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Abstract

For any ordinal Λ, we can define a polymodal logic GLPΛ, with a modality [ξ] for each
ξ < Λ. These represent provability predicates of increasing strength. Although GLPΛ

has no non-trivial Kripke frames, Ignatiev showed that indeed one can construct a
universal Kripke frame for the variable-free fragment with natural number modalities,
denoted GLP0

ω.
In this paper we show how to extend these constructions for arbitrary Λ. More
generally, for each ordinals Θ,Λ we build a Kripke model IΘ

Λ and show that GLP0
Λ is

sound for this structure. In our notation, Ignatiev’s original model becomes Iε0ω .
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1 Introduction

It was Gödel who first suggested interpreting the modal 2 as a provability
predicate, which as he observed should satisfy 2(φ → ψ) → (2φ → 2ψ)
and 2φ → 22φ. In this way, the Second Incompleteness Theorem could be
expressed succinctly as 3> → 32⊥.

More generally, Löb’s axiom 2(2φ→ φ)→ 2φ is valid for this interpreta-
tion, and with this we obtain a complete characterization of the propositional
behavior of provability in Peano Arithmetic [11]. The modal logic obtained
from Löb’s axiom is called GL (for Gödel-Löb) and is rather well-behaved; it
is decidable and has finite Kripke models, based on transitive, well-founded
frames [10].

Japaridze [5] then suggested extending GL by a sequence of provability
modalities [n], for n < ω, where [n]φ could be interpreted (for example) as φ
is derivable using n instances of the ω-rule. We shall refer to this extension
as GLPω. GLPω turns out to be much more powerful than GL, and indeed
Beklemishev has shown how it can be used to perform ordinal analysis of Peano
Arithmetic and its natural subtheories [1].

1 dfduque@us.es
2 jjosten@ub.edu
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However, as a modal logic, it is much more ill-behaved than GL. Most
notably, over the class of GLP Kripke frames, the formula [1]⊥ is valid! This
is clearly undesirable. There are ways to get around this, for example using
topological semantics. However, Ignatiev in [7] showed how one can still get
Kripke frames for the closed fragment of GLPω, which contains no propositional
variables (only ⊥). This fragment, which we denote GLP0

ω, is still expressive
enough to be used in Beklemishev’s ordinal analysis.

Our goal is to extend Ignatiev’s construction for GLP0
ω to GLP0

Λ, where Λ
is an arbitrary ordinal (or, if one wishes, the class of all ordinals). To do this
we build upon known techniques, but dealing with transfinite modalities poses
many new challenges. In particular, frames will now have to be much ‘deeper’
if we wish to obtain non-empty accessibility relations.

Our structures naturally extend the model which was first defined and stud-
ied by Ignatiev for GLP0

ω in [7], and in our notation becomes Iε0ω . Originally,
Ignatiev’s study was an amalgamate of modal, arithmetical and syntactical
methods. In [8] the model was first submitted to a purely modal analysis and
[3] built forth on this work. In this paper, we prove soundness and non-triviality
of the accessibility relations using purely semantic techniques.

The layout of the paper is as follows. In Section 2 we give a quick overview
of the logics GLPΛ. Section 3 then gives some motivation for the constructions
we shall present, and Section 4 reviews some operations on ordinals and the
notation we will use.

In Section 5, we introduce our generalized Ignatiev models, denoted IΘ
Λ ,

where Θ,Λ are ordinal parameters. Section 6 then defines some operations on
the points of our model, which are called `-sequences. With these operations
we prove soundness in Section 7.

Finally, Section 8 shows that, for an arbitrarily large ordinal ξ with ξ < Λ,
if Θ is large enough, then <ξ is non-empty on IΘ

Λ . This result is not a full
completeness proof, however it is a crucial step; in [4], we shall show how one
deduces completeness of GLP0

Λ for a Kripke frame F from non-triviality of the
accessibility relations. The latter result is syntactical and does not depend
much on the structure F.

2 The logic GLP0
Λ

Let Λ be either an ordinal or the class of all ordinals. Formulas of GLP0
Λ are

built from ⊥ using Boolean connectives ¬,∧ and a modality [ξ] for each ξ < Λ.
As is customary, we use 〈ξ〉 as a shorthand for ¬[ξ]¬.

Note that there are no propositional variables, as we are concerned here
with the closed fragment of GLPΛ.

The logic GLP0
Λ (see [2]) is given by the following axioms:

(i) all propositional tautologies,

(ii) [ξ](φ→ ψ)→ ([ξ]φ→ [ξ]ψ) for all ξ < Λ,

(iii) [ξ]([ξ]φ→ φ)→ [ξ]φ for all ξ < Λ,

(iv) 〈ξ〉φ→ 〈ζ〉φ for ζ < ξ < Λ,
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(v) 〈ζ〉φ→ [ξ] 〈ζ〉φ for ζ < ξ < Λ.

The rules of our logic are Modus Ponens and Necessitation for each modal-
ity. Although no full completeness result has yet been published for (hy-
per)arithmetical interpretations of GLPΛ with Λ > ω the community is confi-
dent that such interpretations exist. One such example would be to interpret
[α] as “provable in some base theory using α many nested iterations of the
ω rule” in some infinitary calculus. In this paper our focus is on the modal
aspects of the logics GLPΛ only.

A Kripke frame 3 is a structure F =
〈
W, 〈Ri〉i<I

〉
, where W is a set and

〈Ri〉i<I a family of binary relations on W . To each formula ψ in the closed
modal language with modalities 〈i〉 for i < I we assign a set JψKF ⊆W induc-
tively as follows:

J⊥KF = ∅

J¬φKF = W \ JφKF

Jφ ∧ ψKF = JφKF ∩ JψKF

J〈i〉φKF = R−1
i JφKF .

As always, for a binary relation S on W , if X ⊆ W we denote by S−1X the
set {y ∈W | ∃x∈X ySx}. Often we will write 〈F, x〉 
 ψ instead of x ∈ JψKF.

It is well-known that GL is sound for F whenever R−1
i is well-founded and

transitive, in which case we write it <i. However, constructing models of GLPΛ

is substantially more difficult than constructing models of GL, as we shall see.

3 Motivation for our models

The full logic GLPΛ cannot be sound and complete with respect to any class of
Kripke frames. Indeed, let F = 〈W, 〈<ξ〉ξ<λ〉 be a polymodal frame.

Then, it is not too hard to check that in F we have the following correspon-
dences

(i) Löb’s axiom [ξ]([ξ]φ→ φ)→ [ξ]φ is valid if and only if <ξ is well-founded
and transitive,

(ii) the axiom 〈ζ〉φ→ 〈ξ〉φ for ξ ≤ ζ is valid if and only if, whenever w <ζ v,
then w <ξ v, and

(iii) 〈ξ〉φ → [ζ]〈ξ〉φ for ξ < ζ is valid if, whenever v <ζ w, u <ξ w and ξ < ζ,
then u <ξ v.

Suppose that for ξ < ζ, there are two worlds such that w <ζ v. Then from
Correspondence (ii) above we see that w <ξ v, while from (iii) this implies that
w <ξ w. But this clearly violates (i). Hence if F |= GLP, it follows that all
accessibility relations (except possibly <0) are empty.

3 Since we are restricting to the closed fragment we make no distinction between Kripke
frames and Kripke models.
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However, this does not rule out the possibility that the closed fragments
GLP0

Λ have Kripke frames for which they are sound and complete. This turned
out to be the case for GLP0

ω and in the current paper we shall extend this result
to GLP0

Λ, with Λ arbitrary.
More precisely, given ordinals Λ,Θ, we will construct a Kripke frame IΘ

Λ

with ‘depth’ Θ (i.e., the order-type of <0) and ‘length’ Λ (the set of modalities
it interprets). IΘ

Λ validates all frame conditions except for condition (ii). We
shall only approximate it in that we require, for ζ < ξ,

v <ξ w ⇒ ∃ v′ <ζ w such that v′ -p v.

Here p will be a set of parameters and u′ -p u denotes that u′ is p-bisimilar to
u. The parameters p can be adjusted depending on φ in order to validate each
instance of the axiom.

One convenient property of the closed fragment is that it is not sensitive to
‘branching’. Indeed, consider any Kripke frame 〈W,<〉 for GL0. To each w ∈W
assign an ordinal o(w) as follows: if w is minimal, o(w) = 0. Otherwise, o(w)
is the supremum of o(v) + 1 over all v < w.

The map o is well-defined because models of GL are well-founded. Further,
because there are no variables, it is easy to check that o : W → Λ (where Λ is
a sufficiently large ordinal) is a bisimulation.

Thus to describe the modal logic ofW it is enough to describe o(W ). We can
extend this idea to GLPΛ; if we have a well-founded frame F = 〈W, 〈<ξ〉ξ<Λ〉,
we can represent a world w by the sequence o(w) = 〈oξ(w)〉ξ<Λ, where oξ is
defined analogously to o. Thus we can identify elements of our model with
sequences of ordinals. It is a priori not clear that this representation suffices
also for the polymodal case, and one of the main purposes of this paper is to
see that it actually does.

Meanwhile, there are certain conditions these sequences must satisfy. They
arise from considering worms, which are formulas of the form 〈ξ0〉 . . . 〈ξn〉>. In
various ways we can see worms as the backbone of the closed fragment of GLP.
It is known that each formula of GLP0

Λ is equivalent to a Boolean combination
of worms.

Given worms A,B and an ordinal ξ, we define A ≺ξ B if ` B → 〈ξ〉A. This
gives us a well-founded partial order.

In [6], we study Ω(A), where

Ωξ(A) = sup
B≺ξA

Ωξ(B);

this gives us a good idea of what sequences may be included in the model. As
it turns out, Ω(A) is a ‘local bound’ for o(w) (see Definition 5.1).

4 Some ordinal arithmetic

As mentioned in the previous section, a world f in our model will be coded
by a sequence that for each ξ tells us the order-type of f with respect <ξ.
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These order-types are ordinals and it will be convenient to review some basic
properties of ordinals that shall be used throughout this paper. We dedicate
this section to this purpose.

We shall simply state the main properties without proof. For further details,
we refer the reader to [9]. Ordinals are canonical representatives for well-orders.
The first infinite ordinal is as always denoted by ω.

Most operations on natural numbers can be extended to ordinal numbers,
like addition, multiplication and exponentiation (see [9]). However, in the realm
of ordinal arithmetic things become often more subtle; for example, 1 + ω =
ω 6= ω + 1. Other operations differ considerably from ordinary arithmetic as
well.

However, there are also various similarities. In particular we have a form
of subtraction available in ordinal arithmetic.

Lemma 4.1

(i) Given ordinals ζ<ξ, there exists a unique ordinal η = −ζ + ξ such that
ζ + η = ξ.

(ii) Given η > 0, there exist α, β such that η = α + ωβ. The value of β is
uniquely defined and we denote it `η, the ‘last exponent’ of η.

(iii) Given η > 0, there exist unique values of α, β such that η = ωα + β and
β < ωα + β.

It is convenient to have representation systems for ordinals. One of the
most convenient is given by Cantor Normal Forms (CNFs).

Theorem 4.2 (Cantor Normal Form Theorem)
For each ordinal α there are unique ordinals α1 ≥ . . . ≥ αn such that

α = ωα1 + . . .+ ωαn .

Another difference between ordinal and ordinary arithmetic is that various
increasing functions in ordinal arithmetic have fixpoints where the ordinary
counterparts do not. Let us make this precise. We call a function f increasing
if α < β implies f(α) < f(β). An ordinal function is called continuous if⋃
ζ<ξ f(ζ) = f(ξ) for all limit ordinals 4 ξ. Functions which are both increasing

and continuous are called normal.
It is not hard to see that each normal function has an unbounded set of

fixpoints. For example the first fixpoint of the function x 7→ ωx is

sup{ω, ωω, ωω
ω

, . . .}

and is denoted ε0. Clearly for these fixpoints, CNFs are not too informative as,
for example, ε0 = ωε0 . Here it is convenient to pass to normal forms capable of
representing fixed points of the ω-exponential: Veblen Normal Forms (VNF).

4 Henceforth we shall write limζ→ξ f(ζ) instead of
⋃
ζ<ξ f(ζ).
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In his seminal paper [12], Veblen considered for each normal function f its
derivative f ′ that enumerates the fixpoints of f . Taking derivatives can be
transfinitely iterated for unbounded f .

Each closed (under taking suprema) unbounded set X is enumerated by a
normal function. The derivative X ′ of a closed unbounded set X is defined
to be the set of fixpoints of the function that enumerates X and likewise for
transfinite progressions:

Xα+1 := (Xα)′;

Xλ :=
⋂
α<λ

Xα for limit λ.

By taking F0 := {ωα | α ∈ On} one obtains Veblen’s original hierarchy and the
ϕα denote the corresponding enumeration functions of the thus obtained Fα.

Beklemishev noted in [2] that in the setting of GLP it is desirable to have
1 /∈ F0. Thus he considered the progression that started with FB0 := {ω1+α |
α ∈ On}. We denote the corresponding enumeration functions by ϕ̂α.

In [6] the authors realized that, moreover it is desirable to have 0 in the
initial set, whence they departed from E0 = {0} ∪ {ω1+α | α ∈ On}. We shall
denote the corresponding enumeration functions by eα.

One readily observes that

eα(0) = 0 for all α;
e0(1 + β) = ϕ0(1 + β) = ϕ̂0(β) for all β;

e1+α(1 + β) = ϕ1+α(β) = ϕ̂1+α(β) for all α, β.

Often, we can write an ordinal ωα in many ways as ϕξ(η). However, if we
require that η < ϕξ(η), then both ξ and η are uniquely determined. In other
words, for every ordinal α, there exist unique η, ξ such that ωα = ϕξ(η) and
η < ϕξ(η).

Combining this fact with the CNF Theorem one obtains so-called Veblen
Normal Forms for ordinals.

Theorem 4.3 (Veblen Normal Form Theorem) For all α there exist
unique α1, β1, . . . αn, βn (n ≥ 0) such that

(i) α = ϕα1(β1) + . . .+ ϕαn(βn),

(ii) ϕαi(βi) ≥ ϕαi+1
(βi+1) for i < n,

(iii) βi < ϕαi(βi) for i ≤ n.

Note that αi ≥ αi+1 does not in general hold in the VNF of α. For example,
ωε0+1 + ε0 = ϕ0(ϕϕ0(0)(0) + ϕ0(0)) + ϕϕ0(0)(0).

5 Generalized Ignatiev models

In this section we will generalize Ignatiev’s universal model for GLP0
ω to obtain

models for GLP0
Λ, for arbitrary Λ. Our model combines ideas from Ignatiev’s

construction with some new methods for dealing with limit modalities. The
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model is universal in that it validates all theorems and refutes all non-theorems
of GLP0

Λ. It also has some minimality properties that we shall not discuss in
this paper.

We use the ‘last exponent’ operation ` described above to define the ‘worlds’
of our model. They will be (typically infinite) sequences of ordinals which we
call `-sequences.

Definition 5.1 Let Θ,Λ be ordinals. We define an `-sequence (of depth Θ and
length Λ) to be a function

f : Λ→ Θ

such that, for every ζ < ξ < Λ,

`f(ζ) ≥ `e`ξf(ξ). (1)

Note that in `-sequences, for ξ = ζ + 1 we have

`f(ζ) ≥ `e0f(ξ) = f(ξ)

which is as in the original Ignatiev model for GLP0
ω. We shall now see that

`-sequences can be described either globally, as above, or locally.

Definition 5.2 Let Θ,Λ be ordinals. A function f : Λ → Θ is a local `-
sequence if and only if, given ξ ∈ (0,Λ) there is ϑ < ξ such that

`f(ζ) ≥ `e`ξf(ξ)

for all ζ ∈ [ϑ, ξ).

If one requires equality in the above definition, i.e., `f(ζ) = `e`ξf(ξ) then
one exactly gets the sequences Ω(A) for worms A.

Lemma 5.3 A function f : Λ→ Θ is an `-sequence if and only if it is a local
`-sequence.

Proof. Clearly every `-sequence is a local `-sequence.
Now, if f is a local `-sequence, towards a contradiction suppose that it is

not an `-sequence, and let ξ ∈ (0,Λ) be least with the property that, for some
ζ < ξ,

`f(ζ) < `e`ξf(ξ). (2)

Now pick ϑ < ξ such that, for all ζ ′ ∈ [ϑ, ξ),

`f(ζ ′) ≥ `e`ξf(ξ).

Such a ϑ exists, since f is a local `-sequence.
Evidently ζ < ϑ < ξ, whence by minimality of ξ, `f(ζ) ≥ `e`ϑf(ϑ) and

`f(ζ) ≥ `e`ϑf(ϑ) ≥ `f(ϑ) ≥ `e`ξf(ξ).

This contradicts (2). 2

Now rather than considering an `-sequence in isolation, we will be interested
in the structure of all `-sequences:
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Definition 5.4 Given ordinals Θ,Λ, define a structure

IΘ
Λ =

〈
DΘ

Λ , 〈<ξ〉ξ<Λ

〉
by setting DΘ

Λ to be the set of all `-sequences of depth Θ and length Λ. Define
f <ξ g if and only if f(ζ) = g(ζ) for all ζ < ξ and f(ξ) < g(ξ).

One can check that Ignatiev’s original model is precisely Iε0ω in our notation.
The novelty is that now Λ could be much, much bigger than ω.

6 Operations on `-sequences

IΘ
Λ is not a genuine GLPΛ frame. However, we shall show that indeed it is a

model of GLP0
Λ. In this section we shall develop some tools which will be useful

for proving this fact.

6.1 Simple sequences

A useful elementary notion will be that of simple sequences. These are finite
increasing sequences of ordinals that only make ‘jumps’ of the form ωβ . When
analizing a formula ψ, it will be easier to extend the modalities appearing in ψ
to a simple sequence and treat them, to some extent, as if they appeared in ψ.

Definition 6.1 A finite sequence of ordinals 〈σi〉i≤I is simple if σ0 = 0 and

for every i < I there exists βi such that σi+1 = σi + ωβi .

Lemma 6.2 Every finite increasing sequence of ordinals can be extended to a
simple sequence.

Proof. Induction on I. Suppose 〈σi〉i≤I+1 is a finite increasing sequence of or-
dinals. We assume that there is a simple sequence 〈αi〉i≤J extending 〈σ0, ..., σI〉
with αJ = σI .

Since σI < σI+1, there exists a unique ordinal η such that σI+1 = σI + η.
Write

η =
∑
k<K

ωγk

in Cantor Normal Form.
Then define, for each k ≤ K,

βk = σI +
∑
i<k

ωγi .

Finally, setting

δ = 〈α0, α1, ..., αJ , β1, β2, ..., βK〉

gives us the desired simple extension of σ. 2
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6.2 Approximations of `-sequences

Given a formula φ and an `-sequence f ∈ DΘ
Λ with 〈IΘ

Λ , f〉 
 φ, there is a sense
in which every `-sequence g that is ‘close enough’ to f also satisfies φ. To make
this precise, we will define 〈p,σ〉-approximations of f .

Below, given an ordinal ξ in Veblen Normal Form
∑
i<I ϕαi(βi), we define

the width of ξ recursively as the maximal sum-size in the VNF of ξ:

wdt(ξ) := max({I} ∪ {wdt(βi) : i < I}).

Similarly, the height of ξ is defined as the maximal number of nested ϕ’s in the
VNF of ξ:

hgt(ξ) := 1 + max
i<I

hgt(βi).

Both the width and height of 0 are stipulated to be zero.
Note that αi will not be used in computing the height or width of ξ; these

are seen as atomic symbols and will take on only finitely many possible values.
More specifically, we say α is a subindex of ξ if, when writing

ξ =
∑
j<J

ϕαj (βj)

in Veblen Normal Form, we have that either α = αj for some j < J or α is,
inductively, a subindex of some βj .

Definition 6.3 Given a natural number p and a finite sequence of ordinals
σ = 〈σ0, ..., σI〉, we say β is a 〈p,σ〉-approximation of α if

(i) β < α,

(ii) wdt(β) and hgt(β) are both at most p,

(iii) every subindex of β is of the form `σi.

Clearly, for fixed α, p and σ one can only make finitely many syntactical
expressions of nested width and height with subindices in σ. Thus, there
are only finitely many 〈p,σ〉-approximations of a given α, and hence there is
a maximum one: we denote it by bαcpσ. It will be convenient to stipulate
b0cpσ = −1. Clearly bαcpσ is weakly monotone in all of its arguments.

We are not interested in approximating only ordinals, but rather entire
`-sequences:

Definition 6.4 Let σ be a simple sequence 〈0 = σ0, . . . , σI〉. We extend the
use of b·cpσ to sequences f : Λ→ Θ as follows:

bfcpσ(ξ) =



0 for ξ > σI

bf(σI)cpσ + 1 for ξ = I

bf(σi)cpσ + 1 + e`σi+1
bfcpσ(σi+1) for ξ = σi with i < I

e`σi+1
bfcpσ(σi+1) for σi < ξ < σi+1
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Note that it is nearly never the case that bfcpσ(ξ) = bf(ξ)cpσ; however as
we will see later in Lemma 6.8, they cannot be too different. Before this, we
observe that this operation always produces `-sequences.

Lemma 6.5 Given any f : Λ → Θ and parameters p,σ, g = bfcpσ is an
`-sequence.

Further, it has the property that for all i ≤ I

`g(σi) = `e`σi+1
g(σi+1). (3)

Proof. Using Lemma 5.3 it suffices to see that g is a local ` -sequence. To see
this, we make a few case distinctions.

g(ξ) = 0. Note that this covers the case where ξ > σI . In this case, the in-
equality `g(ζ) ≥ e`ξg(ξ) holds trivially for all ζ < ξ since the right-hand side
is zero.

g(ξ) > 0 and ξ = σi for some i.
Then, `g(ζ) = `e`ξg(ξ), for all ζ ∈ [σi, ξ).

g(ξ) > 0 and σi < ξ < σi+1 for some i. We first claim that `ξ < `σi+1. In-
deed, since σ is simple, we have that

σi+1 = σi + ω`σi+1 .

Meanwhile, since ξ > σi we can write

ξ = σi +
∑
j≤J

ωβj .

Now, clearly if βJ = `ξ were greater or equal to `σi+1, we would have
ξ ≥ σi+1, contrary to our assumption. In particular, note that this implies
`σi+1 > 0.

But then we know that e`σi+1
g(σi+1) is a fixpoint of e`ξ, and thus for all

ζ ∈ [σi, ξ),

`g(ζ) = `e`σi+1
g(σi+1)

= `e`ξe`σi+1
g(σi+1)

= `e`ξg(ξ).

This covers all cases and shows that g is an `-sequence satisfying (3), as
desired. 2

Lemma 6.6 If σ = 〈σi〉i≤I is a simple sequence, f ∈ DΘ
Λ and ξ < Λ, then

wdt(bfcpσ(ξ)) and hgt(bfcpσ(ξ)) are both at most 5 p+ I.

5 Actually, wdt(bfcpσ(ξ)) ≤ p + 1, but it seems more convenient to bound the height and
width uniformly.
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Proof. One can check easily that wdt(bfcpσ(σi)) ≤ wdt(bfcpσ(σi+1)) + 1 and

hgt(bfcpσ(σi)) ≤ hgt(bfcpσ(σi+1)) + 1.

Thus the width and height of all terms is bounded by I+p; intermediate terms
(i.e., bfcpσ(ξ) for σi < ξ < σi+1) obviously have width and height bounded by
that of bfcpσ(σi). 2

The following simple observation will be quite useful later:

Lemma 6.7 If α < ξ, then

(i) If β ≤ `ξ, then α+ ωβ ≤ ξ;

(ii) If β < `ξ, then α+ ωβ < ξ.

Proof. By observations on the Cantor normal form of ξ. 2

Lemma 6.8 For every f ∈ DΘ
Λ and i ≤ I,

bf(σi)cpσ < bfcpσ(σi) ≤ f(σi).

Moreover, if bfcpσ(σi) < f(σi) then bfcpσ(σj) < f(σj) for all j < i.

Proof. That bf(σi)cpσ < bfcpσ(σi) is obvious from the definition of bfcpσ(σi),
since it is always of the form

bf(σi)cpσ + ωρ (4)

for some ordinal ρ. In particular we see bfcpσ(σi) > 0.
To see the other inequality, we use backwards induction on i; clearly

bfcpσ(σI) ≤ f(σI),

since bfcpσ(σI) = bf(σI)cpσ + 1 and bf(σI)cpσ < f(σI).
Now, assume inductively that

bfcpσ(σi+1) ≤ f(σi+1),

and once again write bfcpσ(σi) in the form (4).
First we note that the function `eα is increasing independently of α: if

α = 0 it is the identity; otherwise, `eα = eα, which is a normal function.
Thus we have that, if σi+1 = σi + ωα,

ρ = `eαbfcpσ(σi+1)
IH
≤ `eαf(σi+1) = `f(σi),

where the last equality is by Lemma 6.5.
In either case we get ρ ≤ `f(σi) so by Lemma 6.7.1,

bfcpσ(σi) = bf(σi)cpσ + ωρ ≤ f(σi).

Moreover, if bfcpσ(σi)<f(σi) then we use Lemma 6.7.2 to conclude
bfcpσ(σi+1)<f(σi+1). 2
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6.3 Concatenation

Definition 6.9 Given sequences f, g : Λ→ Θ, we define their λ-concatenation

f
λ∗ g : Λ→ Θ by

f
λ∗ g(ξ) =

{
f(ξ) if ξ < λ

g(ξ) otherwise.

Lemma 6.10 If f, g ∈ DΘ
Λ and g(λ) ≤ f(λ), then f

λ∗ g is an `-sequence.

If, further, g(λ) < f(λ), then f
λ∗ g <λ f .

Proof. Immediate from the definition of f
λ∗ g and Lemma 5.3. 2

7 Soundness

The sequence bfcpσ does not satisfy the same formulas of the modal language
as f , but it does satisfy the same formulas that are ‘simple enough’. To see
this we extend the notion of n-bisimulation to the slightly more general notion
of 〈p,σ〉-bisimulation:

Definition 7.1 Given f, g ∈ DΘ
Λ , a sequence of ordinals σ and p < ω, we say

f is 〈p,σ〉-bisimilar to g (in symbols, f -p
σ g) by induction on p as follows:

For p = 0, any two `-sequences are 〈p,σ〉-bisimilar.
For p = q + 1, f -p

σ g if and only if, for every ξ of the form σi:

Forth. Whenever f ′ <ξ f , there is g′ <ξ g with f ′ -q
σ g
′.

Back. Whenever g′ <ξ g, there is f ′ <ξ f with f ′ -q
σ g
′.

The following lemma is standard in modal logic.

Lemma 7.2 If f -p
σ g, then f and g validate the same formulas ψ of modal

depth p where all the modalities in ψ are among σ.

There is a close relation between 〈p,σ〉-approximation and 〈p,σ〉-bisimulation.
The following lemma will be quite useful in making this precise. Say that

two `-sequences are 〈p, 〈σk〉k≤I〉-close if, for all k ≤ I,

(i) bf(σk)cpσ < g(σk) and

(ii) bg(σk)cpσ < f(σk).

We will write f ∼pσ g.

Lemma 7.3 Let g, f, f ′ be `-sequences and 〈p, 〈σk〉k≤I〉 be parameters.
Suppose that for some i ≤ I, f ′ <σi f , and f ∼p+Iσ g.
For j ≤ i, let

gj = g
σj∗ bf ′cpσ.

Then, we have that gj is an `-sequence, gj <σj g and f ′ ∼pσ gj.

Proof. To see that gj is an `-sequence, by Lemmas 6.10 and 6.5, it suffices
to show that gj(σj) = bf ′cpσ(σj) < g(σj). By Lemma 6.8 we see bf ′cpσ(σi) ≤
f ′(σi), and since f ′ <σi f we have that gj(σi) < f(σi). Thus, by Lemma
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6.8 again, we see that also gj(σj) < f(σj). Meanwhile, by Lemma 6.6, the
height and width of gj(σj) are bounded by p+ I, so that gj(σj) is a 〈p+ I,σ〉-
approximation of f(σj) and thus gj(σj) ≤ bf(σj)cp+Iσ . Now, by assumption
bf(σj)cp+Iσ < g(σj), so gj(σj) < g(σj) as required and g′ is indeed an `-
sequence.

As gj(ξ) = g(ξ) for ξ < σj we also conclude that gj <σj g. Thus, it remains
to see that 1 and 2 hold for gj and f ′.

For k < j we see that

bgj(σk)cpσ ≤ bgj(σk)cp+Iσ < f(σk) = f ′(σk),

and by a symmetric argument, bf ′(σk)cpσ < gj(σk).
For k ≥ j we use Lemma 6.8 to obtain

bf ′(σk)cpσ < bf ′cpσ(σk) = gj(σk)

and

bgj(σk)cpσ = bbf ′cpσ(σk)cpσ ≤ bf ′(σk)cpσ < f ′(σk).

2

Lemma 7.4 Let σ = 〈0 = σ0, . . . , σI〉 be a simple sequence. If f, g ∈ DΘ
Λ are

such that f ∼Ipσ g, then g -p
σ f .

Proof. We prove the claim by induction on p. By symmetry it is enough to
consider the ‘forth’ condition.

Thus, we suppose that f ∼I(p+1)
σ g, and f ′ <σi f . We must find g′ <σi g

such that g′ -p
σ f
′.

But by Lemma 7.3, g′ = g
σi∗ bf ′cIpσ satisfies g′ <σi g and g′ ∼pσ f ′. By

induction hypothesis we can conclude that also g′ -p
σ f
′, as required. 2

Theorem 7.5 (Soundness) GLP0
Λ is sound for IΘ

Λ .

Proof. That each of the modalities satisfy the GL axioms is a consequence of
the well-foundedness and transitivity of <ξ.

Let us see that the axiom 〈ζ〉φ→ [ξ] 〈ζ〉φ, for ξ > ζ, is valid. Thus, suppose
f satisfies 〈ζ〉φ, so that there is g <ζ f which satisfies φ. Then, if h <ξ f with
ζ < ξ, we have that h(η) = f(η) for all η ≤ ζ, so it is also the case that
g(ζ) < h(ζ) and hence h satisfies 〈ζ〉φ. Since h was arbitrary we conclude that
f satisfies [ξ] 〈ζ〉φ.

The validity of any instance of ψ = 〈ξ〉φ→ 〈ζ〉φ follows from Lemma 7.2.
Let σ be a simple saturation of all the ordinals appearing in ψ so that ξ = σi
and ζ = σj for some j ≤ i. Let p be the modal depth of ψ. If for some
`-sequence f we have that 〈IΘ

Λ , f〉 
 〈σi〉φ, then there is some f ′ <σi f such
that 〈IΘ

Λ , f
′〉 
 φ. Now we note that f ∼Ip+Iσ f and apply Lemma 7.3 to see

that for g = f
σj∗ bf ′cIpσ , we have that g ∼Ipσ f ′ and g <σj f . By Lemmata 7.4

and 7.2 we see that 〈IΘ
Λ , g〉 
 φ and thus 〈IΘ

Λ , f〉 
 〈σj〉φ, as required. 2
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8 Non-triviality: the first step towards completeness

In this section we will show that, for arbitrary λ, if λ < Λ, then the relation
<λ is non-empty on IΘ

Λ , provided Θ is large enough. For this, it suffices to find
an `-sequence f with f(λ) > 0.

This, of course, shows that our structures IΘ
Λ indeed give interesting models

of GLP0
Λ. However, as we shall prove in the upcoming [6], it implies much

more; for indeed, if Λ is a limit ordinal and F is a Kripke frame such that, for
all λ < Λ, <λ is non-empty, it immediately follows that GLP0

Λ is complete for
F. Moreover, this can be shown by purely syntactical methods and does not
depend substantially on the structure of F.

However, said syntactical considerations require some care and lie beyond
the scope of the current paper. For now, we shall limit ourselves to establishing
non-triviality of the accessibility relations.

Lemma 8.1 Let α, ϑ be ordinals and let the CNF of α be given by

α = ωα0 + ...+ ωαN .

Then, there exists an `-sequence f with f(0) = eα0
. . . eαN (ϑ) and f(α) = ϑ.

Proof. Let α′ = ωα0 + ...+ ωαN−1 . By induction on α, there is an `-sequence
f ′ with f ′(α′) = eαN (ϑ) and f ′(0) = eα0

. . . eαN (ϑ). Consider f given by

f(γ) =


f ′(γ) if γ ≤ α′,
eαN (ϑ) if γ ∈ (α′, α),

ϑ if γ = α,

0 otherwise.

It is very easy to check that f : Λ → eα0
. . . eαN (ϑ) is an `-sequence with all

the desired properties for any Λ ≥ α. 2

Corollary 8.2 Let Λ,Θ be ordinals, and write

Λ = ωα0 + . . .+ ωαN .

GLP0
Λ is sound for IΘ

Λ independently of Θ. If, further, we have that

Θ > eα0
. . . eαN (1),

then <λ is non-empty for all λ < Λ.

Proof. Immediate from Theorem 7.5 and Lemma 8.1. 2
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