
Natural Language Engineering 17 (2): 163–184. c� Cambridge University Press 2011

doi:10.1017/S135132491100009X
163

Regular relations for temporal propositions

T I M F E R N A N D O
Trinity College Dublin, Ireland

e-mail: tim.fernando@cs.tcd.ie

(Received 14 June 2010; revised 22 September 2010; accepted 22 October 2010)

Abstract

Relations computed by finite-state transducers are applied to interpret temporal propositions
in terms of strings representing finite contexts or situations. Carnap–Montague intensions
mapping indices to extensions are reformulated as relations between strings that can serve as
indices and extensions alike. Strings are related according to information content, temporal
span and granularity, the bounds on which reflect the partiality of natural language statements.
That partiality shapes not only strings-as-extensions (indicating what statements are about)
but also strings-as-indices (underlying truth conditions).

1 Introduction

There is a substantial body of work applying automata theory to temporal reasoning,

with strings (and trees) stretching to infinity to describe non-terminating computation

runs (e.g. Emerson 1992; Vardi 2007). Many natural language statements, however,

describe temporally bounded events, including reports in the past tense, such as

Pat walked to the post office or An event of such and such happened , that ensure the

events have an end (if not a beginning). The question arises: can we employ ordinary

finite-state methods (of the sort in, for example, Beesley and Karttunen 2003) to

reason about strings that can be assumed finite? The main aim of this paper is to

show how we might, and how that may stray from established practices. The focus

is not on any particular natural language engineering application, but rather on

basic conceptual issues that bear on such applications. These issues revolve around

events and situations natural language statements are about—events and situations

bounded in ways that merit investigation.

1.1 Linear temporal logic and finite situations

For orientation, we start with linear temporal logic (LTL) over the set Z of integers

and a set P of atomic formulas (e.g. Vardi 2007). LTL-formulas are evaluated against

relations V ⊆ Z×P between Z and P , with V (t, p) read ‘p is true at V , t’ and written

V , t |= p

V , t |= p ⇐⇒ V (t, p)

164 T. Fernando

for t ∈ Z and p ∈ P . Fixing the evaluation time to 0, we can describe an infinite

string of p’s through the LTL-formula Gp that asserts V (n, p) for every non-negative

integer n

V , 0 |= Gp ⇐⇒ (∀n ≥ 0) V (n, p)

⇐⇒ {(n, p) | n ≥ 0} ⊆ V .

Negative integers come in to interpret past operators such as previous , from which

we can form the LTL-formula previous(q) ∨Gp that is true at V , 0 iff G(p) is or q is

true at V ,−1

V , 0 |= previous(q) ∨ Gp ⇐⇒ V (−1, q) or (∀n ≥ 0) V (n, p)

⇐⇒ {(−1, q)} ⊆ V or {(n, p) | n ≥ 0} ⊆ V

(for q ∈ P). Assuming P is closed under complementation,1 one can, in general,

map an LTL-formula ϕ and integer t to a set S[ϕ, t] of relations s ⊆ Z×P , reducing

the truth of ϕ at V , t to some subset of V being in S[ϕ, t]

V , t |= ϕ ⇐⇒ (∃s ∈ S[ϕ, t]) s ⊆ V(1)

(e.g. Fernando 2009a). For instance, S[previous(q)∨Gp, 0] consists of the two relations

{(−1, q)} and {(n, p) | n ≥ 0}, each describing a way for previous(q) ∨ Gp to be true

at 0. As this example shows, a relation s in S[ϕ, t] may or may not be finite.

Of course, if V were finite, then we can throw out all infinite relations from

S[ϕ, t]. Put another way, we can restrict S[ϕ, t] to finite relations by focusing on

finite subsets of V (reconstructing V as the union of its finite subsets, as in the

reformulation of Büchi acceptance in terms of paths in Fernando 2008b). But we

had better be careful about asserting line (1) above for different temporal spans

(finite or not), as made clear by the formula Gp saying ‘p now and forever more’

within that span. To establish (1) for spans over only the two times 0 and 1, we put

S[Gp, 0] = {{(0, p), (1, p)}}

but if we add 2 to that span, we would require

S[Gp, 0] = {{(0, p), (1, p), (2, p)}}.

Evidently, varying the temporal spans under consideration (from Z to its finite

segments) renders (1) untenable—at least for ϕ’s such as Gp. Such complications

beg the question: apart from sidestepping infinite relations s ∈ S[ϕ, t], why should

we cut an infinite relation V ⊆ Z × P down to its finite parts?

At the philosophical end, there is something to be said for grounding semantics

in our finite experience, minimizing mysterious abstractions such as possible worlds

by working instead with situations that are partial (e.g. Barwise and Perry 1983).

From a more practical natural language processing perspective, it is far from clear

that one notion of time will do. Temporal spans vary, as does temporal granularity.

Every Monday might mean every Monday in June or every Monday in 2010, and the

1 That is, negation is pushed down to the level of atomic formulas using De Morgan’s laws
and counter-extensions.

Regular relations for temporal propositions 165

previous moment might refer to the previous minute or previous second (among many

other possibilities). The analysis of calendar expressions in Niemi and Koskenniemi

(2009) is particularly instructive for our purposes.

1.2 Calendar expressions and snapshots-as-symbols

In Niemi and Koskenniemi (2009), temporal span and granularity depend on the

calendar expression under consideration. For example, January and March 2008 is

interpreted relative to the 12 months of 2008, represented as the string

[y y2008 [m Jan]m [m Feb]m [m Mar]m . . . [m Dec]m]y(2)

of length 39, with 4 bracket symbols]y, [y, [m and]m and the 13 symbols y2008,

Jan, Feb, . . ., Dec. The phrase January and March 2008 marks out the months of

January and March in (2), leading to

[y y2008 {i3 {i1 [m Jan]m }i1 }i3 [m Feb]m {i3 {i2 [m Mar]m }i2 }i3 . . .(3)

[m Dec]m]y

with six additional symbols {i3, {i2, {i1, }i3, }i2, }i1. We can rewrite (3) as the string

y2008,Jan,†3, †1 y2008,Feb y2008,Mar,†3, †2 y2008,Apr · · · y2008,Dec(4)

of length 12 (each box, a symbol) if we rewrite (2) as the string

y2008,Jan y2008,Feb y2008,Mar · · · y2008,Dec(5)

also of length 12. In (4) and (5), a symbol is a subset of some set Φ of fluents

(AI-speak for temporal propositions; McCarthy and Hayes 1969), enclosed by a

box (rather than by the more usual curly braces {, }) to suggest a snapshot (or

frame in a cartoon strip). As noted in Karttunen (2005), we can unpack such boxes,

turning (5), for example, into the string

[y2008 Jan] [y2008 Feb] · · · [y2008 Dec](6)

of length 48. If Φ is finite and includes neither [nor], it is trivial to devise a

finite-state transducer mapping strings over the alphabet Pow (Φ) of subsets of Φ

to strings over Φ ∪ {[,]}, allowing us to translate regular languages and relations

freely between the alphabets Pow (Φ) and Φ ∪ {[,]}. Translating strings in Niemi

and Koskenniemi (2009) to strings over Pow (Φ) is a more complicated affair and

is another day’s work. For now, we abstract away from implementation issues for

which the strings of Niemi and Koskenniemi (2009) were carefully engineered, and

work with strings of snapshots.

Strings of snapshots are arguably easier to read because snapshots are ordered

chronologically (as in a cartoon or film strip). Indeed, finite subsets of Z × P for

LTL translate straightforwardly into strings over Pow (P ∪ {0}), with, for example,

{(−1, p), (−1, q), (1, p), (3, p)} translating to p, q 0 p p

(suggesting we equate Φ with P ∪{0}). That said, we should be careful not to fix the

notion of time (say, to Z) if we are to accommodate different granularities. That is,

166 T. Fernando

the brackets [and] in (6) should be understood as having indeterminate granularity

(in contrast to [m and]m in (2) and (3)). Moreover, we may compress (4) to

y2008,Jan,†3 y2008,Mar,†3(7)

just as Niemi and Koskenniemi compress (3) to

[y y2008 {i3 [m Jan]m }i3 {i3 [m Mar]m }i3]y

with unmarked calendar periods removed (Niemi and Koskenniemi 2009: 129).

Unlike the timelines depicted by (4) and (5), there are gaps between the boxes in (7)

that are familiar to conceptions of time based on discrete transitions, be they the

input/output pairs of programs in dynamic logic (Harel, Kozen and Tiuryn 2000)

or strings of length ≥3 (with intermediate states) for temporal logic. In any case, it

is of interest to isolate (7) from (4), or even better, (7)’s unmarked variant

y2008,Jan y2008,Mar(8)

from (4)’s

y2008,Jan y2008,Feb y2008,Mar · · · y2008,Dec(9)

inasmuch as the mapping (9) �→ (8) constitutes, in the words of Niemi and

Koskenniemi (2009), a ‘disambiguated intensional meaning’ of January and March

2008 .

1.3 Carnap–Montague intensions and partiality

The (Carnap–Montague) intension of an expression is a function from indices to

extensions (or denotations). For the expression January and March 2008 above, we

can view the string (9) as an index, and (8) as an extension. Since Frege, it has been

customary to identify the extension of a sentence (or statement) ϕ with one of two

truth values, say True and False, essentially reducing the intension I[ϕ] of ϕ to

the set of indices that I[ϕ] maps to True. For LTL, an index is a pair V , t where

V ⊆ Z × P and t ∈ Z, and

I[ϕ](V , t) = True
def

⇐⇒ V , t |= ϕ.

Now, the main idea behind the present work is to reconceptualize

(i) an index as a string over the alphabet Pow (Φ) built from a set Φ of fluents

including now ∈ Φ through which we can encode, for instance, the pair

{(−1, p), (−1, q), (1, p), (4, r)}, 2

as the string

p, q 0 p now r

and

(ii) an extension of a sentence ϕ as a set of strings over Pow (Φ), rather than True

or False

Regular relations for temporal propositions 167

Table 1. Basic notions from an intension function I[ϕ].

R[ϕ] = {(s, s�) | s� ∈ I[ϕ](s)} Description
T[ϕ] = domain(R[ϕ]) Truth (index for entailment)
A[ϕ] = image(R[ϕ]) Aboutness (denotation as subject matter)

so that the intension I[ϕ] of ϕ maps a string s ∈ Pow (Φ)∗ to a set I[ϕ](s) ⊆
Pow (Φ)∗ of strings that make ϕ true at s inasmuch as

ϕ is true at s
def

⇐⇒ I[ϕ](s) �= ∅.(10)

If we relax the requirement that an intension be a function and require simply that

it be a binary relation between indices and extensions, then we can formulate indices

and extensions alike as strings over Pow (Φ), identifying the intension of ϕ with the

binary relation

R[ϕ]
def
= {(s, s�) ∈ domain(I[ϕ]) × Pow (Φ)∗ | s� ∈ I[ϕ](s)}

on Pow (Φ)∗. A string in Pow (Φ)∗ can be understood as a situation in the sense of

Barwise and Perry (1983) (as opposed to that in McCarthy and Hayes 1969). In case

I[ϕ](s) consists of exactly one situation s�, we can say s� is the situation described by

ϕ at s, linking the event time in Reichenbach (1947) to the temporal span of s� (in

contrast to the time now marks out in the index s). Indeed, events in Davidsonian

semantics exemplify situations as truthmakers (Davidson 1967; Mulligan, Simons

and Smith 1984). The domain of R[ϕ] consists, under (10), of the indices at which

ϕ is true, qualifying as the truth set T[ϕ] of ϕ

T[ϕ]
def
= {s ∈ Pow (Φ)∗ | (∃s�) s R[ϕ] s�}.

The image of R[ϕ] consists of situations that ϕ is about , making it the about set of

ϕ, which we write A[ϕ]

A[ϕ]
def
= {s� ∈ Pow (Φ)∗ | (∃s) s R[ϕ] s�}

(see Table 1, Fernando 2009b).

Setting aside the problem that aboutness need not be grounded in truth, let us

explore the intuition that

s R[ϕ] s� can be read: ϕ is about s� in s.(11)

It is certainly plausible to assume that s R[ϕ] s� implies s� � s, for some ‘in’ relation

� on strings over Pow (Φ). One way to formalize (11) then is to combine the about

set A[ϕ] with � for the biconditional

s R[ϕ] s� ⇐⇒ s� ∈ A[ϕ] and s� � s.(12)

An immediate consequence of (12) is that for transitive relations �, truth is persistent

in that T[ϕ] is closed under �

s1 ∈ T[ϕ] and s1 � s2 implies s2 ∈ T[ϕ](13)

168 T. Fernando

for all s1, s2 ∈ Pow (Φ)∗. While (13) may hold for many sentences ϕ, there are

well-known counter-examples to it, including the LTL-formula Gp in Section 1.1.

Recall that the biconditional

V , t |= ϕ ⇐⇒ (∃s ∈ S[ϕ, t]) s ⊆ V(14)

becomes problematic when we work with bounded temporal spans short of Z

(replacing, as it were, V with its finite subsets). To link this discussion up with (12),

some notation is helpful. Given a finite subset s of Z × P and an integer t, let us

write str(s, t) for the shortest string over Pow (P ∪ {0, now}) encoding the pair s, t.

For instance,

str({(−1, p), (−1, q), (1, p), (4, r)}, 2) = p, q 0 p now r .

The notions of ‘in’ � then becomes essentially set inclusion ⊆

str(s, t) � str(s�, t�) ⇐⇒ t = t� and s ⊆ s�

while ‘about’ A[ϕ] corresponds to
�

t∈Z
S[ϕ, t]

A[ϕ] = {str(s, t) | t ∈ Z and s ∈ S[ϕ, t]}.

Now the difficulty (14) poses for Gp when V is replaced by its finite fragments

s� suggests that the best we can salvage from (14) is to step from a set S[ϕ, t] of

relations between Z and P to some suitable binary relation R[ϕ, t] between such

relations, and weaken (14) to

s�, t |= ϕ ⇐⇒ (∃s) s� R[ϕ, t] s.(15)

That is, if

R[ϕ] = {(str(s, t), str(s�, t)) | t ∈ Z and s R[ϕ, t] s�}

then (15) equates the truth set T[ϕ] with the domain of R[ϕ]. But if we are to read

s R[ϕ] s� as

ϕ is about s� in s(16)

then we had better beware that

s� ∈ A[ϕ] and s� � s(17)

falls short of (16) for sentences ϕ such as Gp. Picking out the sentences where (16)

reduces to (17), let us define ϕ to be absolute if

s R[ϕ] s� ⇐⇒ s� ∈ A[ϕ] and s� � s(18)

for all s, s� ∈ Pow (Φ)∗. The LTL-formulas p and previous(q) are absolute; Gp is

not.

Whether or not ϕ is absolute, it is useful for R[ϕ] to be a regular relation because

it gives us a computational handle not only on its image, the about set A[ϕ], but

also on its domain, the truth set T[ϕ]. Entailment |− between sentences is often

relativized to constraints C , which we can identify with a set of strings (following,

Regular relations for temporal propositions 169

for example, Beesley and Karttunen 2003) to define

ϕ |−C ψ
def

⇐⇒ (∀s ∈ C) ϕ is true at s implies ψ is true at s

⇐⇒ C ∩ T[ϕ] ⊆ T[ψ].

If T[ϕ],T[ψ] and C are all regular languages, then |−C above is decidable (since

inclusion between regular languages is). Note that the strings in T[ϕ] are finite,

whereas the relations V ⊆ Z × P in LTL-semantics can be infinite, collectively

inducing the entailments

ϕ |−LTL ψ
def

⇐⇒ (∀V ⊆ Z × P) (∀t ∈ Z) V , t |= ϕ implies V , t |= ψ.

1.4 Claims and some finite-state matters

The bounded entailments |−C provide approximations of |−LTL that we take up in

Section 3. But far from providing a new, improved way of calculating |−LTL (which

we do not), the point of introducing relations R[ϕ] is to reason beyond |−LTL,

(a1) breaking free from the tyranny of the clock Z built into the semantics behind

|−LTL

and

(a2) bringing out the about sets A[ϕ] that are at best implicit in that semantics.

The ‘tyranny of the clock Z’ mentioned in (a1) is twofold: its span is infinite (two

ways), and its ticks (grain) are fixed by the successor (plus-1) relation (in Z). The

focus below is on bounding span, although a few words about grain are offered at

the conclusion on which I hope to expand elsewhere.

As for (a2), the proposed relational semantics R[ϕ] consists not only of the indices

in T[ϕ] that shape ϕ |−C ψ, but also of denotations in A[ϕ], exemplified by events

(e.g. Fernando 2009b). It is notable that Hans Kamp, famous in temporal logic for

since and until , leaves temporal logic out of Discourse Representation Theory (Kamp

and Reyle 1993: 492) and works instead with events. As useful as it has proved in

computer science, LTL is an artificial language, unfit for linguistic analyses that posit,

for instance, two forms of until , dependent on the (a)telicity of event descriptions,

featuring presuppositional as well as assertional dimensions (e.g. Karttunen 1974;

Condoravdi 2009). Introducing relations R[ϕ] moves us, I claim, closer to an account

of events (as denotations) and presuppositions (via indices). This is not a small claim,

and I shall confine myself here to events as denotations. Analyzing presuppositions

as requirements on indices calls for (in my view) adjustments to the definitions of

R[ϕ] given below.

Presuppositions and telicity aside, let us consider the past tense, and ask if the

LTL clause

V , t |= Pϕ
def

⇐⇒ (∃t� ≤ t) V , t� |= ϕ

supports a reading of Pϕ as ‘ϕ in the present or in the past’? It is plausible enough

in case ϕ is an atomic formula p for which V (t, p) says there is a V -situation of type

170 T. Fernando

Table 2. Some regular notions given a regular language L and relation R.

has-factor = {(s, s�) | (∃u, v) s = us�v} Factor
RL = {(s, s�) ∈ R | s� ∈ L} L-restriction of R
�R�L = domain(RL) Peirce product

L = Pow (Φ)∗ − L Complement of L

[R]L = �R�L Dual of Peirce product

p with time t. But suppose ϕ were constructed from the connective until , under the

LTL clause

V , t |= ψ until χ
def

⇐⇒ (∃t� ≥ t) V , t� |= χ and

whenever t ≤ t�� < t�, V , t�� |= ψ

(such as it is2). It is natural to assume that part of a V -situation of type ψ until p is

a V -situation of type p. But for V◦ = {(0, q), (1, q), (2, q), (3, p)}, we have

V◦, 1 |= P(q until p)

even though every V◦-situation of type q until p stretches to 3, which is not in the

past of 1. In general, for non-atomic ϕ, one cannot conclude from V , t� |= ϕ and

t� < t that there is a V -situation of type ϕ in the past of t. To report ϕ in the past

tense at speech time t in V , what we require is not some t� < t such that V , t� |= ϕ

but a truthmaker for ϕ in the past of t.3 That is, it is not so much the domain T[ϕ]

of R[ϕ] that is relevant, but rather the image A[ϕ] of R[ϕ] and the ‘in’ relation �.

The next section fleshes out relations R[ϕ] and � in finite-state terms. Under

the conventions adopted in, for example, Regular Model Checking (Bouajjani et al.

2000), regular relations can hold only between strings of the same length. But for

� (for instance) to be regular, we drop this requirement, and follow Beesley and

Karttunen (2003) in permitting a finite-state transducer to make componentwise

�-moves (where � is the null/empty string). A notable difference between Bouajjani

et al. (2000) and Beesley and Karttunen (2003) is that regular relations are closed

under intersection in the former but not in the latter. What is important for our

purposes, however, is that the basic notions summarized in Table 2 are regular. A

factor of s is a string s� such that s = us�v for some strings u and v. The relation

has-factor defined by

s has-factor s� def
⇐⇒ (∃u, v) s = us�v

is computed by the finite-state transducer with three states 0, 1, 2, all final (accepting),

0 initial, with loops

0
α:�
→ 0 and 2

α:�
→ 2 for every symbol α

2 The shortcomings of this semantics as an account of English until are irrelevant to the
present point; the reader is free to rename the connective characterized by the clause.

3 A Reichenbachian account of tense and aspect that is free from this Priorean defect is
formulated in terms of strings in section 2 of Fernando (2008a).

Regular relations for temporal propositions 171

plus transitions

0
α:α
→ 1

α:α
→ 1

α:α
→ 2 for every symbol α.(19)

Given a finite-state transducer for R with transitions →R and a finite automaton

for L with transitions →L, we can form a finite-state transducer for the (right)

L-restriction RL of R defined by

RL
def
= {(s, s�) ∈ R | s� ∈ L}

by collecting the transitions

(q, q�)
α:α�

→ (r, r�) for q
α:α�

→R r and (q� α�

→L r� or (α� = � and q� = r�))(20)

(as in the usual construction for the intersection of regular languages, but with

�-moves). The domain of RL is the Peirce product �R�L of R with L4

�R�L
def
= {s | (∃s�) s RL s�},

for which we existentially quantify α� out from (20) for

(q, q�)
α
→ (r, r�) whenever (∃α�) q

α:α�

→R r and (q� α�

→L r� or (α� = � and q� = r�)).

And as regular languages are closed under Boolean operations, including comple-

mentation L
def
= Σ∗ −L over the alphabet Σ, we can form the dual [R]L of the Peirce

product �R�L

[R]L
def
= �R�L

= {s ∈ Σ∗ | (∀s� such that s R s�) s� ∈ L}

just as ∀ is the dual of ∃.
In the remainder of this paper, strings are formed from the alphabet Σ = Pow (Φ),

under the assumption that Φ is finite, so that there are only finitely many subsets

of Φ (i.e. symbols) which we write α, α�, β, etc. That is, a string s ∈ Pow (Φ)∗ is a

sequence of the form α1 · · · αn, while a symbol α is a box of fluents (from Φ). Largely

a matter of convenience, this choice of alphabet provides a level of abstraction that

simplifies many of the constructions below.

2 Relations R[ϕ] for some absolute formulas ϕ

This section starts with a simple generalization of set inclusion to strings over the

alphabet Pow (Φ), which is then used to formulate constraints such as

ϕ ∧ ψ ⇒ ϕ,ψ

picking out strings that contain ϕ∧ψ only if they contain ϕ and ψ in the same box.

Some refinements are then made to capture the ‘in’ relation � and define R[ϕ] for

various absolute sentences ϕ.

4 The terminology ‘Peirce product’ is from Brink, Britz, and Schmidt (1994), but the notation
�R�L is borrowed from dynamic logic (Harel et al. 2000).

172 T. Fernando

2.1 Subsumption and constraints

Checking set inclusion ⊇ componentwise between strings from Pow (Φ)∗ of the same

length, let

α1 · · · αn � α�
1 · · · α

�
m

def
⇐⇒ n = m and αi ⊇ α�

i for 1 ≤ i ≤ n

for all symbols αi, α
�
i ⊆ Φ. (Exactly what is in Φ does not matter just now, as long as

Φ is finite.) In Fernando (2004), s� s� is pronounced: s subsumes s�. The relation is

computed by the finite-state transducer with a single state 0, both initial and final,

and transitions

0
α:α�

→ 0 for α� ⊆ α ⊆ Φ.

Next, given a language L over Pow (Φ), we let s � L mean s belongs to the Peirce

product ���L (read: s subsumes L)

s � L
def

⇐⇒ s ∈ ���L

⇐⇒ (∃s� ∈ L) s � s�.

Then, given another language L� over Pow (Φ), let L ⇒ L� be the set of strings s

such that every factor of s that subsumes L also subsumes L�

L ⇒ L� def
= {s ∈ Pow (Φ)∗| for every factor s� of s, s�

� L implies s�
� L�}.

Collecting the factors of s that subsume L in the ���L-restriction of has-factor

s has-factor���L s� def
⇐⇒ s has-factor s� and s� ∈ ���L

⇐⇒ s has-factor s� and s�
� L,

it follows that

L ⇒ L� = [has-factor���L]���L�.

From the regularity of the constructs in Table 2, we can conclude that L ⇒ L� is a

regular language if L and L� are. Indeed,

L ⇒ L� = Pow (Φ)∗ (���L ∩ ���L�) Pow (Φ)∗.

Among the constraints we can formulate with ⇒ are

ϕ ∨ ψ ⇒ ϕ | ψ

picking out strings that contain ϕ ∨ ψ only if they contain ϕ or ψ in the same box,

⇒ ϕ | ϕ

requiring either ϕ or its negation ϕ to be in every box. and

ϕ,ϕ ⇒ ∅

banning ϕ and ϕ from occurring in the same box.

We can also form

next(ϕ) ⇒ ϕ

Regular relations for temporal propositions 173

to put ϕ at every box succeeding one containing next(ϕ), in line with the LTL clause

V , t |= next(ϕ)
def

⇐⇒ V , t+ 1 |= ϕ.

But to require that there be a box after every box containing next(ϕ), we form

next(ϕ)
a
⇒ ϕ ,

where L
a
⇒ L� is pronounced ‘L� after every L’ and

L
a
⇒ L� def= {s ∈ Pow (Φ)∗ | after every factor of s that subsumes L

is a string that subsumes L�}.

Defining

s afterL s� def
⇐⇒ (∃u � �

∗L) s = us�,

we get

L
a
⇒ L� = [afterL] ���(L�

�
∗).

It is not difficult to convert a finite automaton for L into a finite-state transducer

for afterL. Hence, L
a
⇒ L� is regular if L and L� are. In fact,

L
a
⇒ L� = ���(�∗L) ���(L��∗).

Modulo subsumption �, L
a
⇒ L� is one form of Koskenniemi’s restrictions (Beesley

and Karttunen 2003), a second one being L
b
⇒ L�, read ‘L� before every L,’ defined

by

L
b
⇒ L� def

= [beforeL] ���(�∗L�),

where

s beforeL s� def
⇐⇒ (∃v � L�

∗) s = s�v.

As with ⇒ and
a
⇒, L

b
⇒ L� is regular if L and L� are, with

L
b
⇒ L� = ���(�∗L�) ���(L�∗).

We can also strengthen previous(ϕ) ⇒ ϕ to

previous(ϕ)
b
⇒ ϕ

for the LTL clause

V , t |= previous(ϕ)
def

⇐⇒ V , t− 1 |= ϕ.

Both ⇒ and
a
⇒ are useful to analyze ϕ until ψ through auxiliary formulas ϕ ntil ψ

ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ

with

ϕ ntil ψ
a
⇒ ϕ

∗
ψ .

174 T. Fernando

(Thus, if p and q are atomic formulas, we can picture p until q roughly as p
∗
q .)

Similarly, for since under the LTL clause

V , t |= ϕ since ψ
def

⇐⇒ (∃t� ≤ t)(V , t� |= ψ and

whenever t� < t�� ≤ t, V , t�� |= ϕ)

we apply
b
⇒ and auxiliary formulas ϕ sinc ψ

ϕ since ψ ⇒ ψ | ϕ, ϕ sinc ψ

ϕ sinc ψ
b
⇒ ψ ϕ

∗
.

If we fix a tautology � with the vacuous constraint

� ⇒

then the Priorean past Pϕ can be understood as an abbreviation of � since ϕ, and

its future counterpart Fϕ as � until ϕ.

2.2 Unpadding for information content

Although the relation � is just right for formulating constraints, it is convenient

to weaken it slightly to compare strings of different lengths. A candidate for the

converse of the ‘in’ relation � from Section 1.3 satisfying

str(s, t) � str(s�, t�) ⇐⇒ t = t� and s ⊇ s�

for all finite s, s� ⊆ Z × P and t, t� ∈ Z is the relation �◦ composing has-factor

with �

s �◦ s� def
⇐⇒ s has-factor;� s�

⇐⇒ (∃u, s��, v) s = us��v and s��
� s�.

A finite-state transducer for �◦ can be built from the one described in Section 1.4

above for has-factor by generalizing the transitions in line (19) to

0
α:α�

→ 1
α:α�

→ 1
α:α�

→ 2 for α� ⊆ α ⊆ Φ.

The relation �◦ has the defect, however, that s � s� may fail to hold because

of empty boxes in s� — e.g. now ��◦ now . Accordingly, we unpad a string

s ∈ Pow (Φ)∗ by deleting all initial and final �’s

unpad (s)
def
=

�

s if s neither begins nor ends with �

unpad (s�) if s = �s� or else if s = s��

so that for example, unpad (p now) = p now . Next, we say s and s� are

unpad-equivalent if their unpadding is identical

s ≈ s� def
⇐⇒ unpad (s) = unpad (s�)

and say a string s weakly subsumes s�, written s � s�, if some string unpad -equivalent

to s subsumes some string unpad -equivalent to s�

s � s� def
⇐⇒ (∃s◦ ≈ s)(∃s�

◦ ≈ s�) s◦ � s�
◦.

Regular relations for temporal propositions 175

Table 3. Comparing information content

unpad -equivalent s ≈ s� ⇐⇒ unpad (s) = unpad (s�)
Subsume α1 · · · αn � α�

1 · · · α
�
m ⇐⇒ n = m and αi ⊇ α�

i for 1 ≤ i ≤ n

Factor-subsume s �◦ s
� ⇐⇒ s has-factor;� s�

Weakly subsume s � s� ⇐⇒ (∃s◦ ≈ s)(∃s�
◦ ≈ s�) s◦ � s�

◦

⇐⇒ s �◦ unpad (s
�)

The relations unpad and ≈ are regular, and as

s � s� ⇐⇒ (∃s�
◦ ≈ s�) s � s�

◦

⇐⇒ s �◦ unpad (s
�)

we can turn the finite-state transducer for �◦ above into one for � by adding the

loops

0
�:�
→ 0 and 2

�:�
→ 2.

Of course, if we arrange that s� = unpad (s�) for strings s� that we put to the right of

�, we can make do with �◦ instead of �.

It is natural to think of strings in a language as possibilities in the same way

that worlds in a proposition are under possible worlds semantics (or models of a

sentence are in model-theoretic semantics). We lift � to languages L,L� through the

Peirce product

L � L� def
⇐⇒ L ⊆ ���L�

⇐⇒ (∀s ∈ L)(∃s� ∈ L�) s � s�

paralleling the definition in possible worlds semantics that a proposition A entails a

proposition A� if A ⊆ A�. To weed out spurious possibilities, it is useful to bring in

a language C to intersect with ���L for

C[L]
def
= C ∩ ���L

and then beef up L � L� to an entailment

L |−C L� def
⇐⇒ C[L] � L�

⇐⇒ C ∩ ���L ⊆ ���L�.

Clearly, L |−C L� whenever L � L�. The introduction of C allows us not only to

enlarge a string in L to one in ���L, but also to restrict attention to strings meeting

the membership conditions for C

L |−C L� ⇐⇒ (∀s ∈ C) s � L implies s � L�.

These membership conditions can be viewed as constraints (to satisfy), as we see

next.

176 T. Fernando

2.3 Some absolute formulas

A sentence ϕ is absolute if its description relation R[ϕ] is the A[ϕ]-restriction of

�, making its truth set T[ϕ] the Peirce product ���A[ϕ]. We now flesh out A[ϕ]

for certain absolute LTL-formulas ϕ—in particular, those belonging to the set P+ of

formulas that can be formed from a set P of atomic formulas using the connectives

∧,∨, next , previous , until , ntil , since, sinc. We start with constraints C(ϕ) for ϕ ∈ P+,

setting

C(ϕ ∧ ψ)
def
= C(ϕ) ∩ C(ψ) ∩ (ϕ ∧ ψ ⇒ ϕ,ψ)

C(ϕ ∨ ψ)
def
= C(ϕ) ∩ C(ψ) ∩ (ϕ ∨ ψ ⇒ ϕ | ψ)

C(next(ϕ))
def
= C(ϕ) ∩ (next(ϕ)

a
⇒ ϕ)

C(previous(ϕ))
def
= C(ϕ) ∩ (previous(ϕ)

b
⇒ ϕ)

C(ϕ until ψ)
def
= C(ϕ ntil ψ) ∩ (ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ)

C(ϕ ntil ψ)
def
= C(ϕ) ∩ C(ψ) ∩ (ϕ ntil ψ

a
⇒ ϕ

∗
ψ)

C(ϕ since ψ)
def
= C(ϕ sinc ψ) ∩ (ϕ since ψ ⇒ ψ | ϕ, ϕ sinc ψ)

C(ϕ sinc ψ)
def
= C(ϕ) ∩ C(ψ) ∩ (ϕ sinc ψ

b
⇒ ψ ϕ

∗
)

and for p ∈ P ,

C(p)
def
= now

∗
now ⇒ ∅

saying the fluent now occurs at most once. Next, we intersect C(ϕ) with the set

��� now , ϕ of strings in which ϕ and now occur in a box, to form

A◦(ϕ)
def
= C(ϕ) ∩ ��� now , ϕ .

But what alphabet Pow (Φ) are we assuming for C(ϕ) and ��� now , ϕ ? Φ had better

be finite if the Peirce product ���L is to be regular. It suffices (for our purposes) to

let Φ be the finite subset Ψ(ϕ) of P+∪{now} consisting of ϕ and formulas mentioned

in the definition of C(ϕ) — roughly ϕ, its subformulas and now . For example,

Ψ(ϕ ∨ ψ) = {ϕ ∨ ψ} ∪ Ψ(ϕ) ∪ Ψ(ψ)

Ψ(ϕ since ψ) = {ϕ since ψ} ∪ Ψ(ϕ sinc ψ)

Ψ(ϕ sinc ψ) = {ϕ sinc ψ} ∪ Ψ(ϕ) ∪ Ψ(ψ)

Ψ(p) = {p, now}

so that for p, q, r ∈ P ,

Ψ((p ∨ q) since next(r)) = {(p ∨ q) since next(r), (p ∨ q) sinc next(r),

p ∨ q, next(r), p, q, r, now}.

Even with the alphabet restricted, the language A◦(ϕ) is quite massive. But we can

reduce it a couple of ways. The first is through �-minimization: given a language

Regular relations for temporal propositions 177

L, define the set L� of �-minimal strings in L by

L�
def
= L− ���L,

where � is � minus equality

s � s� def
⇐⇒ s � s� and s �= s�.

For example,

(�∗|L)� = �
∗.

Notice that L� is regular if L is (as a finite-state transducer for � can be easily

obtained from the one above for � by requiring that there be a proper inclusion ⊃).

The second way of trimming a language is by projecting every string α1 · · · αn in it

to the string

ρ(α1 · · · αn)
def
= (α1 ∩ (P ∪ {now})) · · · (αn ∩ (P ∪ {now}))

restricting the symbols to subsets of P ∪ {now}. For instance, if p ∈ P then

ρ(p, ψ ∨ ϕ now , previous(χ)) = p now .

Clearly, as a relation, ρ is regular. Now, for ϕ ∈ P+, we take the �-minimal strings

in A◦(ϕ), and apply ρ and unpad in succession to form

A[ϕ]
def
= {unpad (ρ(s)) | s ∈ A◦(ϕ)�}.

From the closure properties of regular languages, it follows that A[ϕ] is regular, as

is R[ϕ] = ���A[ϕ]. To relate A[ϕ] to LTL, let us adopt the obvious interpretation

of the connectives ntil

V , t |= ϕ ntil ψ
def

⇐⇒ (∃t� > t) V , t� |= ψ and

whenever t < t�� < t�, V , t�� |= ϕ

and sinc

V , t |= ϕ sinc ψ
def

⇐⇒ (∃t� < t) V , t� |= ψ and

whenever t� < t�� < t, V , t�� |= ϕ

against relations V ⊆ Z × P and integers t ∈ Z. Moreover, as 0 is not one of the

fluents out of which we construct strings in A[ϕ], we delete the fluent 0 in our

encoding str(s, t) of a finite relation s ⊆ Z × P and an integer t ∈ Z to form the

string str◦(s, t). For example,

str◦({(−1, p), (−1, q), (2, r)}, 1) = p, q now r

= str◦({(−2, p), (−2, q), (1, r)}, 0)

illustrating the possibility that now can be set without loss of generality to 0.5 To

establish the faithfulness of the about sets A[ϕ] to LTL, we can prove by induction

on ϕ ∈ P+ that

5 That is, for all LTL-formulas ϕ, relations V ⊆ Z × P and integers t,

V , t |= ϕ ⇐⇒ Vt, 0 |= ϕ

178 T. Fernando

Theorem. For all ϕ ∈ P+, V ⊆ Z × P and t ∈ Z,

V , t |= ϕ ⇐⇒ (∃s ⊆ V) str◦(s, t) ∈ A[ϕ].

2.4 Irregular replace

All the clean-up on A◦(ϕ) above just to extract A[ϕ] invites the question: why not

define a regular relation unwinding a non-atomic formula ϕ rather than a regular

language A[ϕ] via a system of constraints and projections? (Or for readers familiar

with Beesley and Karttunen (2003), why not replace, rather than constrain?) Take,

for example, the formula Pp saying p holds now or sometime in the past. It is easy

enough to construct a finite-state transducer for a relation R̂ replacing Pp by p or

shifting Pp backwards one square so that, for example,

Pp, q R̂ p, q and Pp, q R̂ Pp q .

Repeatedly applying R̂, let tc(R̂) be the transitive closure of R̂. We have for all

non-negative integers m and n,

m+n+1
Pp, q tc(R̂)

m
p

n
q .

The difficulty, however, is tc(R̂) is not regular, even though R̂ is. To see this, consider

feeding strings from the language
∗
Pp, q

∗
as inputs to tc(R̂). What output strings

do we get that belong in the language p
+
q

+
(where L+ def

= L∗L, as usual)? As

each input string
m
Pp, q

n
can move at most n p’s into �m, there can be no more

p ’s than q ’s in an output string, and we have

{s� | (∃s ∈
∗
Pp, q

∗
) s tc(R̂) s�} ∩ p

+
q

+
= { p

m
q

n | 1 ≤ m ≤ n}

which is non-regular. It follows that tc(R̂) cannot be a regular relation since the

languages p
+
q

+
and

∗
Pp, q

∗
are regular. By contrast, constraints applied with

�-minimization and unpad intersect with p
+
q

+
to give the regular sublanguage

p q
+
.

3 Conclusion

Regular relations R[ϕ] were defined for various absolute LTL formulas ϕ (collected

in the set P+) from regular languages A[ϕ] satisfying constraints C(ϕ) that essentially
reformulate well-known LTL tableau rules in finite-state terms. A theorem was

isolated at the end of Section 2.3 asserting that A[ϕ] encodes satisfaction |= relative

where Vt is V shifted to the right by t

Vt
def
= {(t� − t, p) | V (t�, p)}.

From the perspective of Hybrid Logic (Areces and ten Cate 2007), LTL lacks a nominal
marking out the position 0.

Regular relations for temporal propositions 179

to arbitrary relations V ⊆ Z × P over the full set Z of integers. The theorem is

not surprising, but introduces machinery that is, I believe, of interest beyond the

theorem. That said, the theorem does raise further questions about the relationship

with LTL. Can we apply the about sets A[ϕ] to capture LTL entailments |−LTL

between formulas in P+? What about non-absolute LTL formulas such as Gp? We

turn to these questions below, before briefly touching one of the points behind

introducing regular relations R[ϕ]—i.e., that of varying temporal granularity.

3.1 Entailments short of |−LTL

A problem with reducing LTL entailments

ϕ |−LTL ψ
def

⇐⇒ (∀V ⊆ Z × P) (∀t ∈ Z) V , t |= ϕ implies V , t |= ψ

to A[ϕ] � A[ψ] is that a string in A[ϕ] may be too small to contain one in A[ψ].

Accordingly, the entailment

ϕ |−C ψ ⇐⇒ C ∩ ���A[ϕ] ⊆ ���A[ψ]

enlarges a string in A[ϕ] to one in C before searching for a (sub)string in A[ψ].

Each string, however, has a bounded temporal span short of Z, representable as a

finite segment

[i, j]
def
= {t ∈ Z | i ≤ t ≤ j}

for i, j ∈ Z. In effect, V , t |= ϕ is replaced by

s, t |=j
i ϕ for s ⊆ [i, j] × P and t ∈ [i, j],

where for example,

s, t |=j
i next(ϕ)

def
⇐⇒ t < j and s, t+ 1 |=j

i ϕ

s, t |=j
i previous(ϕ)

def
⇐⇒ i < t and s, t− 1 |=j

i ϕ

and

s, t |=j
i Gϕ

def
⇐⇒ (∀t� ∈ [t, j]) s, t� |=j

i ϕ.

For non-negative integers m and n, let Cn
m be the constraint

Cn
m

def
= (now

b
⇒ m

) ∩ (now
a
⇒ n

) ∩ (now
∗
now ⇒ ∅)

requiring that there be at least m boxes before the evaluation time now and n boxes

after, and at most one occurrence of now . Then for ϕ,ψ ∈ P+,

ϕ |−Cn
m
ψ ⇐⇒ (∀i ≤ −m)(∀j ≥ n)(∀s ⊆ [i, j] × P)(21)

s, 0 |=j
i ϕ implies s, 0 |=j

i ψ

with now normalized to 0 to simplify notation. To build the negation p of an atomic

proposition p into P , we intersect Cn
m with the constraint

(⇒ p | p) ∩ (p, p ⇒ ∅)

180 T. Fernando

corresponding to a restriction in (21) to relations s ⊆ [i, j] × P satisfying

s(t, p) ⇐⇒ not s(t, p)

for t ∈ [i, j]. Observe that nextn(p ∨ p) holds at 0 for any such relation s,

s, 0 |=j
i next

n(p ∨ p)

but not necessarily nextn+1(p ∨ p). Similarly for previousm(p ∨ p).

Stepping beyond absolute formulas, notice that the LTL entailment

Gp |−LTL G next(p)

(saying ‘if p is true now and forever more, then so is next(p)’) does not go through

for |−C (unless C precludes Gp), as

s, t �|=j
i G next(p)

for all s ⊆ [i, j] × P and t ∈ [i, j].

3.2 Gp and some other non-absolute formulas

To say Gp is not absolute is to deny that R[Gp] can be the A[Gp]-restriction of �,

whatever A[Gp] might be. But if, in place of �, we define a relation R̂ by

s R̂ s� def
⇐⇒ (∃s��) s � s��s�

(sandwiched between � and �) and put

A[Gp]
def
= now , p p

∗

then we can set R[Gp] to the A[Gp]-restriction of R̂

s R[Gp] s� def
⇐⇒ s R̂ s� and s� ∈ A[Gp].

Similarly, for the past counterpart H of G with the semantic interpretation

s, t |=j
i Hϕ

def
⇐⇒ (∀t� ∈ [i, t]) s, t� |=j

i ϕ

let

A[Hp]
def
= p

∗
now , p

and

s Ř s� def
⇐⇒ (∃s��) s � s�s��

for

s R[Hp] s� def
⇐⇒ s Ř s� and s� ∈ A[Hp].

Generalizing over Gp and Hp, we can use � in place of �, R̂ or Ř, provided we pad

A[Gp] to the left for

A�[Gp]
def
=

∗
now , p p

∗

Regular relations for temporal propositions 181

and A[Hp] to the right for

A�[Hp]
def
= p

∗
now , p

∗

so that

s R[ϕ] s� def
⇐⇒ s � s� and s� ∈ A�[ϕ].(22)

Under (22), A�[ϕ] need not be padded

A�[Hp ∧ Gq]
def
= p

∗
now , p, q q

∗

although for absolute formulas, the price of strengthening � to � is padding to the

left and right6

A�[ϕ]
def
= �

∗A[ϕ]�∗ for ϕ ∈ P+

(undoing the step from � to �). Padding goes against the grain of defining R[ϕ]

to get a handle on the temporal span of a ϕ-situation (useful, for example, for past

tense reports; recall Section 1.4 above). On the other hand, it is easy enough to

unpad A�[ϕ] for A[ϕ].

3.3 From temporal span to grain

If the image of R[ϕ] is unpadded, then we can replace � by �◦ inasmuch as

s � s� ⇐⇒ s �◦ s� if unpad (s�) = s�,

where

s �◦ s� def
⇐⇒ s has-factor;� s�

and factors are suffixes of prefixes (equivalently, prefixes of suffixes)

s has-factor s� ⇐⇒ s has-prefix; has-suffix s�

⇐⇒ s has-suffix; has-prefix s�

and a suffix is a tail end

s has-suffix s� def
⇐⇒ (∃s��) s = s��s�

and a prefix is an initial fragment

s has-prefix s� def
⇐⇒ (∃s��) s = s�s��.

The ‘in’ relation R̂ for Gp replaces has-factor by has-suffix

s R̂ s� def
⇐⇒ s has-suffix;� s�

while the ‘in’ relation Ř for Hp uses has-prefix

s Ř s� def
⇐⇒ s has-prefix;� s�.

6 This is exactly analogous to the transformation of a stringwise representation L to the
pathwise representation �∗L�∗ in Fernando (2008b).

182 T. Fernando

Table 4. Comparing information content modulo π.

π-equivalent s ≡π s� ⇐⇒ π(s) = π(s�)
π-contain s ≥π s� ⇐⇒ (∃s◦ ≡π s)(∃s�

◦ ≡π s�) s◦ � s�
◦

That said, an advantage of the formulation � over �◦

s � s� def
⇐⇒ (∃s◦ ≈ s)(∃s�

◦ ≈ s�) s◦ � s�
◦

(where s◦ ≈ s
def

⇐⇒ unpad (s◦) = unpad (s)) is that it generalizes from unpad to an

arbitrary function π (Table 4).

An example of π suggested by the slogan ‘no time without change’ (Kamp and

Reyle 1993: 674) reduces all adjacent identical boxes ααn to one α. More precisely,

the block compression bc(s) of a string s is given by

bc(s)
def
=







bc(αs�) if s = ααs�

αbc(βs�) if s = αβs� with α �= β

s otherwise (length(s) ≤ 1)

so that, for example,

bc(p, q p, q p, q p, q, r p, q, r p, q) = p, q p, q, r p, q .

For a finite-state transducer computing bc, let the set of states be the alphabet plus

the initial state 0, with transitions

0
α:α
→ α for every symbol α

α
β:β
→ β for any two distinct symbols α, β

(to remember the symbol last seen)

α
α:�
→ α for every symbol α

(to remove duplications) and all states final (accepting). If a string s is construed

as a sequence of observations, the effect of bc(s) is to keep time still if no change

(from the previous box) is observed. Exactly what observations are allowed is the

crucial issue of granularity, which amounts in the present context to what fluents

may occur in a symbol α. The LTL connective previous makes each tick of the clock

Z count as an observation, thereby neutralizing bc. For instance, the string p p p

is treated in LTL as

p p, previous(p) p, previous(previous(p))

which bc leaves unchanged, whereas bc(p p p) = p . Evidently, we must apply

block compression on a string only if it records all information of interest explicitly

as fluents. As our interests may change, it is useful to define for any set X ⊆ Φ of

fluents, a function ρX on strings that restricts the observations to X by intersecting

componentwise with X

ρX(α1α2 · · · αn)
def
= (α1 ∩X)(α2 ∩X) · · · (αn ∩X).

Regular relations for temporal propositions 183

For example, if X = {Jan, Feb, . . . Dec}, ρX projects the string

Jan,d1 Jan,d2 · · · Feb,d29 Mar,d1 · · · Dec,d31

(over the 43 fluents Jan, Feb, . . . Dec, d1, d2, . . ., d31) representing a leap year to

Jan
31

Feb
29

Mar
31

· · · Dec
31

which bc maps to the string

Jan Feb Mar · · · Dec

of length 12. Composing ρX; bc further with unpad gives regular relations

πX(s)
def
= unpad (bc(ρX(s)))

relative to which event structures (in the sense of Kamp and Reyle 1993) can be

constructed as inverse (projective) limits over finite sets X of fluents (Fernando 2007,

2010). Integrating calendar expressions with temporal propositions, the basic idea

is to work with strings that have no more and no less information than what is

given. Natural language descriptions do not, as a rule, mention a clock, and rarely

the clock Z (however natural that may be for LTL applications).

Acknowledgments

I thank my referees for their critical and constructive comments, and Anssi Yli-Jyrä

for his work as editor.

References

Areces, C., and ten Cate, B. 2007. Hybrid logics. In P. Blackburn, F. Wolter, and J. van
Benthem (eds.), Handbook of Modal Logic, pp. 821–68. Amsterdam, The Netherlands:
Elsevier.

Barwise, J., and Perry, J. 1983. Situations and Attitudes. Cambridge, MA, USA: The MIT
Press.

Beesley, K. R., and Karttunen, L. 2003. Finite State Morphology. Stanford, CA, USA: CSLI
Publications.

Bouajjani, A., Jonsson, B., Nilsson, M., and Touili, T. 2000. Regular model checking. In
Computer Aided Verification , pp. 403–18. LNCS 1855. Berlin, Germany: Springer-Verlag.

Brink, C., Britz, K., and Schmidt, R. 1994. Peirce algebras. Formal Aspects of Computing

6(3):339–58.
Condoravdi, C. 2009. Punctual until as a scalar NPI. In K. Hanson, and S. Inkelas (eds.),

The Nature of the Word: Studies in Honor of Paul Kiparsky , pp. 631–53. Cambridge, MA,
USA: The MIT Press.

Davidson, D. 1967. The logical form of action sentences. In N. Rescher (ed.), The Logic of

Decision and Action, pp. 81–95. Pittsburgh, PA, USA: University of Pittsburgh Press.
Emerson, E. A. 1992. Temporal and modal logic. In J. van Leeuwen (ed.), Handbook of

Theoretical Computer Science, volume B: Formal Methods and Semantics, pp. 995–1072.
Cambridge, MA, USA: The MIT Press.

Fernando, T. 2004. A finite-state approach to events in natural language semantics. Journal
of Logic and Computation 14(1): 79–92.

Fernando, T. 2007. Observing events and situations in time. Linguistics and Philosophy 30(5):
527–50.

184 T. Fernando

Fernando, T. 2008a. Branching from inertia worlds. Journal of Semantics 25(3): 321–344.
Fernando, T. 2008b. Temporal propositions as regular languages. In T. Hanneforth, and K-M.

Würzner (eds.), Finite-State Methods and Natural Language Processing, 6th International

Workshop, pp. 132–48. Potsdam, Germany: Universitätsverlag Potsdam.
Fernando, T. 2009a. Situations in LTL as strings. Information and Computation 207 (10):

980–99.
Fernando, T. 2009b. Situations as indices and as denotations. Linguistics and Philosophy 32(2):

185–206.
Fernando, T. 2010. Constructing situations and time. Journal of Philosophical Logic,

doi:10.1007/s10992-010-9155-1.
Harel, D., Kozen, D., and Tiuryn, J. 2000. Dynamic Logic. Cambridge, MA, USA: The MIT

Press.
Kamp, H., and Reyle, U. 1993. From Discourse to Logic. Dordrecht: Kluwer.
Karttunen, L. 1974 Until. In Papers from the Tenth Regional Meeting of the Chicago Linguistic

Society , Chicago, pp. 284–97.
Karttunen, L. 2005 The Yale Shooting Problem. http://www.stanford.edu/∼laurik/

fsmbook/examples/YaleShooting.html

McCarthy, J., and Hayes, P. 1969. Some philosophical problems from the standpoint of
artificial intelligence. In M. Meltzer, and D. Michie (eds.), Machine Intelligence 4, pp.
463–502. Edinburgh, UK: Edinburgh University Press.

Mulligan, K., Simons, P., and Smith, B. 1984. Truth-makers. Philosophy and Phenomenological

Research 44: 287–321.
Niemi, J., and Koskenniemi, K. 2009. Representing and combining calendar information by

using finite-state transducers. In J. Piskorski, B. Watson, and A. Yli-Jyrä (eds.), Finite-
State Methods and Natural Language Processing: Post-proceedings of the 7th International

Workshop FSMNLP 2008 , pp. 122–33. Amsterdam, The Netherlands: IOS Press.
Reichenbach, H. 1947. Elements of Symbolic Logic. London, UK: Macmillan.
Vardi, M. Y. 2007. Automata-theoretic techniques for temporal reasoning. In P. Blackburn,

F. Wolter, and J. van Benthem (eds.), Handbook of Modal Logic, pp. 971–89. Amsterdam,
The Netherlands: Elsevier.

