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Abstract: Explanation is a foundational goal in the exact sciences. Besides the contemporary con-
siderations on ‘description’, ‘classification’, and ‘prediction’, we often see these terms in thriving
applications of artificial intelligence (AI) in chemistry hypothesis generation. Going beyond de-
scribing ‘things in the world’, these applications can make accurate numerical property calculations
from theoretical or topological descriptors. This association makes an interesting case for a logic
of discovery in chemistry: are these induction-led ventures showing a shift in how chemists can
problematize research questions? In this article, I present a fresh perspective on the current context of
discovery in chemistry. I argue how data-driven statistical predictions in chemistry can be explained
as a quasi-logical process for generating chemical theories, beyond the classic examples of organic and
theoretical chemistry. Through my position on formal models of scientific explanation, I demonstrate
how the dawn of AI can provide novel insights into the explanatory power of scientific endeavors.
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1. Introduction

Understanding breakthroughs in chemistry is both challenging and important. Through
the systematic matrix of advances in structure and transformation of matter, its relevance
translates into important technological gains. In the last decade, the popularization of
chemical discoveries in the production of vaccines [1,2], consumable hi-tech [3] and pollution
mitigation [4] showed knowledge dynamics whose civilizational advances are embedded
in the description and explanation of chemical concepts. It is not surprising that these
developments captured scientists’ attention regarding their conceptual structure. Particularly,
when asked how to introduce into public discourse so many new discoveries, the importance
of the public’s understanding of science is highlighted [5]. Is it possible for dense and rich
language intended for fellow scientists to be comprehensive for both decision-makers and
the public?

To address this question, it is important to be objective when designing chemical
information. An element that must be clear in such communication is how knowledge is
produced. In this digital age, where many experiments are fast-paced (literally, at the click
of a button), the mystique of the scientist’s work is jeopardized in favor of computational
algorithms that read, document, and interpret experimental data [6]. And chemistry is
no exception. Entire fields of research, such as drug design, determination of chemical
properties, and reaction troubleshooting, are dominantly mediated by computers [7,8].
However, complex instruments go beyond sample reading and can solve chemical questions
in real time [9]. Although these are important and egalitarian methods of conducting
science, to whom can we attribute its conclusions? To the scientist who designed the
computer algorithm? The one who coded it? Or to the one who executed it? Are they all
responsible? This can be a trivial issue when we only want to ‘do science’ and achieve
a breakthrough in current knowledge. However, as others may say it formally, I do
not take this as a minor issue. Understanding how knowledge is produced not only
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implies directing its ownership but also facilitates its explanation. We certainly remember
ongoing issues when, in the name of a better understanding, scientific discoveries are
reduced to the minimum necessary [10]. This was clear in the recent skepticism of the
announcement of vaccines for SARS-CoV-2, likely because of how swiftly they emerged [11].
Communication missteps, partially explained by knowledge novelty, have caused a public
perception that overlooks the structures, experiences, and scientific collaborations behind
this achievement. Only a clear identification of how scientific discovery takes place can
help build a communicative framework towards a comprehensive audience.

My position on this subject is not only advocated by the emergence of computational
methods in chemistry. It is also backed by a historical matrix that should not be ignored.
There are several examples of the history of science in which a failure in the explanation
of a scientific phenomenon can identify a clear flaw in the logic of the scientific discovery.
For example, at the end of the 19th century, Portugal faced a severe economic crisis, largely
due to the massive drop in exports of one of its most valuable agricultural assets [12].
Port wine sales were halted by the reported presence of large quantities of a prohibited
substance—salicylic acid—detected by foreign scientists using a recent analytical chemistry
method. The wine’s producers, who never tampered with their product (and were aware
of its suitability), sponsored scientists to refute these criticisms. In the many years in which
this quarrel took place, it was indeed proven that salicylic acid was present in the Port
wines. However, it was only in very small quantities, well within the acceptable limits for
human consumption. How can we explain this finding? Not because the experts acted in
bad faith, purposely claiming the wines as adulterated, but due to a frank misinterpretation
of the analytical method used, as it could not determine the source nor correctly quantify
the salicylic acid. This method’s employment would even be criticized by the method’s
author, as this flaw perfectly illustrates that when science is concerned with using new
methods, the discovery workflow is essential (in particular, for correcting these ‘errors’).
The confirmation of a method is a logical part of science, and it can change based on
new information and its ability to describe reality [13]. Since this is a statement far from
philosophical consensus, it reveals that science greatly benefits from a clarification of all of
these concepts.

It is in this context that I intend to invoke the tools of the philosophy of science.
Although it may be rhetorical to ask a chemist what philosophy can do for his work, I
venture to answer affirmatively. I would say that the philosophy of science addresses the
scientific explanation of a chemical phenomenon [14]. By understanding what is involved,
at different levels of perception, it expands the comprehensibility of the scientific act [15]. It
reveals the conceptual implications in the scientific sphere which, more than ever, require
its understanding outside the laboratory. I do not hide the humble origins of the philosophy
of chemistry, but in this work, I will only focus on questions beyond chemistry’s internal
dimension: on the nature of substances, synthesis, and interactions. It is important to clarify
key philosophical issues on the dissemination and public understanding of science. Beyond
realism vs. reductionism, I intend to focus on the problem of ‘explanation in chemistry’. Bet-
ter chemistry communication and education depend on how both explain the essentials of
the underlying scientific phenomenon. In this context, I support myself using the notion of
constructive realism that is generally invoked in the relevance of explanation in science [16].
It does not compromise the empirical and constructive characterization of chemistry, as it
balances a pragmatic notion of explanation with the realistic chemist’s perspective.

What are we talking about when we talk about ‘chemical explanation’? In the eyes of
philosophy, we must face various perspectives of looking at the scientific process. What
should we require in our communication for an explanation to be valid? If chemistry itself
intends to have a self-explanatory mechanism, what differentiates a scientific explanation
from an event description? To this end, several authors have written on the adequate
framing of scientific explanation which clarifies this issue [17]. However, recognizing the
multiplicity of opinions on this subject also testifies that current philosophical models
often fail to clarify ‘explanation in chemistry’. It is precisely this notion that I intend
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to address. I have reasons to believe that recent methods in chemistry embody logical
conceptual structures in the statistically-based process of chemistry discovery. Thus, an
incursion (albeit brief) of current philosophical models in scientific explanation is justified.
To this end, I analyze the case of high-end computational artificial intelligence (AI) tools
applied in chemistry research, whose results range from theory generation to chemical
behavior prediction of certain systems. I intend to demonstrate that, contrary to the general
convention on the discovery of chemical phenomena, there are cases for which we can
argue a logic in chemistry explanation. By clarifying how cutting-edge discoveries are
characterized using complex statistical tools, I aim to show a series of a trade-off patterns
in chemical explanation which complement its logic of discovery.

To this end, this paper is divided in the following manner. I will begin by framing
scientific explanation in chemistry and then report on the current views on the logic
of discovery in chemistry. Subsequent sections will address a particular example of AI
methodologies in chemistry discovery and then introduce several cases of identified logic
structures on the quoted scientific explanation.

2. Is There a Logic of Discovery in Chemistry?

Can we have a formula to make any chemistry-based discovery? As in, a thoughtful
playbook to conduct science? Reichenbach formulated this simple but methodologically
dense question [18]. In his perspective, the generation of scientific hypotheses comes from
the scientists’ creative process, removing the possibility of a logical procedure. That is, only
the analysis of the explanation would be approached by scientific logic, as confirmation
or rejection of the analyzed theory. Conceptually, this truism fits the assumption that
there is a univocal motivation in the process of scientific explanation: it will always have
to start from a conceptual invocation of previous knowledge, the formulation of which
invariably depends on individual experience. There is no prior ‘recipe’ for the discovery of
a phenomenon as each event, although comparable, has its own circumstances.

Historically, the evolution of modern chemistry into the contemporary period shows
the adequacy of this reasoning. Reconsider the example of the ‘Salicylic acid poisoning
of Port wines’. Given the uniqueness of each wine, it would be wrong to assume that the
generic analytical method that implicated the Port wines could provide a logical hypothesis
that they were ‘poisoned’ with salicylic acid. They deemed any presence of salicylic acid as
‘poisonous’ for human consumption, a credence debunked at the time by other chemists.
As salicylic acid of a natural source could be present in ‘normal’ wines producing no health
effects, the method’s hypothesis was incorrectly generated, as they were not designed to
distinguish between salicylic acid of natural/external sources, nor were they prepared to
discriminate health-negligible concentrations. Therefore, the origin of the mechanism of
scientific discovery that described wine as unfit for consumption was not conceptually
prepared to do so correctly. If it were today, before establishing the hypothesis that a wine
is deemed adulterated, counter-analyses would have to be carried out with other methods
and operators, as only a diverse array of experimental data could draw a conclusion
regarding the ‘discovery’ [19]. As such, scientists’ creativity is always present, as they
would have to analyze and compare the experimental data with previous knowledge. It
is this notion that prompts the emergence of modern scientific decisions, as including
scientists’ creativity in knowledge creation prevents incorrect generalizations and the use of
circumstantial realities. This is what the scientists’ activity intends to address: the entropic
nature of experience.

With the development of chemical practice, does it make sense today to speak of a logic
of discovery? The development of new methods, combined with the precision and accuracy
provided by emerging technologies, makes it possible to expedite the experimental process,
simplifying hypothesis generation through increasing speed and density of information.
Here, one can quote some voices that almost assume that in a computerized process, there
is only a figurative nature of the ideal scientific verdict [20]. If instrumental advancement
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helps with scientific endeavor, the biggest problem may be assessing the complexity of the
division between human and machine intervention.

It is precisely with the concentration of efforts on the massification of scientific knowl-
edge production, largely since the end of the 20th century, that it has been possible to
talk about this. A pivotal example is the synthesis and discovery of new molecules. Since
Corey [21] proposed the ‘retrosynthetic hypothesis of organic molecules’, many have
followed his suggested systematization of a reaction process, planned according to experi-
mental logic. Instead of thinking of the process from beginning to end, Corey proposed the
reverse. Knowing that we wish to produce a particular molecule but do not know how, a
good strategy would be to start from the end, designing the steps needed, and continue
towards the beginning of the process. This backwards reasoning eases the establishment
of theoretical links between concepts that can outline the complete synthetic process. The
evaluation of the viability of these hypotheses is carried out by their theoretical plausibility,
or simply by experiments in the laboratory. We can also speak of a logic of discovery in
the innovation of new targets for chemical synthesis [22]. The most obvious case is in the
creation of molecules for therapeutic purposes, where it is common to research active prin-
ciples that are analogous to already-existing ones. Whether for economic reasons (cheaper
synthesis) or pharmacological motives (less toxicity), with the chemical study of an existing
molecule through computational methods, it is possible to simulate three-dimensional
structures of new molecules. Then, with a trial-and-error methodology where the outcome
of the molecule is biologically evaluated, the chemical structure of the eventual drug is
modeled until the desired activity is achieved. These methodologies in chemical synthesis
are strategically mentioned as examples of discovery logic, something that is not consensual
in other areas of science. Since the goal of chemists is to identify reaction features, there
are situations in which dense mechanistic detail does not add any relevant explanatory
information. This is true in areas such as neuroscience and functional biology, especially
in situations where experimental confirmation is more difficult [23]. Thus, even if one can
think of different sources for mechanisms in chemistry, the final stage of process discovery
should not depend so much on the density level of knowledge, but rather on the intercon-
nection of explanatory information between chemical actors and their incumbent steps. I
base this assumption on the concept of ‘logic of discovery’ conveyed by Carmichael [19]. A
summary of this argument is presented in Figure 1.
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Figure 1. Schematic description of the main arguments to consider a logic in discovery in chem-
istry [18–20].

Assuming that the essential step in the discovery process is the act of building a
hypothesis from which the proposition tested originates, achieving the logical explanation
establishes a dependency relationship between discovery and explanation. Therefore, the
logic of discovery can be discussed in the explanation of the phenomenon, being necessary
for specific concepts, but also for fundamental questions in which the explanation must be
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inferred by logical deduction. It is only by an explanatory apparatus that one can identify
the basic components of a logic nature of a phenomenon. It is with this motto I will discuss
the following scientific example.

3. Scientific Explanation in Chemistry

How important is explanation in chemistry? Since this is one of the primary objectives
of the philosophy of science, the act of explaining a scientific phenomenon must be restricted
from other concepts of scientific enterprise [24], understood as other projects that scientists
can undertake. As it is important to distinguish explanation from other endeavors, I intend
to go beyond cataloguing conceptual advances in science. This proves to be a difficult
exercise, but let us consider the following case of three important scientific activities.

The first is description. This concept is concerned with describing things in the world
through arrays of unique characteristics of objects. A second activity is to classify these
objects. We can put them in categories based on their characteristics, as Linnaeus did
with his taxonomy proposal, in which one classifies different living organisms into groups.
From a chemistry standpoint, the periodic table of elements is probably the most discussed
example of accounts on description and classification. It is a system that classifies different
elements, currently doing so based on their atomic number. Previous iterations were
based on element description, well before scientists studied atomic particles and theorizing
about protons, neutrons or electrons. The third endeavor is forecasting. Different from
explanation, one can make a prediction about what is going on and will happen in the
future. This differs from explaining why it happened, because someone will need to
make several correlations to make a prediction. This is the case of chemical biomarkers in
medicine. Sometimes, before we know the cause of a disease, we can see what correlates
with it and use it as a guide for a medical forecast (although one might not know what is
involved) [25,26].

These are examples suggested to differ from explanation. But how are they differ-
ent [27]? Scientific explanation should give us a deep understanding of the process at hand
(as an answer to a question). It is known that one can identify the characteristics of things
in the world in order to describe and classify them. One might also make predictions if
they have a little more information. However, it is a totally different conception to explain
why a certain event has these specific types of characteristics. For this, it is necessary to
involve more information, as most people expect an explanation to give them a deeper
understanding, focused on comprehending rather than diverging from prediction. This is
clear with what occurred with the Periodic Table, when Mendeleev predicted the missing
elements in its first version [28]. His layout of how elements were organized allowed
future scientists to discover the missing elements. It represents one of the most impressive
examples of prediction, because it is difficult to grasp the mental web that was established
when chemists started ordering elements, which eventually allowed to predict them. This
is different from an occasional one-off event where one might get lucky and find a random
connection. It is a systematic feature, almost like a rule, letting an individual to make an
explanation while also making a prediction.

To establish a link between discovery and explanation, we turn to the philosophical
discussion of these models in the chemical sciences. We can start by the classic classification
of scientific explanations according to Coffa’s criterion [29], which states the presence of two
large families of models (Figure 2). The epistemic group is represented by the deductive-
nomological [13] model (DN), and the ontic group is exemplified by the causal model
of explanation. The DN model states that an event’s explanation, called explanandum,
must be deduced from several empirically established laws of logic which explain the
phenomenon, called explanans. It is important to note that there are restrictions to this
interpretation, such as the impossibility of performing accidental generalizations of the
same laws (thus, explaining its empirical condition). The explanations provide valid
reasons for a certain phenomenon or observed fact without restricting the dynamics of
the laws cited for scientific explanation. It is understood that the epistemic models of
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explanation are less dogmatic. Instead, the ontic models assume that the world works in a
certain way, marked by a constructive structure in which the world is organized by a causal
link [30]. This sprung an extensive philosophical literature on the role of causation in the
explanation of scientific phenomena.

Philosophies 2022, 7, x FOR PEER REVIEW 6 of 15 
 

 

reasons for a certain phenomenon or observed fact without restricting the dynamics of the 
laws cited for scientific explanation. It is understood that the epistemic models of expla-
nation are less dogmatic. Instead, the ontic models assume that the world works in a cer-
tain way, marked by a constructive structure in which the world is organized by a causal 
link [30]. This sprung an extensive philosophical literature on the role of causation in the 
explanation of scientific phenomena. 

 
Figure 2. Schematic representation of the classic classification of scientific explanation, according to 
Coffa’s criterion. 

Contemporary philosophy discussion on scientific explanation often starts from the 
inception of the DN model, as advocated by Hempel (legitimized by other influential 
works [31,32]), and its dichotomy with the ontic models. By exploiting descriptive gaps in 
the DN model, alternative models of scientific explanation have been proposed, especially 
framing the role of causation in explanation and how it structures scientific explanation. 
As it is not the aim of this work to discuss and compare these models, I highlight three 
ontic models that attempt to describe the relevance of causation in scientific explanation: 
Salmon’s Statistical Relevance model; the Causal Mechanical model; and Woodward’s in-
terventionist account of causation. These iterations support my argument for a structured 
logic of discovery of a chemistry problem, overlapping with the presented elements of AI-
assisted chemical discovery. 

Before going in depth with the experimental example, we must first clarify the no-
menclature intricacies in this question. Most scientists are familiar with the dichotomy of 
inductive and deductive reasoning. While deduction describes a line of thought where a 
conclusion is derived from factual grounds, inductive reasoning yields a conclusion 
though a general probabilistic degree [33]. Thus, the main difference between these two 
traditional standpoints lies in how someone reaches a solution to a particular problem. 
Say a chemist wants to discover an adulterant in a foodstuff. If he had directly seen the 
contaminant molecule in the sample, he could deduce its presence. However, if he de-
tected its presence using an analytical method that yielded a 90% certainty on its result, 
then he would have inductively reasoned that the foodstuff was poisoned. Ergo, the ex-
planatory difference in these examples stem from the scientist’s factual (as an absolute 
truth) or probabilistic conclusion.  

Beyond these two cases, scientific practice dynamics are not always black and white. 
Sometimes, rational reasoning can be achieved from an alternative model that encom-
passes characteristics from both previous takes. Abductive reasoning embodies this by 
reaching a conclusion with a degree of certainty while supporting it with several explan-
atory considerations [34]. Unlike pure induction, abductive reasoning yields a statistically 
based verdict using premises that guide and support a stated degree of certainty. Circling 

How important  is explanat ion in chemist ry & discovery ?

Coffa’s
criterion

Deduct ive 
Nomological 

Model

Causal Model

Stat ist ical 
Relevance Model 

Causal Mechanical 
Model 

Intervent ionist  
Model 

Scient ific Explanat ion

Figure 2. Schematic representation of the classic classification of scientific explanation, according to
Coffa’s criterion.

Contemporary philosophy discussion on scientific explanation often starts from the
inception of the DN model, as advocated by Hempel (legitimized by other influential
works [31,32]), and its dichotomy with the ontic models. By exploiting descriptive gaps in
the DN model, alternative models of scientific explanation have been proposed, especially
framing the role of causation in explanation and how it structures scientific explanation.
As it is not the aim of this work to discuss and compare these models, I highlight three
ontic models that attempt to describe the relevance of causation in scientific explanation:
Salmon’s Statistical Relevance model; the Causal Mechanical model; and Woodward’s
interventionist account of causation. These iterations support my argument for a structured
logic of discovery of a chemistry problem, overlapping with the presented elements of
AI-assisted chemical discovery.

Before going in depth with the experimental example, we must first clarify the nomen-
clature intricacies in this question. Most scientists are familiar with the dichotomy of
inductive and deductive reasoning. While deduction describes a line of thought where
a conclusion is derived from factual grounds, inductive reasoning yields a conclusion
though a general probabilistic degree [33]. Thus, the main difference between these two
traditional standpoints lies in how someone reaches a solution to a particular problem.
Say a chemist wants to discover an adulterant in a foodstuff. If he had directly seen the
contaminant molecule in the sample, he could deduce its presence. However, if he detected
its presence using an analytical method that yielded a 90% certainty on its result, then he
would have inductively reasoned that the foodstuff was poisoned. Ergo, the explanatory
difference in these examples stem from the scientist’s factual (as an absolute truth) or
probabilistic conclusion.

Beyond these two cases, scientific practice dynamics are not always black and white.
Sometimes, rational reasoning can be achieved from an alternative model that encompasses
characteristics from both previous takes. Abductive reasoning embodies this by reaching
a conclusion with a degree of certainty while supporting it with several explanatory
considerations [34]. Unlike pure induction, abductive reasoning yields a statistically based
verdict using premises that guide and support a stated degree of certainty. Circling back
to the adulteration example, the chemist will now use all available information before
reaching a conclusion: knowledge of how the foodstuff was produced, who commissioned
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it, or what molecular interactions in the food matrix could yield a false positive. It works
like a filter that selects the best explanation beyond pure statistical probability.

Considering these three types of reasoning, I raise them as starting points for the main
argument in the next section.

4. An Artificial Intelligence-Based Model: The ‘Catalyst Problem’

Artificial intelligence tools have been increasingly used to help solve scientific prob-
lems [35]. In chemistry, many of the works carried out with AI use Machine Learning
(ML) algorithms [36]. The aim of these techniques is to obtain a model capable of making
predictions according to the input data. The wide adherence of chemists to these methods
is understood by the large typology of data that can be applied to the ML models. From
numerical values, to images, to even quantitative and qualitative variables, there are several
inputs that can be translated into a prediction. This can also become a simulation of a
result, either a numerical figure or the spatial distribution of a particular molecule. Another
trending example is the use of ML for calculating thermodynamic properties intended for
the development of new chemical processes. However, as with this and other examples,
the reported computational cost and accuracy of these calculations, coupled with the costly
resources needed, often refrain from high expectations of these methodologies.

The ML concept of statistical analysis enables the causal relationship in computational
learning, framing knowledge advancement by making a novel discovery. However, the
concept of causal knowledge creation has been used cautiously in the literature, particularly
in the application of AI techniques to scientific discovery [37,38]. Through a current of
thought that warns about its struggling ability to manage counterfactuals, causal learning
is explained in its need to require symbiotic collaboration of data and models. Hence, the
following critique is made of AI methodologies as representative of scientific discovery:
input data are not an end in themselves, as an algorithm may find associative patterns
without describing actual causal meaning.

In this paper, I seek to describe a methodology that uses AI tools, but whose causal
payoff is not given by its output. We add a mechanistic layer that uses the algorithm’s
conclusions to establish causal relationships between the input data and the chemical
features of a given molecule. In other words, the discovery is performed using information
gathered by a ML algorithm. However, to reinforce the idea of an absence of arbitrariness
in knowledge creation, I emphasize the statistical confirmation given in each iteration of the
process. Results are guaranteed through a mathematical function describing the chemical
outcome. The causality conceived herein is strengthened by statistical information, which
is directly proportional to the amount of data introduced in the algorithm. In this way, the
mechanism and the chemical activity given by a computational method is supported by
the information given by the data, corroborated by its statistical score.

Let us discuss an emergent application using AI to solve a chemical problem. We
will refer to this as the ‘Catalyst Problem’. The inverse Quantitative Structure–Activity
Relationships method (iQSAR) is an increasingly popular framework for creating new
molecules [39,40]. It works by overturning the basic concept of traditional QSAR methods:
instead of designing a molecule from structural features, iQSAR lays out new structures
from mathematical descriptors calculated from chemical properties. To formally clarify, we
can describe a QSAR relationship as:

Chemical Activity = f (Structural Property) + error (1)

An iQSAR approach would be described as:

Structural Property = f (Chemical Activity) + error (2)

Take, for example, the design of a novel catalyst for a specific chemical reaction. From
a desired target property, it is possible to tailor-make a chemical structure to act on the
catalytic site [41]. This strategy is based on a framework of a QSAR model and constrains
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it, allowing descriptor values of a specific property to generate targets for potential new
molecules [39]. As a relatively recent alternative, this is a creative approach to molecular
design, as it bypasses a major issue with traditional molecule discovery methods. It avoids
the often-time-consuming database screening for a potential molecule that could still be
unknown. Consider that the active site is a lock, and the catalyst is a particular key. Instead
of using the traditional QSAR method of trying multiple keys to open a lock, iQSAR designs
a key from the lock itself. Using this ‘inverted take’ on molecular design, different chemical
optimizations have been successfully made using this approach [42]. This still demands
fine-tuning consolidation methods to perfect the structure design, which is why iQSAR
tools are only used in specific cases. This means that if we want to ‘train’ an algorithm to
produce an output from specific data, we always must adapt its network weight matrix.
This is carried out by an attractive adaptation process.

Going forward with the ‘Catalyst Problem’ example, let us suppose that our goal is to
have a catalyst that can generate higher production yields. This chemical process is well
known, and we have a substantial amount of raw data from previous reaction routes—for
example, data information on the performance of several chemical descriptors of other
reactions’ catalysts. If we could have a readout of the most important descriptors needed to
describe the ‘perfect’ candidate for a potential catalyst, we could then use an iQSAR model
to design the corresponding chemical structure. And here is where AI becomes useful.
With ML tools, it is possible to use the pre-existing reaction data to develop a computer
algorithm that can learn without being programmed in advance [43,44]. Concerning the
development of iQSAR models, ML can correlate the best chemical property/activity with
molecular features using an algorithm. This leads to the creation of models which are able
to predict the activities of molecules possessing similar descriptor values for the targeted
specific chemical space (here, the catalytic site) [39]. Thus, it is possible to generate new
chemical entities that resemble the best binding structure while displaying prime values
for the chemical descriptors of the reaction’s catalyst. In short, it is conceptually possible
to generate a new chemical entity from data observations of past reactions to produce an
ideal catalyst to solve a chemistry reaction problem.

This previous description seems to recall an old philosophic axiom that stipulates
that ‘all scientific data is theory laden’ [45]. If we could argue that all raw data are facts
with no interpretation until connected by a theory, what can we say about this structure
generation? One might say that the collected data emerged from a logical process where the
scientific discovery is an object to our endeavor, whose knowledge generation is bounded
by theory-laden scientific practice. The quantification of the descriptors themselves has
a subjacent theory, created from scientists’ intuition and creative work and then used to
record the reaction data. However, when we input this data into a ML model instructed
to correlate the ideal catalytic descriptors, the outcome is a product of several steps of
data treatment. The subsequent step taken by the iQSAR model, using this information
as input to design a new molecule from its constraint equations, describes an induction
process where the output is the desired structure. Narrowing the construction of new
compounds limits the hypothesis solution space, using independent variables in adequate
algorithms. The workflow of this procedure consists of a logical process for generating a
theory on the chemical behavior of this catalytic system, as the new catalyst is structured
without a textbook creative practice. In this iteration, both hypothesis and justification for
the chemical discovery are assured by a logic procedure. Ergo, this poses another threat to
Reichenbach’s claims of a duality of contexts in scientific discovery.

Another postulate regarding the pertinence of this example rises when we compare
with another challenge to Reichenbach’s claims. Traditional trial-and-error drug discovery
methodology, using a stage-bound process pathway, also displays a logic process. Even
here, we can claim that in these stages there is some room for scientists’ creativity. Say, in
the last stage, where it is necessary to try different substitutes for a certain scaffold, there
are different subjective criteria to guide this design (unless these criteria are automated by
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a computer). We can then say that the ‘Catalyst Problem’ is more robust than this objection,
giving momentum to ML methods.

5. Scientific Explanation on AI-Based Chemical Discovery

In this section, I will outline the connection between different models of scientific
explanation and the proposed model for the ‘Catalyst Problem’. Starting with framing and
explaining the models using a causation structure, I will enumerate the three exemplified
models that shape the argument of a possible logical course in theory generation.

As discussed, we are dealing with computational predictions that provide answers
stemming from statistical patterns between data and models. Considering this logical
reasoning which will be discussed further (bearing this as an exploratory hypothesis), I will
only consider inductive and deductive reasoning in its inception. This decision is based
on the quantitative results that are used in these computational models, which rely on
statistical power to support their conclusions.

5.1. Statistical Relevance Model

Let us start with the classic DN model. It comprises two different components: the
explanandum (defining the explanatory target which describes the chemical phenomenon)
and the explanans (based on the premise used to explain the phenomenon). According to
Hempel, to connect these concepts a ‘logical deduction’ between both must be established,
similar to a cause/effect dichotomy, which is governed by some postulates. It also states
that individual explanation sentences included in the explanandum must be true.

However, if the DN model illustrates the explanation through a deduction of laws, this
assertion may be compatible with the example of induction by AI. Perhaps in the same way,
this also does not explain a certain type of laws: the laws of statistics. But are statistical
laws really laws? Hempel answers this by stating that there is room for a particular form of
explanation [24]. Inductive–statistical explanation (IS) embraces a set of individual events
that are ruled under a statistical ‘law’. For example, using a classical model of quantum
chemistry, the event of finding a particle moving freely inside a box with impenetrable
walls (event), is given a probability according to a mathematical rule (law) [46]. In this type
of scientific explanation, the relationship between the explanans and the explanandum is
of an inductive nature and the justification for the event is given by the probability of its
outcome. If the possibility of finding a particle in a closed box is high (given by a probability
law), and if the particle is indeed in the box, then this information can explain the discovery
of the particle. However, the same cannot be inferred from a negative induction. If the
probability of finding it is low, even if the particle stuck in the box can be found, it is not
possible to use this information to explain the event.

Like in the exploration of the IS model, the directional features of an event are impor-
tant for considering a logic model for explanation, as there are different ways of explanation
between the explanans and the explanandum. Motivated by the difficulty of the Hempelian
model in encompassing multiple examples from the philosophy of science, and seeking
to address its limitations, Salmon proposed the following model [47]: for cases in which
Hempel’s explanatory model does not hold, the notion of statistical relevance or conditional
dependency relationship between the explanandum and explanans is introduced [48]. If
this relationship is statistically relevant, the explanation is considered, and if it is not, it
ceases to be. In other words, the notion of a fundamental property to the explanation
is highlighted in the form of relevant statistical correlations between the explanandum
and explanans.

This form of explanation has, essentially, two assumptions. The first is that explanation
is the gathering of information that is statically relevant to the explanandum. The second is
that the causal relation between the two elements of the explanation depends on a purely
(or partially) statistical relationship. This is the case in the ‘Catalyst’ example. There is a
clear statistical dependence on the success of the discovery of the molecule, which translates
into the input data introduced in the algorithm. The equations leading to this discovery are
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solved by limiting the solutions within the analyzed chemical space, using independent
variables in the appropriate algorithms, whose affinity is assessed by fitness with respect
to a desired value of catalytic activity. In other words, the success of the newly generated
structure depends on this probability function, which considers the previous elements of
the explanandum. It should be recognized that this is a link specifically drawn for this
problem, and one must be careful when applying this notion to other AI problems where
the outcome is purely a statistical result.

5.2. Causal Mechanical Model

Concluding his fundamental change to scientific explanation, Salmon also sought to
introduce a model based on a statistical assumption [48,49]. This new iteration, called
the ‘Causal Mechanics of explanation’ (CM), aimed to deepen the causal and explanatory
relation in scientific discovery beyond the statistical relevance of the event [50]. In this
sense, the ‘causal process’ would be a mechanical procedure, such as the movement of a
ball (or particle) in space. The identification of this phenomenon would occur through
the possibility of continuously transferring a mark [48,51]. For example, one could make
a modification in the spatial structure of an object that moves in space; introducing an
ink mark into a ball does not prevent it from being kicked by a football player. That
is, the mark transmitted in one spatial–temporal location (on the ball), will persist in
other spatial–temporal locations (throughout its movement), even if there are no further
modifications to the process. Modification is neither lost nor found etiologically for the
explanation of motion, although there are some objections to how a ‘mark is measured’.

Although one may consider the transmission of a mark a counterfactual condition,
in this context a causal interaction superimposes a spatial–temporal intersection between
the two processes. By modifying each one’s structure, they come to possess characteristics
that would be absent if no interaction had occurred. Assuming the ‘Catalyst’ example,
the explanation by which a viable catalyst is discovered will discriminate the process and
causal interactions that lead to the final breakthrough. In addition to this etiological aspect
of the explanation, the CM model should also describe the processes and interactions
that make up the event, showing the causal nexus of the discovery. When the dataset is
integrated into the algorithm, the generation of each molecular component with a specific
feature (determined by the initial data) can be viewed as a causal interaction. Explaining
molecule discovery involves determining the interactions made by the algorithm’s data, as
well as the generation of the final structure (involving both interactions).

The explanation of the criterion of the ‘transmission of a mark’, can also be incorpo-
rated into the example here presented. Without prejudice to the final discovery, the mark
introduction may be a given value for a descriptor which was not contemplated in the
initial data pool. Assuming this occurs by the set of interactions of the initial data and
all data are optimized considering holistic characteristics prior to structure generation,
the introduction of a single value is not an impediment to the explanation of the event.
It is assumed, however, that if there were modifications to the associated error with this
discovery, this value would be negligible in contrast to the final payoff of the molecule
generation process (it would require a great number of marks to achieve a statistically
different outcome in structure generation).

5.3. Interventionist Model

An interventionist approach claims that causes are the properties that decisively
influence their effects [52,53]. These are defined by discrete variables that can take different
values. For example, a broad definition can be made by a binary behavior: in a chemical
reaction mediated by a catalyst, its absence in the reaction medium causes it not to take
place. In other words, the presence of the catalyst in the reaction is an essential condition
for the chemical process to begin. Assuming that ‘0’ indicates the absence of the catalyst
and ‘1’ indicates its presence, we can verify that only with its addition (number 1) does the
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reaction change. By manipulating the presence of this molecule, control is provided over
the progression of the reaction, imposing a gatekeeping status on the effect.

To document this change in cause and effect, the assumed variables need to have two
or more different states (or distinct numbers). This variation needs to be governed by an
intervening criterion, as these changes to the effect need to be made equal in the values
of the variable’s cause (on which the effect depends). In turn, this invalidates the notion
that the presence of counterfactual dependence is not sufficient for a causal relationship
between the explanatory elements. To succeed in interpreting a phenomenon with this
hypothesis, it is necessary to make three assumptions: that variables take on different
values depending on the cause; that there is an effect variable dependent on different
causes; and that cause and effect are related in an intervening sense. That is, only the
presence/absence of causation determines the occurrence of the observed effect.

What is the link between causation and chemical explanation [54]? In all of these
perspectives, we find that the cause underlying the effect has a special importance. It
‘makes the difference’, being particularly relevant for controlling and manipulating the
explanation. However, the presence of such information is not a sine qua non condition for
any scientific explanation. Besides the different forms it may take, there are cases cited in
the philosophy of science that advocate this without prejudice to the explicative value they
convey. These formal structures give meaning to the intervening aspects of explanation,
validating the notion of causation of an explanation formed by its elements. In other words,
the framing of the ‘Catalyst’ example in these models advocates for its logical establishment
in the occurrence of these elements, and may interact as a logical event in the discovery for
which it is proposed.

The example of the ‘Catalyst Problem’ specifies some cause variables (the numerical
values of descriptors) and effect variables (the property and chemical structure of the
designed molecule). They confirm an interventionist association in which the values
of the cause variables are simultaneously related with the effect variables. In fact, this
relationship is verified whenever representations are used to capture a scientific concept or
a phenomenon of interest. In this case, the causal structure criteria serve the purpose of
distinguishing the values that contribute (or not) to the explanation within the context in
which a relationship between the two is verified. An advantage of this form is that it works
through representational plasticity, i.e., which representation of variables can take other
forms depending on the type of example (if there is an overlap of information between
cause and effect). The most pragmatic case of this situation of the periodic table [28].
It fulfills the purpose of conveying causal information while accommodating various
representation formats in which this can be achieved by a causal structure (by containing
causal information present in chemistry explanations). Nevertheless, this is not the only
way in which the periodic table is explanatory.

6. Structuring a Logic of Chemistry Discovery

Integrating this example of logical induction in chemistry research in the context of
scientific explanation, provided solid arguments for arguing (at least partially) a logic of
discovery. In particular, the causal structure demonstrated by generating a hypothesis for
solving a chemical problem using ML algorithms not only is compatible with established
methods of explanation in science, but also underlines the possibility of its integration into
contemporary types of research development. The example also suggests that there are
overlapping concepts and methodologies of inductive origin in classic chemistry problems,
and that there is a depreciation of the deductive component in hypothesis formulation,
ensured by an inductive structure in innovative discoveries.

It is not surprising that there is an increasingly ‘autonomous’ perception when identify-
ing the structure of the scientific process. While deductive patterns in hypothesis generation
can be recognized, hypothesis decision-making by deterministic methodologies must also
be acknowledged. If in the historical example of the ‘Salicylic Acid Poisoning’ the new
chemical analysis methods lacked explanation because of poor robustness in their deduc-
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tion process, obtaining hypotheses in these new chemistry challenges should be object of
equal attention. While, of course, assuming that induction plays a pivotal role in describing
the process of discovery. The introduced statistical certainty, which embraces the calculated
risks of each iteration of the problem, makes the identification of the molecule that solves
the chemical problem no longer a creative endeavor. Although not significant enough to set
aside chemical deduction from other problems, it raises an important question regarding
the explanation of future technological discoveries. The difficulty of making the scientific
process understandable by a traditional format of science popularization, forces one to
approach cases such as the AI example with particular care. Therefore, I establish the
corollary of this article using the dynamics of a computational trade-off according to the
logic of chemical discovery (Figure 3).
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While the conceptual deconstruction of the creative side of science can be made easier
with a superior algorithm that embraces this structure, its conclusions may be more difficult
to understand. For example, the material speed (of hypothesis realization) and conceptual
speed (of concept-theoretic generation) are substantially reduced compared to previous
findings. Additionally, through the previously cited examples where speed was a factor in
scientific dissemination, one can predict that a logical characterization will be a difficult
reduction target. An instructive flaw in realizing how important hypothesis generation is
in chemistry is not understanding how the tools for ‘making science’ are evolving. This
becomes clear when we consider the schematic relation (in Figure 3) between induction
and deduction in model complexity. A successful computational model will provide results
or predictions with the lowest margin of error. However, to explain its findings, one cannot
simply rule out deductive or inductive arguments. It is in this trade-off of explanation
tools that the explanatory power of the model’s outcome resides, ensuring a successful
scientific confirmation and further public dissemination. Given the complexity of the
AI-based models here presented, it is by using the compatible co-existence of deductive and
inductive reason that facilitates scientific explanation, in the transition of experimentation
from the real to the virtual world.

If it is true that there was a period of abundant fundamental discoveries with little
practical effect on our everyday lives, this situation has now been reversed. The speed at
which new hypotheses are tested and proven with new technological advances is growing
swiftly. We cannot speak of a ‘great leap’ as the one made in the transition from 19th
to 20th century chemistry, but we may witness an event rarely seen in modern science.
This underlines the importance of hypotheses in the process of technological evolution.
It seems reasonable, however, that new efforts should be made to develop models of
explanation increasingly able to clarify this change. Otherwise, they will fail to keep up
with methodological advances in chemistry decision-making.
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7. Conclusions

Establishing an unambiguous logic in the discovery process in chemistry is not an
easy task. Still, technological development allows science to advance in such a way that
there is an opportunity to state examples that advocate for such logic. As explained in this
article, the dissemination of AI methodologies in formulating a chemical hypothesis allows
us to reach conclusions that, without them, would be difficult to achieve. More than that,
it allows the creative part of this process to be progressively aided by a procedural logic,
the subjectivity of which (especially in science) has its limitations. There is an urgent need
for an enlightening debate about this development in scientific practice, during which we
need to rethink whether it makes sense to speak of a universal way of perceiving discovery
in chemistry. And it is important that this new content dissemination should be made
assertively, also engaging with the public’s perception of science.

I fully accept that the present conception of the act of discovery in science is essentially
creative. But a certain logic can be partially developed, although it is easier to argue
particular cases (as in this example from computational chemistry). Nevertheless, a logic of
discovery would be difficult to separate conceptually from a logic of pure demonstration.
If discovery is something related to our point of view, this assumption loses some strength
when we invoke methodologies that point to a logic of that same discovery. Its usefulness
is easily measurable in computational method explanation, given the complex trade-off for
a quasi-logic discovery in chemistry. This is why subsequent studies on other chemistry
research ventures are needed to fully understand the scope of the logic presented herein.
Recent impactful works on chemistry’s digital transition (both in academia and in industry),
are good candidates for such a task. Being able to explain how ‘science is made’ is only
important as long as we understand how it explains itself.
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