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EE
instein famously wrote that the most incomprehen-
sible thing about the world is that it is comprehen-
sible. He was thinking about mathematical and the-

oretical physics. The idea is an old one. Nobel prize winner
Paul Dirac believed that mathematics was an especially
well-adapted tool to formulate abstract concepts of any
kind, and he also famously insisted that mathematical
beauty is a key criterion for physical laws.

1 But one of the
most famous presentations of that thought was by Dirac’s
brother-in-law, Wigner Jeńó Pál, a.k.a. Eugene P. Wigner.

Wigner was a highly successful scientist. In mathemati-
cal circles he is best known for his contributions to
quantum theory, pioneering the application of group the-
ory to the discovery of fundamental symmetry principles—
and, of course, for his 1960 paper ‘‘The Unreasonable
Effectiveness of Mathematics in the Natural Sciences.’’
Some passages of the 1960 paper are often quoted; here is
one:

The miracle of the appropriateness of the language of
mathematics for the formulation of the laws of phy-
sics is a wonderful gift which we neither understand
nor deserve. We should be grateful for it and hope
that it will remain valid in future research and that it
will extend, for better or for worse, to our pleasure
even though perhaps also to our bafflement, to wide
branches of learning (Wigner 1960, 237/549).

Toward the beginning of his essay, Wigner writes that ‘‘the
enormous usefulness of mathematics in the natural sciences
is something bordering on the mysterious and […] there is
no rational explanation for it’’ (1960, 223/535). It is telling
that the word ‘‘miracle’’ appears twelve times in the text!

Surely Wigner’s focus was more on the question of what
it is in the physicist’s approach to reality, as it has devel-
oped since Newton, that makes it possible to formulate
mathematical laws.2 But in fact his paper has been widely
discussed in connection with a related question, which is
our concern here; namely, what is it within mathematics
that makes possible its highly successful application in
physics? A good number of people have offered replies to
Wigner, aiming to show that there is no miracle.3 Here too
we shall critically discuss elements of Wigner’s presentation
that unduly transform the relation between mathematics
and physics into ‘‘a gift’’ or ‘‘miracle’’ that is very difficult to
understand. Beyond that, we shall try to unveil the sources
of Wigner’s point of view. His discussion is characteristic of
mid–20th-century images of mathematics, but it is hard to

1Dirac (1963) expressed this consideration in very strong terms; see also Kragh (1990).
2In a paper that came to my attention, Arezoo Islami (2016) suggests that this is the right understanding of Wigner’s paper. This convincing reading would also help to

explain the relatively careless presentation of ideas about mathematical theory, as opposed to physical theory, in the paper (see the following).
3An example in this same journal is Grattan-Guinness 2008; see also Lützen (2011) and Russ (2011).
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square with present conceptions or even with the views of
the best experts from a generation before him.4

Wigner’s Views and the New Practice of
Mathematical Physics
I will distinguish three different parts in Wigner’s 1960
paper. First, there are three sections devoted to generalities
about mathematics and physics, in which the reflections
regarding physics stand out as more relevant and insightful.
Concerning physics, he lays emphasis on how the identi-
fication of regularities in the chaotic phenomena depends
on packing a lot of the information into the ‘‘initial condi-
tions.’’5 Next is a section in which Wigner makes his
strongest case, highlighting the success of mathematical
laws in physical theories to underscore how it is ‘‘truly
surprising.’’ Finally, he moves on to question the unique-
ness of physical theory, that is, the hope for a single
foundation of all physics or even all science.6 I will begin in
the middle by explaining the strongest case Wigner makes
for the astonishing effectiveness of mathematics as a central
component of the methodology of physics.

In the section entitled ‘‘Is the Success of Physical The-
ories Truly Surprising?’’ Wigner offers three examples—
which, he adds, could be multiplied almost indefinitely—to
illustrate the appropriateness and accuracy of the mathe-
matical formulation of the laws of nature:

• Newton’s law of gravitation,
• Heisenberg’s rules of matrix mechanics,
• and the theory of Lamb shift in QED.

The law of gravity ‘‘which Newton reluctantly established’’
and which he could verify to within an error of about 4%,
has proved to be accurate to within an error of less than
1/10,000 of 1%. It ‘‘became so closely associated with the idea
of absolute accuracy that only recently did physicists
become again bold enough to inquire into the limitations of
its accuracy’’ (Wigner 1960, 231/543).

As for the second example, from the early years of
quantum mechanics, Heisenberg established some quan-
tum-mechanical rules of computation—which were to lead
to matrix mechanics—on the basis of a pool of data that
included the behavior of the hydrogen atom and its spec-
trum. When Pauli applied quantum mechanics to the
hydrogen atom in a realistic way, the positive results were
an expected success. But then, says Wigner, it was ‘‘applied
to problems for which Heisenberg’s calculating rules were
meaningless.’’ These rules presupposed that the classical
equations of motion had solutions with certain periodicity
properties, ‘‘and the equations of motion of the two elec-
trons of the helium atom, or of the even greater number of
electrons of heavier atoms, simply do not have these
properties, so that Heisenberg’s rules cannot be applied to
these cases. Yet the calculation of the lowest energy level of

helium, as carried out a few months ago [1959] by Kinoshita
at Cornell and by Bazley at the Bureau of Standards, agree
with the experimental data within the accuracy of the
observations, which is one part in ten millions. Surely in
this case we got something out of the equations that we did
not put in.’’ (Wigner 1960, 232/544)

Certainly Wigner has a point here. In his view, it is the
theoretical separation between initial conditions of the
system and the simple, mathematical ‘‘laws of nature’’ that
have allowed physicists to attain such impressive levels of
success. Wigner is right in that the actual empirical success
of physical laws went far beyond anything that might rea-
sonably have been expected at the outset. It is
unconvincing to regard this as the outcome of mere
chance, but is there ‘‘no rational explanation for it’’?

As we shall see, the way in which Wigner framed his
understanding of mathematics plays a large role in cre-
ating the ‘‘mystery,’’ the impression of a miracle. The
advancement of physical science shows undeniably that
there are mathematical structures underlying natural
processes and phenomena. (Of course we lack an a
priori argument that it must be so, but science never
offers ultimate answers.) Even if we admit that there is a
common structure between our mathematical models
and real phenomena, this does not force us to interpret
realistically all features of the models. That is, one can
still be critical and ponder the possibility that some
features of the mathematics may be human artifacts that
perhaps impute extra structure, complications which
distance our physico-mathematical understanding from
‘‘the real’’ itself.

Wigner was an important figure in the emergence of the
radically new mathematical toolbox of quantum physics,
built on top of new, abstract, unintuitive representations.
Some physicists resented the abandonment of the toolkit of
classical analysis in favor of group-theoretic methods,
abstract spaces, and so on. Around 1930, they described
these innovations as a ‘‘group pest’’ or ‘‘plague of groups.’’
The situation worsened when, instead of seeking explicit
solutions by calculus, the new goal became to find invari-
ants associated with structural representations. Higher
levels of theorizing began to occupy center stage, a case in
point being symmetry considerations one level above the
mathematical laws of physics (see Scholz 2006).

Broadly speaking, an essential ingredient of the new
type of work was the infusion of a new style of structural
and qualitative methods (set theory, topology, symmetries)
to replace the old quantitative spirit and its search for
concrete solutions on the side of calculation. Little wonder
that questions would arise about the new balance between
mathematics and physics. Before we discuss his views on
mathematics, I will argue that Wigner’s formative years in
Berlin seem to have been particularly relevant in shaping
his philosophical views.

4For a broad and enlightening historical perspective on this topic, see Bottazzini and Dalmedico (2001).
5Wigner’s views on physical theory are very interesting, but we cannot go into details here. The interested reader may consult his Nobel lecture, in which he amplifies

these themes, and also Islami (forthcoming).
6He insists that it is conceivable that one will be unable to unify the fundamental physical theories, and even more so for theories of biology or of consciousness. This

argument may well have been aimed at the Unity of Science movement, which was seeking to unify all science from a physicalist standpoint.
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Some Biographical Elements
Eugene Wigner, who was born in Budapest in 1902, came
from a well-to-do family. His long life included an exten-
ded period in Berlin until 1936, and a still longer one in the
United States, mostly working at Princeton. He was awar-
ded the Nobel Prize for Physics in 1963 ‘‘for his
contributions to the theory of the atomic nucleus and the
elementary particles, particularly through the discovery and
application of fundamental symmetry principles.’’7 Obvi-
ously the Nobel increased the visibility of Wigner’s
reflections on science, and in 1967 he published a selection
of essays under the apt title Symmetries and Reflections.
One of them was ‘‘The Unreasonable Effectiveness of
Mathematics in the Natural Sciences,’’ originally published
in the Annals of Pure and Applied Mathematics in 1960.

In Budapest, Wigner attended a secondary school
(Gimnázium) where he obtained a sound training in
mathematics. Two people were crucial in this respect, the
noted mathematics teacher László Rátz, who knew how to
care about promising students, and a fellow student who
was one year younger, Neumann János, a.k.a. John von
Neumann. Wigner’s friendship with von Neumann was a
lasting one and he would later acknowledge that he
learned more mathematics from von Neumann than from
anyone else.8

Wigner studied chemical engineering at the Technical
University in Berlin, a choice strongly influenced by his
father. He himself was more attracted to physics, and this
led him to attend the Wednesday meetings of the German
Physical Society, where he could see and hear luminaries
such as Einstein, Planck, Sommerfeld, and Heisenberg. A
noteworthy remark in his autobiography reads: ‘‘In my
apartment, I read books and articles on chemical analysis,
set theory, and theoretical physics’’ (Szanton 1992, 65). His
independent reading on set theory is noteworthy, but this
was probably because von Neumann was heavily engaged
with the subject.

In the academic year 1926–1927, Wigner obtained a
position in Berlin as an assistant to Karl Weissenberg, who
worked on X-ray crystallography. Through his engagement
with crystallography, Wigner was led to study group the-
ory, taking up the algebra textbook by Heinrich Weber and
then solving questions posed by Weissenberg.9 The fol-
lowing academic year, he went to Göttingen to work as an
assistant to David Hilbert. This might have been a
momentous opportunity, yet things did not work out so
well since Hilbert was seriously ill. Wigner was left to work
on his own, and so decided to investigate the relation
between group theory and the new quantum mechanics.

Von Neumann had given him a crucial pointer, suggesting
that he use group representations as found in the relevant
papers by Georg Frobenius and Issai Schur.10 Thus he
became a pioneer in the new mathematical methods of
theoretical physics.

Wigner receiving the Medal for Merit for his work on the

Manhattan Project from Robert P. Patterson (left), March 5,

1946

Someone (presumably Wolfgang Pauli) characterized
the period we are talking about as a time of ‘‘Gruppenpest’’
in physics.11 The metaphor of a disease reflects the feeling
of alienation experienced by many theoretical physicists,
realizing that their traditional toolbox of classical analytical
methods was being replaced by new and foreign ‘‘abstract’’
ideas. Wigner worked especially on the study of atomic
spectra, which was to be the topic of his important book
Gruppentheorie und ihre Anwendungen auf die Quan-
tenmechanik der Atomspektren (1931). In the introduction
he emphasizes how the precise solution of quantum
mechanical equations by calculus is extraordinarily diffi-
cult, so that one could only obtain gross approximations.
‘‘It is gratifying, therefore, that a large part of the relevant
results can be deduced by considering the fundamental
symmetry operations [durch reine Symmetrieüberlegun-
gen].’’ He adds,

Against the group-theoretic treatment of the Schrö-
dinger equation, one has often raised the objection
that it is ‘‘not physical.’’ But it seems to me that a
conscious exploitation of elementary symmetry

7Half the prize went to Wigner, and the other half jointly to Maria Goeppert Mayer (the second woman to get the prize, after Marie Curie) and to J. Hans D. Jensen.
8‘‘Jancsi von Neumann taught me more mathematics than any other of my teachers, even Ratz of the Lutheran gimnázium. And von Neumann taught not only

theorems, but the essence of creative mathematical thought: methods of work, tools of argument’’ (Szanton 1992, 130).
9See Szanton 1992, 105–106; one of these questions was recognized by von Neumann to be related to group representations, and he told Wigner to study Frobenius

and Schur (1905). On Weber’s textbook, a crucial source for one or two generations of algebraists, see Corry 1996.
10See Hawkins (2000).
11Szanton 1992, 116–117. In an interview with Kuhn (1963), Wigner said: ‘‘I don’t think [Pauli] liked it particularly … there was a word, Die Gruppenpest, and you have

to chase away the Gruppenpest. But Johnny Neumann told me, ‘‘Oh these are old fogeys; in five years every student will learn group theory as a matter of course,’’ and

essentially he was right.’’ (Arch. for Hist. of Quantum Physics. Eugene P. Wigner, Interview with T. S. Kuhn).
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properties ought to correspond better to physical
sense than a treatment by calculation.12

In 1928 Wigner became a Privatdozent at the Technische
Hochschule in Berlin, but given the worsening political
situation in Europe, in 1936 Wigner and von Neumann
decided to settle permanently in ‘‘the New World.’’ Nev-
ertheless, the European years in the 1920s and 1930s had a
particularly strong impact on Wigner’s views. In Germany
at the time, there was an intense sense of rupture, of new
forms of life being created. Quantum mechanics was
perceived as a radical break with the past. One spoke of
‘‘Knabenphysik,’’ because its protagonists were all ‘‘young-
sters’’ (except for Max Born and Niels Bohr). This tense
social and intellectual atmosphere was alluded to in
Wigner’s reminiscences:

Historians tell us that Berlin in the 1920s was a city in
chaos. … Is a radical a man who repudiates the
society of his parents and teachers? If so, then I was
no radical in Berlin. I admired my teachers more with
each passing year. I loved my parents and wanted to
help them. To dream of pursuing a career that they
had not chosen was a radical enough path for a youth
of my background. I had no wish to be more radical
than that. But if a radical is someone who regards a
traditional subject in a revolutionary way, then per-
haps I was a radical, because quantum mechanics
had transformed physics and I embraced quantum
mechanics fervently. (Szanton 1992, 84)

Wigner’s early exposure to abstract mathematical theories
led him to adopt some new and radical ideas about
mathematics. These ideas were very different from the
views of previous generations, and they came to be clearly
expressed in his 1960 paper.

What Is Mathematics? To Be or Not to Be a
Formalist
In the section ‘‘What is mathematics?’’ Wigner provides a
surprisingly simple answer to this question:

[…] mathematics is the science of skillful operations
with concepts and rules invented just for this pur-
pose. The principal emphasis is on the invention of
concepts. […] The depth of thought which goes into
the formulation of the mathematical concepts is later
justified by the skill with which these concepts are
used (Wigner 1960, 224, W. 536).

Wigner here emphasizes the predominant role of intra-
mathematical considerations, regardless of the potential for
application to real phenomena. However, he makes a
distinction. On the one hand, we have basic ideas such as
the concepts and principles of elementary geometry,

rational arithmetic, and even irrational numbers—which
are directly suggested by the physical world. On the other
hand,

Most more advanced mathematical concepts, such as
complex numbers, algebras, linear operators, Borel
sets—and this list could be continued almost indefi-
nitely—were so devised that they are apt subjects on
which the mathematician can demonstrate his inge-
nuity and sense of formal beauty (Wigner 1960, 224).

Ingenuity, inventiveness, the skill of the virtuoso to
develop interesting connections, guided by a sense of
formal beauty and a basic concern for logical coherence,
are what drive pure mathematics.

Such a description brings to mind the modernist work of
von Neumann around 1930: developing axiomatic set the-
ory in a way completely different from Zermelo’s and
introducing the notion of Hilbert space to redefine in a
much more abstract setting the foundations of quantum
mechanics.13 Further, von Neumann was working on Hil-
bert’s metamathematical program, and was invited to
represent the foundational standpoint of formalism in a
conference on the Epistemology of the Exact Sciences,
organized jointly by the Berlin Society for Empirical Phi-
losophy and the Vienna Circle in September 1930.

Strict formalism interprets mathematical systems as a
game of symbols. The symbols have no other content than
they are assigned in the calculus by their behavior with
respect to certain rules of combination, the only require-
ment being consistency of the system. The network of
relations thus codified in a formal calculus restricts possible
applications or interpretations of the system. In the 1930s,
this formalistic standpoint had the advantage of eliminating
all ‘‘metaphysical difficulties’’ concerning mathematics, and
in particular the need for positing any Platonic realm of
mathematical objects. Formalism also incorporated traits of
‘‘conventionalism’’ about mathematics such as the insis-
tence on simplicity and elegance or beauty as guides in the
formulation of the basic principles of axiomatic systems.

In fact, Wigner’s paper offers very little information on
his sources about the idea of mathematics. We find a brief
reference to Hilbert on foundations (1922), another passing
reference to Karl Polanyi,14 and mention of Die Philosophie
der Mathematik in der Gegenwart (1932) by Walter Dubi-
slav. Yet if we reflect on these sources, adding Wigner’s
time in Göttingen and his relation to von Neumann, links to
the Hilbert School are predominant.

The case of Walter Dubislav (1895–1937) is particularly
interesting. He was a member of the Berlin Association for
Empirical Philosophy and one of the signers of the famous
Vienna Circle manifesto. He began studying mathematics at

12Years later, when the English version was published, he wrote: ‘‘When the original German version was first published, in 1931, there was a great reluctance among

physicists toward accepting group theoretical arguments and the group theoretical point of view. It pleases the author that this reluctance has virtually vanished in the

meantime and that, in fact, the younger generation does not understand the causes and the basis for this reluctance. Of the older generation it was probably M. von

Laue who first recognized the significance of group theory as the natural tool with which to obtain a first orientation in problems of quantum mechanics.’’
13According to Saunders Mac Lane (in Duren 1989, 330), after a lecture by von Neumann at Göttingen in 1929, Hilbert asked ‘‘Dr. von Neumann, ich möchte gern

wissen, was ist dann eigentlich ein Hilbertscher Raum?’’ (‘‘Dr. von Neumann, I would like to know, what after all is a Hilbert space?’’).
14There is not enough space here to develop, but one should emphasize that Polanyi was a very important influence, ‘‘my dearest teacher’’ who ‘‘decisively marked my

life’’ (Szanton 1992, 76). A physical chemist, Polanyi was to become a philosopher of science and may have influenced Wigner insofar as he was heavily marked by

matter/mind dualism (op cit. 76 ff). See also Esfeld (1999).
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Göttingen, but World War I intervened. After military ser-
vice he went to the University of Berlin, concentrating on
philosophy and logic. The brief presentation of the phi-
losophy of mathematics offered in his 1932 textbook is very
clear, emphasizing mathematical logic, axiomatic thinking,
and a form of empiricism in the case of applied mathe-
matics. The imprint of the Hilbert School is undeniable
here. Dubislav argued for the ‘‘character of calculation
[Kalkülcharakter] in pure mathematics’’ and defended a
strict formalism:

Formalism states the following: that pure logic like
pure mathematics are in the strict sense of the term
not sciences, […] Pure logic and pure mathematics
are calculi [Kalk€ule] which deal with this: obtaining
from certain initial formulas, arbitrary in themselves,
more and more formulas according to rules of
operation that in themselves are arbitrary. Put grossly:
pure logic and pure mathematics, taken in them-
selves, are games of formulas [Formelspiele] and
nothing else (Dubislav 1932).

This was not yet a familiar point of view. As it turns out,
Dubislav was a Privatdozent at the Technische Hochschule
Berlin from 1928 and a colleague of Wigner there.15

Two issues deserve to be emphasized. First, logical
empiricism would continue to be prominent in the philo-
sophical context around Wigner and is visible in his (1960).
But the second point is more directly interesting for my
purposes. We have seen that Dubislav was a strict formalist,
and that Wigner himself still defended a kind of formalism
in his remarks about mathematics. The previous generation
of physicists and mathematicians were not formalists and it
was only the generation that matured in the 1920s that
understood the new ideas about axiomatics, structures,
logic, and foundations in a radical way. The situation is
parallel to the radicalism of the new conceptions of the
physical world among the ‘‘youngsters’’ who advanced
quantum physics.

Hilbert was not a formalist at the level of epistemology.
His celebrated formalism was a method adopted in the
context of studies of the foundations of mathematics, for
the goals of metamathematics (consistency proofs, decision
procedures). Using the axiomatic method, one may begin
by considering a particular field of work with concrete
ideas. But there is much to gain methodologically by dis-
regarding the particular meaning of the concepts,
considering the axioms as schematic conditions, and
adopting full freedom of interpretation. In foundational
research, this attitude can be amplified to achieve strict
formalization, but these methods do not expand into a full
epistemological account, and such an account was not at all
Hilbert’s intention.

Incidentally, it is easy to find a thousand places in which
Hilbert is alleged as saying, ‘‘Mathematics is a game played
according to certain simple rules with meaningless marks

on paper.’’ The source of this (mis)quotation seems to be E.
T. Bell, and it can nowhere be found in Hilbert’s papers.
What we can find in lectures of 1919–1920 is the following:
‘‘There is no talk of arbitrariness here. Mathematics is not
like a game in which the problems are determined by rules
invented arbitrarily, but a conceptual system [endowed]
with inner necessity, that can only be this, and not any
other way.’’16

I have previously mentioned the novelty of the work in
mathematical physics around 1930 with its infusion of a
new spirit of structural and qualitative methods in place of
the old quantitative spirit. But this was not unknown to
Henri Poincaré or Hilbert, so it cannot be simply regarded
as the source of a formalist attitude. In this case, other more
general sources have to be found, coming largely from the
intellectual context.

As we discussed earlier, the young intellectuals in Berlin,
during the 1920s, were living in a rather chaotic, rapidly
changing, and heated cultural atmosphere. After wartime
defeat and the political and economic turmoil (inflation, the
Weimar republic), one could hear everywhere the call for a
‘‘new order,’’ a new society, indeed a ‘‘new man,’’ and of
course new forms of science. Such a setting promoted
forms of modernism in the sciences, modernistic tenden-
cies that presented themselves as a radical break with the
past.17 Jeremy Gray (2008) offered a reconstruction of early
20th century mathematics as undergoing a ‘‘modernist
transformation.’’ He defines modernism, in science or
mathematics, as the new conception of the field as ‘‘an
autonomous body of ideas, having little or no outward
reference, placing considerable emphasis on formal aspects
of the work and maintaining a complicated—
indeed, anxious—rather than a naı̈ve relationship with the
day-to-day world’’ (Gray 2008, 1). The interwar period was
a particularly high time for such modernist tendencies.

Hilbert was basically right: formalism is very good as a
method for studying foundations, but philosophical ques-
tions about the epistemic nature of mathematical
knowledge require more sophisticated answers. Moreover,
the examples Wigner presents from advanced mathematics
do not support his formalist views. His list included com-
plex numbers, algebras, linear operators, and Borel sets.
His idea was that the elaboration of such concepts is guided
by intramathematical considerations, disregarding consid-
erations of the potential for application to natural
phenomena. They are, according to him, ‘‘so devised that
they are apt subjects on which the mathematician can
demonstrate his ingenuity and sense of formal beauty.’’

What Is Mathematics? Remarks on the
Reasonable Development from Physics
Wigner’s most convincing example is that of complex
numbers. Italian mathematicians introduced the square
root of -1 in the 16th century to manipulate numbers and

15He may have given the 1930 book to Wigner as a gift. Wigner (1960, 237/549) also refers to Dubislav’s Natural Philosophy of 1933, a text defending an empiricist

philosophy of science.
16D. Hilbert, Natur und mathematisches Erkennen, lectures delivered in 1919–1920, ed. D. Rowe (Basel, Birkhäuser, 1992). The point has been made repeatedly by

experts such as Corry 1996; Rowe, 2000; Mancosu 2010, 139–140.
17See Gray 2008, Epple and Müller 2017, and earlier work by Herbert Mehrtens.
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expressions in algebraic equations. Astonishingly, the
imaginary numbers turned out to play important roles in
different places: the equation that some consider the most
beautiful in all of math, epi + 1 = 0 (Euler), the fundamental
theorem of algebra (D’Alembert and Gauss), Cauchy’s
integral formula, Riemann’s mapping theorem, etc. Even
so, the early results and procedures did not establish a
secure position for imaginary numbers in the world of
mathematics. Their full adoption occurred only in the 19th
century and involved a reconception of the number con-
cept as well as the establishment of geometric
representations of the complex numbers. For Gauss and
Riemann, considering the system of complex numbers as
the natural general framework for number in general was a
basic commitment and fundamental principle of pure
mathematics.18

Wigner later emphasizes that quantum mechanics is
formulated on the basis of complex Hilbert space. This is
why theoretical physicists, such as Wigner and Roger
Penrose, have placed great emphasis on the complex
number structure. However, going somewhat against
Wigner’s thesis, the complex field inherits most of its
properties from the real field. Wigner himself stressed that
the real number system was devised so as to mirror the
properties of measurable quantities. But let us concede that
the story of complex numbers fits well with Wigner’s
viewpoint; their importance in connection with the theory
of electromagnetic fields and, even more, quantum theory
is astonishing.

Given that Wigner pioneered group-theoretic methods
in quantum mechanics, it is noteworthy that group theory is
not among his examples. However, it may well be the case
that Wigner was aware of opinions like Hermann Weyl’s
(1928), that the group concept is in a sense ‘‘one of the
oldest’’ mathematical concepts. The reasoning behind this
statement is that group structures are implicit behind all
kinds of ancient concepts and practices—symmetry con-
siderations, operations of translation and congruence in
basic geometry, measuring operations, and so on. Weyl’s
quite reasonable view is that 19th-century explorations and
formalizations just made explicit and abstract what had
been there, implicitly, throughout the history of
mathematics.

Likewise, linear operators and matrices might have
seemed a very novel feature to physicists around 1930, for
the simple reason that they had not been part of their basic
education, but in fact linear algebra arose naturally in dif-
ferent areas of mathematics and its applications. As Kleiner

(2007, 79) remarks, ‘‘the subject had its roots in such
diverse fields as number theory (both elementary and
algebraic), geometry,19 abstract algebra (groups, rings,
fields, Galois theory), analysis (differential equations,
integral equations, and functional analysis), and physics.’’
Thus these examples were not good choices for Wigner’s
purposes.

Perhaps the oddest example in Wigner’s list is his ref-
erence to Borel sets, given that these play no immediate
role in physics. Probably Wigner chose the example of
Borel sets as one of the central concepts of set theory in the
first third of the 20th century—what better example of the
purest in pure math?20 Yet this case goes rather against his
thesis. Borel sets are strongly linked with the function
concept and their study was motivated by a desire to re-
strain the most general and arbitrary possibilities opened
by set theory, to focus on concrete ideas closer to classical
math.21 The all-important notion of function is something
that one misses in Wigner’s list. But the study of functions
has constantly been promoted by extramathematical con-
siderations, mostly physical.

As suggested previously, it is natural to compare Wig-
ner’s views with Poincaré’s. Both were pioneers in the new
mathematical methods and their use in physics—the group
concept was a key guiding element—and both were highly
influential in promoting new qualitative approaches and
techniques. Also, both scientists were inclined to general
philosophical reflection, and it is interesting that both
emphasized the importance of the aesthetic element in
guiding pure mathematics. Yet Poincaré never suggests a
‘‘miracle’’ in the role of mathematics in physics; on the
contrary, he insisted on the interplay between mathematics
and science, and he (unlike Wigner) emphasized the cen-
trality of the continuum and the function concept. Thus in
The Value of Science he writes:

…physics has not only forced us to choose among
problems which came in a crowd; it has imposed
upon us problems such as we should without it never
have dreamed of.22

A case in point might be Fourier’s work in Théorie
analytique de la chaleur (1822), in which he used
trigonometric series in mathematical physics, also linked
with the famous 18th-century discussion about vibrating
strings. Fourier series were the background for Dirichlet’s
proposal of the notion of arbitrary function, as well as
Riemann’s study of highly discontinuous functions and his
notion of the integral.

18On the history of complex numbers, see Nahin (1998), Ebbinghaus et al. (1991), and Flament (2003).
19Thus Grassmann in 1844 coming from geometry, and Dedekind in 1871 from algebraic number theory, were among the first to articulate modern ideas about the

subject clearly (Kleiner 2007, 84–88).
20If Wigner studied Hausdorff’s textbook in the 1920s, he must have learned about Borel sets. Hausdorff and Alexandroff proved in 1916 that the Continuum

Hypothesis is true in the limited case of Borel sets; certain properties called ‘‘regularity properties’’ were established for them (e.g., Lebesgue measurability), and set-

theorists were hard at work studying how far those properties applied.
21As a matter of historical fact, Émile Borel, René Baire, and Henri Lebesgue were all critics of Zermelo set theory. After 1905, they all criticized the most general notions

of ‘‘arbitrary’’ set, ‘‘arbitrary’’ function, and the axiom of choice. It was their intention to obtain more clarity about the notion of set by focusing on sets that can be

‘‘constructed’’ by well-understood operations. See Ferreirós (1999, 315–316) and the letters from 1905 that were translated in the Appendix of the book by Moore

(1982).
22‘‘Analysis and Physics,’’ Chapter V of Poincaré 1905, p. 80.
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Conclusions
Even Wigner’s friend, János von Neumann, who may have
entertained modernist views akin to formalism around
1930, was no longer in agreement with him after World
War II. In an interesting paper for the general public,
published in 1947, he writes:

The most vitally characteristic fact about mathematics
is, in my opinion, its quite peculiar relationship to the
natural sciences, or, more generally, to any science
which interprets experience on a higher than purely
descriptive level. […] Some of the best inspirations of
modern mathematics (I believe, the best ones) clearly
originated in the natural sciences. The methods of
mathematics pervade and dominate the ‘‘theoretical’’
divisions of the natural sciences.

Contemporary Soviet mathematicians, who would have
regarded Wigner’s presentation as a quintessential example
of bourgeois philosophy, were even more in favor of such
views. I am led to mention this because Wigner, like his
Hungarian friends Leo Szilard, Edward Teller, and von
Neumann, was strongly anticommunist—and it may be the
case that his political views colored his philosophical ideas.

Many of the great abstractions introduced in mathe-
matics from the mid-19th century have strong roots in the
(physically motivated) mathematics of functions, analysis,
the real-number continuum, and geometry. Actually the
20th-century abstractions are often based on making the
basic assumptions behind the earlier systems more flexible.
And this increase in flexibility provides a very rational
explanation of the applicability of mathematics! It is hardly
surprising that a much more general and flexible theory of
geometrical structures (e.g., Riemannian differential
geometry) can be applied in many contexts in which the
rigid structures of Euclidean geometry would not be
applicable.

Yet perhaps the empirical success of mathematical laws
in physics requires something else.
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Felix Hausdorff (1914). Grundzüge der Mengenlehre, Leipzig: Veit.

Reprinted by Chelsea in 1949.

Thomas Hawkins (2000). Emergence of the Theory of Lie Groups: An

Essay in the History of Mathematics, 1869–1926. New York:

Springer.

Hermann Helmholtz (1887). Zählen und Messen erkenntnistheoretisch

betrachtet, in Schriften zur Erkenntnistheorie, Berlin: Springer,

1921.

David Hilbert (1922). Die logischen Grundlagen der Mathematik, Math.

Annalen 95: 161–165. In Hilbert’s Abhandlungen, vol. 3, 1935,

178–191.

Arezoo Islami (2016). A Match Not Made in Heaven: On the

Applicability of Mathematics in Physics. Synthese. doi:

10.1007/s11229-016-1171-4.

Israel Kleiner (2007). A History of Abstract Algebra. Basel: Birkhäuser.
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