=1—17and) Ji)=1x1.

iel iel

Next, to interpret (3x) A and (Vx) A at u, M, we define, given any object a, a
function u; identical to u except possibly at x which « maps to a

a ify=x

Uy (y) = {u(y) if y € domain(u) — {x} .

Functions mapping a € | M| to proofs in [A]l,:, » make up

IV Al = [] [ADgm (5)

ac|M|

while pairs (a, b) of objects a € [M| and b € [Allux » go into

[@) Al = Y [ATugm - (6)

ae|M|

For negation, it is customary to identify —=A with A D L for some “absurd”
formula L

[(Lhur = 9 (7)

with M, u &= L.

Theorem 1 Clauses (3)—(7) preserve the biconditional

M,ul=A iff [Alum #9. (Fa)

That is, if (=4) holds for atomic formulae A then it holds for all formulae A
built from them with A, D,V, 3, L and interpreted according to (3)—(7).

Theorem 1 says that satisfaction = falls out of clauses (3)—(7) applied to
interpretations of atomic formulae respecting =.

@ Springer

Constructing Situations and Time 377

Beyond the first-order connectives above, dependent forms A, and D, of
conjunction A and implication D are interpretable through the dependent type
constructs) and []

[A Ay B]]u,M = Z [[B]]uj,M

acllAllu,m

IIA Oy B]]u,M - l_[IIB]]M;,M
acl[Allu.m

extending the mechanisms of Discourse Representation Theory (DRT, [19])
for anaphora and presupposition (e.g. [28]). Whereas first-order formulae can
dispense with truthmakers (Theorem 1), the connectives A, and D, explicitly
manipulate them through the variable x. Interpretations can be extracted from
that variable of, for instance, the problematic pronouns /e and it in the donkey
sentence (a).

(a) If a farmer owns a donkey, he beats it.
(b) Whenever a man rides a donkey, he gives it a treat.

The variant (b), from [21], requires, in addition, that instances of riding be
related to instances of treat-giving (lest a man ride a donkey repeatedly but
give it a treat only once; [12]). These instances are events e that occur in [19]
within predications such as e : ride(m, d). In [3], these events get beefed up
into main eventualities that semantically underpin rhetorical relations between
discourse segments. In both cases, they are ontological commitments recorded
as discourse referents, distinct from truthbearers (called conditions). As truth-
makers of atomic formulae, the precise nature of events is left open-ended
under the proof-conditional clauses (3)—(7) above.

3 Partial Indices as Type-Reduced Pairs and Functions

Clauses (3)—(7) from the previous section yield truthmakers for non-atomic
formulae A different from the armchair example (2)

(A} if MuE= A

[Allpm = {Q) otherwise. @

Instead, functions and pairs are formed according to the logical connectives in
the truthbearer, adhering closely to the principle (Ift)

the logical complexity of a sentence shapes the form of its truthmakers. (Ift)

For example, a truthmaker of (A A B) D (Vx)C is a function that maps certain

pairs (making A A B true) to certain functions (making (Vx)C true). In [24],
Mulligan, Simons and Smith attack “the dogma of logical form,” upholding
instead

the independence of ontological from logical complexity: ontologically
complex objects (those having proper parts) are not for that reason also

@ Springer

378 T. Fernando

in some way logically complex, any more than there is reason to suppose
that to every logically complex (true) sentence there corresponds an
ontologically complex entity which makes it true. [24, Section 3]

Smith presses on in [31], arguing that

there is no superficial feature (for example, the logical form of the
corresponding sentence) which will allow us to determine in some quasi-
automatic fashion the totality of all of that to which reference is made in
a given judgment. [31, Section 12]

In response, one might deny that logical form is a superficial feature of a
sentence. Indeed, if work in DRT [3, 19] has taught us anything, it is that
the construction of logical forms for English texts is a challenging task that
must draw on all kinds of information to uncover what the texts leave implicit.
Beyond making allowances for complications in the step from English to logic,
however, there is also the narrower issue of how logical forms are interpreted.
Under clauses (4) and (7) from the previous section, negations — A, equated
with A O L, can only be made true by the empty function ¢

[[_'A]]M,M = [[A]]M,M — 0

@y iAo =19
|9 otherwise.

Hence, negating A twice leads to truthmakers worse than (2)

(W ifMuEA
[==Alluy = {@ otherwise

assuming (=4) is satisfied

MubE A it [Al,y # 9. ()

The empty set is a terrible truthmaker, giving no indication whatsoever of what
a truthbearer is about.

An alternative to —A providing proofs other than @ is strong negation A
[25], which, as will become clear presently, points to the importance of atomic
formulae (taken for granted in the previous section). The idea is to pair every
n-ary relation symbol R with another R of the same arity (doubling the relation

symbols, if necessary), with the proviso that R = R and the understanding that
amodel M interprets R as R’s falsity set

RY = M — RM. (8)

The map R(t, ..., t,) = ?(ll, ..., Iy is then extended to non-atomic formulae
by pushing the negations inside (into atomic formulae closed under negation)
following De Morgan-like laws

A>DB = AAB AANB = ADB
(VOA = (Ax)A Ax)A = (Vx)A

@ Springer

Constructing Situations and Time 379

so that A = A. For L,weput L =Tand T = 1, where M, u = T and
(Thew = {7}.
It is easy to see that although A and —A may have different truthmakers
[ATum # [=Aluy
they agree on satisfaction = inasmuch as
[ALuy # 0 iff [=Alluy # 9
iff Mup A

assuming (=4) and (8).

Next, generalizing from first-order models M to intensional indices i that
may fall short of worlds (in failing to settle the truth/falsity of sentences), it is
useful to weaken Boolean complementation (8) to

RNR = 0. (9)

Assuming a pairing R, R of relation symbols over indices i respecting (9), the
notion of a diagram in model theory [6, p. 68] generalizes to the diagram A(i)
of i given by the set

A(@) = {{(u, A) | [All.; # 9 and A is atomic}

of pairs (u, A) of contexts u and atomic formulae A for which [A],; is non-
empty. Diagrams induce a natural partial order C on intensional indices

iTi iff AG) C AG). (10)
For models M and M’ of the same vocabulary, C is equality

MC M ifft M=M

but situations more partial than possible worlds give rise to intensional indices
iand i withi C i’ but i # i. Clearly, for atomic formulae A, we have persistence

iCiand[A]l,; #@ implies [Al.r #9.

What about non-atomic formulae A? Well-known counter-examples to persis-
tence are universal formulae such as (c).

(c) Every mistake was corrected.
(Vx)(mistake(x) D corrected(x))

The culprit is the function construct [] for interpreting V and D. (The pair
construct Y, by contrast, poses no obstacle to persistence.) If, however,
we apply [] judiciously, it turns out we can secure persistence for many

@ Springer

380 T. Fernando

non-atomic formulae A. We illustrate this point in the remainder of this paper,
exploring what T. Parsons calls “subatomic semantics,” by which he means

the study of those “formulas of English” that are treated as atomic
formulas in most investigations of English. The main hypothesis to be
investigated is that simple sentences of English contain subatomic quan-
tification over events. [26, p. ix]

The truthmakers for many such simple sentences are events that can be
conceived as strings of snapshots—a conception arguably implicit in Linear
Temporal Logic (LTL, [10, 27]).

LTL provides a language £(P) of temporal formulae ¢ built from some set
P of atomic temporal formulae. Following [13], we shall define sets [¢]l,; of
truthmakers where

(i) contexts u of use are given by integers n € Z = {0, 1, —1,2, =2, ...} rep-
resenting temporal points in a discrete linear order without endpoints,
and

(ii) intensional indices i are given by relations s € Z x P between Z and P,
called schedules [13] such that

s = A(s) = {(n,p)eZx P|s,nE p}
and the temporal span of s is its domain {n € Z | (3p € P) (n, p) € s}.

It will be convenient to assume the set P of atomic temporal formulae is closed
under a strong negation map -

foralpe P, peP
and that the schedules s are coherent in that for alln € Z and p € P,
(n, p) € s implies (n,p) &s

(the analogue of (9) above). In general, it will not be true of a schedule s that
foralln € Zand p € P,

(n,p)es or (n,p)¢s

unless s is a world — i.e., s is C-maximal among the schedules. (As s = A(s),
C is the same as the partial order = defined in (10).) As explained in [13], the
sets [[¢]l,.; = [@ll.s can be derived from certain sets [¢],, € 22*F via

[elns = {S/ € [(p]n |s' < S} (11)
preserving the usual Kripke semantics = for LTL in that for all worlds s,
ssniEg iff [@llas #9 . (12)

An immediate consequence of (11) is that all LTL formulae ¢ are persistent
over schedules s and s’

s,ni=gpands Cs implies s',nkE=¢.

@ Springer

Constructing Situations and Time 381

What we establish next (beyond the results reported in [13]) is that the sets [¢],,
can be obtained from systematically reducing pairs and functions that interpret
¢ at n through the constructs > and [] from the previous section. Useful
truthmakers can be derived from the interpretation of logical connectives
given by clauses (3)-(7). More precisely, sets (¢}, of pairs and functions
are defined such that for some reduction 7 of these pairs and functions to
schedules,

le], = (7@ |a e (g}

whence as a corollary of (12), we have

Theorem 2 For every LTL-formula ¢, schedule s and integer n,

s,niE@ iff Qae {g)y) (@ Cs.

We owe a definition of the sets {¢), and the type reduction 7. Assuming
that the elements of (¢}, are in the simplest case pairs (n, p) € Z x P and
constructed inductively as pairs (a, a’) and functions f, it is easy to define &

n((n, p)) = {(n, p)}
a({a,ad)) = w(a) Un(a)

7(f) = (Jlx(fm) | n € domain(f)} .

As for the sets {¢),, we need to be clearer about the formulae at stake and
how they get evaluated through [=.
In the case of an atomic temporal formula p € P,

{pbn = {(nv p)}

corresponding to
s,sni=p iff (n,p)es.

As already mentioned, we use strong negation, which involves pairing not
only atomic temporal formulae with their duals, but also logical/temporal
connectives. To sidestep persistence complications with D, we take disjunction
v as the dual of A (instead of D), setting

{(,0 A wbn = qun S (prn

and

eV i) = (edn U (¥

(straying from the intuitionistic requirement specifying which disjunct holds).
The self-dual temporal connective NEXT increments time

(Next @) = (@)ns1
s,n =ENExTo iff s,n+1E¢

@ Springer

382 T. Fernando

while PREvIOUs decrements it
(Previous ¢), = (9]
s,n = Previous ¢ iff s,n—1F¢.
As for UNTIL, we have
s,n =@ UNTIL Y iff 3m >n) (s,miE=y andforn <k <m, s,k =¢).
Note that
l_[{¢Dx = {f| fis a function with domain {k | n < k < m}

n<k<m

s.t. (Vk € domain(f)) fk) € {(¢)«}
which we pair with (), to set

{p uNTIL Y1), = [(d, fl@m=nde Yhand fe [] Mk}

n<k<m

U (Mm < T1 qgo»k) .

m>n n<k<m
To step from UNTIL to its de Morgan dual RELEASE,
s, n = ¢ RELEASE ¢ iff (Vm > n) (s,m = v or (3k > n)(k < mand s, k = ¢))
we replace | by [, x by Uand [] by .

(@ rELEASE), = [] ((IlﬂmU U ([<P]>k)

m=n n<k<m

i f| fis a function with domain {m | m > n} s.t.

n<k<m

(Ym = n) f(m) € (Y)mor fm) e | J <[¢]>k}

Similarly for sINCE and its dual INITIATE, turning < around

U (([me [1 <I<ﬂ]>k)

m<n m<k<n

{p sINCE ¥,

(p mrmate y), =] (([W])mU U ([¢]>k)

m<n m<k<n

@ Springer

Constructing Situations and Time 383

where
s,nE@SINCEY iff 3m<n)@G,mEyandform <k <n, s,k = ¢)
s,n = @ INITIATE ¢ iff (Vm <n) (s,m =¥ or (3k < n)(m < kands, k = ¢))
Finally, there is no way _L can be true
LDy = ¥
but always one for T
(Mhn = {9}

(¥ being an element of ([[x € @)1, for any set). We now have the ingredients
for an argument by induction on ¢ to establish Theorem 2.

4 Time Ordering Events

The previous section equated time with the set Z of integers for the purpose
of interpreting temporal propositions from LTL. It is a trivial matter, however,
to interpret LTL against the real line R, decorating the unary operators NEXT
and Previous with real numbers € > 0 and defining

(NexT@)n = (@Dn+e

for
s,n = NExT.@ iff s,n+eE=¢
and
(PrEVIOUS @), = (@)n—e
for

s,n = Previous.¢ iff s,n—e =g .

Theorem 2 carries over, with NExT becoming NEXT; and PrREvious PrREvIOUS;.
But the question for natural language applications is then how to choose €?
There is an embarrassing wealth of choices in R that far outstrips the bounded
precision of natural language descriptions. The problem is that arbitrarily small
increments in R lead to complications with vagueness that plague any attempt
to pin down the exact moment of change in R [14]. Consider (d) and (e).

(d) Pat left the room at 3:05 pm.
(e) Patleft the room not a picosecond before 3:05 pm.

If, given (d), (e) is not patently ridiculous, then certainly some variant of
(e) is (with a picosecond replaced by a sufficiently small fraction thereof).
Departures and other events have bounded temporal granularity, making it

@ Springer

384 T. Fernando

Table 5 Some temporal Given Let
relations on E from

sCTx Eand <onT sCTxE eov(s) ¢ iff (3r) s(t, e) and s(z, €')
- ein(s) e iff (Vts.t.s(t, e)) s(t,e)
and <on T e <g € iff (Vt,0 st.s(t,e)ands(t’,e))t <t

absurd to draw against R the sharp yes-no distinctions demanded by a bivalent
semantics.*

Rather than plotting the events once and for all against the real line, we will
tailor our notion of time to suit a set E of relevant events so that temporal
granularity can be refined by expanding FE, or coarsened by restricting E.
Towards this end, we modify the components of a schedule s € Z x P from
Section 3, replacing not only P by E, but also Z by an arbitrary set T of times,
subject to the construal

s(t,e) says ‘e s-occurs att’.

But what set 7T of times do we choose? The precise choice does not matter, as
the idea is that, given any 7 whatsoever, a time ¢ € T reduces to the set

{ee E|s(t,e)}

of events that s-occur at . There are problems in fleshing this simple picture
out, but as we shall see, these problems can be overcome largely by fixing s up
with a linear order on 7.

For orientation, let us recall the Russell-Wiener construction of time [18]
which makes do, at the outset, with no explicit notion of time. Instead, binary
relations O and < on a set E are assumed to satisfy conditions

(A)) eOe (ie. Qisreflexive)
(Ay) e impliese Oe

(A3) e<é impliesnote(Oe

(Ay) e=<e Qe <" impliese < ¢”
(As) e<édore(Qéore <e

that allow us to regard O as temporal overlap, and < as complete temporal
precedence. More precisely, for any schedule s € T x E and linear order < on
T, let ov(s) and <, be the binary relations given in Table 5

eov(s) € iff e and e s-occur at some time in common
e <; € iff es-occurs only before ¢ (relative to <).

Then conditions (A;), (Az) and (A4) are met by interpreting O as ov(s) and
< as <;. Furthermore, under this interpretation, (A) holds provided every
E-event s-occurs at some time

(Vee EY(@teT)s(te) ()

4The vagueness of temporal propositions at issue here is the subject of [14], part of which we now
recount (up to Theorem 3 below).

@ Springer

Constructing Situations and Time 385

Table 6 The Russell-Wiener- 5jven Let
Kamp construction of time
from O and <

OCEXE Eo={tCE|(Ve,d etye(Oe'}
To = C-max(EQ)
so={teye Tox Elect}

and <on E t<p !t iff Geen@e ethe<e

and for (As), it suffices that the times at which an event s-occurs form a <-
interval

for everyevente € Eandtimet e T,
s(t, e) whenever (3, < £)(3t, > 1) s(ty, e) and s(t», e) . (1)
Let us call a quadruple (s, T, E, <) made of a relation s € 7 x E and a linear
order < on T an interval schedule if conditions (f) and (%) hold. Having
extracted relations ov(s) and <; meeting (A;)-(As) from an interval schedule
(s, T, E, <), we may ask can we go the opposite direction: given relations O
and < satisfying (A|)—(As), can we construct an interval schedule (s, T, E, <)
such that O and < are ov(s) and <, respectively?
Russell-Wiener-Kamp says yes, forming a set T of temporal instants and

a schedule s simply from temporal overlap O.% Essentially, T is defined so
that s becomes the converse of membership e

so={{te)e Tox E|ect]
and a moment ¢t € T becomes the set of events in E that so-occur at ¢
t={ec E|spt.e)} . (13)

To eliminate the mention of ¢ on the right side of (13), we require that all events
in t O-overlap

(Ve,eee(Oe .

In other words, an instant ¢ € T must be an element of the set £ defined in
Table 6. We pick out the C-maximal elements of Eq for T

To={te Eg| (¥ € Eg) t C ¢ implies t = '}

>The importance of O in Ty and sq is the reason I have opted above for (Aj)—(As), instead
of the more economical presentation (B)—-(B,) from [35], with O relegated to an abbreviation for
the complement of the union < U > of < and its converse >.

(B1) note<e
(B2) if (e; < ez and e} < €)) then (e; < €} ore] < e2)

(By) says < is irreflexive, and (B;) < is an interval ordering.

@ Springer

386 T. Fernando

in order that an element ¢ of T be the set of all events that s-occur at ¢. An
example is helpful. Let E be the set {e;, e} and e; e, so that

. _ ok
En=2

T = {fer, e2}) -
For a non-empty linear order on times, let us add an event ¢, to E to form
E=FE U {eg)
and stipulate that ey overlaps with e; but completely precedes e,
O =0 U {(e. €). (eo, 1), (e,)}
< = {(eo, e2)} .
Then
E© = {t C E | not {ey, e2} < t}

with C-maximal elements {eg, e;} and {e;, e»}, which we temporally order by
existential quantification to get

{6(), 61} QO {6], 62} because €0Q€2 .
In general, given < on E, we define
t<ot iff Geern(@e er)e<e

forallt,t € Ty. So much for the definitions in Table 6. The punch line is that if
O and < satisfy (A;) to (As), then (s, Ty, E, <o) is an interval schedule, and
the relations O and < are the same as the relations ov(s) and < (respectively)
induced by s = s and < = <.

But now, note that apart from ov(s) and <j, there are many more temporal
relations between events that can be defined from a schedule s. An example
that will be useful below is the relation in(s)

ein(s) e iff (Vi) s(t, e) implies s(z, €')
(i.e., e s-occurs only during ¢') .

If £= {e1, er} and eléez, then Té consists of just one instant, E, so that for

S =54, €l in(s) e, even though we can devise a schedule s’ on E such that
e; ov(s’) e, but not e in(s’) e,. Evidently, the construction of 7 is too coarse
to capture temporal relations such as in(s).

@ Springer

Constructing Situations and Time 387

Table 7 From s and < to s= incorporating pre and post

s<=sU {{t, pre(e)) | A > 1) s(t', e) and (V' < t) not s(t, e)}
U {{t, post(e)) | 3t' < 1) s(¢, e) and (V¢ > t) not s(t, e)}

Is this a defect, however, of the Russell-Wiener-Kamp construction itself or
of the inputs we feed to the construction? Rather than inputting any triple
(E, O, <) satisfying (A;)—(As), we might check that the input has enough
structure to encode interesting temporal relations definable from a schedule
and linear order. Precisely what we mean by “interesting” will become clear
shortly, but for a start, we might beef up the input to an interval schedule
(s, T, E, <). If we are to construct temporal instants from C-max(En), we
should make sure that an instant# € T is not discarded simply because an event
e does not s-occur at t. That is, we might turn not e into an event.® In fact, if we
are to satisfy the assumption (As) above, two negations might be required, one
<-before e, and one <-after e. Let us call these pre(e) and post(e) respectively,
and extend s to the schedule s= defined in Table 7 so that

s<(t, pre(e)) iff (At > 1) s(¢, e) and (V&' < 1) not s(z,)

s<(t, post(e)) iff (I < 1) s(t,e) and (V¢ >) not s(z, e) .
The overlap ov(s<) induced by s= is a binary relation on the pre, post-extension
E,. =FE U {pre(e) | e € E} U {post(e) | e € E}

of E. We can capture the the precedence relation <; on E induced by s and <
through ov(s<) and pre, post

e <z e iff eov(s™) pre(¢’) and not e ov(s<) €

iff post(e) ov(s™) ¢ and not e ov(s~) ¢’
for all e, ¢’ € E. The same goes for in(s)

ein(s) € iff eov(s™) ¢ and

neither e ov(s~) pre(e’) nor e ov(s~) post(e)

%In doing so, we subvert the dictum “no events no time” behind the identification of T with the
C-maximal elements of E. (Note that f is not C-maximal in Eq unless E = ?.)

@ Springer

388 T. Fernando

and all 13 relations between intervals in [1].” A measure of the structure of s to
preserve is given by the equivalence ~; on T holding between times at which
exactly the same events s-occur

t~,t iff (Vee E)s(t,e)iff s, e) .
Injecting the linear order < into s leads to
t~< U iff (Yy € Ey)s~(@t, y)iffs=<(¢, y) .
Clearly, ~,- refines ~;, differentiating, for instance, the subsets
{te T|not @ <1t e domain(s)}
and
{te T|not @ =1t e domain(s)}

of T — domain(s), assuming these are non-empty.

Theorem 3 For any interval schedule (s, T, E, <), the Russell-Wiener-Kamp set
of times induced by the temporal overlap relation ov(s<) of the schedule s
defined from s and < is the set

Tov(s<) = {{y € E+ |S<(l, Y)} | te T}

reducing each timet € T to the set{y € E. | s=(t, y)} of E.-events that s<-occur
att.

According to Theorem 3, a time in 7 is never discarded in 7T, s-<), as it might be
were s= simply s, but merely lumped together with other ~;--equivalent times
in T. The reduction ¢ — {e € E | s(t, e)} is brought in line with Russell-Wiener-
Kamp by stepping up from E to E, and s to s=.

7 An interval or more generally, a period in [2] can be reduced to a pair (a, b) of points. For e =
(a,b)and e = (', b'),

a<d iff eov(s~) pre(e)
b < b’ iff post(e) ov(s™) e
a=d iff eov(s~) ¢ and neither e ov(s~) pre(e’) nor € ov(s~) pre(e)
b =Db’ iff eov(s™) € and neither e ov(s~) post(e’) nor € ov(s<) post(e)
so that for instance,
e finishes ¢ iff ¢’ <aandb = b’
iff pre(e) ov(s<) ¢’ and e ov(s~) ¢’ and

neither e ov(s~) post(e’) nor € ov(s~) post(e) .

@ Springer

Constructing Situations and Time 389

Whatever improvements Theorem 3 makes using s= in place of s, it does
nothing about a second limitation of Russell-Wiener-Kamp: namely, the re-
quirement (As) on O, <, amounting on interval schedules (s, T, E, <) to the
interval condition

for everyevente € Eandtimet e T,

s(t, e) whenever (3t < t)(3t, > 1) s(t1, e) and s(t», e) . (1)

Applying Russell-Wiener-Kamp to events that violate (As)/(}) can produce
unwanted results. Suppose, for example, that events ey, e; and e, had temporal
projections under § of

{t|8te)) ={teR|0<t<2}
{t13¢t eN}={teR|1 <t <3}
{t|5t,ex)) ={teR|0<t<lor2<t<3}.

The intersection of all three sets is empty, although any two of ey, ¢; and e,
s-overlap. The obvious problem is that the temporal projection of e, is split
between{t e R|0 <t < 1}and{r e R|2 <t < 3}. Butif b; were an event with
temporal projection {f e R | 0 <t < 1} and b, were an event with temporal
projection { e R | 2 < t < 3}, we can remove e, from the schedule § before
applying Russell-Wiener-Kamp, as we can count on b, and b, to cover for
e;. To generalize the idea, recall the relation in(s) induced by a schedule
sCTxFE

ein(s) € iff (Vr) s(t, e) implies s(t, ¢')
and observe that
eov(s) e iff (3b in(s) e)(Ab’ in(s) €') b ov(s) b’ (14)
e <, e iff (Vb in(s) e)(¥b'in(s))b <4 b’ . (15)

Now, the point is to apply Russell-Wiener-Kamp to the restriction of s to a
subset B of E that can serve as a temporal basis for E, as spelled out in (I), and
is well-behaved, in the sense of (II).

(I) Equivalences (14) and (15) hold with quantification in the right hand side
relativized to B

eov(s)e iff (3b,b’ € B) b in(s) eand b’ in(b) € and b ov(s) b’
e<s€ iff (Vb,b' e Bst.bin(s)eandb’'in(s)e)b <, b’.

(IT) The interval condition (i) holds with B in place of E: for every event
ec Bandtimete T,

s(t, e) whenever (3t; < t)(3t, > 1) s(t1, e) and s(t>, e) .

@ Springer

390 T. Fernando

Just as one may need to adjoin pre(e) and post(e) to E (extending s to s<), one
may need to break apart events in E into well-behaved pieces that we can put
into B.> We must be careful that these pieces do not become too small, lest we
defeat the purpose of making time just fine-grained enough to order events in
E. In the next section, we get around the interval condition (i) through strings
and projections on strings that bring us back to Russell-Wiener-Kamp.

5 Strings and Inertia

Binary relations s € 7' x X between a set T of times and a set X are central
to Sections 3 and 4, where they are called schedules. Section 4 explores
possibilities for 7 other than the set Z of integers (assumed in Section 3)
by replacing the atomic LTL propositions (constituting X in Section 3) with
events. What do these second components (X) of schedules in Sections 3 and
4 have in common? They can both be described as temporal propositions,
or following the custom in Artificial Intelligence since [23], fluents, provided
we re-construct the schedules s € T x E in Section 4 from relations s, C
T x Occur(E) between T and the image Occur(E) of some 1-1 function e
occur(e) from events e € E to fluents occur(e), putting

s(t, e) iff s.(t, occur(e))
which is to say,
e s-occurs at t iff s, |= occur(e) .

Section 4 proceeds directly to the relations s € 7' x E, leaving out the map
e — occur(e). Is there a pay-off in recognizing s, € T x Occur(E) beyond
conceptualizing schedules in Sections 3 and 4 alike as notions of satisfaction
between times and fluents?

Yes, or so the present section claims. Events are analyzed as ways fluents
can be true at some time or other. To begin with, the expansion of s € 7' x E
to s~ € T x E, becomes a special case of applying connectives on fluents —
in particular, Past (for “sometime in the present or past”) and Future (for
“sometime in the present or future”), definable from the LTL-connectives T,
SINCE and UNTIL in Section 3

PAsT(¢) = T SINCE ¢

FUTURE(¢) = T UNTIL ¢ .

81ndeed, pre(e) and post(e) can be viewed as interval parts of the complement of e that are suited
for inclusion in B.

@ Springer

Constructing Situations and Time 391

Conjoining the negation ¢ of ¢ with Past(¢) and FUuTURE(¢), negated and
unnegated, let

pre.(¢) = @ A PasT(¢) A FUTURE(p)
post, (¢) = @ A PAsT(¢) A FUTURE(p)

never(¢) = ¢ A PAst(p) A FUTURE(p)
hole(p) = ¢ A PasT(p) A FUTURE(p) .

Given an interval schedule (s, T, E, <), an event e € FE and a time t € T, we
have

So, I = occur(e) V pre (occur(e)) V post,(occur(e))
as never(occur(e)) and hole(occur(e)) are ruled out by the conditions
(Ve e EY(@te T)s(t, e) (1)
for everyevente € Eandtimet e T,
s(t, e) whenever (3, < t)(3t, > 1) s(t1, e) and s(t2, e) (1)

on an interval schedule.” Fluents of the form occur(e) aside, however, there is
no reason to require of an arbitrary fluent that the set of times at which it is
true be non-empty or an interval.

The question is do we not need (1) and (%) to capture the notion of time
underlying the Russell-Wiener-Kamp construction? To see that we do not,
it is useful to form strings aja; - --ax € (2F)* made up of symbols «; € E
to describe k successive times ti, 5, ..., such that for 1 <i <k, each e €
a; occurs at t;. For an exact representation, we say the interval schedule
(s, E, {t,...,tx}, <) with t; < t, < ... < tg is representable as o;a; - - - a0, if n =
kandforl <i <k,

o =1{eec E|st,e)}.

For instance, the interval schedule (s, {e, ¢'}, {1, 2, ..., 7}, <) where e §-occurs
precisely at 1-3, while ¢’ §-occurs precisely at 2-6 (and < is the usual order on
{1,2,...,7})is representable as the string

. e.éleélée|e|e D (16)

That is, an event e € E partitions 7 into at most three components,
Tpre(e) ={teT|s™ (t, pre(e))}
Te={teT|s@e)}

Tpost(e) ={teT|s™ (t, post(e))}

which we will presently draw as a string

ery
of length 3, consisting of the symbols and E] and .

@ Springer

392 T. Fernando

of length 7 (where boxes are used in place of curly braces to suggest a car-
toon strip). Note that the Russell-Wiener-Kamp construction on the overlap
relation ov(3<) described by Theorem 3 reduces (16) to the string

[efe.c]e.

In general, the block compression bc(s) of a string s compresses a block o of
n > 2 copies of « into one

S if length(s) < 1
bc(s) = { bc(as’) ifs = aas’
abc(a’s’) if s = aa’s’ where a # o’

for all symbols « and o', in accordance with the slogan “no time without
change” [19, p. 674]. Now, for any interval schedule (s, T, E, <), observe that
if E is finite, then so is the the Russell-Wiener-Kamp set 7,,<) of times
induced by 5=, as T,,<) C 25+, for any schedule s, no matter how large T is.
Consequently, it is not difficult to see that

Theorem 4 Given an interval schedule (s, T, E, <), if E is finite, then the
Russell-Wiener-Kamp construction on the overlap relation ov(s<) of s< is
representable as a string s € (2F)* such that bc(s) = s.

What if E were infinite? The idea is to replicate the Russell-Wiener-Kamp
construction on ov(s=<) by gluing together arbitrary finite approximations of
5.10 More precisely, for any finite subset X of E, we form the restriction

s|X ={(t,e) es|ee X}

of s to X, or, in terms of strings, we project a string in (2£)* to one in (2%)* by
componentwise intersection rx with X

rx(og-cay) = (NX) - (a,NX)

10Resorting here to finite approximations is in line with the assertion by van Lambalgen and
Hamm that

One cannot simply assume that we have a dense set of events in memory to derive from
this that cognitive (and not just physical) time may be assumed to be continuous. It is much
more reasonable to assume that density arises in the limit of adding more and more events,
and that, at each stage, memory contains only finitely many events. [39, p. 12]

Also, at the conclusion of [35], S.K. Thomason anticipates [36] with the suggestion to devise

a plausible explanation of how finite information-processors like us would come to think of
time as a continuum ... For that problem, I think, the appropriate mathematical structure
is not an event ordering (which models the world’s events) but a category . .. of finite event
ordering (which models obervers’ developing apprehensions of the worlds’s events). [35,
pp- 95-96]

I hope to provide a detailed comparison of the present work with that of [36] elsewhere,
and explore the possibility that the various constructions of time in [36] (i.e., Russell-Wiener-
Kamp’s, Walker’s and Thomason’s own) come to the same thing in a suitable subcategory of event
orderings (closed under “past” and “future” events).

@ Springer

Constructing Situations and Time 393

so that for example, if X = {¢},

rx(eleeeele|e]em=tele|e]e]e .

Next, if the function bey : (2F)* — (2%)* applies rx before bc

bcx(s) = bc(rx(s))

then we need only construct inverse limits with respect to projections bcy, for
finite subsets X of E. An instructive example is provided by the real line (R, <);
for X = {—1, 2, 7}, the bc y-approximation of the schedule {(r,7) | r € R} is

O-1H2g7p.

In general, the bc y-approximation of Russell-Wiener-Kamp on s= is the string
obtained from Theorem 4 applied to the restriction s| X of s to X.

One of the advantages of block compression bc on strings over Russell-
Wiener-Kamp on interval schedules is that we can dispense with the require-
ments () and (f). Nor does the string s in Theorem 4 need to explicitly
mention pre- or post-events, as the sequentiality of strings already builds in the
order < extending s to s=. This point is clear from the fluents pre_(¢), post, ()
above, and suggests reconstruing strings over the alphabet 2% as strings over
the alphabet 2%, for some set ® of fluents such as occur(e), generalizing
from occurrences/tokens to types ¢ [11, Section 3]. But is block compression
compatible with the LTL semantics of fluents (reviewed in Section 3 above)?

Consider, for instance, the string

(17

which bc reduces to . Does not LTL differentiate (17) from in that
it expands out the former but not the latter to

’7‘ g, PREVIOUS p I q, PrEvIOUS g, PrREVIOUS(PREVIOUS p) ‘ (18)

(establishing the consistency of g A PREViIoUs(PrEvVIOUS p))? Not necessarily.
To claim (18) follows from (17) is to presuppose a clock that interprets the
fluents

Previous p, Previous g, PREvIOUS(PREVIOUS p), ...

However, what if, as is commonly assumed, any clock can be refined by
another, leading to any number of operators Previous, and Previous, with
which to expand (17) out as

mq, PrevVIiOUS, plq, Previous. g, Previous. (PREvIOUS, p) | ?

How then do we choose € and ¢'? If the problem of choosing € and ¢ does
not arise and we can take the step from (17) to (18) for granted, then it is
because we have already fixed a notion of time, and there is no need to appeal

@ Springer

394 T. Fernando

Tablg 8 Some bgundary (a) ecaq; implies e € aj_y orpre(e) € i
conditions on strings (b) e €| implies e € a; or post(e) € a;
aray---ag forl <i<k (c) pre(e) € a; implies pre(e) € a1
(d) post(e) € wj—| implies post(e) € a;
(a’) Q€ implies ¢ €aj—jor fpeai
(b)) ¢ € aj_| implies pea; or fp € iy
() fo € aj— implies g e or fg e

to block compression (which, indeed, does nothing to (18)) or to Russell-
Wiener-Kamp. We had better think twice about expanding (17) out as (18).
In any case, we should be careful to spell out information implicit in a string
before applying block compression (which, as is clear from the definition of
bcx, assumes some set X of events “of interest” has been picked out).

If astring oy«; - - - o 1s to fully describe the relation s= induced by an interval
schedule (s, T, E, <), then the interval condition () on an event e € E leads to
conditions (a), (b), (¢) and (d) in Table 8 for 1 < i < k. What happens when we
step from events e to fluents ¢ and relax (&)? An important idea from artificial
intelligence (e.g. [23]) that has made inroads into linguistic semantics (e.g.
[9, 33, 38]) is that many fluents are “inertial” in that they remain true (or false)
over time unless a force is applied against (or for) them. To formalize this idea,
we introduce non-inertial fluents fp and fg indicating that a force is exerted
to make ¢ true and (respectively) false. For inertial ¢, we transform (a) and
(b) into (a") and (b'); (V) says ¢ persists forward (to the next box) unless a
force is exerted to falsify ¢, while (a") says ¢ persists backward (to the previous
box) unless a force was previously exerted to make ¢ true. That is, ¢ persists
forward and backward, in the absence of any force for or against ¢. This is
a simple formulation of the commonsense law of inertia. For (a’) and (b) to
differ from (a) and (b), fp and fg must diverge from pre(e) and post(e). Instead
of (c) and (d), we have the “succeed unless opposed” constraint (c’) asserting
that fp brings ¢ about at the next box unless a countervailing force fg is applied
against ¢.'" Whence do such fluents fo spring? A possible source is an action A
that is reduced in STRIPS [15] to precondition, add and delete lists, inducing
the constraint on strings oo, - - - @k that for 1 <i < k, if apply(A) belongs to «;
then so does every fluent in the set

precondition-list(A) U {fy | ¢ € add-list(A)} U {fp | ¢ € delete-list(A)} .

An obvious approach to inference is to analyze both the denotations and
indices for fluents as regular languages. Inclusion between regular languages

is decidable, and regular languages enjoy extensive closure properties (e.g.
(5, 13]).

I'That processes may run in competition with each other (rather than in splendid isolation)
distinguishes the present framework from Dynamic Logic [17]—not to mention the intermediate
states that strings with length > 2 add to input/output pairs (interpreting Dynamic Logic).

@ Springer

Constructing Situations and Time 395

6 Conclusion

Situations are constructed in Section 2 as pairs and functions making first-
order formulae true in accordance with formulae-as-types, a ‘dogma of logical
form’ associating pairs with conjunctions and existential quantification, and
functions with implications and universal quantification. The logical forms are
unpacked in Section 3 by reducing pairs and functions alike to schedules, on
which a partial order C can be defined, linking situations-as-truthmakers (e.g.
events) to situations-as-indices (suitably partialized, as advocated by situation-
theorists). Moreover, as relations between time and fluents, schedules have
temporal projections connected in Sections 4 and 5 to the Russell-Wiener-
Kamp construction of time from events. Structuring those events within strings
built from fluents allows us not only to sidestep two problematic assumptions
((t) and (%)) in Russell-Wiener-Kamp, but also to formulate a notion of inertia
regulating change over time (amenable to finite-state methods).

Acknowledgements 1 thank two referees for useful feedback, and Hans van Ditmarsch for his
role in seeing this paper through.

References

1. Allen, J. F. (1983). Maintaining knowledge about temporal intervals. Communications of the
ACM, 26(11), 832-843.
2. Allen, J. F., & Ferguson, G. (1994). Actions and events in interval temporal logic. Journal of
Logic and Computation, 4(5), 531-579.
. Asher, N., & Lascarides, A. (2003). Logics of conversation. Cambridge University Press.
. Barwise, J., & Perry, J. (1983). Situations and attitudes. Cambridge: MIT Press.
. Beesley, K. R., & Karttunen, L. (2003). Finite state morphology. Stanford: CSLI Publications.
. Chang, C. C., & Keisler, H. J. (1973). Model theory. Amsterdam: North-Holland.
. Cooper, R. (2005). Austinian truth, attitudes and type theory. Research on Language and
Computation, 3(4), 333-362.
8. Davidson, D. (1967). The logical form of action sentences. In N. Rescher (Ed.), The logic of
decision and action (pp. 81-95). University of Pittsburgh Press.
9. Dowty, D. R. (1986). The effects of aspectual class on the temporal structure of discourse:
Semantics or pragmatics? Linguistics and Philosophy, 9, 37-61.
10. Emerson, E. A. (1992). Temporal and modal logic. In J. van Leeuwen (Ed.), Handbook of
theoretical computer science. Formal methods and semantics (Vol. B, pp. 995-1072). MIT Press.
11. Fernando, T. (2007). Observing events and situations in time. Linguistics and Philosophy,
30(5), 527-550.
12. Fernando, T. (2009). Situations as indices and as denotations. Linguistics and Philosophy,
32(2), 185-206.
13. Fernando, T. (2009). Situations in LTL as strings. Information and Computation, 207(10),
980-999.
14. Fernando, T. (2010). Temporal propositions as vague predicates. In M. Aloni, & K. Schulz
(Eds.), Amsterdam colloquium 2009. LNAI (Vol. 6042, pp. 143-152). Springer.
15. Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.
16. Ginzburg, J. (2005). Abstraction and ontology: Questions as propositional abstracts in type
theory with records. Journal of Logic and Computation, 15(2), 113-130.
17. Harel, D., Kozen, D., & Tiuryn, J. (2000). Dynamic logic. MIT Press.

~N O kW

@ Springer

396 T. Fernando

18. Kamp, H. (1979). Events, instants and temporal reference. In R. Béauerle, U. Egli, &
A. von Stechow (Eds.), Semantics from dif ferent points of view (pp. 27-54). Berlin: Springer.

19. Kamp, H., & Reyle, U. (1993). From discourse to logic. Dordrecht: Kluwer.

20. Kaplan, D. (1978). On the logic of demonstratives. Journal of Philosophical Logic, 8(1), 81-98.

21. Kratzer, A. (2008). Situations in natural language semantics. In Stanford encyclopedia of
philosophy. http://plato.stanford.edu/entries/situations-semantics/.

22. Martin-Lof, P. (1984). Intuitionistic type theory. Napoli: Bibliopolis. Notes by Giovanni Sambin
of a series of lectures given in Padua, June 1980.

23. McCarthy, J., & Hayes, P. (1969). Some philosophical problems from the standpoint of
artificial intelligence. In M. Meltzer, & D. Michie (Eds.), Machine intelligence (Vol. 4,
pp. 463-502). Edinburgh University Press.

24. Mulligan, K., Simons, P., & Smith, B. (1984). Truth-makers. Philosophy and Phenomenological
Research, 44, 287-321.

25. Nelson, D. (1949). Constructible falsity. Journal of Symbolic Logic, 14(1), 16-26.

26. Parsons, T. (1990). Events in the semantics of English: A study in subatomic semantics.
Cambridge: MIT Press.

27. Prior, A. (1967). Past, present and future. Oxford: Clarendon Press.

28. Ranta, A. (1994). Type-theoretical grammar. Oxford: Oxford University Press.

29. Reichenbach, H. (1947). Elements of symbolic logic. London: Macmillan.

30. Schubert, L. (2000). The situations we talk about. In J. Minker (Ed.), Logic-based artificial
intelligence (pp. 407-439). Dordrecht: Kluwer.

31. Smith, B. (1999). Truthmaker realism. Australasian Journal of Philosophy, 77(3), 274-291.

32. Soames, S. (1985). Lost innocence. Linguistics and Philosophy, 8(1), 59-71.

33. Steedman, M. (1997). The Productions of time. Draft, ftp://ftp.cogsci.ed.ac.uk/pub/steedman/
temporality/temporality.ps.gz. July 2000. Subsumes ‘Temporality.’ In J. van Benthem, & A. ter
Meulen (Eds.), Handbook of logic and language (pp. 895-935). Elsevier.

34. Sundholm, G. (1986). Proof theory and meaning. In D. Gabbay, & F. Guenthner (Eds.),
Handbook of philosophical logic (Vol. 3, pp. 471-506). Dordrecht: Reidel.

35. Thomason, S. K. (1984). On constructing instants from events. Journal of Philosophical Logic,
13, 85-96.

36. Thomason, S. K. (1989). Free constructions of time from events. Journal of Philosophical
Logic, 18, 43-67.

37. Troelstra, A. S. (1999). From constructivism to computer science. Theoretical Computer Sci-
ence, 211,233-252.

38. van Lambalgen, M., & Hamm, F. (2005). The proper treatment of events. Blackwell.

39. van Lambalgen, M., & Hamm, F. (2006). Additional material for The proper treatment of
events. http://staff.science.uva.nl/~michiell/docs/ProofsTime.pdf. Accessed June 2006.

@ Springer

