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Abstract. This paper extends Kripke's theory of truth to a language with a
variably strict conditional operator, of the kind that Stalnaker and others have
used to represent ordinary indicative conditionals of English. It then shows
how to combine this with a di�erent and independently motivated conditional
operator, to get a substantial logic of restricted quanti�cation within naive
truth theory.

1. Introduction

The �naive� notion of truth, according to which for each sentence S of our lan-
guage, the claim that S is true is equivalent to S itself,1 appears at �rst blush to be
doomed by the Liar paradox and other related paradoxes. But only at �rst blush:
one of the lessons that can be drawn from Kripke 1975 was that naivety in a theory
of truth can be retained if one is willing to give up the hegemony of classical logic.
There is little reason to doubt the correctness of classical logic as applied to our
most serious discourse, e.g. our most serious physical theories. But the semantic
paradoxes arise because truth talk gives rise to some anomalous applications (e.g.
�viciously self-referential� ones), and it's rash to assume that classical logic contin-
ues to be appropriate to these applications. Maybe we should generalize logic in a
way that allows these anomalies to be treated non-classically, while enforcing clas-
sicality in situations where anomalies can't arise. Kripke's paper, in particular the
parts concerning logics based on Kleene valuation schemes, suggests the possibility
of naive truth in this setting: in particular, one can have naive truth in a logic that
restricts the general application of excluded middle, but which reduces to classical
logic in contexts where the anomalies of truth cannot occur.

It isn't immediately obvious that the best response to the paradoxes is to abandon
the hegemony of classical logic while retaining the hegemony of naive truth�prima
facie, the reverse seems at least as attractive. But the costs of restricting naive
truth turn out to be extraordinarily high,2 and so the program of trying to keep it
by restricting the scope of classical logic is one well worth pursuing. Kripke 1975
was the �rst substantial step.3

1I ignore ambiguities, indexical elements, etc., so as to be able to concentrate on sentence-types.
There are subtleties about how best to extend the idea of naive truth to token utterances, but I
will not be concerned with those issues here.

2See Field 2008, Part II, for a review.
3In Kripke's paper, and in the present paper too, we keep the classical structural rules for

validity: (a) validity is transitive (in the general form given by the Cut Rule), and (b) valid
inference is a relation between a set of premises and a conclusion (as opposed e.g. to a multi-set,
where the number of occurrences of the premise matter, as in logics without structural contraction).
The use of substructural logics is unnecessary.

1
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Kripke's paper by itself shows the possibility of naive truth only for languages
of very limited expressive power. The question arises as to how far his ideas can be
generalized, and on this there has been some progress in recent years. In particular,
there are now techniques for generalizing it to include certain kinds of conditionals
(despite the threat of Curry-like paradoxes)4. But one kind of conditional operator
that has not been treated in the literature on naive truth is �variably strict� con-
ditional operators of the sort that have been discussed by Stalnaker 1968, Lewis
1974, Pollock 1976, Burgess 1981, and many others. The rough idea of such a
conditional is that it is true at a world w if and only if at all worlds x where its
antecedent is true but that are othersise only minimally di�erent from w, its conse-
quent is true. (There are di�erent ways of spelling out this rough idea, depending
mostly on the assumptions made about a relation of relative closeness of worlds; in
this paper I'll adopt a framework, Burgess semantics, that is as neutral as possible
about this.) Variably strict conditionals are clearly non-monotonic (`If A then C'
doesn't imply `If A and B then C'); from which it pretty much follows that they
are non-transitive.5 (They are also non-contraposable.) Their non-monotonicity
and resulting non-transitivity make them signi�cantly di�erent from the sort of
conditionals heretofore discussed in the naive truth literature. The early parts of
the present paper provide a method (actually more than one) of extending Kripke's
theory to cover languages with such a variably strict conditional�including in Sec-
tion 6 the important case of languages that also have another conditional operator
for restricted quanti�cation.

Proponents of variably strict conditionals have divided over how extensive their
application is. Some, e.g. Lewis, have taken a variably strict operator to model only
�counterfactual� or �subjunctive� conditionals of ordinary language, and have held
that �indicative conditionals� of ordinary language are represented by the familiar
`⊃'. But it's well known that understanding ordinary indicatives in terms of `⊃' is
prima facie counterintuitive�e.g. on that understanding, �If I run for President, I'll
be elected� comes out true, since I'm resisting all pressure to run�and nowadays it's
more common to think, with Stalnaker, that the variably strict conditional account
is applicable to ordinary indicative conditionals as well as �counterfactuals�. The
�rst six sections of this paper are neutral on this issue.

But I favor the Stalnaker position, and this is relevant to an important appli-
cation of the material in the early sections to the logic of restricted quanti�cation,
in Section 7. Restricted quanti�cation poses a serious challenge to naive truth the-
ory. In such a theory there are already di�culties with properly handling ordinary
restricted quanti�cations like �Every true sentence in Jones' book appeared earlier
in Smith's�, but the di�culties become far greater when one tries to come up with
a plausible account of how these interact with conditionals in a way that validates
plausible laws such as �If all A are B and y is A then y is B� and �If everything
is B then all A are B�. I've addressed this challenge before (Field 2014), but in
a rather ad hoc manner; an ultimate goal of this paper is to answer the challenge
without ad hocness, by bringing in a more general logic of indicative conditionals.

There is also no need to restrict reasoning by cases, or to embrace dialetheism.
4See Restall 2007 for a discussion of such paradoxes and of the di�culties that a naive truth

theory must overcome if it is to handle them.
5`If A and B then A' is clearly valid for them, and with it, transitivity would imply

monotonicity.
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2. Two-valued and three-valued worlds models for the language of
indicative conditionals

Let L be a language whose logical primitives are `¬', `∧', `∀', `=', a unary neces-
sity operator `�', and a binary conditional operator `.'. An additional conditional
for restricted quanti�cation will be added in Sections 5 and 6. For the moment, let's
suppose that L doesn't contain �paradox-prone� terms like `True' that will require
special treatment. `.' is supposed to represent the indicative and/or counterfactual
conditional of English and be a �variably strict� conditional in the general ballpark
of Lewis, Stalnaker, Pollock and Burgess. Of these semantics, Burgess's is the most
general (that is, the others can be obtained by adding restrictions to it),6 and I
will consider both it and a slight modi�cation of it. Both versions of the Burgess
semantics are initially based on �2-valued worlds models�, which I'll now describe.
(For simplicity I'll assume that L has no individual constants or function symbols;
also, that its only variables are �rst order.)

A 2-valued worlds model M for L consists of

(i): A non-empty set W of worlds, perhaps with a distinguished non-empty subset
NORM of �normal� worlds. (Nothing central to this paper depends on
allowing non-normal worlds; I do so simply for added generality. The def-
inition of validity will be in terms of the normal worlds only, but allowing
for non-normal worlds may a�ect which conditionals can be true at normal
worlds.)

(ii): For each w ∈ W , a subset Ww of W and a pre-order (re�exive and transitive
relation) ≤w on Ww.

7 (Think of Ww as the set of worlds �accessible from�
w, and `x ≤w y' as meaning �the change from w to x is no greater than the
change from w to y�.)

(iii): For each w ∈W , a non-empty set Uw (the universe of w). Let U be the union
of the Uw.

(iv): For each w ∈ W and k-place predicate p, a function pw from Uk (the set of
k-tuples of members of U) to {0, 1}. (The set of k-tuples that get assigned
value 1 is the extension of p in the model.) We require that the function
=w (associated with `=') assigns 1 to < o, o > for each o ∈ U and assigns
0 to all other pairs.

(W , NORM , etc. can all vary from one model to another, so we should really write
WM , NORMM , WM,w, ≤M,w, UM,w and pM,w.) Regarding (iv), we could if we
like impose the (�actualist�) requirement that pw never assign value 1 to k-tuples

not in Uw
k; it won't matter for what follows.8

Regarding (ii), we could if we like impose additional conditions on Ww and ≤w
for each w ∈W , or at least for each w in NORM . (The distinction of non-normal
worlds from normal ones only matters if some such additional conditions apply

6Not every defensible model of conditionals can be �t into the Burgess framework (or the
slight modi�cation of it to be mentioned soon). I suspect that the basic ideas of this paper can
be adapted to plausible alternative models, but will not attempt to prove this.

7An alternative convention is to take ≤w to be a pre-order on the full W , and subject to the
constraint that if y ∈Ww and x ≤w y then x ∈Ww.

8In the 3-valued context to be introduced shortly, we could introduce a more thorough actu-
alism, in which the pw never assign value 0 or 1 to such k-tuples; in e�ect this would make Uwk

rather than the full Uk the domain of pw. But again, this would make no di�erence to the issues
I'm concerned with.
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only to normal worlds.) Indeed, one such condition is almost universally regarded
as appropriate for indicative and counterfactual conditionals (at least for worlds w
in NORM):

Weak Centering: w ∈Ww, and for any x in Ww, w ≤w x
That Weak Centering holds at least for worlds in NORM is required if Modus
Ponens for . is to be valid, on the account of validity soon to be given, which involves
preservation of value 1 at normal worlds.9 (Modus Ponens has been questioned for
indicative conditionals (McGee 1985), but the grounds for doing so seem weak in
the context of the semantics for variably-strict conditionals.)10

In addition to Weak Centering, Lewis, Stalnaker, Pollock and many others also
accept one or more of the following conditions (for all worlds or just for normal
ones):

Strong Centering: w ∈ Ww, and for any x in Ww other than w, w <w x (i.e.
w ≤w x and not(x ≤w w))

No Incomparabilities: for any x, y in Ww, either x ≤w y or y ≤w x
No Ties: for any distinct x, y in Ww, not both x ≤w y and y ≤w x
Limit Condition: the relation <w is well-founded.

What follows will be completely neutral as to which if any such conditions are
imposed, except for occasional reminders that restricting to models with Weak
Centering (at least at normal worlds) is advantageous.11

To simplify the presentation of the semantics I adopt the usual trick of expanding
the language to contain a new name for each object in U ; call the expanded language
L+. (The expansion depends on the underlying model, so we should really write
L+
M .) I'll consider two ways of evaluating the sentences of L+ in M .

9Demanding Weak Centering at non-normal worlds as well as normal ones would lead in
addition, in the current 2-valued framework, to the validity of the inference from C . A and
C . (A.B) to C .B. If we want Modus Ponens without getting that even for 2-valued sentences,
we need the �exibility provided by non-normal worlds. In general, the point of non-normal worlds
is to provide such added �exibility as to what comes out valid.

I've said that nothing in this paper depends on making use of such added �exibility: there will
be no need to have the �exibility in the logic that includes `True' if one doesn't utilize it in the
base logic without `True'. This may seem surprising: we presumably want Modus Ponens for .,
but we don't want the law just cited since by taking A to be C we'll be led to the inference from
C . (C . B) to C . B, which in combination with Modus Ponens is well known to rule out naive
truth by Curry's paradox. But there is actually no problem: in the semantics to be introduced,
Weak Centering at all worlds guarantees only that the inference from C . A and C . (A . B) to
C . B will hold for 2-valued sentences; and the sentences involved in Curry-type paradoxes will
not be 2-valued. (Modus Ponens, on the other hand, will be guaranteed for all sentences, even by
Weak Centering just at normal worlds.)

10The canonical supposed counterexample involves a 3-candidate race whose leading candidates
are a Democrat and a Republican, with an Independent far behind. Then the claim �If the
Republican doesn't win, the Independent will� seems false. But �The Democrat won't win� may
be true, and �If the Democrat doesn't win, then if the Republican doesn't win the Independent
will win� may seem true; and these two claims lead to the false claim by Modus Ponens. A
standard resolution of this, which I support, is that the complex conditional that �may seem true�
isn't: what's true is only that if the Democrat doesn't win and the Republican doesn't win then
the Independent will win, but to get from that to the complex conditional one needs the rule of
Exportation (A ∧B) . C |= A . (B . C), which is invalid on the variably-strict semantics.

11It's also possible to add �purely modal� conditions, not involving the ≤w; e.g.
S4: if x ∈Ww and y ∈Wx then y ∈Ww.

What follows is neutral on these as well.
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The �rst version is 2-valued:

Burgess evaluation procedure:

• |p(c1, ..., ck)|w is just pw(o1, ...ok), where c1, ..., ck are the names for o1, ..., ok
respectively.

• |¬A|w is 1=|A|w
• |A ∧B|w is min {|A|w, |B|w}
• |∀xA|w is min {|A(c/x)|w : all c that name members of Uw}
• |�A|w is min {|A|x : x ∈Ww}

• |A . B|w =


1 i� (∀x ∈Ww)[|A|x = 1 ⊃

(∃y ≤w x)[|A|y = 1 ∧ (∀z ≤w y)(|A|z = 1 ⊃ |B|z = 1)]]

0 i� (∃x ∈Ww)[|A|x = 1∧
(∀y ≤w x)[|A|y = 1 ⊃ (∃z ≤w y)(|A|z = 1 ∧ |B|z = 0)]]

(Let a w-neighborhood be a non-empty subset N of Ww such that if x ∈ N and
y ≤w x then y ∈ N ; and call a w-neighborhood A-consistent if it contains a
world where |A| is 1. Then the right hand side of the 1-clause for . says that all
A-consistent w-neighborhoods have A-consistent sub-w-neighborhoods throughout
which if |A| is 1, so is |B|; and the right hand side of the 0-clause says that there is
an A-consistent w-neighborhood such that every A-consistent sub-w-neighborhood
of it contains a world where |A| is 1 and |B| is 0. If one were to make the �No
Incomparabilities� assumption (for all worlds, not just normal ones) one could sim-
plify these clauses for . a bit: that assumption amounts to the assumption that for
each w, the w-neighborhoods are nested; and given that, the 1-clause is equivalent
to the claim that if there is at least one A-consistent w-neighborhood then there is
one throughout which if |A| is 1, so is |B|.)

These stipulations give every L+-sentence a unique value in {0,1} at each world,
given any 2-valued worlds model M . Conditionals don't in general contrapose, but
they shouldn't: `If Trump runs for President he won't be elected' shouldn't imply
`If Trump is elected he won't have run'.

Validity is explained as follows:

(VAL): An inference from a set Γ of L-sentences to an L-sentence B is Burgess-
valid if for every worlds model M and every w ∈ NORMM , if |A|M,w = 1
for all A in Γ then |B|M,w = 1.

(Here what counts as a worlds model depends on which structural conditions (e.g.
Weak Centering) have been imposed, so (VAL) really gives a family of notions of
validity. Again, the restriction to normal worlds only makes a di�erence when one
imposes structural requirements on the normal worlds of models that don't apply
to all worlds.)12

12We can generalize to the case where B and the members of Γ can contain free variables:
for any model M , if f is any function assigning {L+}M -names to free variables, and A is any
L-formula, let Af be the {L+}M -sentence that results from substitution by f . Then the general-
ization of (VAL) is

(VALgen): An inference from a set Γ of L-formulas to an L-formula B is Burgess-valid if for

every worlds model M and every f for M and every w ∈ NORMM , if |Af |M,w = 1 for

all A in Γ then |Bf |M,w = 1.
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We de�ne ∨ from ∧ and ¬, and ∃ from ∀ and ¬, and ♦ from � and ¬, in
the usual ways. (|♦A|w is thus max {|A|x : x ∈Ww}.)13 A / .B will abbreviate
(A . B) ∧ (B . A).

But there might be a reason to treat `.' slightly di�erently. Many people, myself
included, �nd it natural to suppose that ¬(A . B) should be to equivalent to A .
¬B, modulo the assumption ♦A (that is, each should imply the other on that
assumption). We don't have that on the above semantics, unless we add strong
assumptions (viz.: No Ties, No Incomparabilities and the Limit Condition); that
was one of Stalnaker's arguments for imposing those assumptions. If we want that
equivalence without the strong assumptions, we can get it by strengthening the 0
clause for `.' while leaving the 1 clause as is. We then need a 3-valued framework
to handle sentences that receive neither value 1 nor value 0. Our worlds models are
still 2-valued for the moment, i.e. atomic sentences of L+ can only take values in
{0,1}, but we allow an additional value 1

2 for conditionals and sentences containing
them as components. The evaluation clause for `.' is as follows:

Modi�ed Burgess evaluation procedure: 14

|A . B|w=



1 i� (∀x ∈Ww)[|A|x = 1 ⊃ (∃y ≤w x)[|A|y = 1∧
(∀z ≤w y)(|A|z = 1 ⊃ |B|z = 1)]]

0 i� (∀x ∈Ww)[|A|x = 1 ⊃ (∃y ≤w x)[|A|y = 1∧
(∀z ≤w y)(|A|z = 1 ⊃ |B|z = 0)] ∧ (∃x ∈Ww)(|A|x = 1)

1
2 otherwise.

(The 0-clause says that there are A-consistent w-neighborhoods, and each such has
A-consistent sub-w-neighborhoods throughout which if |A| is 1 then |B| is 0.) I've
already written the evaluation clauses for ¬, ∧, ∀ and � in a way that carries over
automatically to allow for the extra value. (These clauses are called the Strong
Kleene rules.)

The crucial thing about this alternative evaluation procedure for . is that if
|♦A|w is 1, i.e. if (∃x ∈ Ww)(|A|x = 1), then |¬(A . B)|w is just |A . ¬B|w. Of
course, a consequence will be a minimal non-classicality: excluded middle can fail
for sentences containing `.'. The cost of this isn't that high, I think: indeed, once
we introduce a truth predicate, we'll need excluded middle to fail even more broadly
than that.

What notion of validity goes with this modi�ed evaluation scheme? There are
several possible choices, but the one I will work with carries over the wording of
(VAL) (or more generally, the (VALgen) of note 12) to the 3-valued case: validity
involves preservation of value 1 at all normal worlds in all models (with the values
now given by the modi�ed evaluation rules).

In adding `True' to the language we will need to adapt either the original Burgess
semantics or the modi�ed Burgess semantics to 3-valued worlds models. A 3-valued

13Why take `�' as primitive, since �A is equivalent to ¬A . A? The answer is that the
equivalence will be lost once we move to a 3-valued semantics, either because of the move to the
modi�ed Burgess evaluation procedure to be given next or to handle predicates like `True'.

14There's no danger of this requiring that the same conditional get both value 0 and 1 at a
world. For assume as an induction hypothesis that A and B each have a unique value at each
world. (Actually we'll only need that B does.) If A . B gets value 0 at w, then there must be a
y ∈ Ww for which |A|y is 1 and (∀z ≤w y)(|A|z = 1 ⊃ |B|z = 0); and if it gets 1 there must be a
y∗ ≤w y such that |A|y∗ = 1 ∧ (∀z ≤w y∗)(|A|z = 1 ⊃ |B|z = 1). But these require that |B|y∗ is

both 0 and 1, contrary to the induction hypothesis.
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worlds model is just like a 2-valued one except that in clause (iv) we replace {0, 1}
with {0, 1

2 , 1}, so that atomic sentences as well as conditionals can receive value
1
2 .
15 So 2-valued models are a special case of 3-valued. The most straightforward

adaptation to the presence of `True' would be to simply use the Burgess or modi�ed
Burgess rules as written. But instead of doing precisely that I will proceed in a more
roundabout way, which nonetheless is modeled on these rules and agrees with them
entirely for conditionals whose antecedent and consequent don't contain `True'.

Validity will be de�ned as before: preservation of value 1 at all normal worlds of
all models (that meet whatever structural conditions such as Weak Centering that
one has imposed). However, when L contains a truth predicate we'll restrict the
models used in the de�nition, to �arithmetically standard� models that treat the
predicate `True' in a certain way. The details are in the next section.

3. Truth and satisfaction: the strategy

Suppose that L contains a truth predicate (more speci�cally, a predicate of
truth in L).16 To be of interest, L will also need to have the resources to talk
of the bearers of truth, i.e. sentences, and their syntactic properties. Or instead of
syntactic objects, L could just contain arithmetic; we could talk of truth relative to
a Gödel numbering. A language with a satisfaction predicate (from which truth can
be de�ned, but not in general conversely) is more interesting; but to have a useful
satisfaction predicate we need to be able talk of �nite sequences of arbitrary objects
from the universe of discourse, which requires additional mathematical resources.
Moreover, dealing with satisfaction involves some notational complexity that can
be confusing. So to keep things simple I'll take L to involve a truth predicate but
not a satisfaction predicate. It is routine to generalize what follows from truth to
satisfaction (when the extra mathematical resources are available in L).

Rather than building syntactic notions into L, I'll follow the Gödel numbering
route: L will contain the predicates `natural number', `is zero', `is the successor of',
`is the product of', and `='. (I'll �x a Gödel numbering g of L.) I'll also be concerned
only with worlds models M whose arithmetic part is standard (an ω-model) and
the same from world to world. That is, I'll assume that in every model and every
world in it, Uw is a superset of the set N of natural numbers, and `natural number'
is assigned N as its extension, and the other arithmetic vocabulary is interpreted in
the standard way. I'll call worlds models meeting these restrictions arithmetically
standard. It's natural to restrict to them since without some such restriction the
Gödel numbering results in �non-standard syntactic expressions� that have in�nitely
many distinct sub-expressions. If in de�ning validity we restrict to arithmetically
standard worlds models, the result is ω-validity (or validity in ω-logic); it is this
rather than regular validity that I will be primarily concerned with.

Kripke 1975, at least the part dealing with the Kleene construction, was con-
cerned with the possibilities for naive truth (and satisfaction), though in languages
not containing .. Here I will extend his results to languages containing ..

15For present purposes I keep the earlier restriction on the assignment =w to `=', though with
the third value it could be liberalized somewhat to allow for indeterminate identity.

16Not in L+: the new names in L+ aren't part of the language L for which we're giving a
truth theory, and are dependent on a particular model of L. Any apparent loss in restricting truth
to L-sentences should be met by generalizing from truth to satisfaction, as discussed later in the
paragraph.
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I informally de�ned �naive theory of truth� in my introductory remarks, but I
should be more precise. Let a formula Y be a Tr-equivalent of a formula X if there
are (possibly multiple) L-sentences A such that Y results from X by (possibly
multiple) substitutions of True(〈A〉) for A and/or vice versa. A naive theory of
truth is one where whenever Y is a Tr-equivalent of X, Y follows from X and
vice versa (i.e. the inferences from X to Y and Y to X are valid). The semantic
paradoxes show that naivety is unattainable in classical logic, but Kripke (in his
Kleene-based construction) showed it attainable in non-classical logic, by the use
of 3-valued models. (Again, his language didn't contain ..)

Naivety is not the sole requirement we should impose on a theory of truth: we
also want it to obey reasonable compositional laws, and to allow the truth predicate
to appear in an induction rule. More on these shortly.

Our theory of truth should of course also be consistent, at least Post-consistent:
that is, it shouldn't imply everything. I don't in principle require negation-consistency,
i.e. the restriction to theories that for no A imply both A and ¬A. However, as
is implicit in my earlier de�nition of validity, the theories I'll be developing satisfy
disjunctive syllogism (A ∨ B,¬A � B), and for those theories Post-consistency re-
quires negation-consistency. (While there are familiar �paraconsistent� logics that
avoid paradoxes without restricting excluded middle, by restricting disjunctive syl-
logism instead, they don't seem to me a promising framework for my ultimate goal
of restricted quanti�cation: the comments in Section 7 below on Beall et al 2006
and Beall 2009 may be enough to give some sense of this.)

Actually we want our naive truth theory to be more than (Post- or negation-
) consistent: a consistent theory might, after all, imply the defeat of the Paris
Commune, and no logic of truth should do that. What we want is for our theory
of truth to be �consistent with any arithmetically standard worlds model� of the
`True'-free fragment of L, which I'll call L0. More fully,

GOAL: We want to generate from each 2-valued arithmetically standard worlds
model M0 for L0 a corresponding 3-valued worlds model M for L that (a)
validates naive truth and (b) is exactly like M0 except that it assigns a
3-valued extension to `True'. It follows from (b) that the sentences of L+

0

get the same value at w in M as in M0, for each world w; and also that M
is arithmetically standard, given that M0 is.

I'll take the allowable worlds models M of L to be just the ones generated from
worlds modelsM0 of L0 in this way; that is, validity, consistency etc. in the logic of
truth are de�ned by quanti�cation over the arithmetically standard worlds models
M0 of the `True'-free fragment of the language, and extending the valuation to
sentences with `True' by a procedure to be given.17 (It isn't immediately obvious
what this procedure should be when it comes to sentences containing both `.' and
`True': e.g. to take a very simple Curry-like case, it isn't immediately obvious how
to evaluate a sentence K. constructed by the usual Gödel-Tarski techniques so
as to be equivalent to True(〈K.〉) . ¬True(〈K.〉). Indeed I will consider several
alternative procedures for constructing the extension.)

Note that if we can establish (GOAL), we get a kind of conservativeness re-
sult: letting *-consistency be consistency in ω-logic, we have that any classically

17A slightly more general procedure will be mentioned in note 30.
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*-consistent set of sentences of L0 is *-consistent in a naive truth theory.18 The
naive truth theory in question includes not merely the inferences from any sentence
to its Tr-equivalents, it can include any other law validated in the construction
of M from M0. What laws these are will of course depend on the details of the
construction of M from M0, which is yet to be given.

But whatever the details, it is clear in advance that if (GOAL) is achieved
then our construction will not only be one on which truth is naive, but one where
mathematical induction in the form A(0) ∧ (∀n ∈ N)(A(n) ⊃ A(n + 1)) |= (∀n ∈
N)A(n) is legitimate even for formulas containing `True'.19 The reason is that in
any arithmetically standard worlds model, when the premises of this induction rule
hold at a world the conclusion must too, and the construction guarantees that the
new worlds model is arithmetically standard.

It is almost as immediate that the construction will validate the desirable com-
position principles, e.g.

COMPOS-GENERAL: ∀x∀y∀z(If x and y are sentences and z is the result
of applying `.' to x and y in that order, then �[True(z) if and only if
(True(x) . True(y)]).

For as long as the logic validates each instance of �� [A if and only if A]�, then the
naivety of truth guarantees the validity of each instance of

COMPOS-SCHEMA: �[True(〈A.B〉) if and only if (True(〈A〉) .True(〈B〉))];
and since the constructed model is arithmetically standard, the generalization is
guaranteed to hold in the model when the instances do. [This holds on any reading
of `if and only if', as long as �� [A if and only if A]� is validated. At the moment,
the only available reading is `/.', but I will later add other biconditionals, and the
point applies equally to them.]

4. Truth and satisfaction: the details

I now outline a generalization of Kripke's construction. The initial generalization,
which takes `.' as a black-box, is completely routine, hardly a generalization at all;
but a non-Kripkean ingredient is then required, to give a substantial account of `.'.

Let's get the pure Kripke part of the construction out of the way �rst. It's clear
from what has already been said that each of the worlds w in the model for L will
be evaluated in part on the basis of Uw and the w-extensions of L0-predicates. The
additional ingredients needed to evaluate L+-sentences at each w are:

• a 3-valued extension Tw for `True': it assigns values in {0, 1
2 , 1} to objects

in U . (We'll want it to assign non-zero values only to those objects that
are Gödel numbers of L-sentences under the chosen Gödel numbering.)

• a function jw that assigns to each L+-sentence of form `A . B' a value in
{0, 1

2 , 1}.

Let T and j be the functions that assign to each w ∈ W a Tw and jw. Relative to
any such T and j, the Kleene rules tell us how to evaluate every L+-sentence at w:

18Calling this a conservativeness result could be misleading: there is no deductive conserva-
tiveness, it is a kind of semantic conservativeness in ω-logic. Its purpose, as I've said, is to ensure
that the set of principles to be declared valid in the naive truth theory is not merely consistent,
but consistent with any set of assumptions in the `True'-free language that are compatible with
the conditional logic and standard models of arithmetic.

19Analogous forms with other modus-ponens obeying conditionals in place of the `⊃' are guar-
anteed too.
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• For p other than `True', |p(c1, ..., ck)|w,j,T is just pw(o1, ...ok);
• |True(c)|w,j,T is Tw(o), where o is the object denoted by the L+-name c;
• |¬A|w,j,T is 1− |A|w,j,T
• |A ∧B|w,j,T is min {|A|w,j,T , |B|w,j,T }
• |∀xA|w,j,T is min{|A(c/x)|w,j,T : all c that name members of Uw}
• |�A|w,j,T is min {|A|w,j,T : x ∈Ww}
• |A . B|w,j,T = jw(A . B).

The important thing about this is a monotonicity principle. Let T ≤K T ∗ mean
that for every w and every L-sentence S, if Tw(S) = 1 then T ∗

w(S) = 1 and if
Tw(S) = 0 then T ∗

w(S) = 0. Then

(MONOT): For any M and j: if T ≤K T ∗ then for any w ∈ W and any L+-
sentence A, if |A|w,j,T = 1 then |A|w,j,T∗ = 1 and if |A|w,j,T = 0 then
|A|w,j,T∗ = 0.

This is easily proved by an induction on the complexity of A. (The result is familiar
from Kripke 1975, except that I've added a trivial . clause and a world-argument
for T .)

This is the background for

Proposition. [Kripke's observation.] For any M and j, there are T (�Kripke
�xed points� relative to M and j) for which, for each w ∈W :

For every L-sentence A, |A|w,j,T = Tw(g(A)) [and hence |A|w,j,T = |True(c)|w,j,T ,
where c denotes g(A)]; and
Tw(o) is 0 if o is not g(A) for some L-sentence A.

In particular, for any M and j there is a minimal �xed point Tmin, i.e. a �xed point
(relative to M and j) such that for every other �xed point T (relative to M and j),
Tmin ≤K T .

Kripke's observation is easily proved by trans�nite induction.20

It easily follows that as long as j is transparent, in the sense that it assigns Tr-
equivalent formulas the same value, then the naivety condition is met: whenever A
and B are Tr-equivalent, |A|w,j,Tmin = |B|w,j,Tmin . (And similarly for �xed points
T other than Tmin.)

The de�nition of Tmin depended on the choice ofM and j, but given those, Tmin
is uniquely determined; so we can abbreviate |A|w,j,Tmin as |A|w,j . To repeat, this
valuation yields naive truth as long as j is transparent.

The harder task is to construct an appropriate transparent j-function for eval-
uating conditionals at worlds. What we want is a transparent j that leads to a
logic that reduces to the Burgess or modi�ed-Burgess logic when applied to `True'-
free sentences and which weakens the laws as little as possible when sentences with
`True' are allowed as instances. There are at least two approaches to constructing

20Holding M and j �xed, we de�ne T0 to be the function assigning the value 1
2
to every Gödel

number of an L-sentence, and 0 to everything else; Tσ+1 the function assigning every world w
and L-sentence A the value |A|w,j,Tσ ; and Tλ (for limit λ) the function assigning every world w
and L-sentence A the value

1 if for some σ<λ and every τ such that σ ≤ τ<λ, |A|w,j,Tτ = 1;

0 if for some σ<λ and every τ such that σ ≤ τ<λ, |A|w,j,Tτ = 0;
1
2

otherwise.

We can then easily prove by induction that if σ < τ , Tσ ≤K Tτ . Cardinality considerations then
show that there are ordinals σ (of the cardinality of UM ) after which the assigned T never changes.
Taking Tmin to be Tσ for such a σ, we get the desired result.
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such a j function: a revision construction, with similarities to those in Field 2008;
or a �xed point construction, with similarities to those in Field 2014.

The revision construction is simpler, so I'll focus on it, but will also make a few
remarks about the (perhaps more aesthetically pleasing) �xed point construction.

4.1. The revision construction. Fix a worlds model M0 for L0. Suppose we
have given a provisional valuation jν , which assigns values |B . C|w,jν to any L+-
sentences B and C. As we've seen, this indirectly gives a value |A|w,jν to every
L+-sentence A at every world, via the Kripke minimal �xed point construction;
let's just write this as |A|w,ν . We want to use this valuation jν to construct a
revised one jν+1, perhaps a better one, which is transparent if the original one is;
the structure of worlds is used in the revision.

There are two possibilities for jν+1, one based on the original Burgess valuation
rules and the other based on the variant. For the original it is:

jw,ν+1(A . B) is



1 i� (∀x ∈Ww)[|A|x,ν = 1 ⊃ (∃y ≤w x)[|A|y,ν = 1∧
(∀z ≤w y)(|A|z,ν = 1 ⊃ |B|z,ν = 1)]]

0 i� (∃x ∈Ww)[|A|x,ν = 1 ∧ (∀y ≤w x)[|A|y,ν = 1 ⊃
(∃z ≤w y)(|A|z,ν = 1 ∧ |B|z,ν = 0)]]

1
2 otherwise.

For the variant, it's the same except for a modi�ed 0 clause:

0 i� (∀x ∈ Ww)[|A|x,ν = 1 ⊃ (∃y ≤w x)[|A|y,ν = 1 ∧ (∀z ≤w
y)(|A|z,ν = 1 ⊃ |B|z,ν = 0)]] ∧ (∃x ∈Ww)(|A|x,ν = 1).

Choose whichever you like: the construction that follows works with either choice.
To get the revision process started, we need a starting valuation j0, and we

want it to be transparent since this will guarantee that later jν are as well. For
simplicity I'll take a trivial j0, which assigns value 1

2 to each conditional at each
world. It makes little di�erence, because the e�ect of the starting values gets almost
completely wiped out as the construction proceeds. (It gets completely wiped out
for sentences not containing `True': whatever the starting values, any such sentence
gets the value that it gets in the 2-valued worlds model for the corresponding version
of Burgess semantics by stage n, where n is the maximum depth to which `.' is
embedded in the scope of other `.'s in A; and it keeps that value at all subsequent
stages. So from stage ω on, all `True'-free sentences get �the value they should�,
whatever the starting valuation.)

Finally, we need a policy on limit stages. Here the choice is important, and we
choose continuity with respect to 1 and 0. That is, if λ is a limit ordinal then for
any world w and any conditional A . B, jλ assigns the conditional 1 at a world if
and only if for some µ < λ, for every ordinal ν in the open interval (µ, λ) assigns the
conditional value 1 at that world; and similarly for 0. (So �irregularity arbitrarily
close to λ� at a world as well as �constant 1

2 su�ciently close to λ� at that world

lead to value 1
2 at λ at that world.)

We can summarize these choices in a single de�nition. For the semantics based
on the modi�ed Burgess, which I prefer, it's
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jw,κ(A.B) is



1 if (∃µ < κ)(∀ν ∈ [µ, κ))(∀x ∈Ww)[|A|x,ν = 1 ⊃ (∃y ≤w x)

[|A|y,ν = 1 ∧ (∀z ≤w y)(|A|z,ν = 1 ⊃ |B|z,ν = 1)]]

0 if (∃µ < κ)(∀ν ∈ [µ, κ))[(∀x ∈Ww)[|A|x,ν = 1 ⊃ (∃y ≤w x)

[|A|y,ν = 1 ∧ (∀z ≤w y)(|A|z,ν = 1 ⊃ |B|z,ν = 0)]] ∧ (∃x ∈Ww)(|A|x,ν = 1)]
1
2 otherwise.

([µ, κ) is the half-open interval of ν such that µ ≤ ν < κ.) For the semantics based
on the original Burgess, modify the 0 clause in the obvious way.

It's evident that on either variant, each jκ is transparent if all preceding jν are
transparent; so by trans�nite induction, all are transparent.

At each world, all `True'-free sentences get the desired value (i.e. the one given in
the 2-valued model from which we started) by stage ω, and keep it at later stages.
But there is much greater irregularity for sentences containing `True', due to the
interaction between `True' and `.'.21 In particular there is no �xed point. How
then are we to select a privileged j?

The sequence of jν is a revision sequence in the sense of Gupta and Belnap
1993. (The revision sequence depends on the model M0, as well as on the choice of
Burgess or modi�ed-Burgess.) One well-known feature of revision sequences is that
there are evaluations j that appear arbitrarily late in the revision process; indeed,
there are ordinals κ such that for any µ ≥ κ and any ζ, there is a ν ≥ ζ such that
jν = jµ.

22 Call any in�nite such κ �nal (relative to model M0),
23 and let FIN (or

FINM0) be the class of �nal ordinals.
But not all �nal ordinals assign the same j (if they did, it would be a �xed point).

Which to pick? Obviously we want one that will yield as nice laws for . as possible.
Gupta and Belnap 1993 have a general theorem, their Re�ection Theorem, that we
can bring to bear. Applied to this case, that theorem says:

Proposition. [Gupta-Belnap] There are limit ordinals Ω (�re�ection ordinals for
the sequence jκ�)

24 such that
(i) Ω is �nal
(ii) For any L+-formulas A and B, and any world w and any d ∈ {0, 1

2 , 1},
(∃µ < Ω)(∀ν ∈ [µ,Ω))((jw,ν(A.B) = d) if and only if (∀ν ∈ FIN)(jw,ν(A.B) =

d).

Moreover, in the above semantics these re�ection ordinals have an especially
useful property:

Proposition. [Fundamental Theorem for L (revision-theoretic version).]
For any re�ection ordinal Ω, any w ∈W , and any L+-sentence A,

(a) |A|w,Ω = 1 if and only if (∀ν ∈ FIN)(|A|w,ν = 1)
and (b) |A|w,Ω = 0 if and only if (∀ν ∈ FIN)(|A|w,ν = 0).

21The sentence itself needn't even contain `.' for the irregularity to occur, because the use of
`True' typically makes other sentences relevant to the evaluation.

22Since the revision sequence here is Markovian in the sense that for any ordinals µ, κ and ν,
if jµ = jκ then jµ+ν = jκ+ν , we can simplify to: for any ζ, there is aν ≥ ζ such that jν = jκ. If

this holds for κ in a Markovian sequence, it is bound to hold for any µ > κ.
23It isn't really necessary to demand in�nitude explicitly, it's entailed by the rest, as the reader

can easily prove using `True'-free sentences where `.' is embedded to depth n for arbitrarily large
n.

24Which ordinals are re�ection ordinals will depend on the starting model M0.
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Since there is only one possible value other than 0 and 1, these two clauses
imply that each re�ection ordinal Ω is associated with the same jΩ. This jΩ is the
valuation for .-conditionals that I'll be employing, e.g. in determining validity.

The Fundamental Theorem as stated here is similar to that given in Field 2008,
but the conditional there was di�erent. The proof given there included a proof
of [Gupta-Belnap], since I was unaware of their theorem at the time. (Belated
apologies to them for not being able to give credit.) A proof of the Fundamental
Theorem for the language of this paper, now relying on [Gupta-Belnap] to save
work, is given in Appendix A.

Note that when A is a conditional B . C, the 1-clause of the Fundamental The-
orem together with the evaluation rules for . yield that for any re�ection ordinal
Ω and w ∈W ,

1-clause: |B.C|w,Ω = 1 if and only if (∀ν ∈ FIN)(∀x ∈Ww)[|B|x,ν = 1 ⊃ (∃y ≤w
x)[|B|y,ν = 1 ∧ (∀z ≤w y)(|B|z,ν = 1 ⊃ |C|z,ν = 1)]].

Since Ω ∈ FIN , this yields a necessary but not su�cient condition for |B.C|w,Ω = 1
that involves no ordinals other than Ω:

1-clause Corollary: If |B . C|w,Ω = 1 then (∀x ∈ Ww)[|B|x,Ω = 1 ⊃ (∃y ≤w
x)[|B|y,Ω = 1 ∧ (∀z ≤w y)(|B|z,Ω = 1 ⊃ |C||z,Ω = 1)]].

That is, since we've chosen to use jΩ for our �nal valuation: the 1-clause we've
adopted is strictly stronger than the 1-clause of the Burgess and modi�ed-Burgess
semantics. But since all �nal ordinals are in�nite, all `True'-free sentences receive
the same value at all �nal ordinals; this means that for such B and C the `if...then'
in the corollary becomes an `if and only if'. In other words, we're guaranteed that
the Burgess/modi�ed-Burgess 1-clause is retained for `True'-free sentences.

Moreover, as long as we have Weak Centering at w, the 1-clause corollary yields
the following for all B and C (not just the `True'-free ones):

Modus Ponens for .: If |B . C|w,Ω = 1 and |B|w,Ω = 1 then |C|w,Ω = 1.

(The label `Modus Ponens' is really appropriate only if we have Weak Centering at
all normal w.)

Something similar holds for the 0-clause, though the details depend on which
version of the 0 clause one uses. In both cases, we get strictly stronger conditions
than would be given by direct application of the Burgess or modi�ed Burgess rules:
e.g. for the semantics based on modi�ed Burgess we get

If |B .C|w,Ω = 0 then (∀x ∈Ww)[|B|x,Ω = 1 ⊃ (∃y ≤w x)[|B|y,Ω =
1 ∧ (∀z ≤w y)(|B|z,Ω = 1 ⊃ |C|z,Ω = 0)]] ∧ (∃x ∈Ww)(|B|x,Ω = 1).

But again, when con�ned to `True'-free sentences the `if' becomes an `if and only if':
the Burgess or modi�ed Burgess 0 clause is also retained for `True'-free sentences.

(When w is weakly centered, the above yields

0 Law for .: If |B . C|w,Ω = 0 and |B|w,Ω = 1 then |C|w,Ω = 0 (and indeed,
|C|x,Ω = 0 whenever x ∼w w),

which also strikes me as desirable but will play no role in what follows. Had we
based the semantics on the original Burgess, we'd have needed that w be strongly
centered to get this result.)

4.2. Where are we? For each starting arithmetically standard worlds model M0

for the `True'-free fragment L0 of L (with . evaluated either by the standard
Burgess or variant Burgess rules), we have chosen a transparent jΩ to evaluate
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all L+-conditionals at each world (including those containing embedded condition-
als and/or `True'), and a T to evaluate truth-claims at each world. The worlds,
and their division into normal and non-normal, are the same in the new model as
in the old. (In particular, if the old contains no non-normal worlds, the new one
won't either.) The assignment of accessibility sets Ww and pre-orders ≤w is also
the same in the new model as in the old; so are the assignments of extensions to
predicates at each world. And at each world, jΩ assigns the same values to `True'-
free conditionals (and hence `True'-free sentences more generally) as the original
model on M0 did. Finally, by the transparency of j and the features of the Kripke
construction, the truth predicate is naive; and since the model is arithmetically
standard, there can be no worry about using formulas with `True' in the induction
rule or validating generalities (e.g. composition rules) whose instances are valid.25

The following are laws of this construction: by which I mean, schemas all of
whose instances are valid (whatever structural conditions, such as Weak Centering
at normal worlds, we decide on):

• A . A
• [A . (B ∧ C)] / .[(A . B) ∧ (A . C)]
• [(A . C) ∧ (B . C)] . [(A ∨B) . C]
• [A . (B ∧ C)] . [(A ∧B) . C].

These are laws both when the evaluation rule for . is based on the original Burgess
rule and when it is based on the modi�ed rule: the 0 clause makes no di�erence.
Indeed on both constructions they are all strong laws, by which I mean that their
instances have value 1 at all worlds of every model, not just all normal worlds.
That's important because it means that the result of pre�xing any string of �s and
♦s to one of these is also a law. Related, it guarantees other �regular behavior�, such
as that we can strengthen antecedents in the laws. That is, even though we don't
want and don't get that Y .Z entails X ∧Y .Z for variably strict conditionals, still
if Y . Z is a strong law then so is X ∧ Y . Z (even if X is true only at non-normal
worlds). Similarly, ifX.Y and Y .Z are strong laws then so isX.Z.26 Proving that
the bulleted schemas are strong laws is straightforward.27 Note that since �(A/.A)

25A feature of the model as described is that it is not value-functional: the value of A . B at
a world isn't determined wholly by the values of A and B at it and other worlds. The reason is
that all these values are values at a re�ection Ω, and these depend on values at all non-re�ection
ordinals in FIN . But it isn't hard to use what's been done here to construct an enriched value
space (along the lines of Field 2008, Section 17.1) in which we do have value-functionality: the
value space for that will have in�nitely many values, not linearly ordered. (The space is a set

of functions from an initial segment of the ordinals to {0, 1
2
, 1}, where the length of the initial

segment is the distance between successive re�ection ordinals.) But for purposes of this paper
there's no need for value-functionality.

26The proof that �antecedent strengthening� and transitivity are legitimate for strong laws
uses the Fundamental Theorem as applied to .-sentences. Let W ∗ be the set of worlds that are
n-accessible from worlds for some n. (On reasonable assumptions this will just be W , but the
proof doesn't need this.) For antecedent strengthening, suppose that Y . Z has value 1 at all
worlds at re�ection ordinals. Then it has value 1 at all worlds at all �nal ordinals, which means
that at all �nal ordinals and all worlds in W ∗, if Y has value 1 then so does Z; and that includes
all worlds where X has value 1. From this it's evident that X ∧ Y . Z has value 1 at all worlds
in W (even those not in W ∗, since only those in W ∗ are accessible to them) at all �nal ordinals,
and in particular at re�ection ordinals. The argument for transitivity is similar.

27The key observation for all of them is that for |X . Y |w,Ω to be 1, it su�ces that for all
worlds w∗ and all �nal ordinals ν, if |X|w∗,ν = 1 then |Y |w∗,ν = 1. Given that, it's simply a
matter of relativizing the proof that one would give for the Burgess-based semantics in the ground
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is valid, then by naivety so are �(True(〈A〉) / .A) and �(¬True(〈A〉) / .¬A), and
hence �(True(〈¬A〉) / .¬True(〈A〉)). (And by the remarks at the end of Section
3, this means that we have a general composition principle for negation: for any
sentence x, the negation of x is true if and only if x is not true.)

The fact that the above laws all hold in the construction with naive truth is
interesting, because these are exactly the axiom schemas that Burgess uses in the
quanti�er-free case for the `True'-free fragment of the language. He gives a com-
pleteness proof there, for a system with these axioms, a necessitation rule, and the
rule that for any string P of �s and ♦s, if � P�(A ≡ B) then � P [(A.C) ≡ (B.C)].
The last rule is inappropriately weak in the 3-valued framework: we want a rule that
has bite even when A and B aren't bivalent. (An adequate replacement requires
the additional conditional `→' soon to be introduced).28 More generally, because
the 3-valued background is weaker, the Burgess axiomatization doesn't give a com-
plete proof-procedure in the 3-valued context.29 Still, I think that the fact that his
axioms carry over unchanged is some indication that adding a naive truth predicate
hasn't seriously compromised the laws of `.' (and once we add the `→' things will
look even better).

In addition, we've seen that as long as we restrict the ground models to those
with Weak Centering at normal worlds (as is required for Modus Ponens in the
ground language), then Modus Ponens for . also holds in the expanded logic with
`True'. (Some of the laws obtained in the 2-valued logic by adding restrictions
on the ≤w can only be carried over straightforwardly to the full logic with `True'
when stated using the aforementioned conditional `→' that generalizes the material
conditional. We'll turn to that conditional in Section 5.)

That's the revision construction.

4.3. The �xed point construction. As I've mentioned, one can also give a �xed
point construction that yields a rather similar outcome. Again consider valuation

level semantics to a given ν. For instance, for the right to left direction of the second listed law:
Suppose that |A . B|w∗,ν = |A . C|w∗,ν = 1. Then for every x in Ww∗ such that |A|w∗,ν = 1,
there is a y1 ≤w∗ x such that

(a) |A|y1,ν = 1 ∧ (∀z ≤w∗ y1)[|A|z,ν = 1 ⊃ |B|z,ν = 1],

and for every y1 in Ww∗ such that |A|y1 = 1, there is a y2 ≤w∗ y1 such that

(b) |A|y2,ν = 1 ∧ (∀z ≤w∗ y2)[|A|z,ν = 1 ⊃ |C|z,ν = 1].

Since ≤w∗ is a pre-order on Ww∗ , (a) entails its analog (a*) where y2 replaces y1; and that with
(b) yields

|A|y2,ν = 1 ∧ (∀z ≤w∗ y2)[|A|z,ν = 1 ⊃ |B ∧ C|z,ν = 1],

which entails |A . B ∧ C||w∗,ν = 1.
(This proof and the proofs of the other laws just given doesn't depend on the use of a re�ection

ordinal for our evaluation: that should be no surprise, since the Fundamental Theorem shows that
a single sentence can only have value 1 at re�ection ordinals if it has value 1 at all �nal ordinals.
Where the fact that validity requires preservation of value 1 only at re�ection ordinals is important
is for inferences from premises: e.g. Modus Ponens (assuming Weak Centering at normal worlds)
and A ∧B � A . B (assuming strong).)

28The best replacement is:

For any string P of �s and ♦s, if � P�(A↔ B) then � P [(A .C)⇔ (B .C)];

here `⇒' is de�ned from `→' and strengthens it in a way to be discussed in Section 5, and `↔'
and `⇔' are de�ned from `→' and `⇒' in the obvious ways. (The displayed law with mixed
biconditionals entails the versions with two `↔' and with two `⇔'.)

29Indeed, the fact that we've restricted to arithmetically standard models immediately rules
out the possibility of a complete proof procedure.
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functions j that assign values in {0, 1
2 , 1} to each pair of a world and a .-conditional;

again we're only interested in valuation functions that are transparent. The idea is
to show that there is a set J of transparent valuations, with a distinguished member
j∗, where we have

Proposition. [Fundamental Theorem for L (�xed point version).] For any
w ∈W , and any L+-sentence A,

(a) |A|w,j∗ = 1 if and only if (∀h ∈ J)(|A|w,h = 1)
(b) |A|w,j∗ = 0 if and only if (∀h ∈ J)(|A|w,h = 0).

So j∗ plays more or less the role that the jΩ for re�ection Ω play in the revi-
sion approach, and J plays more or less the role of the set of those j that occur
arbitrarily late in the revision process (i.e. at ordinals in FIN). Here too, the var-
ious valuations j get a semantics whereby for any L+-sentences A and B and any
world w, j(w,A.B) is determined in a natural way from the values that valuations
related to j give to B in worlds near w where A has value 1; and the semantics
gives the values in the original model to L+-sentences not containing `True'. To
get the proper intersubstitutivity of logical equivalents, one needs to set up the
semantics in a slightly non-obvious way. I sketch the construction in Appendix B;
it is a generalization to variably strict conditionals of the one in Field 2014, and
that paper will enable the reader to easily �ll out the sketch in the Appendix.

(The basic idea of using a �xed point on a set of valuations was suggested in
Yablo 2003; but Yablo's procedure didn't cut down the set of valuations quanti�ed
over in the semantics of each world nearly far enough�indeed, highly irregular
valuations were included�and this led to extreme failure of intersubstitutivity of
logical equivalents in embedded conditionals. Introducing chains in the manner of
Appendix B seems to be the simplest acceptable way of accommodating Yablo's
basic insight.)30

The remarks in Section 4.2 about the revision construction carry over to the
�xed point construction virtually unchanged. In particular, the laws listed there
are valid here too (again, with Modus Ponens as long as the original model has
Weak Centering at normal worlds).

5. �Material-like� conditionals

Many uses of `if ... then' in English are captured reasonably well by a variably
strict conditional like `.', but some uses are more in line with a material conditional:
in particular, the conditional used to restrict universal quanti�cation is. �All A are
B� can't be rendered as ∀x(Ax . Bx): that's too strong when `.' is an ordinary
indicative (or subjunctive) conditional. For instance, �Everyone who will be elected
President in 2016 is female� might be true but �For everyone x, if x is elected
President in 2016 then x is female� presumably isn't: on the ordinary indicative
reading, Jeb Bush and many others are counterexamples even if unelected. In a
2-valued context, we can represent �All A are B� as ∀x(Ax ⊃ Bx), where this is
short for ∀x(¬Ax ∨ Bx). But in a 3-valued context with restrictions on excluded

30Yablo's paper also suggests the use of multiple Kripke �xed points for `True' instead of the
minimal ones; that idea can be employed with any of the constructions for `.' in this section,
both revision-theoretic and �xed point, and has what are arguably some advantages. For further
discussion (in a revision-theoretic context with a di�erent conditional), see Field 2008, Section
17.5. Again, it doesn't matter to the issues of this paper whether one makes these modi�cations.
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middle, we can't use a ⊃ de�ned in terms of ¬ and ∨ (at least if we want such
schemas as �All A are A� and �All A are either A or B� to be logical laws); we
need a new conditional `→' or `⇒', that reduces to ⊃ for 2-valued sentences just
as our `.' reduces to the �classical� variably strict conditional.31 I �nd it plausible
that this quanti�er-restricting conditional is contraposable, but I needn't insist on
this: I will simply take `⇒' to be a contraposable conditional and `→' to be a non-
contraposable one, and we can leave open for now which of the two is to be used to
de�ne restricted quanti�cation. There is no need for separate theories of `→' and
`⇒': we can take the basic conditional to be the non-contraposable `→', and de�ne
A ⇒ B as (A → B) ∧ (¬B → ¬A), which ensures that `⇒' is contraposable. The
basic `→' and the derived `⇒' have uses other than for restricting quanti�cation:
as observed in note 28, they are also needed for some of the the laws of `.' (and
for these purposes, `→' as well as `⇒' is required). But though I'll take `→' as
basic, `⇒' will be the primary focus, because at least in my own view, it is the
contraposable one that is ordinarily used to restrict universal quanti�cation.

There are several options in the literature for such a conditional `→' (or a corre-
sponding contraposable `⇒'). Some of these are broadly like the revision-theoretic
and �xed point options for . given in Section 4; but a key di�erence is that the
valuations at a single world look only at other values at that same world.

For the moment let's ignore the interaction between `→' and `.', and focus on a
language L∗ just like L except that it has `→' instead of `.'. A language with both
`→' and `.' is far more interesting, and will be treated in Section 6. That is what
we'll need for a proper logic for restricted quanti�cation in naive truth theory, a
matter I'll turn to in Section 7. But for the moment, I look at L∗, which has `→'
only.
L∗, like L, contains `True'; if it didn't, and could be given a 2-valued semantics,

we could just de�ne → from ¬ and ∨ in the usual way. As before, the semantics
for `True' will be given by Kripkean constructions in which valuations v (analogous
to the previous j) for `→' at each world are held �xed; the real work then consists
in the speci�cation of an appropriate valuation for `→' at each world.

A revision-theoretic construction of such a valuation for `⇒' was given in Field
2008; instead of what I called the �O�cial Conditional�, given in Ch. 16, I now
prefer the ��rst variation� given in Section 17.5, which modi�es the 0 clause.32 And
I want to adapt it to the non-contraposable `→'. Since L∗ contains `�', we need to
add a worlds parameter; but the semantics for `→' is given world-by-world, unlike
for `.', and is thus considerably simpler. It goes like this:

31I should note that the notation used in this paper is almost the reverse of the notation in
Field 2014. There, the material-like conditional used to restrict quanti�cation (which was assumed
contraposable) was symbolized as I, and . was its non-contraposable generalization; whereas →
was used to symbolize a conditional with very much the �avor of the . used here, though it wasn't
based on a Stalnaker-Lewis-Pollock-Burgess multiple worlds semantics. Sorry for any confusion,
but I think the new notation distinctly better.

An alternative to introducing a new conditional and de�ning universal restricted quanti�cation
in terms of it is to take a binary restricted quanti�er (∀x 3 Ax)Bx as primitive. One can de�ne
`⇒' (though not `→') from it, as well as the other way around.

32This switch yields a cleaner relation between |A ⇒ B ∧ C| on the one hand and |A ⇒ B|
and |A ⇒ C| on the other: see the end of this section. That in turn is important for restricted
quanti�er law 4a* in Section 7.
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|A→ B|w,α =


1 if (∃β < α)(∀γ ∈ [β, α))[|A|w,γ = 1 ⊃ |B|w,γ = 1]

0 if (∃β < α)(∀γ ∈ [β, α))[|A|w,γ = 1 ∧ |B|w,γ = 0]
1
2 otherwise.

If we then de�ne `⇒' from `→' as above, we get something similar but with a
strengthened 1-clause:

|A⇒ B|w,α =


1 if (∃β < α)(∀γ ∈ [β, α))[|A|w,γ ≤ |B|w,γ ]

0 if (∃β < α)(∀γ ∈ [β, α))[|A|w,γ = 1 ∧ |B|w,γ = 0]
1
2 otherwise.

Like the earlier construction with `.', this construction gives rise to a set of �nal
ordinals that include re�ection ordinals ∆, and a Fundamental Theorem just like
the previous:

Proposition. [Fundamental Theorem for L∗(revision-theoretic version).]
For any re�ection ordinal ∆, any w ∈W , and any L+-sentence A,

(a) |A|w,∆ = 1 if and only if (∀γ ∈ FIN)(|A|w,γ = 1)
(b) |A|w,∆ = 0 if and only if (∀γ ∈ FIN)(|A|w,γ = 0).

It can be shown that if the `True'-free fragment L∗
0 is 2-valued, → and ⇒ are

each equivalent to the material conditional ⊃ on L∗
0. (If the `True'-free fragment

L∗
0 is 3-valued, as it would be if we were to add . to the language and used the

modi�ed-Burgess-based semantics, then ⇒ behaves on it like the Lukasiewicz 3-
valued conditional, and → like a less familiar one.)

As with ., only the valuations at re�ection ordinals are relevant to validity: an
inference is valid i� in all starting models and all worlds w in them and all re�ection
∆, if the premises have value 1 at w and ∆ then so does the conclusion.

Alternatively, we could adapt the �xed point semantics, to get a set R of valu-
ations u assigning values in {0, 1

2 , 1} to each →-conditional at each world, with
privileged member v∗. Again, the semantics for non-privileged members of R is
given by a somewhat complicated chain construction analogous to that in Appendix
B, but again it very much simpli�es for v∗: we get

Proposition. [Fundamental Theorem for L* (�xed point version).] For
any w ∈W , and any L∗+-sentence A,

(a)|A|w,v∗ = 1 if and only if (∀u ∈ R)(|A|w,u = 1)
(b) |A|w,v∗ = 0 if and only if (∀u ∈ R)(|A|w,u = 0).

Only the special v∗ is used in the de�nition of validity.33

I note two consequences of the Fundamental Theorems for L∗:

Modus Ponens for → and ⇒: A,A→ B � B (and hence A,A⇒ B � B)
Weak Equivalence of ¬(A→ B) and ¬(A⇒ B) to A ∧ ¬B: The inference from

either ¬(A → B) or ¬(A ⇒ B) to A ∧ ¬B is valid, and so are the reverse
inferences.

33The di�erence between the �xed point constructions for → and for . comes in the way that
chains of valuations generate valuations: instead of the association given in Appendix B, here
when Z is a chain of →-valuations we use the much simpler:

val[Z](w,A→ B) =


1 if (∃S ∈ Z)(∀u ∈ S)(|A|w,u = 1 ⊃ |B|w,u = 1)

0 if (∃S ∈ Z)(∀u ∈ S)(|A|w,u = 1 ∧ |B|w,u = 0)
1
2

otherwise.

This is basically what's in Section 7 of Field 2014.
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Why is the second one called �Weak� Equivalence? Two reasons: (a) While (in the
revision version) |¬(A→ B)|w,∆ (or |¬(A⇒ B)|w,∆) is 1 i� |A∧¬B|w,∆ = 1, there
is no analogous claim for 0. (b) Even for 1, the result holds only for re�ection ∆,
not for all �nal ordinals. (Similarly in the �xed point case: the equivalence holds
only at v∗, not at all valuations in R.) A consequence of (b) is that ¬(A → B)
won't in general be intersubstitutable with A∧¬B even in positive contexts, unless
those contexts are outside the scope of →'s.

The proofs of Modus Ponens and Weak Equivalence are routine applications
of the Fundamental Theorem (for the appropriate construction) together with the
evaluation clauses for →. (Here there is no dependence on any Weak Centering
assumption since the → construction operates only within worlds.)

Later I will use the following (stated here for the revision-theoretic construction,
but with analogs for �xed point): for all worlds w, and all ordinals α for (L-i) and
all re�ection ordinals ∆ for (L-ii):

(L-i): If |A→ B|w,α = 1 then |B → C|w,α ≤ |A→ C|w,α;
(L-ii): |A→ (B ∧ C)|w,∆ = min {|A→ B|w,∆, |A→ C|w,∆}.
The analogs for `⇒' hold as well. Veri�cation of (L-i) is almost trivial. (I'll actually
use it only in the case where α is a re�ection ordinal, but it holds for all ordinals
α.) Part of (L-ii) also generalizes to all ordinals:

(L-iia): If |A→ B|w,α = 1 then |A→ C|w,α ≤ |A→ (B ∧ C)|w,α
(and similarly for ⇒), which is likewise easily proved. The remainder of (L-ii) is
that when |A → (B ∧ C)|w,∆ = 0, one of |A → B|w,∆ and |A → C|w,∆ must
be 0. That's so because if |A → B|w,∆ and |A → C|w,∆ are both > 0 then (by
the Fundamental Theorem and the evaluation rules) either there's a �nal α with
|A|w,α < 1, or both a �nal α with |B|w,α > 0 and a �nal β with |C|w,β > 0; and
then by the Fundamental Theorem again, either |A|w,∆ < 1, or both |B|w,∆ > 0
and |C|w,∆ > 0. So |A → (B ∧ C)|w,∆+1 > 0 and (by the Fundamental Theorem
once again) |A→ (B ∧ C)|w,∆ > 0.34

6. The two types of conditionals together

So, we know several ways of getting naive truth in a language L with `.', and
corresponding ways of getting naive truth in a language L∗ with `→'. But what we
really want is a language L∗∗ with both (and with no restrictions on the embedding
of either within the scope of the other).

There are three prima facie possible ways to proceed.
The symmetric option is to give a single construction (revision or �xed point,

as one chooses) that evaluates both kinds of conditionals simultaneously: on the
revision approach, this would involve, at each stage α, evaluating both |A . B|w,α
and |A→ B|w,α on the basis of the various |A|x,β and |B|x,β for β < α (restricting
to the case where x is w in the case of →).

The .-�rst option is to temporarily hold a valuation v for → �xed, and use a
construction for . on the basis of it. In the case of a revision construction, this
would lead, for each choice of v, to a re�ection ordinal Ωv and thus a privileged
valuation jv (= jvΩv ) for .; in the case of a �xed point construction we similarly get
a privileged valuation j∗v. Call this the �inner construction�. We then would give

34Had we used the valuation rules for the �O�cial Conditional� of Field 2008, we would only
have gotten (L-iia), not (L-ii).
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an �outer� construction (again either revision-theoretic or �xed point; and it needn't
be the same choice as for the inner) of a valuation for→, one that looks only at the
privileged valuations of .-conditionals constructed in inner constructions from other
valuations. For instance, in the case where both the inner and outer constructions
are revision-theoretic, we would construct vα+1 using valuations of sentences where
→-conditionals are evaluated by vα and .-conditionals by the corresponding jvα

(and use the same rule for limit ordinals as before), eventuating in a re�ection
ordinal ∆ for the whole construction.

The →-�rst option is just the reverse. In the case when both inner and outer
constructions are revision-theoretic, we temporarily hold �xed a valuation j for .,
and use a revision construction for → on the basis of it; this leads, for each choice
of j, to a re�ection ordinal ∆j and thus a privileged valuation vj (= vj∆j

) for →.

That is the �inner construction�. We then would give an �outer� construction of a
valuation j for ., where each jµ+1 is determined from an evaluation of sentences
that uses jµ and the corresponding vjµ , eventuating in a re�ection ordinal Ω for
the whole construction.

These three choices lead to signi�cantly di�erent results for the joint logic of .
and→. I think the→-�rst option is most natural: very roughly, it involves settling
the valuation of → at each world before doing the .-construction which relates
di�erent worlds. But the ultimate rationale for the →-�rst option is that it leads
to by far the most plausible and useful laws of restricted quanti�cation.35 Some of
the laws it leads to will be listed in Section 7. Few of them would hold on either
the symmetric or .-�rst options: in the case of the revision construction, that's
because on those options, the validity of a sentence of form A .B (where A and B
may contain →) would require that B has value 1 when A does at all �nal ordinals
in the →-construction, not just at re�ection ordinals of the →-construction. For
instance, it's only at re�ection ordinals where A and A → ⊥ are prevented from
simultaneously having value 1; because of this, the law [(A→ B)∧A] . B couldn't
possibly hold on the symmetric or .-�rst options, where it does on the →-�rst.
(Similar remarks hold for the �xed point constructions.) For more remarks related
to this, see note 42 below.

Let's recap (or make explicit) how the overall construction goes on the →-�rst
option. (I'll stick to the case where both the inner and outer constructions are
revision-theoretic.) We start with a 2-valued worlds model M0 for the `True'-free
fragment of L∗∗ (whose number-theoretic part is an ω-model in each world, as
before). Its ground fragment L∗∗

0 is to be evaluated either by Burgess 2-valued
or variant-Burgess 3-valued semantics. In the former case, `→' is to be evaluated
like `⊃' in the ground language. In the latter case, it is to be evaluated in the
ground language by the rule that |A → B| is 1 whenever |A| < 1 and is |B| when
|A| = 1. (This leads to ⇒ being evaluated in the ground language by the 3-valued
Lukasiewicz rules: |A ⇒ B| is 1 i� |A| ≤ |B|, 0 i� |A| is 1 and |B| is 0, 1

2 i� |A|
exceeds |B| by 1

2 .) For convenience we expand the language L∗∗ by adding names
for all objects in the domain U of M0, getting L

∗∗+.

35Field 2014 used �xed point constructions rather than revision constructions for inner and
outer, but the decision to take the restricted quanti�er conditional as inner was the same there as
here. (Recall from note 31 the confusing di�erence in notation: the restricted quanti�er conditional
there was I, and the → there was somewhat in the spirit of the . here.) The inner construction
there was called the ��ber construction�, and the outer construction the �base space construction�.
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Now let T be any function that assigns to every object of the ground model
a value in {0, 1

2 , 1}, subject to the condition that if an object isn't the Gödel
number of a sentence of L∗∗, T assigns it 0. Let j be any function that assigns
to every L∗∗+-sentence of form A . B a value in {0, 1

2 , 1}, and v be any function

that assigns to every L∗∗+-sentence of form A→ B a value in {0, 1
2 , 1}. We now

evaluate every L∗∗+-sentence relative to T , j, and v by essentially the Kleene rules
early in Section 4; the only di�erences are that there is an additional parameter v
in all the valuations, and we have an additional trivial clause for v analogous to
that for j:
|A→ B|w,j,v,T = v(w,A→ B).

Then, keeping j and v �xed, we construct the minimal �xed point Tmin (which now
depends on v as well as on M0 and j), and abbreviate |A|w,j,v,Tmin as |A|w,j,v.

Next we do the �inner construction�: we hold the valuation j for .-sentences
�xed, and do a revision construction for valuations vα of →-sentences. Adding a
subscript j to make explicit the dependence on that .-valuation, the stages are
given by:

|A→ B|w,j,α =


1 if (∃β < α)(∀γ ∈ [β, α))[|A|w,j,γ = 1 ⊃ |B|w,j,γ = 1]

0 if (∃β < α)(∀γ ∈ [β, α))[|A|w,j,γ = 1 ∧ |B|w,j,γ = 0]
1
2 otherwise.

For each j, we are led to re�ection ordinals ∆ (which may depend on j as well as
onM0). And the dependence on a j clearly does nothing to block the Fundamental
Theorem: we have

Proposition. [Fundamental Theorem for→in L∗∗.] For any j, any j-re�ection
ordinal ∆, any w ∈W , and any L+-sentence A,

(a) |A|w,j,∆ = 1 if and only if (∀γ ∈ FIN)(|A|w,j,γ = 1)
and (b) |Aw,j,∆ = 0 if and only if (∀γ ∈ FIN)(|A|w,j,γ = 0).

Since there is only one possible value other than 0 and 1, these two clauses imply
that each j-re�ection ordinal ∆ is associated with the same →-valuation v∆; we
can call this valuation v(j). Since the particular ∆ doesn't matter as long as it is a
j-re�ection ordinal, we can de�ne |A|w,j to be |A|w,j,∆ where ∆ is any j-re�ection
ordinal.

In short, for each j-valuation for .-sentences, we've assigned a privileged valua-
tion v(j) for →-sentences. (And a minimal �xed point for truth, based on both.)
That's the inner construction.

We now use the privileged v(j)'s for each j in constructing a speci�c j for .-
sentences (the �outer construction�). So unlike in the inner construction, we don't
need to add a new parameter v for the valuation of the other conditional →: the
clauses for the jµ that evaluate .-sentences are EXACTLY as in Section 4.

This may seem to simplify matters, but it actually makes them somewhat more
complicated: for the v we use is no longer held constant, it varies with the j in the
revision process. Because of this, we need to revisit the Fundamental Theorem for
.: in particular, the induction on complexity in Stage (2) of the proof in Appendix
A. For now we must consider in the induction step not only sentences of form ¬B,
B ∧ C, ∀xB and �A, but also sentences of form A → B. And it's unobvious how
to carry out the induction step in this case.

Indeed, it's more than unobvious: it can't be done, the Fundamental The-
orem for . no longer holds without restriction once → is added to the
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language. Example: As a preliminary, let K. be constructed (by the usual Gödel-
Tarski procedure) to be equivalent to True(〈K.〉) . ¬True(〈K.〉), and hence given
naivety to K. .¬K.. On the semantics as given, at each world w for which Ww 6= ∅
(which includes all those w at which there is at least Weak Centering) and for each
stage κ for the outer construction,

($): |K.|w,κ is 1 if κ is odd, 0 if κ is an even successor, and 1
2 if κ is a limit.

(That's so both for the semantics based on the original Burgess and the one based on
the variant.) Now let K∗ be K. → ¬K.. Since K. is equivalent to a .-conditional,
its value is held �xed during any →-construction, so at each w and each stage
κ for the outer construction and each stage α >0 for the inner, |K∗|w,κ,α is 1 if
|K.|w,κ < 1 and is 0 otherwise. So using ($), whenWw 6= ∅, |K∗|w,κ (i.e. |K∗|w,κ,∆)
is 1 when κ is even (including when it is a limit), and 0 otherwise. So for any world,
at κ = Ω, K∗ has value 1, but not at all �nal κ in the .-construction.36

The failure of the Fundamental Theorem for . is not devastating, for we still
get the special case of it for .-conditionals, which is what is needed for many laws,
such as Modus Ponens (assuming Weak Centering for .). Indeed, we get more
generally that the Fundamental Theorem for . holds for every sentence A in which
all occurrences of `True' and `→' are inside the scope of an `.'.

The special case of the Fundamental Theorem for . is enough to establish that all
re�ection ordinals in the jν construction give rise to the same values for every sen-
tence: for it immediately gives this for every .-conditional, and the generalization
to all sentences is immediate by induction.

7. Application to restricted quantification

Here are some highly desirable laws of restricted quanti�cation: it is hard to
imagine making serious use of restricted quanti�cation without them, or at least,
something very close to them. Indeed, we should expect them to be strong laws
in the sense explained in Section 4.1, which guarantees that pre�xing any string of
�s and ♦s to one of them is also to be a law, and that they remain valid however
their antecedent is strengthened.37 (The four with an asterisk are obtained using
.-contraposition from their unasterisked counterparts;38 but since .-contraposition
isn't generally valid for variably strict conditionals they need to be stated sepa-
rately. The ones marked `b' result from the corresponding ones marked `a' by a
kind of quasi-contraposition which is also not generally valid for variably strict con-
ditionals.) I've written these laws with ⇒, re�ecting my view that the conditional
for restricted quanti�cation is contraposable, but until we get to CQ, every law on
the list would remain valid were ⇒ to be replaced with →.

1: [∀x(Ax⇒ Bx) ∧Ay] . By �If all A are B, and y is A, then y is B�
2: ∀xBx . ∀x(Ax⇒ Bx) �If everything is B, then all A are B�
2*: ¬∀x(Ax⇒ Bx) . ¬∀xBx �If not all A are B, then not everything is B�

36It won't help to alter the starting point of the →-construction, e.g. by making conditionals
start with value 1

2
at some worlds but 1 at some and 0 at others. There are several reasons, but

the main one is that the evaluation of K. would even out by stage ω, so that ($) would still hold
for in�nite κ.

37Note that though the proof of the latter in note 26 relied on the Fundamental Theorem, it
used it only for .-sentences, so it still holds when → is in the language.

38With double negation laws (and re-lettering) in the case of CQ*.
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3a: ∀x(Ax⇒ Bx) ∧ ∀x(Bx⇒ Cx) . ∀x(Ax⇒ Cx)
�If all A are B and all B are C then all A are C�

3b: ∀x(Ax⇒ Bx) ∧ ¬∀x(Ax⇒ Cx) . ¬∀x(Bx⇒ Cx)
�If all A are B and not all A are C then not all B are C�

4a: ∀x(Ax⇒ Bx) ∧ ∀x(Ax⇒ Cx) . ∀x(Ax⇒ Bx ∧ Cx)
�If all A are B and all A are C then all A are both B and C�

4b: ∀x(Ax⇒ Bx) ∧ ¬∀x(Ax⇒ Bx ∧ Cx) . ¬∀x(Ax⇒ Cx)
�If all A are B and not all A are both B and C then not all A are C�

4a*: ¬∀x(Ax⇒ Bx ∧ Cx) . ¬∀x(Ax⇒ Bx) ∨ ¬∀x(Ax⇒ Cx)
�If not all A are both B and C then either not all A are B or not all A are
C�

5: ¬∀x(Ax⇒ Bx) . ∃x(Ax ∧ ¬Bx)
�If not all A are B, then something is both A and not B�

5*: ∀x(¬Ax ∨ Bx) . ∀x(Ax ⇒ Bx) �If everything is either not-A or B, then
all A are B� / �If nothing is both A and not-B, then all A are B�

6: ∃x(Ax ∧ ¬Bx) . ¬∀x(Ax⇒ Bx)
�If something is both A and not B, then not all A are B�

CQ: ∀x(Ax⇒ Bx) . ∀x(¬Bx⇒ ¬Ax)
�If all A are B then all not-B are not-A�.

CQ*: ¬∀x(Ax⇒ Bx) . ¬∀x(¬Bx⇒ ¬Ax)
�If not all A are B then not all not-B are not-A�.

(There is a bit of redundancy in the list: 2* follows by obvious laws from 5, and 2
from 5*.)

CQ and CQ* strike me as less obviously desirable than the earlier members of
the list. However, CQ together with 1 and 2 respectively (and double negation laws
in the case of 2) yield:

1c: [∀x(Cx⇒ Dx) ∧ ¬Dy] . ¬Cy
�If all C are D, and y is not D, then y is not C�

2c: ∀x¬Cx . ∀x(Cx⇒ Dx) �If nothing is C, then all C are D�

And these do seem to me obviously desirable; indeed, no less so than the laws 1
and 2 from which they were obtained. It's unobvious how to get a plausible theory
that delivers 1c and 2c without delivering CQ (and probably CQ*), which I take to
provide support for the latter. Still, someone willing to give up 1c and 2c could use
the results of this paper to validate the laws of restricted quanti�cation preceding
CQ with a restricted quanti�er based on → instead of ⇒.

Despite the desirability of these laws, it is not entirely easy to give an account of
conditionals in naive truth theory that validate them all (even without the modal
pre�xes). Indeed, prior to Field 2014, no published theory came close. But there
are two precursors worth mentioning, Beall et al 2006 and Beall 2009. Both are in
a paraconsistent framework, which means (given reasonable assumptions that they
accept) that they can't accept a restricted-quanti�er analog of law 2c, or even of
its rule form. For if Cx means x = x ∧ A and Dx means x = x ∧ B then even the
rule version of 2c requires that ¬A imply A 7→ B (where 7→ is the paraconsistent
restricted quanti�er conditional); and then Modus Ponens yields Explosion. To deal
with this, both precursors propose that the conditional that restricts quanti�cation
be non-contraposable,39 i.e. they disallow even the rule form of CQ for 7→ (and

39Interestingly, they take their main conditional (a relevance conditional, their analog of my
.) to obey a rule form of contraposition. (Beall 2009 very clearly does; Beall et al 2006 is slightly
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CQ*, given previous note). Myself, I'm not happy with the loss of 2c; but neither
account does well with other laws either.

Beall et al 2006 made an important contribution in focusing on the need of a
logic of restricted quanti�cation and introducing the idea of using two separate
conditionals for it. The paper didn't show, or even claim, that a naive truth theory
could be added without triviality to the main logics it considers (those in their
Section 6); but their discussion is explicitly motivated by the hope/belief that this
is so. (One of the authors explicitly stated several years later that the question of
non-triviality was open: see Beall 2009, p. 121.) Putting any worries about lack of
non-triviality proof aside, the main issue is over the laws. The good news is that
their framework validates their analogues of laws 2 and 4a (taking the analogues
to have their noncontraposable 7→ in place of my contraposable ⇒, as well as
their relevance conditional in place of my .); hence also 2* and 4a*, assuming the
interpretation in note 39. The bad news is that it doesn't validate any of the others
(though it does validate rule forms of some of them). Also, the validation of 2 and
2* depends very directly on their assumption of the validity of

(?): A . B |= A 7→ B.

And (?) immediately rules out the analog of my law 1 (when naive truth, Modus
Ponens for 7→, and reasonable quanti�er laws are present). The reason is that given
reasonable quanti�er laws, law 1 requires [(A 7→ B) ∧A] . B; and then (?) delivers

Pseodo Modus Ponens: [(A 7→ B) ∧A] 7→ B.

And it's well-known that this is inconsistent with genuine Modus Ponens for 7→
(i.e. (A 7→ B) ∧ A |= B) in a naive theory (assuming the standard structural rules
for validity mentioned in note 3).40 The centrality of (?) to the derivation of law 2
suggests that no simple modi�cation of the account is likely to yield laws 1 and 2
together.

The second precursor is Beall 2009 (pp. 119-226). It also used two separate
conditionals for the logic of restricted quanti�cation. It suggests three di�erent
options for the logic, and unlike Beall et al 2006, shows each to be compatible with
naive truth. All of them validate (?), so again it is immediate that law 1 can't be
satis�ed. The situation for laws is slightly worse than Beall et al 2006. Beall's �rst
two options validate only 4a and 4a* from the list (though the weaker rule forms of
some of the others are validated). His third option validates only 2 and 2*; indeed,
its method of achieving 2 and 2* causes it to violate even the rule form of 4a.

Without going into detail, the main problem in both Beall et al 2006 and Beall
2009 arises because (a) a certain kind of �abnormal� worlds are essential to these
accounts (unlike the present account, where they are optional); (b) at these worlds,
both conditionals are very badly behaved; and (c) the validity of X . Y (using
my notation for their relevance conditional) requires that it be true at all normal
worlds, which in turn requires that at all worlds including abnormal ones, Y is
true when X is. Collectively these make it very hard for reasonable .-statements

equivocal: see p. 595 middle.) I take this to mean that their main conditional isn't a good
candidate for an account of the ordinary indicative conditional: see the Trump example in Section
2.

40In the logic I've been advocating (with Weak Centering assumed so as to get Modus Ponens),
we do have

C ∨ ¬C,C . B |= C ⇒ B;

but the need for the excluded middle premise is su�cient to prevent the paradox.
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with 7→-conditionals in their antecedents or consequents to come out valid. (An
additional problem arises because of the way that these accounts handles negation,
via a shift in worlds: this immediately rules out laws like 3b and 4b.)

Field 2014 used a very di�erent framework, and did manage to validate the
entire list; but the semantics it employed for . seemed ad hoc. (That paper did
note some commonalities between its . and the ordinary indicative conditional, but
also pointed out that the conditional reduced to the material conditional rather
than the indicative conditional in `True'-free contexts.)41

But I now note that the entire list is also validated on the semantics of the
present paper, with its independently motivated .. (We also get Modus Ponens for
., if we insist on Weak Centering at normal worlds in the base model, as I think
we clearly should.)

The real work in establishing the laws on the list has nothing to do with the
quanti�ers, it's all in the relation among conditionals. The laws we need are the
results of pre�xing the following with strings of �s and ♦s:

I: [(A⇒ B) ∧A] . B (for 1)
IIIa: (A⇒ B) ∧ (B ⇒ C) . (A⇒ C) (for 3a)
IIIb: (A⇒ B) ∧ ¬(A⇒ C) . ¬(B ⇒ C) (for 3b)
IVa: (A⇒ B) ∧ (A⇒ C) . (A⇒ B ∧ C) (for 4a)
IVb: (A⇒ B) ∧ ¬(A⇒ B ∧ C) . ¬(A⇒ C) (for 4b)
IVa*: ¬(A⇒ B ∧ C) . ¬(A⇒ B) ∨ ¬(A⇒ C) (for 4a*)
V: ¬(A⇒ B) / .(A ∧ ¬B) (for 5, 2* and 6)
V*: (¬A ∨B) . (A⇒ B) (for 5* and 2)
C: (A⇒ B) / .(¬B ⇒ ¬A) (for CQ)
C*: ¬(A⇒ B) / .¬(¬B ⇒ ¬A) (for CQ*)

C and C* are of course entirely trivial given the de�nition of ⇒ in terms of
→. For most of the others, the proof is almost immediate from what has already
been said, especially at the end of Section 5. (The analogs of these latter laws for
→ hold equally.) For note that to establish that a claim of form P (X . Y ) is valid,
where P is any string of �s and ♦s, it su�ces to show (in the revision-theoretic
version; but the �xed point is analogous) that for all worlds w and all �nal κ of
the .-construction, if |X|w,κ = 1 then |Y |w,κ = 1. In other words, that for all w
and κ, and all κ-re�ection ordinals ∆κ of the→-construction, if |X|w,κ,∆κ

= 1 then
|Y |w,κ,∆κ

= 1. Given this, the proof of I is immediate from �Modus Ponens for →
and ⇒�, and V from �Weak equivalence of ¬(A → B) and ¬(A ⇒ B) to A ∧ ¬B�.
And IIIa and IIIb follow from the special case of (L-i) (end of Section 5) where α
is ∆, and IVa, IVb and IVa* from (L-ii). As for V*, if |¬A ∨ B|w,κ,∆κ

= 1 then
either |A|w,κ,∆κ

= 0 or |B|w,κ,∆κ
= 1, and so by the Fundamental Theorem for →,

either for all κ-�nal α, |A|w,κ,α = 0 or else for all κ-�nal α, |B|w,κ,α = 1; in either

41Despite its reducing to the material conditional, we can in retrospect see the conditional of
Field 2014 as pretty much a degenerate case of the indicative conditional of the present paper.
For the construction there started from a classical �rst order model, which can be seen as a
degenerate Burgess model with only one world, weakly centered (which in the one-world case
means simply �accessible from itself�). In that degenerate case, `.' obviously coincides with the
material conditional in the ground model. (The conditional there still di�ered in a small respect
from the degenerate case of the current construction: it utilized what I there called �dynamic
Kripke constructions�. I have dropped them here since they don't yield the results that we want
once we clearly focus on extending the ordinary indicative conditional to a language with `True'.)
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case, for all κ-�nal α, |A|w,κ,α ≤ |B|w,κ,α. From this it clearly follows that for all
�nal α |A⇒ B|w,κ,α = 1 and hence in particular that |A⇒ B|w,κ,∆κ

= 1.
This only scratches the surface of the logic of the system,42 but it is not my

purpose here to explore it at all systematically: my purpose was simply to show
that it does easily lead to obvious laws of restricted quanti�cation, which other
approaches to conditionals in naive truth theory (other than the ad hoc one of
Field 2014) haven't come close to meeting. And I think that by basing the laws on
an independently motivated account of indicative conditionals, the resulting theory
is quite natural.

In particular, it's worth emphasizing that the use of two distinct conditional
operators (which is essential for the compatibility of the logic with naive truth, since
if → and . were identi�ed then we'd have the disastrous (?)) was independently
motivated: as I argued at the beginning of Section 5, we can see independently
of the laws recently listed that the indicative conditional and the conditional for
restricted quanti�cation must be di�erent.

Thanks: Harvey Lederman, Graham Priest and two anonymous referees made
comments that have led to signi�cant improvements.
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Appendix A: Proof of Fundamental Theorem for L
(revision-theoretic version)

Since Ω ∈ FIN , the right to left of (a) and (b) in the Theorem are trivial.
Contraposing the left to right and making the Kripke-stages σ explicit, what we
need to establish is that for any re�ection ordinal Ω and any L+-sentence A:

(a*) (∀w ∈W )[if (∃ν ∈ FIN)(|A|w,ν < 1) then ∀σ(|A|w,Ω,σ < 1)], and
(b*) (∀w ∈W )[if (∃ν ∈ FIN)(|A|w,ν > 0) then ∀σ(|A|w,Ω,σ > 0)].
We establish (a*) and (b*) in three steps:
(1) In the special case when A is a conditional B . C, the value of σ makes no

di�erence, and by the fact that Ω is a limit ordinal and the evaluation rules for
conditionals are continuous with respect to 1 and 0 at limits, the claims are just:

(a*-s) (∀w ∈W )[if (∃ν ∈ FIN)(jw,ν(B.C) < 1) then (∀µ < Ω)(∃ν ∈ [µ,Ω))[j|w,ν(B.
C) < 1)];

(b*-s) (∀w ∈W )[if (∃ν ∈ FIN)(jw,ν(B.C) > 0) then (∀µ < Ω)(∃ν ∈ [µ,Ω))[j|w,ν(B.
C) > 0)].
But by (ii) of [Gupta-Belnap] these are trivial.

(2) Given (1), we can show (for any σ) that if (a*) and (b*) hold for the spe-
cial case where A is of form `True(c)' when c denotes the Gödel number of a
sentence, then they hold for all L+-sentences A. This is a routine induction on
complexity, counting .-sentences as of complexity 0 for the purposes of the induc-
tion: the claim is trivial for all other atomic sentences since they keep the same
value at every revision-stage ν, and the induction step for sentences ¬B, B ∧ C,
∀xB and �B is easy. For instance for �: (a) Suppose that for some world w,
(∃ν ∈ FIN)(|�B|w,ν < 1). Then (∃ν ∈ FIN)(∃y ∈ Ww)(|B|y,ν < 1); reversing
the quanti�er order and applying the induction hypothesis, we get that for some
y ∈Ww, |B|y,Ω,σ < 1 (for any σ), and so |�B|w,Ω,σ < 1. (b) Suppose that for some
world w, (∃ν ∈ FIN)(|�B||w,ν > 0). Then (∃ν ∈ FIN)(∀y ∈Ww)(|B||y,ν > 0); so
certainly for all y inWw, (∃ν ∈ FIN)(|B||y,ν > 0), and by the induction hypothesis
for all y in Ww, |B|y,Ω,σ > 0 (for any σ); so |�B|w,Ω,σ > 0 for any σ.

(3) It remains only to show that for all Kripke-stages σ and all c that denote
Gödel numbers of sentences, (a*) and (b*) hold for sentences of form `True(c)'.
But this is trivial when σ = 0, since |True(c)|w,Ω,0 is always 1

2 . We now show that
if it holds for σ = τ then it holds for σ = τ + 1. Suppose c denotes B. Then by the
assumption about τ and the result (2), we get

(∀w ∈W )[if (∃ν ∈ FIN)(|B|w,ν < 1) then |B|w,Ω,τ < 1]
and the analog with `> 0' instead of `< 1'; which by the transparency of the jν-
valuations and the Kripke construction gives

(∀w ∈W )[if (∃ν ∈ FIN)(|True(c)|w,ν < 1) then |B|w,Ω,τ < 1]
and its analog. But by the valuation rules, |B|w,Ω,τ is the same as |True(c)|w,Ω,τ+1,
so the result is established. The case where σ is a limit ordinal is trivial: no sentence
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of form `True(c)' �rst passes from 1
2 to another value at a limit stage of the Kripke

construction.

Appendix B: The fixed point construction for L

Again, a valuation function is a function that assigns to each world and L+-
conditional a value in {0, 1

2 , 1}.
Let a chain be a set P of nonempty sets of transparent valuation functions,

meeting the condition that if S1, S2 ∈ P then either S1 ⊆ S2 or S2 ⊆ S1.
Given a chain P , de�ne a valuation function val[P ] (�the valuation function

generated by P �) as:

val[P ](w,A.B) is



1 if (∃S ∈ P )(∀j ∈ S)(∀x ∈Ww)[|A|x,j = 1 ⊃ (∃y ≤w x)

[|A|y,j = 1 ∧ (∀z ≤w y)(|A|z,j = 1 ⊃ |B|z,j = 1)]]

0 if (∃S ∈ P )(∀j ∈ S)[(∀x ∈Ww)[|A|x,j = 1 ⊃ (∃y ≤w x)

[|A|y,j = 1 ∧ (∀z ≤w y)(|A|z,j = 1 ⊃ |B|z,j = 0)] ∧ (∃x ∈Ww)(|A|x,j = 1)]]
1
2 otherwise.

(This is for the semantics based on modi�ed Burgess; for that based on orig-
inal Burgess, the modi�cation of the 0 clause is obvious.) Clearly each val[P ] is
transparent, given that members of ∪P are.

Let P1 ≤ P2 mean that every member of P1 has a subset that's a member
of P2. (Having small members makes a chain bigger.) Chains that are smaller
in this ordering generate weaker valuation functions: if P1 ≤ P2 then for all w,
valw[P ] ≤K valw[P ]. (That's simply because the 1 clause and 0 clause both have
form �(∃S ∈ P )(∀j ∈ S)...�.)

De�ne a sequence Jµ of sets of transparent valuation functions:
Jµ= {val[P ] : P is a chain and (∀β < µ)(∃S ∈ P )(S ⊆ Jβ)}.

For µ > 0 an equivalent and perhaps more intuitive de�nition of Jµ is: {val[P ] :
P is a non-empty chain and (∀β < µ)(∀S ∈ P )(S ⊆ Jβ)}. This is more restrictive
about the chains, but it's easy to see that any valuation generated by one of the
chains in the original is generated also by one of the more restrictive ones.

If µ < ν, Jν ⊆ Jµ, so obviously we eventually reach a �xed point J. That would
be uninteresting if J were empty, but it can be shown (following the model of Field
2014, section 7) that J 6= ∅. So letting P be the set of J-chains (chains whose
members are all subsets of J) we'll have

(FP): J = {val[P ] : P ∈ P}.
This sets up a one-many correspondence between the j in J and the P in P.
(The members of J are the analogs in this construction of the valuation functions
associated with ordinals in FIN in the revision construction.)

The ≤-minimal chain is {J}; let j∗ be the valuation it generates, i.e. val[{J}].
This is the analog, in the �xed point construction, of the valuation function at
re�ection ordinals. We have

|A.B|w,j∗=



1 if (∀j ∈ J)(∀x ∈Ww)[|A|x,j = 1 ⊃ (∃y ≤w x)

[|A|y,j = 1 ∧ (∀z ≤w y)(|A|z,j = 1 ⊃ |B|z,j = 1)]]

0 if (∀j ∈ J)[(∀x ∈Ww)[|A|x,j = 1 ⊃ (∃y ≤w x)

[|A|y,j = 1 ∧ (∀z ≤w y)(|A|z,j = 1 ⊃ |B|z,j = 0)]] ∧ (∃x ∈Ww)(|A|x,j = 1)]
1
2 otherwise.
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In this case the Fundamental Theorem, as stated in the text, concerns the special
nature of the valuation function at j∗. Its proof and the proof of the �xed point
result are a simple adaptation of that in Section 7 of Field 2014.


