
Finite-state representations of time

Tim Fernando

Trinity College Dublin, Ireland

Abstract. Finite-state methods are applied to the Russell-Wiener no-
tion of time (based on events) and developed into an account of interval
relations and temporal propositions. Strings are formed and collected in
regular languages and regular relations that are argued to embody tem-
poral relations in their various underspecified guises. The regular rela-
tions include retractions that reduce computations by projecting strings
down to an appropriate level of granularity, and non-deterministic rela-
tions defining notions of partiality within and across such levels.

This paper is a revised, extended version of Finite-state representations
embodying temporal relations, FSMNLP 2011 (ACL archive).

1 Introduction

It is a truism that to reason about change, some notion of time is useful to im-
pose order on events. Less clear perhaps is whether or not time is shaped entirely
by the events it relates. An event-based notion of time going back to Russell and
Wiener ([Ru14,Wi14]) is analyzed in the present work using finite-state methods
that extend to interval relations and beyond (e.g. [BE58,Tr58,AF94,BK03,Pr05]).
Rather than take for granted some absolute (independent) notion of time (such
as the real line R), the basic approach is to (i) form strings from a set Φ en-
coding events and possibly other things, and (ii) collect the strings in regular
languages and regular relations. The partiality of temporal information conveyed
in (for instance) everyday speech is, it is argued, more faithfully represented in
this manner than through some absolute notion of time. In particular, there is
a sense (to be explained below) in which the strings, languages and relations of
the present approach embody a wide range of temporal relations that vary in
degrees of underspecification and granularity according to the set Φ assumed:
the larger Φ is, the finer grained time becomes.

An idea of what the set Φ might be and of how to form strings from it is
provided by a concrete example. We can represent a calendar year in terms of
its constituent twelve months as the string

smo
def
= Jan Feb Mar · · · Dec

of length 12, or, were we also interested in days d1,d2. . .,d31, the string

smo,dy
def
= Jan,d1 Jan,d2 · · · Jan,d31 Feb,d1 · · · Dec,d31

of length 365 (for a non-leap year). The alphabet from which smo and smo,dy
are formed is the set Pow(Φ) of subsets of Φ, where {Jan,Feb,. . .,Dec} ⊆ Φ in
the case of smo, and {Jan,Feb,. . .,Dec,d1,d2,. . .,d31} ⊆ Φ in the case of smo,dy.
Boxes are drawn instead of the usual curly braces { and } to suggest “snapshots”
arranged much like a cartoon/film strip, with time progressing from left to right.

In reducing chronological order to succession within a string of boxes, how-
ever, have we imposed a limit on the granularity of moments? Unlike the points in

the real line R, a box can split, as Jan in smo does to Jan,d1 Jan,d2 · · · Jan,d31
in smo,dy, on introducing days d1, d2,. . ., d31 into the picture. Reversing direc-
tion, a system of functions πX : Pow(Φ)∗ → Pow(X)∗ indexed by finite subsets
X of Φ is defined below such that

πX(smo,dy) = smo for X
def
= {Jan, Feb,. . ., Dec}.

In general, a description sX of granularity X can be refined to one sX′ of granu-
larity X ′ ⊇ X provided πX maps sX′ to sX . More precisely, if Fin(Φ) is the set
of finite subsets of Φ, and if for X ⊆ X ′ ∈ Fin(Φ), we let πX′,X be the restriction
of πX to Pow(X ′)∗

πX′,X
def
= {〈s, πX(s)〉 | s ∈ Pow(X ′)∗} (for X ⊆ X ′ ∈ Fin(Φ))

then we can collect Fin(Φ)-indexed strings {sX}X∈Fin(Φ) such that sX can be cal-
culated as πX(sX′) for any X ′ ⊇ X in the inverse limit of {πX′,X}X⊆X′∈Fin(Φ)

lim
←−
{πX′,X}X⊆X′∈Fin(Φ) = {{sX}X∈Fin(Φ) ∈

∏
X∈Fin(Φ)

Pow(X)∗ |

sX = πX(sX′) for all X ⊆ X ′ ∈ Fin(Φ)}.

It will turn out that the functions πX′,X can be computed by finite-state trans-
ducers ([Fe11]), and that the inverse limit has representations of all Russell-
Wiener notions of time based on events encoded in Φ. This includes the real line
R, for suitably chosen Φ.1

1 Commenting on the Russell-Wiener construction, S.K. Thomason asserts that it “has
the disadvantage that it is difficult to see what assumptions about the temporal
relationships among events will ensure that the instants constructed comprise a
continuum, isomorphic to the real numbers” (page 85, [Th84]). A case may be made
that this defect has since been remedied in [Lü06]. Be that as it may, Thomason
considers alternative constructions such as Walker’s ([Wa47]) and his own in [Th89],
raising the challenge to provide

a plausible explanation of how finite information-processors like us would come
to think of time as a continuum . . . For that problem, I think, the appropriate
mathematical structure is not an event ordering (which models the world’s
events) but a category . . . of finite event orderings (which models observers’
developing apprehensions of the worlds’s events) (pages 95–96, [Th84]).

The study below of the inverse limit of πX (over finite subsets X of Φ) is my own
attempt to take up this challenge, straying minimally from Russell-Wiener to delimit
strings (thereby accommodating the A-series of [McT08] and the Allen relations).

There is, of course, more to temporal relations than Russell-Wiener. Indeed,
already the inverse limit above goes further, as we will see below. Beyond that
limit, we will consider relations other than πX to capture the partiality of in-
formation. An example is the notion of containment w that we use to interpret
Russell-Wiener over strings in section 2 (before applying the projections πX to
different sets X of events).

1.1 Russell-Wiener and intervals

The Russell-Wiener construction of time from a set E of events2 presupposes a
binary relation ≺ on E that meets certain properties (to be specified shortly)
of complete (temporal) precedence. A ≺-antichain is a subset of E that has no
elements e, e′ such that e ≺ e′. An RW-time is a ≺-antichain that is maximal
in that it is not a subset of another ≺-antichain. Let us write T≺ for the set of
RW-times, and © for ≺-incomparability on events e, e′ ∈ E

e© e′
def⇐⇒ neither e ≺ e′ nor e′ ≺ e .

It is natural to call © (temporal) overlap as © holds between events e and e′

with an RW-time in common

e© e′ ⇐⇒ (∃t ∈ T≺) e ∈ t and e′ ∈ t .

Next, we lift ≺ to RW-times t, t′ ∈ T≺ by existential quantification

t ≺T t′
def⇐⇒ (∃e ∈ t)(∃e′ ∈ t′) e ≺ e′ .

The RW-times are linearly ordered by ≺T provided ≺ is “well-behaved” on E.
More precisely, let us call ≺ RW(E) if on E, ≺ is irreflexive (never e ≺ e) and
satisfies the implication

e ≺ e′ and e′′ ≺ e′′′ implies e ≺ e′′′ or e′′ ≺ e′

for all e, e′, e′′, e′′′ ∈ E, characteristic of an interval ordering (e.g. [Lü06]).

Theorem (Russell, Wiener). If ≺ is RW(E), then

(i) ≺T linearly orders T≺
(ii) ≺ on E can be recovered from T≺ as complete precedence

e ≺ e′ ⇐⇒ (∀t, t′ ∈ T≺) e ∈ t and e′ ∈ t′ implies t ≺T t′

for all e, e′ ∈ E, and
(iii) the RW-times to which each event belongs form an interval in that

t ∩ t′′ ⊆ t′ whenever t ≺T t′ ≺T t′′

for all t, t′, t′′ ∈ T≺.

2 For a set whose elements we think of as events (or better yet: event tokens), we write
E instead of Φ, but will revert to Φ when generalizing beyond such event tokens.

Focussing on the case E = {e, e′} consisting of two events, e and e′, we have
exactly three RW(E) relations, with RW-times pictured by the three strings

e, e′ for e© e′, e e′ for e ≺ e′, and e′ e for e′ ≺ e

of lengths 1, 2 and 2, respectively. Surely, however, between any two events e
and e′, there are more relations than ≺ (� and©) to consider — not to mention

strings in Pow({e, e′})∗ other than e e′ , e′ e and e, e′ . Thirteen different

interval relations are enumerated in [AF94], describing nine ways for e and e′

to overlap, and two ways (each) for e to precede e′ (and e′ to precede e). See
Table 1, where strings are associated with Allen relations according to certain

Table 1. From Russell-Wiener to Allen

RW Allen Pow({e, e′})∗ Allen Pow({e, e′})∗ Allen Pow({e, e′})∗

e© e′ e = e′ e, e′ e fi e′ e e, e′ e f e′ e′ e, e′

e si e′ e, e′ e e di e′ e e, e′ e e oi e′ e′ e, e′ e

e s e′ e, e′ e′ e o e′ e e, e′ e′ e d e′ e′ e, e′ e′

e ≺ e′ e m e′ e e′ e < e′ e e′

e′ ≺ e e mi e′ e′ e e > e′ e′ e

constructions presented below. Briefly, under these constructions, granularity
can be refined by expanding the set of events related by ≺ and©. In particular,
it turns out that all thirteen Allen relations between e and e′ fall out of the
Russell-Wiener construction (RW) applied to an expansion of {e, e′} by markers
pre(e), post(e), pre(e′), post(e′), of the past and future of e and e′, respectively.
That is, RW yields the Allen relations provided that, in McTaggart’s terminology
[McT08], we first enrich the B-series relation ≺ with A-series ingredients for
tense. In the case of the Allen relation e s e′, for instance, we get the string

pre(e), pre(e′) e, e′ post(e), e′ post(e), post(e′)

which the function π{e,e′} maps to the Pow({e, e′})∗-entry

e, e′ e′ = π{e,e′}(pre(e), pre(e′) e, e′ post(e), e′ post(e), post(e′))

for e s e′ in Table 1. The rest of the Allen relations can be obtained similarly.
Moreover, the projections πX point below to many more temporal relations.

1.2 MSO and the alphabet Pow(Φ)

Having suggested ≺-incomparability is temporal overlap ©, let us acknowledge

cases where this identification is questionable. In the string e e′ e , for exam-
ple, we might say e and e′ are ≺-incomparable but resist the conclusion that

they overlap. (The same can be said of days dn in the string smo,dy mentioned
above.) In the next section, we map a string s of sets to a triple 〈Es,©s,≺s〉
that may, depending on s, differentiate © from ≺-incomparability. The view of
strings as models goes back to the classic result tying regular languages over an
alphabet Σ to Monadic Second-Order Logic MSOΣ with a binary (successor)
relation and a unary relation for each symbol in Σ ([BE58,Tr58]).

Theorem (Büchi, Elgot, Trakhtenbrot). The regular languages ⊆ Σ+ are pre-
cisely the sets of strings definable in MSOΣ .

Details about the theorem can be found in [Th97], an instructive point for our
purposes being that the MSO variables ranging over unary relations correspond
to the elements of the set Φ from which we form the alphabet Pow(Φ) above.
Binding these variables by a quantifier corresponds to using auxiliary symbols in
a finite-state computation. What’s more, the partial order ⊇ on Pow(Φ) extends
to a natural notion s w s′ of s′ occurring within s that we will use to define ©s

and ≺s.

The strings in Pow(Φ)∗ of interest below belong, in general, to Pow(X)∗, for
some finite subset X of Φ. An alternative to the language Pow(X)∗ considered
in [Ka05] is to flatten the subsets of X to strings, introducing brackets [and
] to enclose elements of X understood to hold at the same period so that, for

example, the string e, e′ e′ of length 2 becomes the string [e e′] [e′] of

length 7. It is easy to devise a finite-state transducer translating Pow(X)∗ to
(X ∪ {[,]})∗ in this way. A greater challenge is presented by brackets [a and]a
decorated with granularity a (e.g., days or months or years) used in the analysis
of calendar expressions in [NK09]. The theme in [NK09] of composing finite-state
transducers is developed below with granularity a left unspecified — or rather,
implicit in the choice of the set X, subsets of which form an alphabet Pow(X).

But what is lost when approximating Φ by its finite subsets X ∈ Fin(Φ)?
The main technical result of the present work describes what can be found in the
inverse limit of the projections πX (for X ∈ Fin(Φ)). Very briefly, this includes
all Russell-Wiener notions of time given by events encoded in Φ, and many more
structures besides. In these (additional) structures, the elements of Φ (i.e., MSO
variables) are naturally regarded as temporal propositions, or fluents for short,
generalizing the events that Russell-Wiener restricts to intervals. Intervals and
Russell-Wiener are the focus of section 2, where E appears in place of Φ. Section 3
turns to generalizations and the larger matter of approximating fluents, bringing
back the notation Φ alongside E.

2 Russell-Wiener in strings

To interpret Russell-Wiener relative to a string s of sets, we define a notion w
of containment between strings such that

(i) e© e′ holds in s precisely if s w e, e′ , and

(ii) e ≺ e′ holds in s precisely if s w-contains a string in e
∗
e′ but (to ensure

disjointness from © and its inverse �) none in

e, e′ | e′
∗
e

where | is non-deterministic choice (often written +).

Containment can be decomposed into two relations: subsumption D, defined as
componentwise inclusion ⊇ between strings of the same length

α1 · · ·αn D α′1 · · ·α′m
def⇐⇒ n = m and αi ⊇ α′i for 1 ≤ i ≤ n,

and (to compare strings of different lengths) a map unpad that strips off initial
and final empty boxes �

unpad(s)
def
=

{
unpad(s′) if s = �s′ or else if s = s′�
s otherwise

so that, for example,

unpad(
n
e e, e′

m
) = e e, e′ for all n,m ≥ 0.

We compose subsumption D with unpad -equivalence for containment w

s w s′
def⇐⇒ (∃s′′) sD s′′ and unpad(s′′) = unpad(s′) .

Thus, if s contains s′ (e.g. if s is s′), then so do unpad(s) and s′′s and ss′′ for
all s′′. Now, we let E(s) be the triple 〈Es,©s,≺s〉 defined as follows. We say e
s-overlaps e′ precisely if e and e′ share a box in s

e©s e′
def⇐⇒ s w e, e′

and put into Es each e such that e©s e

Es def
= {e | s w e }.

For ≺s, let us extend w to languages L, conceived as disjunctions, agreeing that
s contains L if s contains some element of L

s w L def⇐⇒ (∃s′ ∈ L) s w s′

so that s w s′ iff s w {s′}. We then say e s-precedes e′ if e occurs in s to the left
of e′ but never in the same box as e′ or to the right of e′

e ≺s e′
def⇐⇒ s w e

∗
e′ and not s w e, e′ | e′

∗
e .

Table 2. Axioms for a (RWK) event structure 〈E,©,≺〉

(A1) e© e (i.e. © is reflexive)
(A2) e© e′ implies e′© e
(A3) e ≺ e′ implies not e© e′

(A4) e ≺ e′ and e′© e′′ and e′′ ≺ e′′′ implies e ≺ e′′′
(A5) e ≺ e′ or e′ ≺ e or e© e′

2.1 RW strings delimited

Following [KR93], let us call a triple 〈E,©,≺〉 a (Russell-Wiener-Kamp) event
structure if it satisfies (A1) to (A5) in Table 2. Note that

≺ is RW(E) ⇐⇒ 〈E,≺ -incomparability,≺〉 is an event-structure

and in every event structure 〈E,©,≺〉, © is ≺-incomparability. Given a string
s of sets, the truth of (A1) and (A2) relative to © =©s follows from e, e = e

and e, e′ = e′, e , Interpreting ≺ as ≺s also validates (A3) and (A4). This leaves

(A5), a counter-example to which is provided by the string e e′ e . With this
in mind, we define an element e ∈ Es to be an s-interval if for s = α1 · · ·αn,

e ∈ αi ∩ αj and i ≤ k ≤ j implies e ∈ αk

for all integers i, j, k from 1 to n. A string s is said to be RW if every e ∈ Es is
an s-interval. If s is RW, then

e ≺s e′ ⇐⇒ s w e
∗
e′ and not s w e, e′

and moreover, recalling that E(s) is 〈Es,©s,≺s〉,

Proposition 1. If s is RW, then E(s) is an event structure.

As a string s need not be RW, it is useful to define the subset I(s) of Es consisting
of s-intervals

I(s)
def
= {e ∈ Es | e is an s-interval} .

For example, I(e e′ e) = {e′}. Next, for any set X, we define the function ρX
on strings (of sets) to componentwise intersect with X

ρX(α1 · · ·αn)
def
= (α1 ∩X) · · · (αn ∩X)

(throwing out non-X’s from each box) so that, for instance, if ŝ is e e′ e ,

ρI (̂s)(̂s) = e′ . In general, ρI(s)(s) is RW for every string s of sets; consequently,
E(ρI(s)(s)) is an event structure.

Apart from whittling a string s down to some substring s′ v s of it (such
as ρI(s)(s)), it is useful for some purposes, to fatten s up to a string that w-
contains it. Take, for instance, the thirteen strings over Pow({e, e′}) in Table 1

associated with the various Allen relations between intervals e and e′. To capture
all thirteen strings as representations of Russell-Wiener notions T≺ of time, we
need to get around the ⊆-maximality requirement on the sets in T©. One way
is for each e ∈ E, to adjoin fresh “events” pre(e) and post(e) into an expansion
E± of E

E±
def
= E ∪ {pre(e) | e ∈ E} ∪ {post(e) | e ∈ E}

and delimit occurrences of e in a string by pre(e) to the left and by post(e) to

the right. For instance, e e′ becomes e, pre(e′) post(e), pre(e′) post(e), e′

while e e, e′ e′ becomes e, pre(e′) e, e′ e′, post(e) . On RW strings, pre(e)

and post(e) negate e, whilst preserving RW-ness. More precisely, let us call a
string s = α1α2 · · ·αn E-delimited if for all e ∈ E and i ∈ {1, 2, . . . , n},

pre(e) ∈ αi ⇐⇒ s w e but α1 · · ·αi 6w e

and

post(e) ∈ αi ⇐⇒ s w e but αi · · ·αn 6w e .

It is immediate that there is a unique E-delimited string s′ ∈ Pow(E±)∗ such
that ρE(s′) = s — namely, α′1 · · ·α′n where α′i is defined to be αi unioned with

{pre(e) | e ∈ (

n⋃
j=i+1

αj)−
i⋃

j=1

αj} ∪ {post(e) | e ∈ (

i−1⋃
j=1

αj)−
n⋃
j=i

αj}

(for 1 ≤ i ≤ n). Henceforth, we write s± for this E-delimited string.

Proposition 2. For every finite set E, there is a finite-state transducer that
computes the map s 7→ s± from Pow(E)∗ to Pow(E±)∗.

If s is RW, then so is s±, making E(s±) an event structure in which moreover,
each of the 13 Allen relations on Es can be expressed via ©s± , pre, post and
Boolean connectives — e.g.

e ds e′ ⇐⇒ pre(e)©s± e′ and post(e)©s± e′

e ms e′ ⇐⇒ e©s± pre(e′) and post(e)©s± e′ and

neither e©s± e′ nor post(e)©s± pre(e′)

for all e, e′ ∈ Es.
Having modified a string s to obtain an event structure capturing Russell-

Wiener and Allen, we turn next to string functions that preserve the event
structure encoded, bringing out what is essential to the encoding. Consider, for

example, e
+
e′

+
, all strings of which encode the same event structure. The

block compression bc(s) of a string s reduces all adjacent identical boxes ααn to
one α

bc(s)
def
=

 bc(αs′) if s = ααs′

αbc(α′s′) if s = αα′s′ with α 6= α′

s otherwise

so that, for example,

bc(s) = e e′ for every s ∈ e
+
e′

+
.

The map bc is a regular relation, and implements the slogan “no time without
change” [KR93] (page 674). Clearly, bc does not alter the event structure E(s)
represented by a string s

E(bc(s)) = E(s) .

Neither does unpadding, which suggests defining a function π that unpads after
(or equivalently: before) block compression

π(s)
def
= unpad(bc(s)) [= bc(unpad(s))]

so that, for example,

π(s) = e e′ for every s ∈
∗
e

+
e′

+ ∗
.

On delimited strings s±, π captures what is essential for representing event
structures.

Proposition 3. For RW strings s and s′ ∈ Pow(E)∗, the following four condi-
tions, (a) to (d), are equivalent

(a) bc(s) = bc(s′)
(b) E(s±) = E(s′±)
(c) bc(s±) = bc(s′±)
(d) π(s±) = π(s′±).

As bc(bc(s±)) = bc(s±) = π(s±), we have from Proposition 3

Corollary 4. For RW strings s ∈ Pow(E)∗,

E(s±) = E(bc(s±)) = E(π(s±)).

2.2 The projections πX

Next, we compose the functions ρX (picking out X-elements) and π for the
projection πX mapping a string s of sets to

πX(s)
def
= π(ρX(s)) = unpad(bc(ρX(s))) .

Recalling the strings

smo
def
= Jan Feb · · · Dec

smo,dy
def
= Jan,d1 Jan,d2 · · · Dec,d31

we have for mo
def
= {Jan,Feb,. . .Dec},

ρmo(smo,dy) = Jan
31

Feb
28
· · · Dec

31

πmo(smo.dy) = unpad(bc(Jan
31

Feb
28
· · · Dec

31
))

= smo (as promised).

Also, for the months m ∈ mo, π{m}(smo,dy) = m , whereas for the days d ∈
{d1, . . . , d31}, π{d}(smo,dy) 6= d . In general, the set I(s) of s-intervals consists
of every e such that s becomes e under π{e}

e ∈ I(s) ⇐⇒ π{e}(s) = e .

Hence, we may look for strings representing RW(E)-relations in the language⋂
e∈E π

−1
{e} e of strings s where each e ∈ E is an s-interval. Since π preserves

the event structure encoded by an RW-string, we can reduce
⋂
e∈E π

−1
{e} e to its

πE-image which we shall call Lπ(E)

Lπ(E)
def
= {πE(s) | s ∈ Pow(E)∗ and (∀e ∈ E) π{e}(s) = e }.

In fact, Lπ(E) may go beyond RW(E) because RW-times are (unlike boxes in
Lπ(E)) required to be ⊆-maximal. For example, for E = {e, e′}, we get not only

the three RW(E)-strings e, e′ , e e′ and e′ e , but all 13 strings in Table 1

(one per interval relation in [AF94]), which can be divided up as follows. Put
the 9 ways for e and e′ to overlap (according to Allen) in

Allen(e© e′)
def
= (ε | e | e′) e, e′ (ε | e | e′)

= e, e′ | e, e′ e | e, e′ e′ | · · · | e′ e, e′ e′

(where ε is the empty string), and the 2 ways for e to precede e′ in

Allen(e ≺ e′) def
= e e′ | e e′

and similarly for e′ ≺ e. All together,

Lπ({e, e′}) = Allen(e ≺ e′) | Allen(e© e′) | Allen(e′ ≺ e)

and in fact,

Proposition 5. For every s ∈ Pow(E)∗ and all s-intervals e and e′,

e©s e′ ⇐⇒ π{e,e′}(s) ∈ Allen(e© e′)

e ≺s e′ ⇐⇒ π{e,e′}(s) ∈ Allen(e ≺ e′)

and in accordance with axiom (A5) in Table 2,

π{e,e′}(s) ∈ Allen(e© e′) | Allen(e ≺ e′) | Allen(e′ ≺ e).

3 Fluents and bounded alternations

The projections πX apply to strings whether or not they are RW, pointing
to a notion more general than an event e — namely, a fluent (or temporal
formula) ϕ. A set Φ of fluents is interpreted relative to a linear Φ-model , a triple
M = 〈T,<, v〉 where < linearly orders T and v ⊆ T × Φ. (In the terminology of
Kripke semantics, 〈T,<〉 is a frame, the elements of T are possible worlds, and
v is a Φ-valuation.) For simplicity, we henceforth shorten “linear Φ-model” to
“Φ-model.” Now, a string s = α1 · · ·αn ∈ Pow(Φ)+ can be identified with the
Φ-model 〈Ts, <s, vs〉 where Ts is {1, . . . , n}, <s is the restriction of the usual order
on integers to Ts, and vs is the set of pairs 〈i, ϕ〉 such that ϕ ∈ αi. Generalizing
from a string s to a Φ-model M = 〈T,<, v〉, let us agree that

(i) ϕ is a M-interval if for all t, t′, t′′ ∈ T ,

v(t, ϕ) and v(t′, ϕ) and t < t′′ < t′ implies v(t′′, ϕ)

(ii) M is RW if every ϕ ∈ Φ is a M-interval.

Φ-models M can be related to the event structures E = 〈E,©,≺〉 from the
previous section through maps between these two kinds of models, switching
between Φ and E as required. Given a Φ-model M, let E(M) be 〈Φ,©M,≺M〉
where

ϕ ©M ϕ′
def⇐⇒ (∃t) v(t, ϕ) and v(t, ϕ′)

ϕ ≺M ϕ′
def⇐⇒ (∀t, t′ s.t. v(t, ϕ) and v(t′, ϕ′)) t < t′

for all ϕ,ϕ′ ∈ Φ. Clearly, if M is RW, then E(M) is an event structure.
Russell-Wiener specifies how to go the opposite direction: given a triple

E = 〈E,©,≺〉, let M(E) be 〈T≺,≺T ,3≺〉 where T≺ is the set of ⊆-maximal
≺-antichains, and

t ≺T t′
def⇐⇒ (∃e ∈ t)(∃e′ ∈ t′) e ≺ e′

for t, t′ ∈ T≺, and

3≺
def
= {〈t, e〉 ∈ T≺ × E | e ∈ t} .

The point of Russell-Wiener is that

given an event structure E, M(E) is RW and E = E(M(E))

(a restatement of the theorem in §1.1 above). But were we to start with a Φ-
model M, what do we get with M(E(M))? In general, M(E(M)) differs from
M. If M is a delimited string s± where s is RW, we can say more (identifying a
string with its Φ-model).

Proposition 6. If s is RW, then so is s± and

π(s±) = M(E(s±)) = bc(s±) .

The key to Proposition 6 is that for s± = α′1 · · ·α′n, exactly one of e, pre(e) and
post(e) belongs to α′i

|{e, pre(e), post(e)} ∩ α′i| = 1

for all e ∈ Es and 1 ≤ i ≤ n, provided s is RW.
RW or not, strings can be glued together to form infinite Φ-models via the

inverse limit of the projections πX indexed by the family Fin(Φ) of finite subsets
X of Φ

{{sX}X∈Fin(Φ) ∈
∏

X∈Fin(Φ)

Pow(X)∗ | sX = πX(sX′) for all X ⊆ X ′ ∈ Fin(Φ)}

which we denote IL(Φ). The aim of the present section is to explore precisely how
IL(Φ) might represent Φ-models, beyond the projection of strings s ∈ Pow(Φ)∗

as Fin(Φ)-indexed approximations {πX(s)}X∈Fin(Φ) ∈ IL(Φ), which we can
form for RW and non-RW strings s alike. The basic tool is the concept of a
ϕ-alternation, used below to flesh out the notion of time implicit in IL(Φ).

3.1 Defining, bounding and counting ϕ-alternations

Fix a Φ-model M = 〈T,<, v〉, and let ϕ ∈ Φ. A ϕ-alternation in M is an n-tuple
〈t1, . . . , tn〉 such that t1 < t2 < · · · < tn and for 1 ≤ i < n,

v(ti, ϕ) ⇐⇒ not v(ti+1, ϕ)

in which case the ϕ-alternation is said to be from tn and have length n − 1.
For any (finite) string s ∈ Pow(Φ)+, a ϕ-alternation in s has length at most
the length of π{ϕ}(s) plus 1 (because π unpads). More precisely, the longest
ϕ-alternation in s has length one less than the length of the string bc(ρ{ϕ}(s))
provided s w ϕ .

A Φ-model M is alternation-bounded (a.b.) if for all ϕ ∈ Φ, there is an integer
m such that all ϕ-alternations in M have length < m. Clearly, M must be a.b.
if it is to be represented in IL(Φ), as a fluent ϕ with unbounded alternations
would rule out any finite approximation s{ϕ} for M. Note also that not only is
every string in Pow(Φ)∗ a.b., but every RW Φ-model is a.b. (finite or not).

Next, given an a.b. Φ-model M and a fluent ϕ ∈ Φ, we define the ϕ-
alternation count of M at a time t to be

]M(t)(ϕ)
def
= n such that there is a ϕ-alternation in M from t

of length n but none of length n+ 1.

For example, if a string s is RW and s± = α′1 · · ·α′n,

]s(i)(e) =

0 if pre(e) ∈ α′i or e ∈ α′i ∩ α′0
1 if (e ∈ α′i and pre(e) ∈ α′0) or (post(e) ∈ α′i and e ∈ α′0)
2 otherwise — i.e., post(e) ∈ α′i and pre(e) ∈ α′0

for 1 ≤ i ≤ n and e ∈ Es.

3.2 The Φ-model M] and its approximations in IL(Φ)

Given an a.b. Φ-model M = 〈T,<, v〉, we can abstract t ∈ T and ϕ ∈ Φ from
]M(t)(ϕ) for a function]M : T → (Φ → N) characterizing a time t by the
function]M(t) : Φ → N counting ϕ-alternations in M. We apply the function

]M to M for the triple M]
def
= 〈T], <], v]〉 where

T]
def
= {]M(t) | t ∈ T}

<]
def
= {〈]M(t),]M(t′)〉 | t < t′}

v]
def
= {〈]M(t), ϕ〉 | v(t, ϕ)} .

Observe that

t < t′ and]M(t) =]M(t1) and]M(t′) =]M(t′1) implies t1 < t′1

and whenever]M(t)(ϕ) =]M(t′)(ϕ),

v(t, ϕ) ⇐⇒ v(t′, ϕ)

whence

Proposition 7. For any a.b. Φ-model M, M] is a Φ-model, and

]M(t) <]]M(t′) ⇐⇒ t < t′

v](]M(t), ϕ) ⇐⇒ v(t, ϕ)

for all t, t′ ∈ T and ϕ ∈ Φ.

By Proposition 7,]M is an isomorphism M ∼= M] provided it is one-to-one
(injective): (∀t, t′ ∈ T s.t. t 6= t′)(∃ϕ ∈ Φ)]M(t)(ϕ) 6=]M(t′)(ϕ). Let us say M
is coarse if for all t, t′ ∈ T such that t < t′, there exists ϕ ∈ Φ and a t′′ ∈ T
separating t from t′ in that t < t′′ ≤ t′ and

v(t, ϕ) ⇐⇒ not v(t′′, ϕ)

(making either 〈t, t′〉 or 〈t, t′′, t′〉 a ϕ-alternation). Any a.b. Φ-model M is coarse
exactly if]M is one-to-one over T .

Next, we approximate M] in IL(Φ). To simplify notation, we will often sup-
press the subscript M, with M understood fixed in the background. For any finite
subset X ⊆ Φ, we define an equivalence ≈X on T] by restricting the functions
(in T]) to X

f ≈X f ′
def⇐⇒ (∀ϕ ∈ X) f(ϕ) = f ′(ϕ)

for all f, f ′ ∈ T]. Because each ≈X -equivalence class is determined by one of
finitely many functions from X to {0, 1, . . . ,m} where m is the least upper
bound on the lengths of all ϕ-alternations for ϕ ∈ X, there are only finitely

many ≈X -equivalence classes [f]≈X . Let us order the ≈X -equivalence classes
pointwise according to

[f]≈X <X [f ′]≈X
def⇐⇒ (∀ϕ ∈ X) f(ϕ) ≤ f ′(ϕ) and (∃ϕ ∈ X) f(ϕ) < f ′(ϕ)

and arrange them in <X -increasing order

[f1]≈X <X [f2]≈X <X · · · <X [fk]≈X .

We then map each fi to the set αi of fluents ϕ ∈ X that v]-hold at fi

αi
def
= {ϕ ∈ X | v](fi, ϕ)}

and unpad α1 · · ·αk to obtain the Pow(X)∗-string

sMX
def
= unpad(α1 · · ·αk)

that pictures M] up to granularity X.

Proposition 8. For any a.b. Φ-model M,

{sMX }X∈Fin(Φ) ∈ IL(Φ).

3.3 Times implicit in elements of IL(Φ)

Reversing the direction of Proposition 8, given s = {sX}X∈Fin(Φ) ∈ IL(Φ), let
us pick out functions from Φ to N that can serve as times described by s. The
idea is that for such a function f , its restriction fX : X → N to X ∈ Fin(Φ) is
roughly the alternation count]sX (i) at some time i in sX . This is “rough” because
unpadding in π necessitates adjustments to X and to]sX depending on whether
or not a fluent ϕ ∈ Φ occurs in the first box of every X ∪ {ϕ}-approximation
sX∪{ϕ}. We define

left(s)
def
= {ϕ ∈ Φ | (∀ϕ′ ∈ Φ) s{ϕ,ϕ′} D ϕ

∗}

and say f : Φ → N is an s-time if for all X ∈ Fin(Φ), there exists Y ∈ Fin(Φ)
such that X ⊆ Y and for some i ∈ dom(]sX), we have for every ϕ ∈ Y ,

f(ϕ) =

{
]sY (i)(ϕ) + 1 if ϕ ∈ α1 and ϕ 6∈ left(s)
]sY (i)(ϕ) otherwise

where sY = α1 · · ·αn (so 1 ≤ i ≤ n). Now, let Ts be the set of s-times, and let
Ms be the triple 〈Ts, <s, vs〉 where <s consists of pairs 〈f, f ′〉 ∈ Ts× Ts ordered
pointwise

(∀ϕ ∈ Φ) f(ϕ) ≤ f ′(ϕ) and (∃ϕ ∈ Φ) f(ϕ) < f ′(ϕ)

while vs consists of pairs 〈f, ϕ〉 ∈ Ts × Φ such that

(f(ϕ) is even and ϕ ∈ left(s)) or (f(ϕ) is odd and ϕ 6∈ left(s))

(recalling that alternation counts start at 0).

Proposition 9. For every s ∈ IL(Φ), Ms is an a.b. Φ-model and its IL(Φ)-
approximation described by Proposition 8 is s.

3.4 The real line from ŝ-times and back to event structures

Proposition 9 raises the question: given an a.b. Φ-model M, does applying the
transformation M 7→ {sMX }X∈Fin(Φ) from §3.2 followed by s 7→ Ms from §3.3
return a Φ-model isomorphic to M? Not necessarily. For two reasons. First of all,
M] need not be isomorphic to M (i.e. M may not be coarse), and nothing in M
beyond M] is relevant to the IL(Φ)-element obtained in Proposition 8. Secondly,
even if M ∼= M], the set T] of times in M] need not include every sM-time. For
example, let Φ be the set Q of rational numbers, and ŝ be the Fin(Q)-indexed
string {ŝX}X∈Fin(Q) such that for any finite sequence q1 < q2 < · · · < qn in Q,

ŝ{q1,q2,...,qn}
def
= q1 q1, q2 · · · q1, q2, . . . , qn .

We can mimic the construction of the real line R via Dedekind cuts, equating a
real number r with the ŝ-time fr : Q→ {0, 1} mapping q ∈ Q to

fr(q)
def
=

{
0 if r < q
1 otherwise.

For any set T of real numbers that contains Q, the triple 〈T,<T , vT 〉 consisting
of the restriction <T of the usual ordering to T and the Q-valuation

vT
def
= {〈r, q〉 ∈ T ×Q | q ≤ r}

is a coarse Q-model with IL(Q)-projection ŝ. In fact, we can throw −∞ into T ,
as the constant function returning 1 is an ŝ-time. (The constant map 0 is not an
ŝ-time, because π unpads.)

Shifting to event structures, however, Russell-Wiener coincides with the trans-
formation s 7→Ms described in Proposition 9, for a suitable choice of s.

Proposition 10. For any event structure E = 〈E,©,≺〉, there is a Fin(E)-
indexed string s = {s≺X}X∈Fin(E) in IL(Φ) such that

≺ = {〈e, e′〉 ∈ E × E | s≺{e,e′} ∈ Allen(e ≺ e′)}

(recalling that in an event structure, © is fixed to ≺-incomparability) and

M(E) ∼= Ms.

Given a finite subset X of E, we construct s≺X to approximate the set T≺ of
RW-times of ≺ on E as follows. Let ≈X be the equivalence on T≺ that holds
between RW-times t and t′ precisely if for all e ∈ X,

(i) e ∈ t ⇐⇒ e ∈ t′, and
(ii) (∃e′ ∈ t) e′ ≺ e ⇐⇒ (∃e′ ∈ t′) e′ ≺ e, and
(iii) (∃e′ ∈ t) e ≺ e′ ⇐⇒ (∃e′ ∈ t′) e ≺ e′.

Note that (i) says t and t′ do not differ on e, (ii) on pre(e)

pre(e) ∈ t ⇐⇒ pre(e) ∈ t′

and (iii) on post(e)

post(e) ∈ t ⇐⇒ post(e) ∈ t′ .

The number of ≈X -equivalence classes cannot exceed the number 3|X| of func-
tions mapping e ∈ X to one of e, pre(e) and post(e). Whether or not T≺ is
isomorphic to the real line R, the relation ≺X on ≈X -equivalence classes U,U ′

given by

U ≺X U ′
def⇐⇒ (∃t ∈ U)(∃t′ ∈ U ′) t ≺ t′

is discrete (for X finite), and can be coded as a string ŝ over the alphabet
Pow(X). The X-approximation s≺X is then just unpad (̂s). The construction is
a slight variant of that described in Proposition 8 from an a.b. Φ-model (as
opposed to an event structure).

4 Conclusion

Temporal progression is reduced above to succession within a string, following
established practice in temporal logic (e.g. [Em90]). More distinctive features of
the present work include

(i) the link with Russell and Wiener for a relational conception of time based
on events, making intervals conceptually prior to points

(ii) the use of projections πX to relate various strings, with granularity refined
(or coarsened) by expanding (or reducing) X

(iii) the suspension of the requirement that the temporal extent of an event e ∈ X
be an interval, effectively stepping from an event e to a fluent ϕ that describes
a type, rather than a particular occurrence or token.

Given a Fin(Φ)-indexed string s in the inverse limit IL(Φ) of {πX}X∈Fin(Φ), an
s-time (or s-possible world) counts ϕ-alternations, for ϕ ∈ Φ. Restricting Φ to
a finite set X bounds granularity below the infinite precision of real numbers,
arbitrarily small increments in which lead to Sorites chains/arguments problem-
atic for the vagueness of natural language (e.g. [Fe10]). The presentation of real
numbers as ŝ-times in §3.4 illustrates how far short finite strings may fall of the
full range of Kripke models — or to put it the other way round, how much ar-
bitrary Kripke models overshoot the bounded temporal granularity of ordinary
natural language statements. Be that as it may, the projections πX knit together
different strings, and we close by reflecting on these projections, with an eye to
variations and generalizations of πX .

4.1 Reducible languages and formulas

A useful service for a function between strings to perform is to simplify certain
notions of interest, as the projections πX do for event structures. More precisely,
given an alphabet Σ, and a function f : Σ∗ → Σ∗ between strings over Σ, a
language L ⊆ Σ∗ is f -reducible if

s ∈ L ⇐⇒ f(s) ∈ f [L] (1)

(for all s ∈ Σ∗) where f [L] is the f -image {f(s) | s ∈ L} of L. Whereas the left-
to-right direction of (1) always holds, the right-to-left is a genuine constraint,
reducing the cost of checking membership in L insofar as the f -image f [L] of L
is smaller than L and the computational cost of f can be ignored. This is the
case, for instance, where Σ is Pow(Φ) and for some e ∈ Φ,

(i) L is the set of strings s over Σ such that e is an s-interval, and
(ii) f is π{e}, making f [L] the singleton set consisting of the string e .

As to the computational cost of f , this cost can be can minimized by working
with strings at the level of f — e.g. over the alphabet Pow(X) for a reduced set
X ∈ Fin(Φ). Recalling that I(s) denotes the set of s-intervals, we can generalize
the equation

I(s) = {e ∈ Φ | π{e}(s) = e }

using the πX -image Lπ(X) of
⋂
e∈X π

−1
{e} e (adapted from §2.2). to assert the

πX -reducibility of the set of strings s such that each e ∈ X is an s-interval.

Proposition 11. For every subset X of Φ and every s ∈ Pow(Φ)∗,

X ⊆ I(s) ⇐⇒ πX(s) ∈ Lπ(X) .

Whereas
⋂
e∈X π

−1
{e} e is infinite, the language Lπ(X) is finite for any finite X.

Focusing on the case X = {e, e′}, Proposition 5 from §2.2 says the relations
of overlap © and precedence ≺ between e and e′ are π{e,e′}-reducible. We are
stepping here from a language L to a condition (or formula) ϕ characterizing
membership in L, with the understanding that ϕ is f -reducible if L is f -reducible.
The finest π{e,e′}-reducible relations between intervals e and e′ are the 13 Allen
relations, each given in Table 1 by a singleton set π{e,e′}[L] — e.g.

s |= e = e′ ⇐⇒ π{e,e′}(s) = e, e′ .

We can refine f -reducible notions, where f is defined by a cascade of regular
relations (as πX is from ρX ; bc; unpad)3 with each successive relation reducing
the input, by dropping some of the relations from the cascade. For example, let
bcX be bc after ρX

bcX(s)
def
= bc(ρX(s))

3 Such cascades are employed in [NK09] over a different alphabet.

to get four times as many bcX -reducible languages than πX -reducible languages
inasmuch as

bc[L] = (| ε)π[L](| ε) .

Thus, not only do we quadruple the Allen relations between s-intervals e and e′,
but taking the case X = {e}, we can (for instance) bc{e}-reduce the notion that
e is left-bounded in s, understood to mean: s is a non-empty string and e is not
in the first symbol of s. Note that

s |= left-bounded(e) ⇐⇒ bc{e}(s) ∈ (e)∗(| ε) .

The failure of left-bounded(e) to be π{e}-reducible suggests that the function
unpad (separating bc from π) abstracts away information about boundedness.
The matter is not so straightforward, however, as the equivalence

s |= left-bounded(e) ⇐⇒ π{pre(e)}(s±) = pre(e)

provides a different function f for which left-bounded(e) is f -reducible — viz.,
the composition ·±;π{pre(e)} of the delimiting map s 7→ s± followed by π{pre(e)}.

4.2 Superpositions and retractions

Structuring the symbols of the alphabet as sets simplifies many of the finite-
state constructions of present interest, including the projections ρX that pick
out relevant variables, and a binary operation, superposition & ([Fe04]), that is
useful for merging strings together. For two strings of the same length over the
alphabet Pow(Φ), superposition forms the componentwise union

α1 · · ·αn & α′1 · · ·α′n
def
= (α1 ∪ α′1) · · · (αn ∪ α′n)

for αi, α
′
i ⊆ Φ. To illustrate,

e, e′ = e & e′ e e′ = e & e′ e′ e = e′ & e .

The relation of subsumption (mentioned in §2 above) is the natural notion of
containment derived from &

s D s′ ⇐⇒ s and s′ have the same length, and s = s & s′ .

We generalize the superposition operation & from strings of the same length to
languages over the alphabet Pow(Φ), collecting superpositions s & s′ of strings
s and s′ of the same length from languages L and L′ (respectively) in the super-
position

L & L′
def
=

⋃
n≥0

{s & s′ | s ∈ L ∩ Pow(Φ)n and s′ ∈ L′ ∩ Pow(Φ)n}.

Next, we modify & further, relative to a given function f on strings. Writing
f−1L for the inverse f -image of a language L

f−1L
def
= {s ∈ Pow(Φ)∗ | f(s) ∈ L} ,

let us form

Lf
def
= f−1f [L]

= {s ∈ Pow(Φ)∗ | (∃s′ ∈ L) f(s) = f(s′)}

which we refer to as the f -closure of L (as L ⊆ Lf = Lf
f

and the operation
preserves ⊆-inclusion: L ⊆ L′ implies Lf ⊆ L′f). L is f -reducible precisely if its
f -closure Lf is a subset of L — i.e., as it is always the case that L ⊆ Lf ,

L is f -reducible ⇐⇒ Lf = L .

Now, the f -superposition L &f L
′ of languages L and L′ is the f -image of the

superposition of the f -closures of L and L′

L &f L
′ def

= f [Lf & L′
f
] .

Taking f to be π, we can reconstruct the sets Lπ({e1, . . . , en}) (mentioned
in Proposition 11) by mapping a finite sequence e1 · · · en in Φ to a language

E(e1 · · · en) by induction on n as follows: E(e1)
def
= e1 and

E(e1 · · · en+1)
def
= E(e1 · · · en) &π en+1 for n ≥ 1.

Proposition 12. For every finite subset {e1, . . . , en} of Φ,

E(e1 · · · en) = Lπ({e1, . . . , en}).

For some purposes, however, the operation &π is too blunt an instrument.
To illustrate the finer control &bc affords over &π, let us reformulate the example
from [NK09] of the 12 months of year 2008 in our framework as

y2008 &bc Jan Feb Mar · · · Dec

= y2008,Jan y2008,Feb y2008,Mar · · · y2008,Dec

(noting the equation fails if the subscript bc is replaced by π).
Given a function f such that f ; f = f and a subset X of Φ, let us call the

composition fX
def
= ρX ; f of ρX with f a retraction if fX preserves the structure

&f introduces

fX(s &f s′) = fX(s) &f fX(s′)

(where a string s is, as usual, conflated with the language {s}). Clearly, πX and
bcX are retractions. It is also immediate that

Proposition 13. For all functions f, g, h : Σ∗ → Σ∗, if h = g; f where g; g = g
then every h-reducible language is g-reducible.

Of particular interest for retractions is the case where g = ρX . By Proposition
13, fX -reducible languages are ρX -reducible.

References

[AF94] James F. Allen and George Ferguson. 1994. Actions and events in interval
temporal logic. J. Logic and Computation, 4(5):531–579.

[BK03] Kenneth R. Beesley and Lauri Karttunen. 2003. Finite State Morphology.
CSLI Publications, Stanford.

[BE58] Julius Richard Büchi and Calvin C. Elgot. 1958. Decision problems of weak
second-order arithmetics and finite automata, Abstract 553-112, Notices Amer. Math.
Soc. 5, 834.

[Em90] E. Allen Emerson. 1990. Temporal and modal logic. In J. van Leeuwen
(ed.), Handbook of Theoretical Computer Science, volume B: Formal Methods and
Semantics, pp. 995–1072. MIT Press.

[Fe04] Tim Fernando. 2004. A finite-state approach to events in natural language
semantics. J. Logic and Computation, 14(1):79–92.

[Fe10] Tim Fernando. 2010. Temporal propositions as vague predicates. In M. Aloni
et al. (eds.), Logic, Language and Meaning: 17th Amsterdam Colloquium, Revised
Selected Papers, pp 143-152. Springer LNAI 6042.

[Fe11] Tim Fernando. 2011. Regular relations for temporal propositions. Natural
Language Engineering, 17(2):163–184.

[KR93] Hans Kamp and Uwe Reyle. 1993. From Discourse to Logic. Kluwer Academic
Publishers, Dordrecht.

[Ka05] Lauri Karttunen. 2005. The Yale Shooting Problem. http://www.stanford.
edu/∼laurik/fsmbook/examples/YaleShooting.html

[Lü06] Uwe Lück. 2006. Continu’ous Time Goes by Russell. Notre Dame J. Formal
Logic, 47(3):397–434.

[McT08] John M.E. McTaggart. 1908. The Unreality of Time. Mind , 17:457–473.
[NK09] Jyrki Niemi and Kimmo Koskenniemi. 2009. Representing and Combining

Calendar Information by Using Finite-State Transducers. In J. Piskorski, B. Watson
and A. Yli-Jyr (eds.), Finite-State Methods and Natural Language Processing: Post-
proceedings of the 7th International Workshop FSMNLP 2008 , pp. 122–133. IOS
Press, Amsterdam.

[Pr05] Ian Pratt-Hartmann. 2005. Temporal prepositions and their logic. Artificial
Intelligence, 166: 1–36.

[Ru14] Bertrand Russell. 1914. Our Knowledge of the External World (Lecture IV).
Open Court, Chicago.

[Th97] Wolfgang Thomas. 1997. Languages, automata and logic. In Handbook of For-
mal Languages: Beyond Words, Volume 3, pages 389–455. Springer-Verlag.

[Th84] S.K. Thomason. 1984. On constructing instants from events. J. Philosophical
Logic, 13:85–96.

[Th89] S.K. Thomason. 1989. Free constructions of time from events. J. Philosophical
Logic, 18:43–67.

[Tr58] Boris A. Trakhtenbrot. 1958. Synthesis of logical nets whose operators are
described by monadic predicates. Dokl. Akad. Naut. 118:646-649 [in Russian].

[Wa47] Arthur Geoffrey Walker. 1947. Durées et instants. Revue Scientifique, 85:131–
34.

[Wi14] Norbert Wiener. 1914. A contribution to the theory of relative position. Pro-
ceedings of the Cambridge Philosophical Society , Volume 17, pages 441–449.

