
Information and Computation 207 (2009) 980–999

Contents lists available at ScienceDirect

Information and Computation

j ourna l homepage: www.e lsev ie r .com/ loca te / i c

Situations in LTL as strings�

Tim Fernando

Computer Science Department, Trinity College, Dublin 2, Ireland

A R T I C L E I N F O A B S T R A C T

Article history:

Received 21 November 2006

Revised 15 May 2008

Available online 11 April 2009

Keywords:

Situation

LTL

String

Natural language semantics

Situations serving as worlds as well as events in linguistic semantics are formulated as

strings recording observations over discrete time. This formulation is applied to a linear

temporal logic, in line with L. Schubert’s distinction between described and characterized

situations. The distinction is developed topologically and computationally, and linked to

the opposition between truth-conditional and proof-conditional semantics. For a finitary

handle on quantification, strings are associated with situations not only on the basis of ob-

servation but also through derivation and constraint satisfaction. The constraints specified

lead to an implementation simpler than the derivations given.

© 2009 Elsevier Inc. All rights reserved.

1. Introduction

Situations have over the years attracted varying degrees of attention in natural language semantics ([23,2,16] and many

others). They have been called on to do the work of worlds for modality, and also the work of events in temporality. An

important distinction between these uses can be put in terms introduced by Schubert [24] as that between description and

characterization. To say that a formula ϕ describes a situation/world s is to say that ϕ is true in s. To say that ϕ characterizes

a situation/event s is to demand in addition that s be (in some sense) about ϕ (so that ϕ is true of s and not just in s). For ϕ
to characterize s, ϕ and smust fit tightly, with no part of s extraneous to ϕ. Schubert argues that this tight fit is essential if ϕ
because ϕ′ is to be analyzed in terms of a causal relation between situations s and s′ thatϕ andϕ′, respectively, characterize.1
In general, a world is too big to be characterized by a formula, especially a tautology, relative to which every bit of a world

is arguably extraneous. A less extreme example from natural language is a formula ϕ̂ saying Pat walks from the office to

the train station. A situation characterized by ϕ̂ ought not to include any subsequent train rides. This suggests using a “part

of” relation� on situations to express the additional requirement characterization imposes on description. For instance, we

might reduce the claim that a formula ϕ characterizes a situation s to the description and minimality condition in (†).

(†) ϕ describes s, and ϕ describes no other situation s′ such that s′ � s

Such a reduction would imply (‡).

(‡) whenever ϕ characterizes s, ϕ characterizes no other situation s′
such that s′ � s

�
A preliminary version of this paper appeared in Electronic Notes in Theoretical Computer Science, vol. 165, 22 November 2006, pp. 23–36 (Proceedings of

the 13thWorkshop on Logic, Language, Information and Computation, 2006). I am grateful for this opportunity to expand the article, and thank the editors

and referees for their help.
E-mail address: Tim.Fernand@tcd.ie

URL: http://www.cs.tcd.ie/Tim.Fernando/
1 Causation is just one of many relations between situations characterized by discourse segments related by rhetorical (or coherence) relations. These

situations are calledmain eventualities in Asher and Lascarides [1], and underpin rhetorical relations such as Elaboration andNarration, aswell as Explanation.

0890-5401/$ - see front matter © 2009 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2008.11.003

http://www.sciencedirect.com/science/journal/08905401
http://www.elsevier.com/locate/ic
mailto:Tim.Fernand@tcd.ie
mailto:http://www.cs.tcd.ie/Tim.Fernando/

T. Fernando / Information and Computation 207 (2009) 980–999 981

Although (‡) poses no obvious problem for say, an event of Pat walking from the office to the train station, difficulties arise

when the modification “from the office to the train station” is dropped: it is widely accepted that an event of Pat walking

may have proper parts that count as Pat walking. (Further complications with minimization are discussed, for instance, in

Dekker [6].)

1.1. Characterization as the basis of description

Rather than reducing characterization to description, we may derive description from characterization of a �-part, as

in (1), for a wide class of formulas ϕ.

ϕ describes s ⇐⇒ (∃s′ � s) ϕ characterizes s′ (1)

Formulas ϕ for which (1) hold are persistent insofar as an immediate consequence of (1) and the transitivity of � is the

implication (2).

ϕ describes s′ and s′ � s implies ϕ describes s (2)

Counter-examples include the formula ϕ saying p throughout every described time, for which it is appropriate to assert

ϕ describes s ⇐⇒ ϕ describes every�-part of s

rather than

ϕ describes s ⇐⇒ ϕ describes some�-part of s.

That said, we opt for the latter equivalence in what follows, studying formulas for which truthwas originally defined relative

to worlds. Worlds are �-maximal situations, making (2) vacuously true for worlds s′. Thus, if we restrict description to

worlds, and understand s in the equivalence (1) to range over worlds, we need not worry that p throughout every described

time violates (2). (It can’t.) Better yet, we might make do with its variant p throughout every characterized time, which is

unproblematic, as (2) fails for “characterize" in place of “describe".

1.2. Application to time: strings

The notion of characterization is fleshed out below against formulas from a linear temporal logic under the assumption

that next and previous moments are well-defined. In defense of this assumption, Prior writes

The usefulness of systems of this sort does not depend on any serious metaphysical assumption that time is discrete;

they are applicable in limited fields of discourse in which we are concerned with what happens in a sequence of

discrete states, e.g. in the workings of a digital computer ([21], p. 67).

The distance to the previous/nextmoment is amatter of granularity, whichwe leave open and refinable by any finite number

of observations. Accordingly, the Priorean formula Past p saying that p held sometime in the past may be pictured as the

regular language

p �* now = p now + p � now + p �� now + · · · (3)

consisting of strings p �n now of lengthn+ 2 (forn ≥ 0),with substring�n representingn interveningmoments between

the observation of p and the present (now). Reversing these strings, we get the language

now �* p = now p + now � p + now �� p + · · · (4)

for the formula Future p saying that in the future p holds. Each of the strings in (3) and (4) is a sequence of snapshots that

can be viewed as an event (e.g. Tenny [26]). In contrast to the situations inMcCarthy and Hayes [18], the snapshots here need

not be an exhaustive record of (atomic) propositions true at that moment. This partiality allows the languages in (3) and (4)

to be understood as the events characterized by Past p and Future p, respectively. This is made precise in Section 2, where

strings are reformulated as schedules and structured topologically by�.

1.3. From observations to derivations and constraints

An obvious challenge to the finite-state (regular language) approach sketched above is the Priorean formula Future∀ p

saying that p is true every moment after the present, pictured in (5).

982 T. Fernando / Information and Computation 207 (2009) 980–999

now p
∞= lim

n→∞ now p
n

(5)

The computational complications posed by (5) and other temporal formulas (both more and less complex than Future∀ p)

motivate a step from strings-as-observations to strings-as-constructions. Very briefly, the disjunctive normal form in a

subbasis/basis presentation of topologies makes way for the higher types of proof-theoretic semantics. The progressively

longer (finite) strings approximating the infinite string in (5) are derived in Section 3 from incremental replace rules that

can be implemented by finite-state transducers. Finite-state constraints that capture sufficient iterated applications of these

rules are studied in Section 4, constituting a declarative alternative to the procedural methods of Section 3. We step back in

Section 5 and conclude.

1.4. Events in linguistic semantics

Before proceeding to the technical developments in Sections 2–5, let us pause for some more motivation. Temporal logic

and event semantics have competed since the days of Prior and Reichenbach for the attention of linguists. These approaches

can be brought together under the view of situations-as-strings, applied to linear temporal logic below, having been tried

out previously against

(a) the analysis in Reichenbach [23] of tense and aspect, with event time strung out, and formulas S and R for speech time

and reference time such that, for instance, It rained from dawn to dusk is represented by the regular language

rain,dawn rain
*
rain,dusk,R �* S

and the difference between

Pat left Dublin but is back

and

Pat has left Dublin ?but is back

is accounted for in terms of inertia ([8])

(b) the classification (going back to Vendler [27]) of events based on telicity and the difference between temporal for and

inmodification ([7])

(c) Kamp’s event structures ([15]), which are represented in [12] as projective limits of strings, and

(d) so-called anankastic conditionals ([9]).

Strings-as-situations are compared to the Event Calculus of van Lambalgen and Hamm [17] in [11], and extended with

branching to cover modal implications of the progressive in [13].

2. Schedules and linear temporal logic

It will prove convenient to

(i) identify time with the set Z of positive and non-positive integers,2 reserving 0 to mark out the present, and to

(ii) push negation towards the atoms, fixing a set P of propositions with a map · : P → P such that for each p ∈ P, p /= p

but p = p.

Let us refer to a relation s ⊆ Z× P between integers and propositions in P as a P-schedule, the idea being that s(i, p) says p is

true at time i. For example, the string p �� now p, q corresponds to the P-schedule {(−3, p), (1, p), (1, q)}, for P ⊇ {p, q}
with now understood to be at 0. Let us call a finite P-schedule a P-strip (as it can be written as a string in Pow(P ∪ {now})*)
and write StrP for the set

StrP={s ⊆ Z× P | s has finite cardinality}
of P-strips. A P-world is a P-schedule w such that for all p ∈ P and i ∈ Z,

w(i, p) ⇐⇒ not w(i, p).

A P-situation is a P-schedule s such that s ⊆ w, for some P-world w. (In other words, a P-situation is a P-schedule s such

that for no i, p is it the case that s(i, p) and s(i, p).) We equate the part-of relation � with the subset relation ⊆, and drop

2 We relax this identification in Section 5 to consider, for instance, the real line.

T. Fernando / Information and Computation 207 (2009) 980–999 983

the modification P- on schedules, situations, strips and worlds when we can. This section concerns topologies over sets

X ⊆ Pow(Z× P) of schedules induced by sets of described schedules from a notion of characterization according to (1).

Typically (but not necessarily), the schedules in X will be worlds,3 and a characterized situation will be a strip s, understood

as a finite set of observations of any x ∈ X such that s ⊆ x.

2.1. Topologies based on finite observations

Applying the notion of characterization to a set A of schedules in place of a formula, let us agree to read “s ∈ A” as A

characterizes s, so that under (1), we have

A describes x ⇐⇒ (∃s ⊆ x) s ∈ A.

Next, given a set X ⊆ Pow(Z× P) of schedules, we define

(i) XA ⊆ X to be the set of schedules in X described by A

XA={x ∈ X | (∃s ⊆ x) s ∈ A}
(ii) Str(X) ⊆ StrP to be the set of strips⊆-contained in schedules in X

Str(X)={s ∈ StrP | (∃x ∈ X) s ⊆ x}
and

(iii) O(X) ⊆ Pow(X) to be the family of subsets of X determined by sets A ⊆ Str(X) of finite observations

O(X)={XA | A ⊆ Str(X)}.
Proposition 1. Let X ⊆ Pow(Z× P).

(a) O(X) = {XA | A ⊆ StrP} and indeed for all A ⊆ StrP , XA = XA∩Str(X).
(b) (X ,O(X)) is a subspace of the topological space (Pow(Z× P),O(Pow(Z× P))).
(c) For all A, B ⊆ Pow(Z× P),

XA ∪ XB=XA∪B
XA ∩ XB=XA�B

where A � B is defined to be {s ∪ r | s ∈ A and r ∈ B}.
The topological space (X ,O(X)) foregrounds the “reality” x ∈ XA ∈ O(X) that is presumably observed, at the expense of

the finite observations s ∈ A ⊆ Str(X) that shape O(X). An alternative that downplays the “points” x ∈ X and highlights the

observations is to endow Pow(Str(X))with the structure of a locale, consisting, under the presentation in Vickers [28], of

(i) binary operations �X and �X given by

A �X B=A ∪ B

A �X B=(A � B) ∩ Str(X)

for all A, B ⊆ Str(X), and
(ii) the set {ŷ | y ⊆ Z× P} of functions ŷ : Pow(Str(X))→ {0, 1} given by a schedule y such that for all A ⊆ Str(X),

ŷ(A) = 1 ⇐⇒ (∃s ∈ A) s ⊆ y.

A notion halfway between topological space and locale is that of a topological system (X , Pow(Str(X))) with satisfaction

relation |= ⊆ X × Pow(Str(X)) defined by

x |= A ⇐⇒ x ∈ XA

for all x ∈ X and A ⊆ Str(X). From the topological system (X , Pow(Str(X))), Vickers derives the topological space (X ,O(X))
by spatialization and the locale ({ŷ | y ⊆ Z× P}, Pow(Str(X))) by localification. For our present purposes, the situation

3 The reader is free to assume that the schedules in X are worlds, and write W and w in place of X and x below. But that assumption is not necessary for

any of the arguments made.

984 T. Fernando / Information and Computation 207 (2009) 980–999

Table 1

Vickers [28] applied to the situation in Schubert [24].

Vickers Schubert

Topological system (X , Pow(Str(X))) Situation

Topological space (X , {XA | A ⊆ Str(X)}) Point/world x Describe (XA)

locale ({ŷ | y ⊆ Z× P}, Pow(Str(X))) Strip/event s Characterize (A)

is summarized in Table 1. The remainder of this paper is directed at developing the “pointless topology”-perspective of

locale theory for the concrete case of a linear temporal logic (extending Priorean tense logic with Kamp’s since and until

constructs) putting the set StrP of strips in center stage, and consigning the particular choice X of points to the background.

That said, we proceed from the point/world-oriented semantics traditionally given to linear temporal logic (under Kripke

semantics).

2.2. Temporal formulas and characterization

Given a set P◦ of atomic propositions, let

(i) P = P◦ × {+,−}, and for a ∈ P◦, (a,+) = (a,−) and (a,−) = (a,+), and
(ii) Φ be the set of temporal formulas ϕ generated from p ∈ P by

ϕ ::=p | � | ⊥ | ϕ ∧ ϕ | ϕ ∨ ϕ | Next ϕ | Previous ϕ |
ϕ until ϕ | ϕ since ϕ | ϕ release ϕ | ϕ initiate ϕ.

Building a Kripke frame around Z, we can interpret each formula ϕ ∈ Φ relative to a function (valuation) v : Z → Pow(P◦)
and integer i ∈ Z in the usual way, with

v, i |= p ⇐⇒ xv(i, p)

where xv is the P-world

{(i, (a,+)) | i ∈ Z, a ∈ v(i)}∪{(i, (a,−)) | i ∈ Z, a ∈ P◦ − v(i)}
and v, i |= �, v, i �|= ⊥,

v, i |= ϕ ∧ ψ ⇐⇒ v, i |= ϕ and v, i |= ψ
v, i |= ϕ ∨ ψ ⇐⇒ v, i |= ϕ or v, i |= ψ
v, i |= Next ϕ ⇐⇒ v, i+ 1 |= ϕ

v, i |= Previous ϕ ⇐⇒ v, i− 1 |= ϕ
v, i |= ϕ untilψ ⇐⇒ (∃j ≥ i) (v, j |= ψ and

for i ≤ k < j, v, k |= ϕ)
v, i |= ϕ sinceψ ⇐⇒ (∃j ≤ i) (v, j |= ψ and

for j < k ≤ i, v, k |= ϕ)
v, i |= ϕ releaseψ ⇐⇒ (∀j ≥ i) (v, j |= ψ or

(∃k ≥ i)(k < j and v, k |= ϕ))
v, i |= ϕ initiateψ ⇐⇒ (∀j ≤ i) (v, j |= ψ or

(∃k ≤ i)(k > j and v, k |= ϕ)).
Note that we can construe negation as an extension of · : P → P to Φ along the dual pairs (�,⊥), (∧,∨), (Next,Next),
(Previous, Previous), (until, release) and (since, initiate) so that e.g.

ϕ ∧ ψ=ϕ ∨ ψ
ϕ ∨ ψ=ϕ ∧ ψ.

Also, we can equate Future ϕ with� until Next ϕ, and Future∀ ϕ with⊥ release Next ϕ, etc.
As |= specifies what P-worlds formulas inΦ describe, the next question is: what about characterized events? For such a

notion, a minimal condition of faithfulness to |= is the following. Given a set A ⊆ Pow(Z× P) of schedules, an integer i ∈ Z,

and a formula ϕ ∈ Φ , we say A i-portrays ϕ if for every function v : Z → Pow(P◦),

T. Fernando / Information and Computation 207 (2009) 980–999 985

v, i |= ϕ ⇐⇒ (∃s ⊆ xv) s ∈ A.

The aim of this subsection is to define for every pair (i,ϕ) ∈ Z× Φ , a set [[i,ϕ]] of schedules satisfying Proposition 2.

Proposition 2. Let ϕ ∈ Φ and i ∈ Z.

(a) [[i,ϕ]] i-portrays ϕ.
(b) If neither release nor initiate occurs in ϕ, then [[i,ϕ]] ⊆ StrP .

We define [[i,ϕ]] by induction on ϕ, with the base case [[i,⊥]] = ∅, [[i,�]] = {∅} and [[i, p]] = {{(i, p)}}. Inductively,
[[i,ϕ ∧ ψ]]=[[i,ϕ]] � [[i,ψ]] (= {s ∪ r | s ∈ [[i,ϕ]], r ∈ [[i,ψ]]})
[[i,ϕ ∨ ψ]]=[[i,ϕ]] ∪ [[i,ψ]]
[[i,Next ϕ]]=[[i+ 1,ϕ]]

[[i, Previous ϕ]]=[[i− 1,ϕ]].
As for until, guided by the picture of [[0, p until q]] as

now, q + now, p p
*
q ,

we set

[[i,ϕ untilψ]]=⋃
n≥0

(u(ϕ, n, i) � [[i+ n,ψ]])

where u(ϕ, n, i) is defined by induction on n ≥ 0 to witness ϕ between i and i+ n− 1: u(ϕ, 0, i) = {∅} and
u(ϕ, n+ 1, i)=[[i,ϕ]] � u(ϕ, n, i+ 1).

Temporally reversing until to get since, let

[[i,ϕ sinceψ]]=⋃
n≥0

(s(ϕ, n, i) � [[i− n,ψ]])

where s(ϕ, 0, i) = {∅} and
s(ϕ, n+ 1, i)=[[i,ϕ]] � s(ϕ, n, i− 1).

Turning to release, let us consider first the special case ⊥ release ϕ, noting that [[i,⊥ release ϕ]] is roughly the limit of

u(ϕ, n, i) as n→∞. More precisely, we put

[[i,⊥ release ϕ]]=
⎧⎨
⎩

⋃
n≥0

f (n) | f ∈ F+(ϕ, i)
⎫⎬
⎭

where F+(ϕ, i) is the set of functions f : N → Pow(Z× P) such that for all n ≥ 0, f (n) ∈ [[i+ n,ϕ]]. Then set

[[i,ϕ releaseψ]]=[[i,ψ until (ϕ ∧ ψ)]] ∪ [[i,⊥ releaseψ]].
Similarly, for initiate, let F−(ϕ, i) be the set of functions f : N → Pow(Z× P) such that f (n) ∈ [[i− n,ϕ]] for all n ≥ 0, and

set

[[i,⊥ initiate ϕ]]=
⎧⎨
⎩

⋃
n≥0

f (n) | f ∈ F−(ϕ, i)
⎫⎬
⎭

[[i,ϕ initiateψ]]=[[i,ψ since (ϕ ∧ ψ)]] ∪ [[i,⊥ initiateψ]].

2.3. Schedules from sequences of strips

For p ∈ P, the single schedule {(n, p) | n ≥ 0} in [[0,⊥ release p]] can be pictured topologically

now, p p
∞= lim

n→∞ now, p p
n

986 T. Fernando / Information and Computation 207 (2009) 980–999

over the space (X ,O(X)),4 provided X has enough points—e.g. if X contains all P-worlds. By contrast, it is noteworthy that

[[i,ϕ]] is defined independently of the choice X of points.

In general, we can reformulate the sets [[i,ϕ]] ⊆ Pow(Z× P) of schedules as sets 〈〈i,ϕ〉〉 ⊆ N → StrP of functions from

N to StrP such that

[[i,ϕ]]=
⎧⎨
⎩

⋃
n≥0

f (n) | f ∈ 〈〈i,ϕ〉〉
⎫⎬
⎭ (6)

as follows. We

(i) turn A ⊆ StrP into {λn.s | s ∈ A} ⊆ N → StrP where λn.s is the constant function mapping every n ∈ N to s

(ii) redefine � on A, B ⊆ N → StrP by

A � B={λn.(f (n) ∪ g(n)) | f ∈ A and g ∈ B}
and

(iii) apply projection functions π ,π ′ of a pairing function on N to define

〈〈i,⊥ release ϕ〉〉={λn.h(π(n),π ′(n)) | h ∈ H+(i,ϕ)}
where H+(i,ϕ) consists of functions h : N×N → StrP such that for n ≥ 0,

λm.h(n,m)∈〈〈i+ n,ϕ〉〉
(and similarly for 〈〈i,⊥ initiate ϕ〉〉, with λm.h(n,m) ∈ 〈〈i− n,ϕ〉〉).

Steps (i) and (ii) lift StrP to N → StrP , while step (iii) keeps us from ascending further to N → (N → StrP) and beyond, by

Currying and pairing

N → (N → StrP)∼=(N×N)→ StrP ∼= N → StrP .

To bring out the subbasis {[[i, p]] | p ∈ P} for (X ,O(X)), we can reduce the functions f : N → StrP in 〈〈i,ϕ〉〉 further to
partial functions f : N⇁(Z× P) to Z× P by re-analyzing A � B as {f ∧ g | f ∈ A and g ∈ B}with

(f ∧ g)(2n) � f (n)

(f ∧ g)(2n+ 1) � g(n)

for n ≥ 0. There is little to choose between encoding a P-schedule as

{f (n) | n ∈ domain(f)} for some partial function f : N⇁(Z× P)

or as
⋃

n≥0 f (n) for f : N → StrP . For a canonical system of approximations relative to an enumeration P = {pn}n≥0 of P

(whichmay repeat in case P is finite), we let Sn, for n ≥ 0, be the set of {pm |m ≤ n}-strips with domain restricted to integers

whose absolute value is≤ n

Sn=Pow({i ∈ Z | |i| ≤ n} × {pm |m ≤ n})
and define functions rn : Sn+1 → Sn mapping s ∈ Sn+1 to its intersection with {i ∈ Z | |i| ≤ n} × {pm |m ≤ n}

rn(s)={(i, pm) ∈ s | |i| ≤ n andm ≤ n}.
The inverse limit of the projections (rn)n≥0

lim←− Sn=
⎧⎨
⎩(sn)n≥0 ∈

∏
n≥0

Sn

∣∣∣∣∣∣ sn = rn(sn+1) for all n ≥ 0

⎫⎬
⎭

is isomorphic to the full set Pow(Z× P) of P-schedules, with (sn)n≥0 corresponding to
⋃

n≥0 sn, and conversely, x ⊆ Z× P

decomposing to ({(i, pm) ∈ x | |i| ≤ n andm ≤ n})n≥0. But whereas the sets 〈〈i,ϕ〉〉 above can be used to define [[i,ϕ]]
according to (6), it is not clear how to construct the inverse limit projections of [[i,ϕ]]without first constructing [[i,ϕ]], given
that future and past operators may scope over each other in ϕ. (More below, especially Section 5.1.)

4 Recall that x is a limit point of a set A ⊆ X if every open set containing x intersects A− {x}.

T. Fernando / Information and Computation 207 (2009) 980–999 987

Table 2

Replace rules for ϕ,ψ ∈ Φ .

ϕ ∨ ψ � ϕ

Next ϕ � � � ϕ

ϕ ∧ ψ � ϕ,ψ

ϕ untilψ � ψ

ϕ sinceψ � ψ

ϕ releaseψ � ϕ,ψ

ϕ initiateψ � ϕ,ψ

ϕ ∨ ψ � ψ

� Previous ϕ � ϕ �
� � �

ϕ untilψ � � ϕ ϕ untilψ

� ϕ sinceψ � ϕ sinceψ ϕ

ϕ releaseψ � � ψ ϕ releaseψ

� ϕ initiateψ � ϕ initiateψ ψ

3. Replace rules and derivations

An important difference between the strings from the previous section and those considered in model checking (Clarke

et al. [4]) is that negated atomic formulas may appear in the former (since atomic formulas are not listed exhaustively). For

applications to natural language semantics, it is convenient to build strings from formulas that can be quite complex. A wide

class of examples that has to do with so-called continuous change in the progressive is illustrated by Pat is gaining weight,

for which we might let ϕ be the formula

∃x (weigh(Pat,x) ∧ (∃y < x) Previous weigh(Pat,y))

and construct the regular language ϕ
+

for observations ϕ
n
of n+ 1 moments (for n ≥ 1). Such applications aside,

complex formulas are helpful in incremental analyses of the sets [[i,ϕ]] from the previous section. For instance, the language

corresponding to [[1, (p ∧ (� until q)) until r]] can be analyzed incrementally as

L1= now p,� until q
*
r (7)

before unwinding it to a language over the alphabet Pow({now, p, q, r}). It turns out that whereas L1 is regular (over an

alphabet with the symbol p,� until q added), the language corresponding to

[[1, (p ∧ (� until q)) until r]]
is not. To see this, it is useful to formulate rules of the sort on which a tableau construction for Φ is based. More generally,

these rules resemble replace rules in finite-state tool-kits such as that in Beesley and Karttunen [3].

3.1. ReplacingΦ-schedules

We shall derive the sets [[i,ϕ]] incrementally by applying certain rules to the Φ-schedule {(i,ϕ)}. For instance, the top

four rule schemas in Table 2 suffice to turn {(0, (Previous p) ∨ Next q)} to the set [[0, (Previous p) ∨ Next q]] consisting of

the P-schedules {(−1, p)} and {(1, q)}.
The formal definitions are as follows. Given a string s over the alphabet Pow(Φ) and an integer i ∈ Z, let si be theΦ-strip

defined recursively on s by ε i = ∅ (where ε is the empty string) and

(αs)i={(i,ϕ) | ϕ ∈ α} ∪ si+1.

Next, given a relation R ⊆ Pow(Φ)+ × Pow(Φ)+ between strings, and Φ-schedules s and s′, we say s′ R-succeeds s if for
some (s1, s2) ∈ R, there exists i ∈ Z such that

s1
i ⊆ s and s′ = (s− s1

i) ∪ s2
i.

(Hence, we can keep s1 in s′ by arranging that s2 contain s1.
5) When R is understood, we shall write s1�s2 and s�s′ for

(s1, s2) ∈ R and s′ R-succeeds s, respectively. In the example above, we have (for R given by Table 2)

{(0, (Previous p) ∨ Next q)}� {(0, Previous p)}� {(−1, p)}
and

{(0, (Previous p) ∨ Next q)}� {(0,Next q)}� {(1, q)}.
Let �* be the reflexive transitive closure of �—i.e. s�*s′ iff there is a finite sequence s1, s2, . . . , sn of length n ≥ 1 such

that s = s1, s
′ = sn and for 1 ≤ m < n, sm�sm+1. Note that if s ∈ StrP then there is no i ∈ Z such that s(i,⊥).

5 More precisely, s2�s1, as defined in Section 4.1.

988 T. Fernando / Information and Computation 207 (2009) 980–999

Proposition 3. Let ϕ ∈ Φ and i ∈ Z. Then relative to the rules from Table 2,

[[i,ϕ]]⊇{s ∈ StrP | {(i,ϕ)}�*s}
and if neither release nor initiate occur in ϕ,

[[i,ϕ]]={s ∈ StrP | {(i,ϕ)}�*s}.
Before constructing infinite chains of R-successors to analyze temporal formulas built with release or initiate, we need

to be careful to restrict applications of the recursive rule schemas

ϕ untilψ � � ϕ ϕ untilψ � ϕ sinceψ � ϕ sinceψ ϕ

to guarantee the second argumentψ is realized. Accordingly, let R′ be the set of rules in Table 2 with these schemas deleted,

and

ϕ untilψ �n � ϕ
n
ψ �n ϕ sinceψ � ψ ϕ

n
(n ≥ 1)

put in their place. An i-derivation of ϕ is a function f : N → StrΦ−{⊥} such that f (0) = {(i,ϕ)} and conditions (c1) and (c2)

hold for all n ≥ 0.

(c1) f (n+ 1) R′-succeeds f (n) or f (n+ 1) = f (n) ∈ StrP ;

(c2) for all (j,ψ) ∈ f (n)withψ �∈ P, there exists k > n such that (j,ψ) �∈ f (k).

Condition (c2) ensures for instance, that an i-derivation of

(⊥ release p)∧(⊥ release q)

attends infinitely often to⊥ release p and⊥ release q alike. Let us write fP for the function λn.(f (n) ∩ (Z× P)) from N to

StrP .

Proposition 4. For all ϕ ∈ Φ and i ∈ Z,

[[i,ϕ]]=
⎧⎨
⎩

⋃
n≥0

fP(n) | f is an i-derivation of ϕ

⎫⎬
⎭

and for every i-derivation f of ϕ and every n ≥ 0, fP(n) ⊆ fP(n+ 1).

To get a grip on the complexity of the sets [[i,ϕ]], let us, for the sake of definiteness, identify P-strips with strings over the

alphabet Pow(P ∪ {now}) that neither begin nor endwith the empty set�. (For example, we identify {(1, p)}with now p ,

rather than any of the strings in�+ now p �* + now p �+.) Returning to the example of [[1, (p ∧ (� until q)) until r]]
above, observe that qmay jump over r when replacing strings in (7),6 and that the q’s never outnumber the p’s. That is,

[[1, (p ∧ (� until q)) until r]] ∩ now p
+

r q
+=

now
∑
n≥1

∑
1≤m≤n

p
n
r q

m

which is not regular (by a pumping argument). Hence,

[[1, (p ∧ (� until q)) until r]]

6 The overlap in

Next q r �� q, r

reflects the non-atomic structure of sets as symbols (for strips), contrasting with

NP VP �� the dog,barked .

In http://www.stanford.edu/~laurik/fsmbook/examples/YaleShooting.html, Karttunen analyzes these sets as strings, advancing the application of

methods from Beesley and Karttunen [3] to temporal semantics initiated in [14].

T. Fernando / Information and Computation 207 (2009) 980–999 989

cannot be regular. It does, however, contain the regular language

now
(
r + p

*
p, q r + p

+
q, r + p

+
r �* q

)

that 1-portrays (p ∧ (� until q)) until r. We will see in the next section how to extract these regular sublanguages. In

the meantime, notice that 0-portrayal yields i-portrayal for any i ∈ Z, as we can alway prefix ϕ by i Next’s for i > 0, or−i

Previous’s for i < 0. Henceforth, let us speak simply of portrayal (understood to mean 0-portrayal).

The sets [[i,ϕ]] are far from unique in satisfying Proposition 2. The empty set portrays every contradiction, as does {∅}
every tautology ϕ, whether or not ∅ ∈ [[0,ϕ]]. An obvious but important fact about portrayal is that if some set of schedules

portrays both ϕ andψ , then ϕ andψ are logically equivalent (in that they are true at the same P-worlds); and conversely, if

ϕ,ψ are logically equivalent, then they are portrayed by the same sets of schedules. Portrayal is determined completely by

truth relative to worlds; characterization (of events) is a finer grained notion that is underdetermined by truth at worlds. No

world can distinguish p from p ∨ (p ∧ Next p), but any notion of characterization for event semantics (in linguistics) must

discern the difference in temporal extent between p and p ∧ Next p. Tightening the fit between a formula and a situation it

characterizes (over that between a formula and a situation it describes) is essential if, according to Schubert [24], we are to

account for causal relations pervasive in natural language.

3.2. Digression: derivations as ways of being true

The replace rules above do not preserve truth

(
e.g. ϕ ∨ ψ does not imply ϕ

)
, and are in this sense unsound. But

they yield ways of explaining truth that when read right to left (rather than left to right) preserve truth

(
e.g. ϕ implies

ϕ ∨ ψ
)
. Moreover, by Propositions 4 and 2(a),

v, i |= ϕ ⇐⇒ (∃ an i-derivation f of ϕ)(∀n ≥ 0) fP(n) ⊆ xv

for all functions v : Z → Pow(P◦), i ∈ Z and ϕ ∈ Φ . For this reason, it is tempting to describe an i-derivation f of ϕ as a

proof that ϕ is true at i—assuming that is, f can be grounded in the P-world xv implicit in talk of truth at i. The reference here

to worlds suggests that an i-derivation is not somuch a proof as it is a way of being true. Before putting proofs aside, however,

let us not forget our declared interest in somethingmore than truth at a world; over and above what a formula describes, we

want to knowwhat it characterizes (without necessarily bringing inworlds/points). Unravelingwhat a formula characterizes

is a process very much like that of (de)constructing a proof, bottoming out in assumptions that fall well short of a world.

3.3. Digression: observation versus derivation

Let us call a temporal formula ϕ ∈ Φ finitely observable if [[i,ϕ]] ⊆ StrP for some (equivalently, any) i ∈ Z. Examples

include temporal formulas with no occurrence of release or initiate (Proposition 2(b)). These are also finitely derivable by

Proposition 3, raising the question: can we sharpen Proposition 3 to

[[i,ϕ]] ∩ StrP={s ∈ StrP | {(i,ϕ)}�*s} ?
No.Consider⊥release�. As∅ ∈ [[j,�]] for all j ≥ i,λn.∅belongs to F+(�, i)andso∅ ∈ [[i,⊥release�]]. On theotherhand,

there is no s ∈ StrP such that {(i,⊥ release�)}�*s. Instead, {(i,⊥ release�)}�{(i,⊥), (i,�)} and {(i,⊥ release�)}�
{(i,�), (i+ 1,⊥ release�)}. In sum, the formula⊥ release� is finitely observable but not finitely derivable

[[i,⊥ release�]]={∅}
/={s ∈ StrP | {(i,⊥ release�)}�*s} = ∅.

The inequality above rests on conceptualizing an i-derivation f : N → StrΦ as a computation that has at thenth stage f (n)
processed the approximation fP(n) = f (n) ∩ (Z× P). There is a striking similarity here to notions of stage and algorithm

investigated by Moschovakis; in particular, readers familiar with Moschovakis [19] might draw the following analogies with

Fregean sense (Sinn) and denotation (Bedeutung).

observation

derivation
≈ value

computation
≈ denotation

sense

As the mode or manner of presenting denotation (value), sense (computation) can be a very delicate matter, less robust

than denotation (value). I would not claim that a definitive account of sense for formulas inΦ necessarily exists, let alone that

the notion of derivation above provides such an account. The preceding discussion of⊥ release� brings out a problemwith

waiting for the end of an i-derivation before “observing” the value under construction. The discussion also points to a possible

solution: step up to higher types and form the lambda term λn.∅ in F+(�, i). Type theory construed proof-thoeretically has

990 T. Fernando / Information and Computation 207 (2009) 980–999

in recent years been applied fruitfully to interpret (and not only assemble) semantic representations for natural language

(e.g. Ranta [22] and Cooper [5]). But a worry noted by Sundholm (among others) some 20 years ago has persisted:

. . . it is not at all clear that one can export the ‘canonical proof-objects’ conception of meaning outside the confined

area of constructivemathematics. In particular, the treatment of atomic sentences such as OWN[x, y] is left intolerably
vague . . . and it is an open problem how to remove that vagueness ([25], p. 503).

T. Parsons has dubbed “the study of those ‘formulas of English’ that are treated as atomic formulas in most logical

investigations of English” subatomic semantics ([20], p. ix), hypothesizing that events are the key to its mysteries. Assuming

an event can be formulated as a string (or, more precisely a P-strip, for some set P of observations), it is natural to try out

automata-theoretic methods (firmly established in model checking as well as various areas of natural language processing

suchasmorphology)beforemovingon to themore complex type-theoreticmachineryofproof-conditional semantics. Insofar

as events in subatomic semantics can always be put in the past, the strings that represent themmust arguably be finite. The

complications infinite strings pose are substantial enough for us to keep infinite strings out of subatomic semantics, if we

can. For instance, [[1,⊥ release (p ∨ q)]] is uncountable (for p /= q), although it is trivial to mechanically generate all its

finite approximations now

(
p + q

)+
.

An instructive English example exposing the shortcomings in reducing p before q to q after p is

(*) Pat stopped the car before it hit the tree.

A postcondition of Pat stopping the car is that car be stationary. The car can be assumed to remain stationary unless some

force puts it inmotion. As being inmotion is a precondition for hitting the tree, wemay conclude from (*) that in the absence

of any intervening forces, the car did not hit the tree. To formalize such reasoning, it is convenient to pick out certain formulas

as inertial, and for each inertial ϕ, build a non-inertial formula fϕ saying intuitively that a force is applied to make ϕ true at

the next moment ([10]). Assuming the negation of an inertial formula is inertial, we can then equate an inertial ϕ with the

conjunction

(fϕ release ϕ)∧Previous (fϕ initiate Next ϕ)

which says not only that ϕ holds, but that it persists forward unless some force is applied against it, and persists backward

unless some force was applied for it.7 We can encode inertial persistence either through the replace rule

� ϕ � fϕ initiate Next ϕ fϕ release ϕ

or, avoiding explicit reference to either release or initiate, through constraints

ϕ �⇒� ϕ + fϕ � (8)

� ϕ ⇒ ϕ �+ fϕ � (9)

that define regular languages according to a modification (from [14]) of constructs in Beesley and Karttunen [3]. Precisely

what⇒means, and how⇒ can be applied to overcome the non-regularity above are what the next section is all about.

4. Constraints as languages

In this section, we recast the replace rules from the preceding section as constraints defined through a subsumption

relation � on languages that compares the information encoded in strings of the same length. The pay-off is that the

sets [[i,ϕ]] from Section 2 are reduced to regular languages that cover (in a precise sense) not only the irregular language

corresponding to [[1, (p ∧ (� until q)) until r]] but also infinite strings from initiate and release.

Throughout this section, we work with the alphabet Pow(Φ ∪ {now}), forming the set nowΦ of now-anchored strings

where now occurs exactly once

nowΦ={α1 · · ·αn ∈ Pow(Φ ∪ {now})+ | ∃ exactly one i such that

1 ≤ i ≤ n and now ∈ αi}
=Pow(Φ)*{α ∪ now | α ⊆ Φ}Pow(Φ)*.

7 Differentiating fϕ from fϕ allows us to equate fϕ with

fϕ ∧ (fϕ ∨ Next ϕ)

asserting that fϕ succeeds in bringing ϕ about at the next moment unless opposed.

T. Fernando / Information and Computation 207 (2009) 980–999 991

Using the semantics for⇒ and L� given below, we can capture nowΦ by applying the constraint

now �* now ⇒∅ (10)

precluding multiple occurrences of now to the language

(
�* now �*

)�

asserting that now occurs.

4.1. Subsumption and constraints

Given strings s and s′ over the alphabet Pow(Φ ∪ {now}), we say s subsumes s′ and write s�s′ if s and s′ have the same

length and s componentwise includes s′

α1α2 · · ·αn�β1β2 · · ·βm iff n = m and αi ⊇ βi for 1 ≤ i ≤ n.

For languages L and L′ ⊆ Pow(Φ ∪ {now})*, L subsumes L′ if each string in L subsumes some string in L′

L�L′ iff (∀s ∈ L)(∃s′ ∈ L′) s�s′.

These definitions allow us to conflate a string s with the singleton language {s}. As a type with instances s ∈ L, a language L

is essentially a disjunction
∨

s∈L s of conjunctions s; between strings, more is more

e.g. ϕ,ψ � ϕ

but between languages, less is more

e.g. ϕ � ϕ + ψ .

A now-anchored string s encodes the schedule sched(s) ⊆ Z× Φ with now taken as time 0 and

(i,ϕ) ∈ sched(s) ⇐⇒ s � �*stg(ϕ, i)�*

where

stg(ϕ, i)=
⎧⎪⎪⎨
⎪⎪⎩

now,ϕ if i = 0

now �i−1 ϕ if i > 0

ϕ �1−i now if i < 0.

For example,

sched
(
p � now q ∧ p, r

)
={(−2, p), (1, q ∧ p), (1, r)}.

For anarbitrarynow-anchored string s = α1 · · ·αnwithnow ∈ ai,we can re-express sched(s) using thenotation fromSection

3.1 as

sched(s)=s◦1−i

where s◦ is s without now.

To reformulate replace rules from the preceding section in terms of regular languages, we define the constraint L⇒ L′ (for
any languages L and L′ ⊆ Pow(Φ ∪ {now})*) to be the set of strings s ∈ Pow(Φ ∪ {now})* such that s��nL′�m whenever

s��nL�m

s ∈ L⇒ L′ ⇐⇒ (∀n,m ≥ 0) s��nL�m implies s��nL′�m.

If we collect the strings that subsume L in L�

L�={s ∈ Pow(Φ ∪ {now})* | s�L}
and write L for the set-theoretic complement Pow(Φ ∪ {now})* − L, then

L⇒ L′ =Pow(Φ ∪ {now})* (L� ∩ (L′)�) Pow(Φ ∪ {now})*

992 T. Fernando / Information and Computation 207 (2009) 980–999

Table 3

Constraints for ϕ,ψ ∈ Φ .

ϕ ∧ ψ ⇒ ϕ,ψ

ϕ ∨ ψ ⇒ ϕ + ψ

Next ϕ �⇒� ϕ (11)

� Previous ϕ ⇒ ϕ � (12)

ϕ untilψ �⇒ ψ �+ ϕ ϕ untilψ (13)

� ϕ sinceψ ⇒� ψ + ϕ sinceψ ϕ (14)

ϕ releaseψ �⇒ ϕ,ψ �+ ψ ϕ releaseψ

� ϕ initiateψ ⇒� ϕ,ψ + ϕ initiateψ ψ

([3,14]). It follows that if L and L′ are regular languages, so is L⇒ L′. For L′ = ∅ as in (10), L⇒ ∅ reduces to the language

of strings that do not subsume �*L�*

L⇒ ∅=
(
�*L�*

)�
.

The replace rules in Table 2 suggest the constraints in Table 3, with, for instance, (13) picking out strings α1 · · ·αn such that

for all i < n,

‘ϕ untilψ ’ ∈ αi implies ψ ∈ αi or (ϕ ∈ αi and ‘ϕ untilψ ’ ∈ αi+1).

To apply the constraints in Table 3, some definitions are helpful. Let L� consist of the strings in L that are �-minimal

L�={s ∈ L | not (∃s′ ∈ L − {s}) s�s′}
and let≡ be the equivalence on languages induced by �

L ≡ L′ ⇐⇒ L�L′ and L′�L.

Observe that

L� ≡ L ≡ L�

and that whenever L ≡ L′,

L� ⊆ L′ ⊆ L� .

Next, we define the application of C to L by

apply(C, L)=(L� ∩ C)�

([10]) so that for example,

apply
(
p ∧ q ⇒ p, q , p ∧ q

)
= p, q, p ∧ q .

For C0 equal to the constraint

p until q �⇒
(
q �+ p p until q

)

we get

apply
(
C0, p until q �*

)
= p until q, p

*
p until q, q �+ +

p until q, p
*
p until q

where the latter disjunct p until q, p
*
p until q fails to require that q eventually hold. To plug this loophole, let us replace

the until-constraint (13) in Table 3 by

T. Fernando / Information and Computation 207 (2009) 980–999 993

ϕ untilψ ⇒ ψ + ϕ, ϕ ulψ (15)

ϕ ulψ
a⇒ ϕ

*
ψ (16)

where L
a⇒ L′ is read “if L then afterwards L′”

L
a⇒ L′ =

(
�*L

)�
(L′�*)�.

If C′0 is (15) ∩ (16) for ϕ = p andψ = q then

apply
(
C′0, p until q �*

)
= p until q, q �* +

p until q, p ul q p
*
q �* .

Similarly, we replace the since-constraint (14) in Table 3 by

ϕ sinceψ ⇒ ψ + ϕ, ϕ siψ (17)

ϕ siψ
b⇒ ψ ϕ

*
(18)

where L
b⇒ L′ is read “if L then beforehand L′”

L
b⇒ L′ =

(
�*L′

)�
(L�*)�.

We can also strengthen the Next-constraint (11) to

Next ϕ
a⇒ ϕ (19)

and the Previous-constraint (12) to

Previous ϕ
b⇒ ϕ . (20)

The variants
a⇒ and

b⇒ of ⇒ build in eventuality conditions, sidestepping complications from compactness arguments

(familiar from first-order logic) deriving p
∞

from p
+
. We pay particular attention next to the formation of infinite

strings.

4.2. Padding and paths

Given now-anchored strings s and s′, we say s weakly subsumes s′ and write s�s′ when sched(s′) is a subset of sched(s)

s�s′ ⇐⇒ sched(s′) ⊆ sched(s).

We can reduce � to � and relax the assumption that s and s′ are now-anchored by defining a function unpad that removes

all initial and final empty boxes � in a string

unpad(s)=
{

s if s neither begins nor ends with �
unpad(s′) if s = �s′ or else if s = s′�

and by agreeing that s�s′ iff s subsumes a string that is unpad-equivalent with s′

s�s′ iff (∃s′′) unpad(s′′) = unpad(s′) and s�s′′.

Stepping from strings up to languages, let us write unpad(L) for the image of L under unpad

unpad(L)={unpad(s) | s ∈ L}
and L� for L with any number of leading and trailing �’s deleted or added

L�=�*unpad(L)�*

994 T. Fernando / Information and Computation 207 (2009) 980–999

={s ∈ Pow(Φ ∪ {now})* | unpad(s) ∈ unpad(L)}.
The equivalence

L�L′ ⇐⇒ (∀s ∈ L)(∃s′ ∈ L′) s�s′

(paralleling �) is a consequence of defining � from � by weakening the second argument L′ to L′�

L�L′ ⇐⇒ L�L′�.

Given a schedule x ⊆ Z× Φ , we can form approximations of x along a set L of now-anchored strings, defining

Sched(L)=⋃
s∈L

sched(s).

Ofparticular interest beloware sets L that are similar to the set Stg(x)ofnow-anchored strings s inducing schedules contained
in x

Stg(x)={s ∈ nowΦ | sched(s) ⊆ x}.
A path is a set L of now-anchored strings that is

(i) �-directed in that for all s, s′ ∈ L, there exists s′′ ∈ L such that

s′′�s and s′′�s′

and

(ii) extensible in that for every s ∈ L, there exists s′ ∈ L such that

s′��+s�+.

Note that for all x ⊆ Z× Φ , Stg(x) is a path.

Let us call L stripped if Sched(L) is finite (i.e. Sched(L) ∈ StrΦ∪{now}), and say that a string s carves out L if sched(s) =
Sched(L). For example, a now-anchored string s carves out the path �*s�*. Clearly, if L is a path, then

L is stripped ⇐⇒ some string in L carves out L

⇐⇒ (∃s ∈ L)(∀s′ ∈ L) s�s′c

and

s carves out L ⇐⇒ (∀n > 0)(∃l > n)(∃m > n)�ls�m ∈ L

(with quantification similar to acceptance in Büchi automata; e.g. Clarke et al. [4]).

4.3. Approximating [[i,ϕ]]
Let C consist of the constraints from Table 3 with (11)–(14) replaced by (15)–(20). Henceforth, we assume thatΦ is closed

also under the binary connectives ul and si, with

[[i,ϕ ulψ]]=[[i,ϕ untilψ]] − [[i,ψ]]
[[i,ϕ siψ]]=[[i,ϕ sinceψ]] − [[i,ψ]].

For everyϕ ∈ Φ , letCϕ be the intersectionof constraints L1 ⇒ L2 inC such that the lefthand side L1 containsonly subformulas

of ϕ (suitably modified for until and since)

Cϕ=
⋂{(L1 ⇒ L2) ∈ C | L1 ⊆ Pow(subfmla(ϕ))*}

where for p ∈ P,

subfmla(p)={p} ,

T. Fernando / Information and Computation 207 (2009) 980–999 995

for U ∈ {Next, Previous},
subfmla(Uϕ)={Uϕ} ∪ subfmla(ϕ) ,

for B ∈ {∨,∧, release, initiate, ul, si},
subfmla(ϕBψ)={ϕBψ} ∪ subfmla(ϕ) ∪ subfmla(ψ)

and

subfmla(ϕ untilψ)={ϕ untilψ , ϕ ulψ} ∪ subfmla(ϕ) ∪ subfmla(ψ)

subfmla(ϕ sinceψ)={ϕ sinceψ , ϕ siψ} ∪ subfmla(ϕ) ∪ subfmla(ψ).

For every ϕ ∈ Φ , subfmla(ϕ) is finite, and so Cϕ is regular. For example, if ϕ is Previous(p) ∧ Next(q), Cϕ is(
Previous(p) ∧ Next(q) ⇒ Previous(p),Next(q)

)

∩
(
� Previous(p) ⇒ p �

)
∩

(
Next(q) �⇒ � q

)

and apply
(
Cϕ , � Previous(p) ∧ Next(q) �

)
consists of the single string

ŝ= p now, Previous(p),Next(q), Previous(p) ∧ Next(q) q .

To restrict a string s to Pnow = P ∪ {now}, we form rP(s) by intersection with Pnow

rP(α1 · · ·αn)=(α1 ∩ Pnow) · · · (αn ∩ Pnow)

so that for example, rP(ŝ) = p now q .

Proposition 5. For every ϕ ∈ Φ constructed from P using ∧ and at most n applications of Next and at most n applications of

Previous,

[[0,ϕ]]=
{
sched(rP(s)) | s ∈ apply

(
Cϕ , �n now,ϕ �n

)}
.

Proposition 5 fails forϕ builtwith∨—take, for example, p ∨ (p ∧ Next(p))—but holdswith = replaced by⊇. Also, to avoid

the pesky parameter n in Proposition 5, we apply Cϕ to�* now,ϕ �*, obtaining in the case of ϕ = Previous(p) ∧ Next(q),(
ε +�* p

)
s

(
ε + q �*

)
where s is

now, Previous(p),Next(q), Previous(p) ∧ Next(q) .

Restricting to Pnow , we let rP(L) = {rP(s) | s ∈ L} and define

Cnow(ϕ)= rP
(
apply

(
Cϕ , �* now,ϕ �*

))

so that

Cnow(Previous(p) ∧ Next(q))=
(
ε +�* p

)
now

(
ε + q �*

)

and

Cnow(p until q)=�*
(
now, q + now, p p

*
q

)
�*.

Notice that padding now,ϕ in Cnow(ϕ) is essential for eking out an extensible set from Cnow(ϕ). Finally, for every ϕ ∈ Φ ,

we form the set

S(ϕ)={Sched(L) | L ⊆ Cnow(ϕ) and L is a path}
of schedules given by paths within Cnow(ϕ).

Proposition 6. For every ϕ ∈ Φ , S(ϕ) ⊆ [[0,ϕ]]. Conversely, for all x ∈ [[0,ϕ]], there exists y ∈ S(ϕ) such that y ⊆ x.

996 T. Fernando / Information and Computation 207 (2009) 980–999

For n > 0, [[n,ϕ]] and [[−n,ϕ]] are reducible to

[[0,Nextn(ϕ)]] and [[0, Previousn(ϕ)]]
respectively. Proposition 6 is sufficient for S(ϕ) to induce the same notion of description via (1). For ϕ built with neither

release nor initiate, Proposition 2(b) says [[0,ϕ]] ⊆ StrP whence

S(ϕ)={sched(s) | s ∈ Cnow(ϕ)}.
(It is crucial here that (11) and (12) are strengthened to (19) and (20).) For every ϕ ∈ Φ , one can build finite-state machines

accepting Cnow(ϕ). For ϕ̂ = (p ∧ (� until q)) until r from Section 3, we have unpad(Cnow(Nextϕ̂)) = now L̂ where

L̂= r + p
*
p, q r + p

+
q, r + p

+
r �* q

with at most one occurrence of q in every L̂-string because of �-minimization (from apply).

5. Discussion

Summingup, Section 2 proposed definitions [[i,ϕ]] of the set of situations that a formulaϕ of Linear Temporal Logic at time

i characterizes; Section 3 derived [[i,ϕ]] from (i,ϕ) by replace rules; and Section 4 applied declarative (order-independent)

constraints (instead of order-sensitive procedures) to extract subsets of [[i,ϕ]] that define the same notion of description

(under (1)). Thedenotational semanticsprovidedby the constraints in Section4admit a simpler (finite-state) implementation

than the operational semantics of Section 3.

The focus above on characterizing (as opposed to describing) situations reflects a shift in emphasis from models to

formulas. Whereas the choice of a model (in the form of a machine or program) can be taken for granted in model checking,

it is often unclear in natural language applications what models to consider. Whatever these models may be, however, do

formulas that characterize situations as strings presupposemodelswhere time is discrete?Mustwe throwout the real line"
as amodel of time? No, no. Situations-as-strings presupposes only that we canmake some selection of discrete times—e.g. Z
from". Any such selection can be refined indefinitely. Indeed, we can extract" through inverse limits relative to projections

respecting (a1) and (a2).

(a1) every string is formed from a finite alphabet (i.e. finitely many observations);

(a2) time does not advance without change.

More precisely, fix a set Ψ of formulas that includes copies of all real numbers. Keeping (a1) in mind, let Fin(Ψ) be the set

of all finite subsets of Ψ . We build (a2) into a function ρ : Pow(Ψ)* → Pow(Ψ)* that reduces a block αα of two α’s to one

ρ(s)=
⎧⎨
⎩

s if length(s) ≤ 1

ρ(αs′) if s = ααs′
αρ(α′s′) if s = αα′s′ with α /= α′

forall setsα,α′ ⊆ Ψ . Forexample,ρ
(
�� p � p p

)
= � p � p . ForeveryΨ ′ ∈ Fin(Ψ), letρΨ ′ : Pow(Ψ)* → Pow(Ψ ′)*

be ρ composed with rΨ ′

ρΨ ′(s)=ρ(rΨ ′(s))
where rΨ ′ componentwise intersects strings with Ψ ′

rΨ ′(α1 · · ·αn)=(α1 ∩ Ψ ′) · · · (αn ∩ Ψ ′)
for all α1 · · ·αn ∈ Pow(Ψ)*. For example, given real numbers r1 < r2 < r3,

ρ{r1,r3}
(
� r1 � r2 � r3 �

)
=ρ

(
� r1 ��� r3 �

)

=� r1 � r3 �.

The inverse limit of the projections (ρΨ ′)Ψ ′∈Fin(Ψ)

IL(Ψ)=
⎧⎨
⎩σ ∈

∏
Ψ ′∈Fin(Ψ)

Pow(Ψ ′)*
∣∣∣

T. Fernando / Information and Computation 207 (2009) 980–999 997

σ(Ψ ′′) = ρΨ ′′(σ (Ψ ′)) for all Ψ ′′ ⊆ Ψ ′ ∈ Fin(Ψ)

⎫⎬
⎭

includes points σ such that for every finite set Ψ ′ = {r1, r2, . . . , rn} ⊆ " of reals with r1 < r2 < · · · < rn,

σ(Ψ ′)=� r1 � r2 � · · · rn �.

In general, each σ ∈ IL(Ψ) defines a strict partial order≺σ on{
ψ ∈ Ψ | σ({ψ}) = � ψ �

}

such that for allψ ,ψ ′ ∈ Ψ ,

ψ ≺σ ψ ′ ⇐⇒ σ({ψ ,ψ ′}) = � ψ � ψ ′ �.

Let us call a string s ρ-reduced if ρ(s) = s. Note that for all σ ∈ IL(Ψ) and Ψ ′ ∈ Fin(Ψ), σ(Ψ ′) is ρ-reduced. How then

do we justify the use of strings s for [[i,ϕ]] that are not ρ-reduced? By appealing to the boundedness of observations; the

observables inΨ ′ exist alongside the un-observables inΨ − Ψ ′. For any language L over Pow(Ψ ′), it is enough that for some

formula tick ∈ Ψ − Ψ ′, we apply the intersection of the constraints

��⇒ tick �+� tick

tick tick ⇒∅
to L to obtain strings that are ρ-reduced. Or we might refine the tick’s to countably many fresh formulas {χi}i∈Z appearing

in the constraints

χi �⇒� χi+1 (21)

� χi ⇒ χi−1 � (22)

χi �* χi ⇒∅ (23)

tagging stringswith successor chains onwhich the connectives Previous andNext fromLTL depend. AsZ is infinite, however,

the infinitely many constraints (21)–(23) lead to an infinite alphabet and a non-regular language. Accordingly, we have put

ρ aside in Sections 1–4, and made do with χ0, called now.

That said, constraints (21) and (22) raise the question: are there formulas in Ψ (or Φ) which can be viewed as atomic in

that they never appear in the lefthand side L of constraints L⇒ L′ with L′ /= ∅, or in the lefthand side of replace rules such

as those in Table (2)? Under Table (2), derivations terminate as soon as all boxes in a string contain only propositions in P;

that is, propositions in P form terminal symbols, and formulas inΦ − P non-terminals (so that strings over subsets of P are

in normal form). The inertial constraints (8) and (9) mentioned at the end of Section 3, and lexical rules such as

dawn �+ dusk ⇒�+ noon �+

(sandwiching noon between dawn and dusk) run counter to the impression given by Table 2. It is doubtful that natural

language semantics has any use for irreplaceable propositions that are meant only to be observed.

In the remainder of this paper, we shift our attention from the structure of formulas (inΨ) over to the structure of strings

and languages (over the alphabet Pow(Ψ)).

5.1. Factors

Among the strings weakly subsumed by a string s are its factors: strings s′ such that s = us′v for some (possibly null)

strings u and v. It is easy to see that L⇒ L′ is the set of strings s such that every factor of s that subsumes L also subsumes L′

L⇒ L′ ={s ∈ Pow(Ψ ∪ {now})* | (Fac(s) ∩ L�)�L′}
where Fac(s) denotes the set of factors of s

Fac(s)={s′ ∈ Pow(Ψ ∪ {now})* | (∃u, v) us′v = s}.
Given a finite or infinite Ψ -schedule x ⊆ Z× Ψ , we define for n,m ≥ 0, the (m, n)th approximation of x by restricting x

to times between−m and n

998 T. Fernando / Information and Computation 207 (2009) 980–999

xnm={(i,ϕ) ∈ x | − m ≤ i ≤ n}
and collect these approximations in

Fac(x)={
s ∈ nowΨ | (∃n,m ≥ 0) sched(s) = xnm

}
.

For instance,

Fac({(i, p) | i ∈ Z})=�* p
*
now, p p

�.

For L to equal Fac(x), L must also be skeletal: for all s, s′ ∈ L, s�s′ implies s = s′. Formulas such as

Previousn(Nextn(p)) for n > 0

pose complications for building languages L equal to Fac(x); to extract now, p by applying constraints from Table 3 to

�m now, Previousn(Nextn(p)) �*

weneedm ≥ n. The obvious fix (pursued in Section4.3) is to replace�m by�*.Workingwith a set L of now-anchored strings,

we define Facnow(L) to be the set of now-anchored strings that are factors of strings in L

Facnow(L)={s ∈ nowΨ | (∃s′ ∈ L) s ∈ Fac(s′)}
and collect the �-maximal strings of Facnow(L) in

L∞=�-max(Facnow(L))

where

�-max(L′)={s ∈ L′ | not (∃s′ ∈ L′ − {s}) s′�s}.
It follows that

Sched(L)=Sched(L∞)

and if L is a path, then

x = Sched(L) ⇐⇒ Fac(x) = L∞
⇐⇒ Fac(x) ≡ L∞

(with≡ given by � according to Section 4.1) and

Fac(x)=Stg(x)∞.

Moreover, a finite-state machine accepting L can be transformed into one accepting L∞.

5.2. Parallel composition and context update

Implicit in the terminology “factors” above is a view of concatenation as multiplication. If we work with an alphabet of

sets (as symbols), there is another binary operation & on languages that can equally be understood as multiplication. The

superposition L&L′ of languages L and L′ consists of componentwise unions of strings in L and L′ of the same length

L&L′ =⋃
n≥0

{(a1 ∪ b1) · · · (an ∪ bn) | a1 · · · an ∈ L and b1 · · · bn ∈ L′}.

Whereas concatenation glues languages serially, superposition puts languages in parallel, running a finite-state machine for

L in lockstep with a finite-state machine for L′ to produce a finite-state machine for L&L′ ([7]). Superposition lies behind the

subsumption relation � in Section 4 inasmuch as it reduces � to containment between languages

L�L′ ⇐⇒ L ⊆ L&L′.

Recalling that L�L′ reduces to L�L′�, we can make L and L′ co-occur subject to constraints C in the language

T. Fernando / Information and Computation 207 (2009) 980–999 999

L&CL
′ =

(
L� & L′�

)
∩ C.

C may be the constraint now �* now ⇒ ∅ intersected with any number of instances of

p, p ⇒∅
if not perhaps

�⇒ p + p .

Finally, we can define the update C[L] of context C by L to be L&CC

C[L]=L&CC

={s ∈ C | s�L}
and say L implies L′ relative to C, L |−C L′, if C[L]�L′ ([10]).8

References

[1] N. Asher, A. Lascarides, Logics of Conversation, Cambridge University Press, Cambridge, MA, 2003.
[2] J. Barwise, J. Perry, Situations and Attitudes, MIT Press, Cambridge, MA, 1983.
[3] K.R. Beesley, L. Karttunen, Finite State Morphology, CSLI Publications, Stanford, CA, 2003.
[4] E.M. Clarke, O. Grumberg, D.A. Peled, Model Checking, MIT Press, Cambridge, MA, 1999.
[5] R. Cooper, Records and record types in semantic theory, Journal of Logic and Computation 15 (2) (2005) 99–112.
[6] P. Dekker, Cases, adverbs, situations and events, in: H. Kamp, B. Partee (Eds.), Context Dependence in the Analysis of Linguistic Meaning, Elsevier,

Amsterdam, 2004, pp. 383–404.
[7] T. Fernando, A finite-state approach to events in natural language semantics, Journal of Logic and Computation 14 (1) (2004) 79–92.
[8] T. Fernando, Inertia in temporal modification, Semantics and Linguistic Theory XIV, Cornell Linguistics Circle Publications, 2004, pp. 56–73.
[9] T. Fernando, Comic relief for anankastic conditionals, in: Proceedings of the 15th Amsterdam Colloquium, Amsterdam, 2005, pp. 71–76.

[10] T. Fernando, Finite-state temporal projection, in: Proceedings of the 11th International Conference on Implementation and Application of Automata,
Lecture Notes in Computer Science 4094, Springer, 2006, pp. 230–241.

[11] T. Fernando, Representing events and discourse: comments on Hamm, Kamp and van Lambalgen, Theoretical Linguistics 32 (1) (2006) 57–64.
[12] T. Fernando, Observing events and situations in time, Linguistics and Philosophy 30 (5) (2007) 527–550.
[13] T. Fernando, Branching from inertia worlds, Journal of Semantics 25 (3) (2008) 321–344.
[14] T. Fernando, R. Nairn, Entailments in finite-state temporality, in: Proceedings of the Sixth InternationalWorkshop on Computational Semantics, Tilburg

University, 2005, pp. 128–138.
[15] H. Kamp, U. Reyle, From Discourse to Logic, Kluwer Academic Publishers, Dordrecht, 1993.
[16] A. Kratzer, An investigation of the lumps of thought, Linguistics and Philosophy 12 (1989) 607–653.
[17] M. van Lambalgen, F. Hamm, The Proper Treatment of Events, Blackwell, Oxford, 2005.
[18] J. McCarthy, P. Hayes, Some philosophical problems from the standpoint of artificial intelligence, in: M. Meltzer, D. Michie (Eds.), Machine Intelligence,

vol. 4, Edinburgh University Press, Edinburgh, 1969, pp. 463–502.
[19] Y.N. Moschovakis, Sense and denotation as algorithm and value, in: J. Oikkonen, J. Vaananen (Eds.), Logic Colloquium’90, Number 2 in Lecture Notes

in Logic, Springer, 1994, pp. 210–249.
[20] T. Parsons, Events in the Semantics of English: A Study in Subatomic Semantics, MIT Press, Cambridge, MA, 1990.
[21] A. Prior, Past, Present and Future, Clarendon Press, Oxford, 1967.
[22] A. Ranta, Type-Theoretical Grammar, Oxford University Press, Oxford, MA, 1994.
[23] H. Reichenbach, Elements of Symbolic Logic, Macmillan, London, 1947.
[24] L. Schubert, The situations we talk about, in: J. Minker (Ed.), Logic-Based Artificial Intelligence, Kluwer, Dordrecht, 2000, pp. 407–439.
[25] G. Sundholm, Proof theory and meaning, in: D. Gabbay, F. Guenthner (Eds.), Handbook of Philosophical Logic, vol. 3, Reidel, Dordrecht, 1986, pp.

471–506.
[26] C. Tenny, Grammaticalizing aspect and affectedness, Dissertation, Department of Linguistics and Philosophy, MIT, 1987.
[27] Z. Vendler, Linguistics in Philosophy, Cornell University Press, Ithaca, NY, 1967.
[28] S. Vickers, Topology via Logic, Cambridge University Press, Cambridge, MA, 1989.

8 For a more direct approach to the regular languages in Section 4 (proceeding essentially from Sections 5.1 and 5.2), see ‘Temporal propositions as

regular languages,’ presented in the Sixth International Workshop on Finite-State Methods and Natural Language Processing, Potsdam, September 2007.

	Introduction
	Characterization as the basis of description
	Application to time: strings
	From observations to derivations and constraints
	Events in linguistic semantics

	Schedules and linear temporal logic
	Topologies based on finite observations
	Temporal formulas and characterization
	Schedules from sequences of strips

	Replace rules and derivations
	Replacing -schedules
	Digression: derivations as ways of being true
	Digression: observation versus derivation

	Constraints as languages
	Subsumption and constraints
	Padding and paths
	Approximating [-[i,]-]

	Discussion
	Factors
	Parallel composition and context update

	References

