
Temporal propositions as regular languages

Tim Fernando

Trinity College Dublin

Abstract. Temporal propositions are mapped to sets of strings that
witness (in a precise sense) the propositions over discrete linear Kripke
frames. The strings are collected into regular languages to ensure the de-
cidability of entailments given by inclusions between languages. (Various
notions of bounded entailment are shown to be expressible as language
inclusions.) The languages unwind computations implicit in the logi-
cal (and temporal) connectives via a system of finite-state constraints
adapted from finite-state morphology. Applications to Hybrid Logic and
non-monotonic inertial reasoning are briefly considered.

1 Introduction

Model-theoretic semantics cashes out the meaning of a formula ϕ by specifying
when a model M satisfies ϕ. The present work converts a temporal formula ϕ to
a regular language that indicates (in a precise sense) which models M satisfy ϕ.
The strings in these languages are not only easier to grasp computationally than
the models M but are natural candidates for events witnessing ϕ. The languages
are formed by adapting finite-state methods widely used in morphology [1].

An instructive example of a temporal formula that can be converted to a
regular language is p until q, which is equivalent to the disjunction

q ∨ (p ∧ next(q)) ∨ (p ∧ next(p ∧ next(q))) ∨ · · · (1)

over discrete linear orders. If we draw the disjuncts as q , p q , p p q and so
on, and rewrite ∨ as non-deterministic choice |, then (1) becomes the language

q | p q | p p q | · · · = p ∗ q

where ·∗ is Kleene star (for zero or more iterations). In general, given a finite
set Φ of formulas and a string a1a2 · · · an ∈ Pow(Φ)∗ of subsets ai of Φ, let
fmla0 (a1a2 · · · an) be the conjunction

fmla0 (a1a2 · · · an) def= (
∧

a1) ∧ next(
∧

a2) ∧ · · · ∧ nextn−1 (
∧

an)

with conjuncts next i−1 (
∧

ai) that are themselves built from conjunctions
∧

ai .
The conjunction of the empty set is, as usual, some fixed tautology #. For
instance, we have

fmla0 (p � q, r) = p ∧ next(next(q ∧ r))

Temporal propositions as regular languages 133

where formulas constituting a symbol ai in a string are enclosed by a box rather
than by curly braces {·}, and the tautology # for the conjunction

∧
� of the

empty set � is suppressed. Also, fmla0 (p 0 q) = q and

fmla0 (p n+1 q) = p ∧ · · · ∧ nextn(p) ∧ nextn+1 (q) ,

making p until q equivalent to the disjunction∨
{fmla0 (s) : s ∈ p ∗ q }

over the models of interest.

1.1 Representations over the integers

Before specifying what “the models of interest" are, let us not forget past opera-
tors such as the converse prev of next , and sharpen the map fmla0 accordingly.
To mark out the present, we introduce a fresh formula now �∈ Φ, refining our
picture p q for p ∧ next(q) to now , p q , so as to represent prev(p) ∧ q as
p now , q . Given a subset a of Φ, let us write a† for the union a∪ now , draw-
ing a box instead of {·} as we shall form strings from such sets. Let us call a
string nowΦ-pointed if it has the form sa†s′ for some strings s and s′ over the
alphabet Pow(Φ) and some subset a of Φ. We define a backward version almf (s)
of fmla0 (s)

almf (a1a2 · · · an) def= prevn(
∧

a1) ∧ prevn−1 (
∧

a2) ∧ · · · ∧ prev(
∧

an)

and map a nowΦ-pointed string sa†s′ to the conjunction

fmla(sa†s′)
def= almf (s) ∧ fmla0 (as′) .

For example, almf (p �) = prev(prev(p)) and thus,

fmla(p � now , q, r) = prev(prev(p)) ∧ q ∧ r

(dropping # as before).
Turning now to models, we base our Kripke models for a set P of atomic

formulas on not only the natural numbers (for future operators) but also the
negative integers (for the past). Let Z = {0, 1,−1, 2,−2, . . .} be the set of inte-
gers, and satisfaction |= be defined relative to an integer x ∈ Z and a function
V : P → Pow(Z), called a valuation, as follows. For an atomic formula p ∈ P ,
we set

〈V, x〉 |= p
def⇐⇒ x ∈ V (p) .

The unary connective next moves us to the successor x + 1

〈V, x〉 |= next(ϕ) def⇐⇒ 〈V, x + 1〉 |= ϕ

134 Tim Fernando

while prev steps back to the preceding integer x− 1

〈V, x〉 |= prev(ϕ) def⇐⇒ 〈V, x− 1〉 |= ϕ .

Conjunctions are formed from the binary connective ∧

〈V, x〉 |= ϕ ∧ ψ
def⇐⇒ 〈V, x〉 |= ϕ and 〈V, x〉 |= ψ

as well as the 0-ary connective #

〈V, x〉 |= # .

In what follows, we let Φ denote some fixed finite set of formulas on which |= is
well-defined, and form nowΦ-pointed strings s over the alphabet Pow(Φ∪{now})
with formulas fmla(s) on which |= is well-defined (under the clauses above for
next , prev ,∧ and #). We leave the full specification of clauses for |= open-ended,
introducing clauses such as

〈V, x〉 |= ϕ until ψ
def⇐⇒ (∃y ≥ x) 〈V, y〉 |= ψ and

(∀z < y) z ≥ x implies 〈V, z〉 |= ϕ

to pose the problem of representing a formula such as prev(p until (q ∧ r)).

Definition. A set L of nowΦ-pointed strings stringwise Φ-represents ϕ if ϕ is
equivalent to the disjunction

∨{fmla(s) : s ∈ L} in that

〈V, x〉 |= ϕ ⇐⇒ (∃s ∈ L) 〈V, x〉 |= fmla(s)

for all V : P → Pow(Z) and x ∈ Z.

It is easy to see that prev(p until (q ∧ r)) is stringwise Φ-represented by

q, r now | p now , q, r | p now , p p ∗ q, r

assuming p, q, r ∈ Φ. Indeed, every ϕ ∈ Φ is stringwise Φ-represented by now , ϕ .
For ϕ �∈ Φ, the idea is to turn now , ϕ into an “equivalent" set of nowΦ-pointed
strings. But some cases are hopeless.

Consider, for instance, the formula Gϕ asserting that ϕ is true now and at
every point in the future

〈V, x〉 |= Gϕ
def⇐⇒ (∀y ≥ x) 〈V, y〉 |= ϕ .

If Φ ⊆ P is a set of atomic formulas and p ∈ P , then Gp has no stringwise
Φ-representation. But we will (in section 4 below) modify the notion of repre-
sentation so that

�∗ now , p p ∗ pathwise {p}-represents Gp

Temporal propositions as regular languages 135

and in general, for every set L of nowΦ-pointed strings,

L stringwise Φ-represents ϕ implies �∗L�∗ pathwise Φ-represents ϕ.

Stringwise or pathwise, can we ensure that our Φ-representations are regular
languages? In view of the prevalence of automata-theoretic methods in temporal
logic [2, 3], it is perhaps not surprising how much we can. Nonetheless, some del-
icacy is required to keep these languages regular. For instance, a straightforward
analog (within the present setting) of the replace operator in [1] takes us outside
the realm of finite automata (see §3.2 below). Instead, we adapt Koskenniemi’s
restriction operator [1] over an alphabet of symbols that have structure reflecting
concurrent computation.

But why should it matter that the languages are regular? One of many useful
properties of regular languages is the decidability of inclusions ⊆ between them
(as opposed say, to context-free languages). In the present context, entailments
are naturally expressed as inclusions between languages (§2.2 below). The reg-
ularity of these languages gives us a computational handle on entailments that
arguably compensates for the loss of first-order logic due to infinitary disjunc-
tions from Kleene star.1

1.2 Related work

Inclusions between languages figure prominently in Model Checking , where a
system A satisfies specification S precisely if L(A) ⊆ L(S) for certain languages
L(A) and L(S) associated with A and S, respectively ([3], page 124). The lan-
guages in this case consist of infinite strings accepted according to Büchi’s crite-
rion. That criterion is closely related to the notion of pathwise Φ-representation
spelled out in §4.2 below.

Staying with finite strings, the present approach uses inclusions to define en-
tailments relative to constraints derived from those in [1] through an operation
called superposition [4], reviewed in §2.1 below. Superposition supports a form
of “true” concurrency different from the non-deterministic interleaving typically
associated with temporal logic ([2], page 1017). The notions of entailment in-
duced by superposition do not in general preserve length, and therefore cannot
be regular under the conventions of Regular Model Checking [5]. They are, how-
ever, computable by finite-state transducers with componentwise ε-moves, and
are therefore regular according to [1]. A notable difference between [5] and [1] is
that regular relations are closed under intersection in the former but not in the
latter. Henceforth, we adopt the latter definition of a regular relation (relaxing
the requirement of length preservation). What is important for our purposes is
that given a relation R and a language L, the L-restriction RL of R defined by

RL
def= {(s, s′) ∈ R : s′ ∈ L}

1 A routine compactness argument shows that the disjunction (1) above cannot be
expressed as a first-order theory.

136 Tim Fernando

and its domain, the Peirce product 〈R〉L of R with L

〈R〉L def= {s : (∃s′) sRLs′} ,

are both regular if R and L are.2 As explained in §3.1 below, Koskenniemi’s
restriction operation can be derived from the Peirce product. The transitive
closure of a regular relation, length preserving or not, need not be regular. An
example in the present context is provided by the obvious analog of the replace
operation from [1]. Because its transitive closure need not be regular, we resort
instead to Koskenniemi-esque constraints.

2 Inclusions comparing information content

This section shows how to compare the information content of languages through
inclusion ⊆. The first way, through subsumption �, is described most directly via
an operation of superposition. The second way, through weak subsumption �,
allows for �-padding in �. As relations on strings, both � and � are regular, and
can be lifted to languages through Peirce products, leading to natural notions
of bounded entailment.

2.1 Superposition and subsumption

Given languages L and L′ over the alphabet Pow(Φ∪{now}), the superposition
L&L′ of L and L′ consists of the componentwise union of strings in L and L′ of
the same length

L&L′ def=
⋃

n≥0{(a1 ∪ a′1) · · · (an ∪ a′n) : a1 · · · an ∈ L and a′1 · · · a′n ∈ L′}

[4]. For instance, the superposition of p ∗ q and now �∗ injects now into the
first box of every string in p ∗ q

p ∗ q & now �∗ = now , q | now , p p ∗ q .

2 The terminology “Peirce product” is from [6], but the notation 〈R〉L is borrowed
from dynamic logic [7]. A finite-state transducer for R with transitions → R and a
finite automata for L with transitions→ L combine to form a finite-state transducer
for RL with transitions

(q, q′)
a,b→ (r, r′) def⇐⇒ q

a,b→ Rr and (q′ b→ Lr′ or (b = ε and q′ = r′))

(as in the usual construction for the intersection of regular languages, but with
ε-moves). For the Peirce product 〈R〉L, we existentially quantify b out for

(q, q′) a→ (r, r′) def⇐⇒ (∃b) q
a,b→ Rr and (q′ b→ Lr′ or (b = ε and q′ = r′)) .

Temporal propositions as regular languages 137

To accept L&L′ given finite automata A and A′ accepting L and L′ respectively,
we run A and A′ in lockstep. That is, an automaton accepting L&L′ can be built
as in the usual product construction for the intersection L ∩ L′ except that the
transitions � for L&L′ are obtained by unioning the labels on the transitions
→ A of A and → A′ of A′

(q, q′) b
� (r, r′) def⇐⇒ (∃a, a′ ⊆ b) b = a ∪ a′ and q

a→ Ar and q′ a′→ A′r
′ .

The definition of superposition depends on the assumption that our alphabet
consists of sets closed under union. Instead of using subsets of Φ ∪ {now} as
symbols in our alphabet, we can add a fresh symbol % �∈ Φ∪ {now}, pronounced
“tick” (as in a ticking clock), and rewrite, for instance, the string now , p q of
length 2 to the string now p % q % of length 5 over the alphabet {p, q,now , %}.
This is essentially the approach pursued in [8], taking us back to the usual
interleaving model of concurrency except that the passage of time is marked by
a tick %. As noted in [9], one can build finite-state transducers between Pow(Φ∪
{now})∗ and (Φ∪{now , %})∗ that translate between these in the obvious way and
preserve regularity. For convenience, we work with the alphabet Pow(Φ∪{now}),
abbreviating it to Σ when the exact choice of Φ is immaterial.

Superposition allows us to compare the information content of languages L
and L′ over Σ as follows. We say L subsumes L′ and write L�L′ if L is included
in the superposition L&L′

L � L′ def⇐⇒ L ⊆ L&L′ .

Conflating a string s with the language {s}, it follows that for strings a1 · · · an

and b1 · · · bm over Σ, � picks out pairs with the same length n = m and are
componentwise related by the converse of ⊆

a1 · · · an � b1 · · · bm ⇐⇒ n = m and ai ⊇ bi for 1 ≤ i ≤ n .

As a relation on strings, � is regular; it is computable by a finite-state transducer
with one state q0 , both initial and final, and transitions

q0
a,b→ q0

def⇐⇒ b ⊆ a

for all b, a ∈ Σ. Taking the Peirce product of � with a language L, we get

s ∈ 〈�〉L ⇐⇒ (∃s′ ∈ L) s � s′ .

We can then restate L � L′ as an inclusion involving the Peirce product 〈�〉L′

L � L′ ⇐⇒ L ⊆ 〈�〉L′ .

2.2 Padding and entailments

Although the relation � will prove useful for formulating constraints later on, it
will also be convenient to weaken it slightly so that strings of different length can

138 Tim Fernando

be compared. Towards this end, we define for every string s ∈ Σ∗ its unpadded
form, unpad(s), obtained by deleting all initial and final �’s from s. That is,

unpad(s) def=
{

s if s neither begins nor ends with �
unpad(s′) if s = �s′ or else if s = s′�

so that for example, unpad(� p � now ��) = p � now . As a relation between
strings, unpad is obviously regular (so long as we don’t require length preser-
vation). Next, we say that a string s weakly subsumes s′ and write s�s′ if s
subsumes some string equivalent to s′ up to unpadding

s�s′ def⇐⇒ (∃s′′) s � s′′ and unpad(s′′) = unpad(s′) .

It is easy to see that the relation of unpad -equivalence

{(s, s′) : unpad(s) = unpad(s′)}

is regular, making weak subsumption � regular (since regular relations are closed
under relational composition).

If we think of strings in a language as possibilities in the same way that worlds
in a proposition are under possible worlds semantics (or models of a sentence are
in model-theoretic semantics), then it is natural to lift � to sets L,L′ of strings
through the Peirce product

L�L′ def⇐⇒ L ⊆ 〈�〉L′

⇐⇒ (∀s ∈ L)(∃s′ ∈ L′) s�s′

(paralleling the definition in possible worlds semantics that a proposition p en-
tails p′ if p ⊆ p′). Defining L′� to be the set of strings unpad -equivalent to
strings in L′

L′�
def= {s ∈ Σ∗ : (∃s′ ∈ L′) unpad(s) = unpad(s′)}
= �∗unpad(L′)�∗

(where unpad(L′) def= {unpad(s) : s ∈ L′}), we can relate � back to superposition
& via subsumption � and (un)padding

L�L′ ⇐⇒ L � L′�
⇐⇒ L ⊆ L& L′� .

As some strings may represent spurious possibilities, we can weed out strings
from 〈�〉L by intersecting it with a language C to form

C[L] def= C ∩ 〈�〉L
= {s ∈ C : s�L}

Temporal propositions as regular languages 139

which is a regular language whenever L and C are. Recall that regular languages
are closed under Boolean operations, including complementation

L
def= Σ∗ − L .

We can express the set of nowΦ-pointed strings as C ′[L′] if we choose C ′ and L′

as follows. Let L′ def= now and let C ′ be the set of strings that do not contain
two occurrences of now

C ′ def= 〈�〉(now �∗ now)

= [�] now �∗ now

where [R]L is the dual of the Peirce product 〈R〉L

[R]L def= 〈R〉L

just as ∀ is the dual of ∃.
In general, we can beef up L�L′ to an entailment L |− CL′ by relativizing it

to a language C that turns L to C[L]

L |− CL′ def⇐⇒ C[L] � L′

⇐⇒ C ∩ 〈�〉L ⊆ 〈�〉L′ .

Clearly, L |− CL′ whenever L�L′. The introduction of C allows us not only
to enlarge a string in L, but also to restrict attention to strings meeting the
membership conditions for C

L |− CL′ ⇐⇒ (∀s ∈ C) s�L implies s�L′ .

These membership conditions can be viewed as constraints (to satisfy), as we
see next.

3 Constraints and their application

In this section, we formulate constraints corresponding to the semantic clauses
for ∨,∧,next , prev , until and since, and apply them to build stringwise repre-
sentations. For this, a useful regular relation between strings is that of a factor:
s′ is a factor of s if s = us′v for some (possibly empty) strings u and v.

3.1 Constraints conditioned by subsumption

Given languages L and L′ over Σ, let L ⇒ L′ be the set of strings s such that
every factor of s that subsumes L also subsumes L′

L⇒ L′ def= {s ∈ Σ∗ : for every factor s′ of s,

s′ � L implies s′ � L′} .

140 Tim Fernando

For example, to pick out strings that contain ϕ ∧ ψ only if they contain ϕ and
ψ in the same box , we let

ϕ ∧ ψ ⇒ ϕ, ψ (2)

and for disjunction ϕ ∨ ψ,

ϕ ∨ ψ ⇒ ϕ | ψ . (3)

Writing ' L for the 〈�〉L-restriction of the factor relation

s ' L s′ def⇐⇒ s′ is a factor of s and s′ ∈ 〈�〉L ,

it follows that

L⇒ L′ = [' L]〈�〉L′ .

As the factor relation is regular, so is ' L for regular languages L. Thus, since the
Peirce product of a regular relation with a regular language is regular, L ⇒ L′

is a regular language if L and L′ are. Indeed,

L⇒ L′ = Σ∗ (〈�〉L ∩ 〈�〉L′) Σ∗ .

Next, we strengthen the constraint next(ϕ) � ⇒ � ϕ to

next(ϕ) a⇒ ϕ (4)

where L
a⇒ L′ is pronounced “L′ after every L” and

s ∈ L
a⇒ L′ def⇐⇒ after every factor of s that subsumes L

is a substring that subsumes L′

for every string s ∈ Σ∗. Defining

s afterL s′ def⇐⇒ (∃u � �∗L) s = us′ ,

we get

L
a⇒ L′ = [afterL] 〈�〉(L′�∗) .

It is not difficult to convert a finite automaton for L into a finite-state transducer
for afterL. Hence, L

a⇒ L′ is regular if L and L′ are. In fact,

L
a⇒ L′ = 〈�〉(�∗L) 〈�〉(L′�∗) .

Modulo subsumption �, L
a⇒ L′ is one form of Koskenniemi’s restrictions [1], a

second one being L
b⇒ L′, read “L′ before every L,” defined by

L
b⇒ L′ def= [beforeL] 〈�〉(�∗L′)

Temporal propositions as regular languages 141

where

s beforeL s′ def⇐⇒ (∃v � L�∗) s = s′v .

As with ⇒ and a⇒, L
b⇒ L′ is regular if L and L′ are, with

L
b⇒ L′ = 〈�〉(�∗L′) 〈�〉(L�∗) .

We also strengthen � prev(ϕ) ⇒ ϕ � to

prev(ϕ) b⇒ ϕ . (5)

Both ⇒ and a⇒ are used to analyze until through auxiliary formulas ϕ ntil ψ

ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ (6)

with

ϕ ntil ψ
a⇒ ϕ ∗ ψ . (7)

We can treat since similarly, using b⇒ and auxiliary formulas ϕ sinc ψ

ϕ since ψ ⇒ ψ | ϕ, ϕ sinc ψ (8)

ϕ sinc ψ
b⇒ ψ ϕ ∗ . (9)

3.2 Application with minimization and projection

Let P • be the set of formulas constructed from P using #,∧,∨,next , prev , until ,
since,ntil and sinc. We define a function C : P • → Pow(P • ∪ {now})∗ mapping
a formula ϕ ∈ P • to a language C(ϕ) over the alphabet Pow(P • ∪ {now})
by induction on ϕ, using the constraints we have associated above with the
connectives

C(ϕ) def= [�] now �∗ now for ϕ ∈ P ∪ {#}

C(ϕ ∧ ψ) def= C(ϕ) ∩ C(ψ) ∩ (ϕ ∧ ψ ⇒ ϕ, ψ)

C(ϕ ∨ ψ) def= C(ϕ) ∩ C(ψ) ∩ (ϕ ∨ ψ ⇒ ϕ | ψ)

C(next(ϕ)) def= C(ϕ) ∩ (next(ϕ) a⇒ ϕ)

C(prev(ϕ)) def= C(ϕ) ∩ (prev(ϕ) b⇒ ϕ)

C(ϕ until ψ) def= C(ϕ ntil ψ) ∩ (ϕ until ψ ⇒ ψ | ϕ, ϕ ntil ψ)

C(ϕ ntil ψ) def= C(ϕ) ∩ C(ψ) ∩ (ϕ ntil ψ
a⇒ ϕ ∗ ψ)

142 Tim Fernando

and similarly for since and sinc. For each ϕ ∈ P •, the language C(ϕ) is regular,
as is the language

C(ϕ) ∩ 〈�〉 now , ϕ = {s ∈ C(ϕ) : s� now , ϕ }

which we shall abbreviate Ĉ(ϕ). The language Ĉ(ϕ) can be quite massive, but we
can reduce it a few ways. The first is through �-minimization: given a language
L, define the set L� of �-minimal strings in L by

L�
def= L− 〈�〉L

where � is � minus equality

s � s′ def⇐⇒ s � s′ and s �= s′ .

For example, (�∗|L)� = �∗. Notice that L� is regular if L is. The second way
of trimming a language is by projecting every string a1 · · · an in it to the string

ρ(a1 · · · an) def= (a1 ∩ (P ∪ now)) · · · (an ∩ (P ∪ now))

restricting the symbols to subsets of P ∪ now . For instance, if p ∈ P then
ρ(p, ψ ∨ ϕ now , prev(χ)) = p now . In general, if L is a regular language,
then so is {unpad(ρ(s)) : s ∈ L}. Moreover, an argument by induction on ϕ ∈ P •
establishes

Theorem 1. Every ϕ ∈ P • is stringwise P -represented by the regular language
{unpad(ρ(s)) : s ∈ Ĉ(ϕ)�}.

Remark The projection ρ drops #. Writing Fϕ for # until ϕ as usual (and Pϕ

for # since ϕ), one might try to replace Fq � by q � | � Fq . But doing so

in p, Fq + r �∗ (where L+ def= L∗L) can lead to non-regularity, as intersection
with the regular language p + r q + yields the non-regular language

{ p n r q m : n ≥ m ≥ 1}

with regular sublanguage p + r q obtained by �-minimization and unpad .

4 Negation and paths for infinite strings

We turn next to negation and formulas such as Gϕ left out of Theorem 1.

4.1 Negation

The obvious constraints to associate with Boolean negation ¬

〈V, x〉 |= ¬ϕ
def⇐⇒ not 〈V, x〉 |= ϕ

Temporal propositions as regular languages 143

are non-contradiction [�] ϕ,¬ϕ and excluded middle

� ⇒ ϕ | ¬ϕ .

A popular alternative that we will adopt is to treat negation as a function ϕ �→ ϕ
on formulas ϕ such that ϕ = ϕ and p ∈ P for every p ∈ P (if necessary,
doubling P to P×{+,−} with (p, +) = (p,−) and (p,−) = (p, +)). The functions
(valuations) V are then required to satisfy V (p) ∩ V (p) = ∅, suggesting

[�] p, p , (10)

and V (p)∪V (p) = Z. Every n-ary connective θ is paired with an n-ary connective
θ so that θ = θ and

θ(ϕ1 , . . . , ϕn) def= θ(ϕ1 , . . . , ϕn) .

De Morgan’s laws suggest ∨ def= ∧, θ
def= θ for θ ∈ {next , prev}, # def= ⊥ with

[�] ⊥ (11)

(as 〈V, x〉 �|= ⊥) and until def= release where

〈V, x〉 |= ϕ release ψ
def⇐⇒ (∀y ≥ x) 〈V, y〉 |= ψ or

(∃z < y) z ≥ x and 〈V, z〉 |= ϕ

covered by

ϕ release ψ ⇒ ψ (12)

ϕ release ψ � ⇒ ϕ � | � ϕ release ψ . (13)

We treat ntil and since similarly.

4.2 Paths

Gϕ is ⊥ release ϕ and amounts to the infinite conjunction

ϕ ∧ next(ϕ) ∧ next(next(ϕ)) ∧ · · ·

which we shall analyze as follows. Given a language L, we say a language X is
an L-path if ∅ �= X ⊆ L and

(i) for all s ∈ X, there exists s′ ∈ X such that s′ � �+s�+

(ii) for all s, s′ ∈ X, there exists s′′ ∈ X such that s′′�s and s′′�s′.

144 Tim Fernando

For example, for each s ∈ L, �∗s�∗ is a �∗L�∗-path (although a �∗L�∗-path
need not be a subset of �∗L�+ or �+L�∗). An L-path X is said to be principal
if for some string s, X ⊆ �∗s�∗.
Definition. A set L of nowΦ-pointed strings pathwise Φ-represents ϕ if ϕ is
equivalent to the disjunction over L-paths X of conjunctions

∧{fmla(s) : s ∈ X}
in that

〈V, x〉 |= ϕ ⇐⇒ (∃L-path X)(∀s ∈ X) 〈V, x〉 |= fmla(s)

for all V : P → Pow(Z) and x ∈ Z.

We can then prove an analog of Theorem 1 for pathwise (as opposed to string-
wise) P -representations of formulas from a set P∞ extending P • with dual con-
nectives ⊥, release,ntil , since and sinc. C(ϕ) is revised to D(ϕ), bringing in the
two forms (10) and (11) of non-contradiction,

D(p) def= [�] now �∗ now | p, p for p ∈ P

D(ϕ) def= [�] now �∗ now | ⊥ for ϕ ∈ {#,⊥} ,

treating ∧,∨,next , prev , until , since, ntil and sinc as does C

D(ϕ ∧ ψ) def= D(ϕ) ∩ D(ψ) ∩ (ϕ ∧ ψ ⇒ ϕ, ψ)

D(ϕ ∨ ψ) def= D(ϕ) ∩ D(ψ) ∩ (ϕ ∨ ψ ⇒ ϕ | ψ)

D(next(ϕ)) def= D(ϕ) ∩ (next(ϕ) a⇒ ϕ)

etc, and building (12) and (13) into release

D(ϕ release ψ) def= D(ϕ) ∩ D(ψ) ∩
(ϕ release ψ ⇒ ψ) ∩

(ϕ release ψ �⇒ ϕ � | � ϕ release ψ)

and similarly for since. Finally, we set

D̂(ϕ) def= D(ϕ) ∩ 〈�〉 now , ϕ

and refrain from the unpadding in Theorem 1.

Theorem 2. Every ϕ ∈ P∞ is pathwise P -represented by the regular language
{ρ(s) : s ∈ D̂(ϕ)�}.

5 Conclusion

The main results of the preceding account of temporal propositions as regular
languages are Theorems 1 and 2 (from §§3.2 and 4.2). The theorems essen-
tially implement well-known tableau constructions for Linear Temporal Logic

Temporal propositions as regular languages 145

[3] through finite-state methods. As we shall see next, these methods extend to
constructs in Hybrid Logic [10]. Beyond any application to a particular formal
system, the methods feature notions (such as bounded entailment |− C defined
in §2.2) that are part of a tool-kit for an approach to natural language semantics
representing events as strings so that entailments can be read directly off the
event representations. We close by outlining an approach based on these methods
to changes over time against an inertial background [11].

5.1 Hybrid Logic

A basic notion in Hybrid Logic is that of a nominal , the collection of which we
shall assume form a designated subset P 0 ⊆ P of atomic propositions that a
valuation V is required to map to singleton sets

(∀n ∈ P 0) V (n) has cardinality 1 .

The uniqueness requirement on nominals n is built into the language

[�] n �∗ n

which we may assume is part of the constraints for n ∈ P 0 . For arbitrary lan-
guages L and L′ over Σ, let us write L

�→ L′ for the set of strings that weakly
subsume L′ whenever they weakly subsume L

L
�→ L′ def= {s ∈ Σ∗ : if s�L then s�L′} .

The special case of L′ = ∅ reduces to [�] L

[�] L = L
�→ ∅ .

The operation �→ preserves regularity, as

L
�→ L′ = 〈�〉L ∩ 〈�〉L′

= [{(s, s) : s�L}]〈�〉L′ .

Forming L
�→ L′ with L′ �= ∅ pays off when analyzing a couple of constructs, @

and E, in Hybrid Logic. These constructs allow us to say of a temporal propo-
sition ϕ that it holds at a nominal n

〈V, x〉 |= @nϕ
def⇐⇒ 〈V, nV 〉 |= ϕ where V (n) = {nV } (14)

or that it holds somewhere

〈V, x〉 |= Eϕ
def⇐⇒ (∃y) 〈V, y〉 |= ϕ . (15)

We can capture (14) as

@nϕ
�→ n, ϕ

146 Tim Fernando

and (15) as

Eϕ
�→ ϕ .

To define negation via De Morgan duals, we set

@ = @
E = A

and associate with Aϕ the constraints

�+ Aϕ ⇒ ϕ �+

Aϕ ⇒ ϕ

Aϕ �+ ⇒ �+ ϕ

supporting a reading of Aϕ as “at all times (the past, the present and the future),
ϕ.”

Another construct from Hybrid Logic is the binder ↓ that we will assume
combines a nominal n ∈ P 0 with a temporal formula ϕ in which ‘↓n’ does not
occur. The resulting formula ↓n.ϕ is then interpreted according to

〈V, x〉 |=↓n.ϕ
def⇐⇒ 〈V x/n , x〉 |= ϕ

where V x/n is V except that it maps the nominal n to {x}. The corresponding
constraint is

↓n.ϕ ⇒ n, ϕ

(with the proviso that ‘↓n’ does not occur in ϕ).

5.2 Non-monotonic inertial reasoning

Finally, consider a temporal formula ϕ that, in the absence of a force against
it, persists over time. A simple way of formulating this idea is to introduce a
temporal formula fϕ intuitively saying that “a force is applied to make ϕ true
(at the next step)” so that the constraint

ϕ � ⇒ � ϕ | fϕ � (16)

can be read as: ϕ persists (to the next step) unless a force is applied against it.
Turning the force around to one fϕ for (rather than against) ϕ, we obtain the
backward form of persistence

� ϕ ⇒ ϕ � | fϕ � (17)

Temporal propositions as regular languages 147

making ϕ persist backward unless it was previously forced [9]. Together, (16)
and (17) imply “no change without force.” Distinguishing fϕ from fϕ allows us
to formulate the constraint

fϕ � ⇒ � ϕ | fϕ � (18)

saying that an unopposed force for ϕ brings ϕ about at the next step. The non-
determinism expressed in the righthand sides of (16), (17) and (18) by choice |
opens the door to non-monotonicity as soon as we apply bias to choosing between
the opposite sides of |. For instance, the assumption

(†) no force is applied unless it is explicitly mentioned

boosts the inference

ϕ � |− (16) � ϕ | fϕ �
to:

(‡) from ϕ �, infer � ϕ

(as no force is mentioned in ϕ �). The inference (‡) is soft inasmuch as the
principle (†) licensing it is. (‡) is non-monotonic in that we lose the conclusion
� ϕ if we enrich the premise ϕ � to ϕ, fϕ � (which subsumes ϕ �).

More precisely, recall that

L |− CL′ ⇐⇒ C ∩ 〈�〉L � L′ . (19)

If in (19) we were to refine the Peirce product

〈�〉L = L� & Σ∗

(where L� is �∗unpad(L)�∗) by &-superposing L� not with Σ∗ but with a
sublanguage H such as

Pow(Φ− {fϕ, fϕ, . . .})∗

then there would be more languages L′ such that

C ∩ (L� & H) � L′ (20)

than such that L |− CL′. As far as computability is concerned, the important
point about (20) is that it is as much an inclusion between regular languages as
L |− CL′ is. What (20) offers is a handle H on what to &-superpose with L�
before intersecting it with the constraints C to see what is weakly subsumed.
Under (20), there are two distinct ways to enrich L�: by intersection with hard
constraints C and by superposition with permissible hypotheses H. The non-
monotonicity in (‡) above can be traced to a choice in (†) of H short of the full
space Σ∗ of possibilities entertained in |− C . Bias is injected into the choice

� ϕ | fϕ �

by including the left side � ϕ in H, while excluding the right side fϕ � from H.

Equally, we could pick an H ′ that throws out � ϕ and lets in fϕ � to explain
the failure of ϕ to persist in ϕ �.

148 Tim Fernando

References

1. Beesley, K.R., Karttunen, L.: Finite State Morphology. CSLI Publications, Stan-
ford (2003)

2. Emerson, E.A.: Temporal and modal logic. In Leeuwen, J.v., ed.: Handbook of
Theoretical Computer Science. Volume B: Formal Methods and Semantics. MIT
Press (1992) 995–1072

3. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
4. Fernando, T.: A finite-state approach to events in natural language semantics.
Journal of Logic and Computation 14(1) (2004) 79–92

5. Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In:
Computer Aided Verification. Springer LNCS 1855 (2000) 403–418

6. Brink, C., Britz, K., Schmidt, R.: Peirce algebras. Formal Aspects of Computing
6(3) (1994) 339–358

7. Harel, D.: Dynamic logic. In Gabbay, D., Guenthner, F., eds.: Handbook of
Philosophical Logic. Volume 2. Reidel, Dordrecht (1984) 497–604

8. Karttunen, L.: www.stanford.edu/˜laurik/fsmbook/examples/Yale Shooting.html
(2005)

9. Fernando, T.: Finite-state temporal projection. In: Proc. 11th International Con-
ference on Implementation and Application of Automata. Springer LNCS 4094
(2006) 230–241

10. Areces, C., ten Cate, B.: Hybrid logics. In Blackburn, P., Wolter, F., van Benthem,
J., eds.: Handbook of Modal Logics. X (2005) (In Preparation).

11. McCarthy, J., Hayes, P.: Some philosophical problems from the standpoint of
artificial intelligence. In Meltzer, M., Michie, D., eds.: Machine Intelligence 4.
Edinburgh University Press (1969) 463–502

	Temporal propositions as regular languages
	1 Introduction
	1.1 Representations over the integers
	1.2 Related work

	2 Inclusions comparing information content
	2.1 Superposition and subsumption
	2.2 Padding and entailments

	3 Constraints and their applica
	3.1 Constraints conditioned by subsumption
	3.2 Application with minimization and projection

	4 Negation and paths for infinite strings
	4.1 Negation
	4.2 Paths

	5 Conclusion
	5.1 Hybrid Logic
	5.2 Non-monotonic inertial reasoning

	References

