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Abstract

This paper is concerned with the semantics for the logics of ground

that derive from a slight variant GG of the logic of [Fine, 2012b] that have

already been developed in [deRosset and Fine, 2023]. Our aim is to outline

that semantics and to provide a comparison with two related semantics

for ground, given in [Correia, 2017] and [Krämer, 2018a]. This comparison

highlights the strengths and difficulties of these different approaches.
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This paper concerns the semantics for the logics of ground deriving from a

slight variant GG of the logic of [Fine, 2012b] that have already been developed

in [deRosset and Fine, 2023]. Our aim is to outline that semantics and to provide

a comparison with two related semantics for ground, given in [Correia, 2017]

and [Krämer, 2018a]. This will serve to highlight the strengths and difficulties

of these different approaches. In particular, it will show how deRosset and

Fine’s approach has a greater degree of flexibility in its ability to acccommodate

different extensions of a basic minimal system of ground. We shall assume that

the reader is already acquainted with some of the basic work on ground and

on the framework of truthmaker semantics. Some background material may be

found in [Fine, 2012b, 2017a,b].

1 The Selection Space Semantics

We shall, first of all, find it helpful to characterize the selection space semantics

of [deRosset and Fine, 2023] for the logic of ground by detailing how it differs

1



from the more standard state space semantics. The standard semantics appeals

to three key ideas, two metaphysical and one semantic. In the background

metaphysics, it is presupposed that we are given a collection of states and that

one state may be part of another, where the parthood relation is usually taken

to be bounded complete in the sense that every set of states S which is bounded

by the parthood relation has a least such bound supS. The key semantic idea

is the idea of exact verification of a sentence by a state. Intuitively, an exact

verifier for A makes A true (or would, if the verifier were to obtain); and the

exactness of an exact verifier consists in the fact that the entirety of the state

has to participate in the verification. It must be possible to see each part of the

state as playing a role in making the sentence true and it is also allowed that the

verifiers and falsifiers of a sentence may be impossible states, states that cannot

possibly obtain. Given the exact verifiers of atomic sentences and given their

exact falsifiers (i.e. the verifiers of their negations), we can recursively specify

the exact verifiers and falsifiers of more complex sentences. Identifying the

truth-condition of a sentence with its set of exact verifiers, its falsity-condition

with its set of exact falsifiers and its content with the pairing of its truth- and

falsity-conditions, we thereby obtain a recursive specification of the truth- and

falsity-conditions and content of each sentence.

The selection space semantics for the impure logic of ground shares the

general form of the state space semantics, but differs from it in a number of key

respects. Whereas the truth- and falsity-conditions assigned to sentences under

the standard semantics are defined by appeal to the notion of exact verification,

they are assigned directly under the selection space semantics, not via their

truth- and falsity-makers. Thus truth-conditions in the present semantics are

the counterpart of sets of truth-makers in the standard semantics but should not,

of course, themselves be taken to be the counterpart of truth-makers. Likewise,

the semantic operations of conjunction and disjunction - which deRosset and

Fine [2023] dub combination and choice - are also taken to be primitive. It is

through this more direct approach that the selection space semantics achieves

the desired flexibility in the assignment of semantic values.

A second semantic difference concerns the treatment of negation. In stan-

dard state space semantics, ¬A’s verifiers are just the falsifiers of A, and ¬A’s

falsifiers are the verifiers of A. As a result, ¬¬A gets the same truth- and falsity-

conditions as A. But the kind of logic of ground pertinent for selection space
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semantics requires that ¬¬A never receive the same semantic value as A, since

it is axiomatic in GG that A strictly grounds ¬¬A, and that nothing strictly

grounds itself.

Selection space semantics accommodates the distinction between the seman-

tic values of A and ¬¬A by requiring that the semantic value for the latter be

“raised.” In particular, though the combination of a single semantic value is

identified with the choice of that same semantic value, the singleton combina-

tion of A’s semantic value always yields something new. This marks a structural

difference from state space semantics, in which the application of the semantic

analogues of conjunction or disjunction to the single truth-condition a for A is

just a itself.1

This brings us to the final difference. As with the standard state space

semantics, the grounds for A in selection space semantics are given, intuitively,

by what it takes for A to be true. Thus, the grounds for A are a function of the

truth-condition for A, and so DeMorgan equivalents, which have the same truth-

condition, will have the same grounds. Since the falsity-condition for A plays no

role in determining what grounds A, we might say that what grounds A has a

“positive bias.” But the pertinent logics of ground allow for distinctions among

DeMorgan equivalents in what they ground. For instance, though ¬(A∨B) and

(¬A ∧ ¬B) have the same truth-condition, the system GG requires the former,

but not the latter, to ground ¬¬¬(A ∨ B). Thus, what A grounds may be

sensitive to A’s falsity-condition, and so lacks a positive bias. The difference in

falsity-conditions between DeMorgan equivalents must somehow figure into the

specification of the truth-condition for a complex sentence like ¬¬¬(A ∨B).

The selection space semantics solves this problem by assigning contents to

sentences that comprise both truth- and falsity-conditions, and then supposing

that combination and choice are operations, not on conditions, but on contents.

Thus the truth-condition for (A ∧B) will be the combination of the respective

contents (not truth-conditions) of A and B, the truth-condition for (A∨B) will

be the choice of the respective contents of A and B, the falsity-condition for

¬A will be the unit combination of the content of A, and similarly for the other

cases. There is thus an interplay between conditions and contents, with contents

formed through the pairing of conditions and conditions formed through the

1The semantic analogue of conjunction for truth-conditions in standard statespace seman-
tics is component-wise fusion of truthmakers, and the analogue of disjunction is set-theoretic
union; see [Fine, 2017a].
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combination and choice of contents. So, ¬(A ∨ B) may ground ¬¬¬(A ∨ B)

even though its DeMorgan equivalent (¬A ∨ ¬B) does not, since the truth-

condition for ¬¬¬(A ∨ B) will be the singleton combination of the content of

the former, which may differ from the content of the latter. The difference in

content between DeMorgan equivalents induces a difference in truth-conditions

one level up. By contrast, the semantic analogues of conjunction and disjunction

in standard statespace semantics are more uniform in their application: they

operate on conditions to yield further conditions.

2 The Interpretation of Ground

It remains to interpret the notion of ground. As is standard in treatments

of the logic of ground, we deploy two orthogonal distinctions among grounding

connections: they may be either strict or weak, and either partial or full. Further

explanation can be found in [Fine, 2012a,b].

deRosset and Fine [2023] interpret these various claims of ground by appeal

to a semantic analogue they call selection. They start with a basic notion of an

immediate selection from a choice or combination. Letting ‘+’ indicate choice

and ‘.’ combination, a content a is an immediate selection from any choice of

contents [b+c+ · · ·+a+ · · · ], and a, b, c, . . . together are an immediate selection

from their combination [a.b.c. · · · ]. (This reflects the way in which choice is

disjunctive and combination conjunctive.) This notion of immediate selection is

then used to define further selections, which are the semantic analogues of the

different connections of ground. In keeping with positive bias, any immediate

selection from the truth-condition of A is ipso facto a selection from the content

of A. So, if a is the content of A, then A is a strict ground of each of ¬¬A (whose

truth-condition is [a]) and (A ∨ B) (truth-condition: [a + b]). Similarly, A,B

gets to be a strict ground of A ∧B since (if b is, in addition, the content of B)

a, b is an immediate selection from the conjunction’s truth-condition [a.b]. This

gives us a semantic analogue of the notion of unmediated ground ([deRosset,

2017], [Fine, 2012b, pp. 50-1], [Fritz, 2022], [Litland, 2015]).2

2Note, however, that combinations need not be uniquely decomposable into immediate
selections, since there is no constraint forbidding the identification of the combination of some
contents with the choice or combination of some others. This blocks the inconsistency result of
[Fritz, 2022]. In fact, such identifications are crucial to the proof of completeness in [deRosset
and Fine, 2023].
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There are two ways to obtain further selections from these basic selections.

The first is by ascending the hierarchy of singleton combinations:

Ascent Whenever G is a selection from a content a, it is also a selection from

any content of the form ([a], b):

([a], b) ([a], b)

a

OO

=⇒ a

OO

G

OO

G

OO

``

Also, whenever G is a selection from a content of the form ([a], b), deRosset

and Fine [2023] say that it is a weak selection from a. This gives us a semantic

analogue of full, weak ground. So, ascending the hierarchy amounts to inferring

from ∆’s being a strict ground of something that it is also a weak ground.

The second way of obtaining further selections is by applying a cut rule.

Say that the contents G are collectively a strict (or weak) selection from the

contents H = {h1, h2, . . . } iff G can be split up into subsets G1, G2, . . . such

that G1 is a strict (weak) ground of h1, G2 is a strict (weak) ground of h2, . . . .

Thus the contents G are, collectively, a distributive selection from H. The cut

principle then states:

Cut if G is a weak selection from H and H a strict selection from a then G

is a strict selection from a, and if G is a strict selection from H and H a

weak selection from a then G is a strict selection from a:

G ≤ H < a ∨ G < H ≤ a ⇒ G < a.

A conception of ground that appeals only to immediate selections, ascent,

and cut is not very informative. We have merely required that strict and weak

ground be transitive (or, more generally, subject to cut), and that weak ground

be reflexive and entailed by strict ground. But it is consistent with all this that

strict ground and weak ground should be identical. So, deRosset and Fine

[2023] need to impose constraints to get an interpretation of grounding claims

corresponding to GG. They do have the makings, however, of a definition of

weak ground in terms of strict ground: a weak selection from a is just a strict

selection from some content of the form ([a], b), and it is easy to show that strict
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selection from any content of that form entails strict selection from all contents

of this form. Since the content of ¬¬A has the relevant form, strictly grounding

¬¬A is necessary and sufficient for weakly grounding A. Thus, deRosset and

Fine’s assumptions warrant the following definition of weak ground in terms of

strict:

(W/S) ∆ weakly grounds A iff ∆ strictly grounds ¬¬A [deRosset and Fine,

2023, p. 423].

(W/S) is, in effect, a kind of maximality principle. We know that the content

a of A is a strict selection from the content of ¬¬A. (W/S) says, in effect, that

a is the maximal such content, in the sense that any strict selection from the

content of ¬¬A is a weak selection from a. One can do no better than A, so to

speak, in grounding ¬¬A.

There is another assumption that may plausibly be taken to relate weak and

strict selection. Say that a is a weak partial selection from b if it is one of the

items in a weak selection from b and that a is a strict partial selection from b

iff a is a weak partial selection from b but b is not a weak partial selection from

a; and say that the weak selection G from b is irreversible iff b is not a weak

partial selection from any item of G. The assumption then states:

Irreversibility Any irreversible weak selection is a strict selection (where the

corresponding ground-theoretic principle is that any irreversible weak ground

is a strict ground) [deRosset and Fine, 2023, p. 424].

We might take the converse:

Any strict selection from an item is an irreversible weak selection

as an additional assumption. Alternatively, it might be derived from some

further assumptions. For suppose the contents G are a strict selection from b.

By the above principle of ascent, G is a weak selection from b. Now suppose,

for reductio, that b is a weak partial selection from some item w in G. By cut,

b is a strict selection, on its own or with other items, from b. But this, given:

Non-Circularity No item is part of a strict selection of itself

is a contradiction.

These assumptions justify for deRosset and Fine [2023] the following defini-

tion of strict ground in terms of weak ground:
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(S/W) ∆ strictly grounds A iff ∆ irreversibly weakly grounds A [deRosset and

Fine, 2023, p. 424].

Thus, given these various assumptions weak and strict ground will be inter-

definable.

There are two other assumptions deRosset and Fine [2023] need to make,

connecting weak and strict selection to combination and choice:

Maximality

Any items which constitute a strict selection from [a.b. · · · ] will con-

stitute a weak selection from a, b, . . . ;

Any items which constitute a strict selection from [a + b + · · · ] will

constitute a weak selection from some subset of a, b, . . . . [deRosset

and Fine, 2023, p. 424]

These assumptions generalize the semantic analogue of the previous maximality

principle for ¬¬A.

In summary, deRosset and Fine’s [2023] semantics for the impure logic of

ground appeals to a selection space of contents and conditions, with operations

of choice and combination taking sequences of contents to conditions. Choice

and combination are constrained so that the singleton combination [a] is iden-

tical to the singleton choice of a. Strict selection is defined by appeal to im-

mediate selections from choices and combinations, ascent, and cut. Choice

and combination are constrained to obey irreversibility and maximality.

A model interprets a language suitable for expressing grounding claims by map-

ping sentences of the language to contents, and interpreting grounding claims

as selection relations among the contents. The result is a logic in which weak

and strict ground are interdefinable in the ways required by GG. In fact, GG is

sound and complete for this semantics. Details of the semantics are given in an

appendix and further developed in [deRosset and Fine, 2023].

We turn now to a comparison of this approach with those of Krämer [2018a,

2018b] and Correia [2017]. What these three approaches most significantly

have in common is their conformity to the basic structural rules of the pure

logic of ground in [Fine, 2012a] and the basic introduction and elimination

rules for the truth-functional connectives of the impure logic of ground in [Fine,

2012b]. Beyond that, there are some further points of contact and several points
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of contrast, largely relating to (i) the underlying conception of propositional

content (where for us a propositional content is the pairing of a truth-condition

with a falsity-condition), (ii) the semantical treatment of the truth-functional

connectives, (iii) the account of strict ground and its relation to weak ground,

and (iv) the resulting logic of ground.

3 Correia’s Approach

Correia [2017] works with a very fine-grained conception of propositions; they

essentially have the same structure as formulas but for the fact that conjunction

and disjunction are taken to be commutative (519). He assumes, in particular,

that the classes of disjunctive, conjunctive and negative propositions are pair-

wise disjoint. Such a fine-grained view is compatible with deRosset and Fine’s

[2023] approach but is not required, since, as we have already noted, the selec-

tion space semantics allows a range of further propositional identities to hold. It

can allow, for example, for (A∨B), (A∧A) and ¬¬A to be ground-theoretically

equivalent when B weakly grounds A.

For Correia, the semantics for the truth-functional connectives is given by

primitive algebraic operations on propositional contents that correspond to the

various connectives whilst, for deRosset and Fine, these operations are explained

in terms of the underlying operations of combination and choice.

When it comes to strict ground, as with the connectives, Correia posits a

semantic primitive. But it is a simple notion of ground that merely connects

simple propositions (atomic propositions or their negations); and, given the

simple notion, he then shows how it can be used to define a general notion

of ground, that is applicable to all propositions whatever (520). deRosset and

Fine’s approach is quite different. The notion of ground is not given externally,

so to speak, but is defined, via the mechanism of selection, on the basis of the

internal structure of the propositions.

Correia adopts the following characterization of weak ground in terms of

strict:3

Some propositions weakly ground a given proposition iff either (i)

they are all ground-theoretically equivalent to the proposition or

3Although Correia’s logic embodies this definition (516), it should be noted that he is
in a position to accept the previous definition (W/S) of weak ground and also the previous
definition (S/W) of strict ground.
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(ii) they all strictly ground the proposition or (iii) some are ground-

theoretically equivalent to the proposition and the rest strictly ground

the proposition [2017, p. 516].

We can see this definition as arising from the following line of thought: all that

weak ground essentially adds to strict ground is the fact that a proposition is

to ground itself; add this fact to the strict grounding facts, close under chaining

and ground-theoretic equivalence, and we get the weak notion.

However, it is not clear that this is an acceptable line of thought, since we

would like to be able to say that, for distinct bodies x, y, and z, x being of the

same mass as y and y the same mass as z weakly grounds x being of the same

mass as z. But neither x being of the same mass as y nor y being of the same

mass as z is ground-theoretically equivalent to x being of the same mass as z,

nor do they strictly ground x being of the same mass as z. Or, we would like to

be able to say its being chilly, its being windy, and its being chilly, windy, and

sunny weakly grounds its being chilly, windy, and sunny, and yet its being chilly

and its being windy do not strictly ground its being chilly, windy and sunny.

Thus there may be more to what weak grounding adds to strict ground than

just identity or equivalence.

Of course, Correia could just stipulate that this is what he means by weak

ground. But then the elimination rules for negation (and also the other connec-

tives) would, from the present point of view, no longer be valid. For plausibly,

x being of the same mass as y and y being of the same mass as z will strictly

ground that ¬¬(x is the same mass as z) even though, for Correia, they do not

weakly ground that x is of the same mass as z. We see from such examples that

Correia’s definition of weak ground is not without its consequences and that it

will lead, in conjunction with the elimination rules, to a very severe restriction

on the notion of strict ground. deRosset and Fine’s semantics, by contrast, is

built around the idea that neither the weak nor the strict notions are to be

restricted in this way.

There are a number of relatively superficial differences between Correia’s

logic of ground and GG. He adopts strict ground, weak ground, ground-theoretic

equivalence and their negations as primitives in his formal language, whilst

deRosset and Fine adopt strict and weak full ground and strict and weak partial

ground as primitives and do not allow these notions to be negated (which makes

it somewhat harder for them to establish completeness). He adopts, moreover,
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a view of sentence-letters under which they stand for atomic propositions, those

which are not negations or conjunctions or disjunctions, whilst deRosset and

Fine adopt a view under which they stand for arbitrary propositions. Thus,

what should be taken to correspond to the derivable inferences of GG are the

derivable inferential-schemes of his system, so that the derivability of S ` T in

GG would correspond to the derivability of each substitution-instance of S ` T
for him. Even under this correspondence, however, there will be a mismatch,

as we shall see, between the two systems.

For Correia’s approach requires the purely structural principle that if ∆, A

fully weakly grounds A, for any non-empty ∆, then ∆ alone fully weakly grounds

A. His approach also requires the principles connecting weak and strict ground

implied by the line of thought discussed above, on which weak ground adds only

identity and ground-theoretic equivalence to strict ground. Also, his approach

requires that (A∧B) is never ground-theoretically equivalent to (C ∨D), whilst

deRosset and Fine’s approach requires no such principles. One might perhaps

attribute the difference on this latter point to a difference in aim. Fine [2012b,

67] notes a lacuna in his system in regard to questions of propositional identity

(or ground-theoretical equivalence). But whereas Correia’s target is a maximal

system in which all such questions are settled in favor of a highly fine-grained

conception of propositional identity or equivalence, deRosset and Fine’s target is

a minimal system, such as GG, in which all such questions are as far as possible

left open.

Of course, Correia could move in the direction of deRosset and Fine’s ap-

proach and drop the strict conditions that he imposes in obtaining a maximally

fine-grained conception of the identity of propositions. But his definition of gen-

eral ground in terms of simple ground could no longer be guaranteed to work,

since his metalogical results depend upon his propositions having a well-founded

logical structure; and so it looks as if he would then be forced to adopt the gen-

eral notion of ground as a semantical primitive. Since he would then need to

impose conditions on the general notion corresponding to the rules of inference

of his favored system, the semantics would end up being a mere rewrite of the

proof theory in quasi-algebraic terms.
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4 Krämer’s Approach

We turn to the “mode-ified” semantics of Krämer [2018a] (and also of Krämer

[2018b]).4 Like deRosset and Fine [2023], he adopts a bilateral conception of

propositions under which they may be regarded as ordered pairs of unilateral

contents – a truth-condition, or positive content, on the one side and a falsity-

condition, or negative content, on the other side. However, his conception of

the truth- and falsity-conditions is rather different from deRosset and Fine’s. A

truth-condition for him is a set of modes of verification and a falsity-condition

a set of modes of falsification, where, intuitively, a mode of verification is not

simply given by a verifier, or some verifiers, but also by the manner in which

they verify (and similarly for modes of falsification). A disjunction (A∨A), for

example, can be verified either via the left disjunct or via the right disjunct.

But for deRosset and Fine a truth- or falsity-condition is either a combination,

a choice, or a more basic “urelement” from which contents, combinations, and

choices are composed.

Moreover, he adopts what one might call a cumulative conception of truth-

conditions, under which they are composed of the modes of verification which

correspond to both the immediate and the mediate grounds for the given propo-

sition. deRosset and Fine’s view, by contrast, is one in which the truth-condition

for a given proposition corresponds to its immediate grounds. We can, of course,

recover the mediate grounds for a proposition through chaining, but it is not

in general possible to recover the immediate grounds from the total grounds,

since there is nothing in principle to stop total grounds from coinciding when

immediate grounds do not - as with (¬¬A ∨ ¬¬A) and (¬¬A ∨A).

Krämer [2018a, p. 800] adopts semantical clauses for the connectives some-

what similar to those of deRosset and Fine [2023, p. 427]. Thus the falsity-

condition for ¬A will involve “raising” the truth-condition of A; and the truth-

conditions for conjunction and disjunction will involve operations of combination

and choice (t and +) that need not be commutative. But there are some sig-

nificant differences. For deRosset and Fine, the truth-condition for A ∧ B, for

example, will be the combination of the bilateral contents of A and B, whereas

for him it will be the combination of the positive unilateral contents of A and

4[Krämer, 2018b, §§4.2-4] contains a comparison between his semantics and that of [Correia,
2017]. He also compares his semantics with the fundamentality-based account of [Correia,
2018] and the syntactic account of [Poggiolesi, 2016, 2018]).
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B; and similarly for the other connectives. Also, he does not adopt a primitive

operation of choice but takes the choice of two unilateral contents to be the

union of those contents (which, recall, are sets of modes of verification) along

with the combinations of those modes.

Krämer – like deRosset and Fine [2023], but in contrast to Correia [2017]

– adopts a flexible approach to propositional identity (although he also argues

for a particular conception of propositional identity). If, for example, modes

of verification are insensitive to order, so that modes corresponding to the se-

quences of propositions P,Q and Q,P are the same, then it will turn out that

the positive and negative contents of (A ∧ B) and (B ∧ A) will be the same;

and otherwise not. Similarly, if modes of verification are insensitive to repeti-

tion, then it will turn out that the positive and negative contents of (A ∨ A),

(A∧A) and ¬¬A will be the same [Krämer, 2018b, 3,17]. How exactly the two

approaches compare in regard to which propositional identities they allow is not

altogether clear and is worthy of further study.

When it comes to ground, Krämer [2018a, 2018b] adopts essentially the same

definition of weak ground in terms of strict as Correia [2017]; he takes some uni-

lateral propositions to strictly ground a given unilateral proposition just in case

they correspond to a mode of verification for the given proposition; and he takes

some bilateral propositions to strictly ground a given bilateral proposition just

in case the corresponding relation of strict ground holds among their positive

contents [Krämer, 2018b, p. 17]. Thus his notion of ground is positively biased

both to the left and to the right of the grounding relation, whereas deRosset

and Fine’s is only positively biased to the right hand side of a ground-theoretic

statement. Also, given his cumulative conception of propositional content, the

grounds for a given proposition can be directly read off from its modes of veri-

fication whereas, for deRosset and Fine, they can only be indirectly ascertained

via the selections from its positive content.

Krämer does not attempt to axiomatize his semantics (although in [Krämer,

2018b], he does axiomatize various notions of propositional identity). However,

it should be clear that the logic resulting from his semantics will be significantly

stronger than GG. For one thing, he adopts the same restrictive account of

weak ground as Correia, and so there will be the same addition in the structural

principles for weak ground and its relation to strict ground. But there are also

differences in the principles governing strict ground. For, harking back to our
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previous example, ¬(A ∨ B) will have the same positive content as (¬A ∧ ¬B)

[Krämer, 2018b, p. 25] and, in general, if C and D have the same positive

content then so do ¬¬C and ¬¬D [Krämer, 2018b, p. 26] and so, in particular,

¬¬¬(A∨B) will have the same positive content as ¬¬(¬A∧¬B). But ¬(A∨B) is

a strict ground for ¬¬¬(A∨B) and so, since in Krämer’s treatment strict ground

only depends upon positive content, ¬(A∨B) will be a strict ground for ¬¬(¬A∧
¬B). But this is exactly the kind of conclusion avoided in deRosset and Fine’s

semantics by making combination and choice a function of (bilateral) contents

rather than conditions. Thus even though Krämer’s semantics distinguishes

the bilateral contents of ¬(A ∨ B) and (¬A ∧ ¬B) [2018b, p. 26], it does not

distinguish their ground-theoretic roles.

A further peculiarity of Krämer’s semantics might be noted. For its ability

to distinguish the positive content of (A∨B) and (B∨A) depends upon adopting

an inclusive interpretation of disjunction under which the modes of verification

for the conjunction are among those for the disjunction, since otherwise the

positive content of (A ∨ B) and (B ∨ A) alike would simply be the union of

the positive contents of A and B. Thus under a non-inclusive interpretation of

disjunction, the positive contents of (A∨B) and (B∨A) would be the same and

hence would play the very same ground-theoretic role. So, for example, given

that (A∨B) is a strict ground for ¬¬(A∨B), (B∨A) will also be a strict ground

for ¬¬(A ∨ B), which is a commitment deRosset and Fine avoid. We see, in

this way, the distinctive role that the operation of choice can play in providing

an alternative semantics for disjunction.

In sum, we may say that the main differences between deRosset and Fine’s

[2023] semantics and those of Correia [2017] and Krämer [2018a, 2018a] arise

from deRosset and Fine adopting a more liberal conception of how strict and

weak ground might be related and a more flexible approach to the question

of ground-theoretic equivalence, one under which choice and combination are

operations on contents rather than conditions and which thereby allows us to

have positive bias “on the right” without also having it “on the left”. These

differences then enable deRosset and Fine to target a minimal system of ground,

such as GG, rather than one of the stronger systems favored by Correia and

Krämer.
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Appendix

A selection system is a triple F = 〈Σ,Π, F 〉, where Σ and Π are each operations

on finite sequences (including the empty sequence) of ordered pairs of members

of F , taking each such sequence into a member of F , with Σ(〈v〉) = Π(〈v〉).
We use lower case letters ‘a’-‘g’ (sometimes with numerical superscripts) for

members of F , lower case letters ‘u’-‘z’ (sometimes with numerical superscripts)

for pairs of members of F , and upper case letters ‘G’-‘K’ (sometimes with

numerical subscripts or superscripts) for sets of pairs of members of F . Thus,

if G = F × F , then Σ,Π : G<ω → F . For a pair v, we write v⊕ for v’s first

element, and v	 for its second element. Intuitively, F is a set of conditions, and

pairs of such conditions are contents.

Abusing notation, we indicate unions of sets of contents by comma-separated

lists, and we often omit brackets for singletons of contents in these lists. So, for

instance, G,H, v is used for G∪H ∪{v}. We will occasionally write expressions

of the form (xi) for the indexed set {xi|i < α}, leaving the upper bound of

the ordinal indices implicit. For instance, we will sometimes write (φi) instead

of φ1, φ2, . . . , (Eij) instead of E1
1 , E

1
2 , . . . , E

2
1 , E

2
2 , . . . , E

k
1 , E

k
2 , . . . , and (Gi < v)

instead of G1 < v;G2 < v, . . . .

Write [v0 + v1 + · · · ] for Σ(〈v0, v1, . . . 〉) and [v0.v1. · · · ] for Π(〈v0, v1, . . . 〉).
[v0 + v1 + · · · ] is the choice of v0, v1, . . . , and [v0.v1. · · · ] the combination of

v0, v1, . . . . Since the choice of a single content v is just the same as the combi-

nation of v, we denote it by [v], which is neutral between the ‘+’ notation for

choice and the ‘.’ notation for combination. We use ‘�F’ to indicate the relation

of immediate selection between sets (not sequences) of contents and choices and

combinations, where vi �F [v0 + v1 + · · · ] for each i, and v, w, · · · �F [v.w. · · · ]
(and that is all).

Given a selection system F = 〈Σ,Π, F 〉, the relation of strict selection <F

between a finite set of contents G and a content v is defined inductively in terms

of immediate selection. In this definition, the weak selection relation G ≤F v

abbreviates (∃d)G <F ([v], d):

Definition 1
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1. Basis: if G�F v⊕, then G <F v;

2. Ascent: if G <F w and [w] = v⊕ , then G <F v;

3. Lower Cut: if (Gi ≤F v
i) and (vi) <F v, then (Gi) <F v; and

4. Upper Cut: if (Gi <F v
0) and (vi) ≤F v, then (Gi) <F v.

Relations of partial selection are defined in terms of <F:

• w �F v iff there is an H such that w,H ≤F v; and

• w ≺F v iff w �F v but v 6�F w.

Let a covering of G be a family of sets G0, G1, . . . such that G = G0∪G1∪. . . .

Definition 2 A frame is a selection system F meeting two constraints (which

can be shown to be satisfiable [deRosset and Fine, 2023, C3.8,T8.6]):

1. Irreversibility: G <F v iff G ≤F v and (∀w ∈ G)v 6�F w; and

2. Maximality:

(a) G <F ([v0.v1. · · · ], d) only if there is a covering (Gi) of G such that

(Gi ≤F v
i); and

(b) G <F ([v0 + v1 + · · · ], d) only if there is a non-empty subset (wj) of

(vi) and a covering (Gj) of G such that (Gj ≤F w
j).

Suppose we are given a propositional language L , whose connectives are

conjunction, disjunction, and negation. We will identify L with the set of its

sentences. Let <,≤,≺, and � be fresh symbols. (That is, they are pairwise

distinct from one another and from every connective and sentence of L .) The

grounding claims of L then consist of the following:

∆ < φ ∆ ≤ φ φ ≺ ψ φ � ψ

for any ∆ ⊆ L and any sentences φ, ψ of L . We will continue to use the lower-

case Greek letters φ, ψ, δ, and θ (sometimes with superscripts) for sentences of L

and upper-case Greek letters ∆,Γ,Σ, and Θ (sometimes with superscripts) for

sets of such sentences. The Greek letters σ and τ (sometimes with subscripts)

are used for grounding claims of L , and upper-case letters S and T for sets

of grounding claims of L . An interpretation for a language L into a frame
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F = 〈Σ,Π, F 〉 is a function ¯̄· mapping each atomic sentence φ in L to a content
¯̄φ. We extend interpretations to molecular sentences by means of the following

recursive clauses:

1. ¬φ = ( ¯̄φ	, [
¯̄φ] );

2. (φ ∧ ψ) = ( [ ¯̄φ . ¯̄ψ ], [¬φ+ ¬ψ ] ); and

3. (φ ∨ ψ) = ( [ ¯̄φ+ ¯̄ψ ], [¬φ .¬ψ ] ).

We extend the notion of an interpretation to sets of sentences of L in the

standard way: ∆ = {¯̄δ|δ ∈ ∆}.

Definition 3 A model M for a language L is a tuple 〈Σ,Π, F,¯̄· 〉, where F =

〈Σ,Π, F 〉 is a frame, and ¯̄· is an interpretation for L into F.

If M = 〈Σ,Π, F,¯̄· 〉 is a model and F is the frame 〈Σ,Π, F 〉, we write ≤M

for ≤F, and, similarly, for the other relations of ground.

Definition 4 Let M be a model 〈Σ,Π, F,¯̄· 〉. Truth in a model for grounding

claims is defined by the following clauses:

1. M � ∆ ≤ φ iff ¯̄∆ ≤M
¯̄φ;

2. M � ∆ < φ iff ¯̄∆ <M
¯̄φ;

3. M � φ � ψ iff ¯̄φ �M
¯̄ψ; and

4. M � φ ≺ ψ iff ¯̄φ ≺M
¯̄ψ.

S � T iff, for every model M, if M � σ for each σ ∈ S, then M � τ , for some

τ ∈ T . So, sets of grounding claims are treated conjunctively on the left-hand

side and disjunctively on the right-hand side of �. M � S iff M � σ, for some

σ ∈ S.

deRosset and Fine [2023, pp. 428-9] specify a system GG, which they show to

be sound and complete for the semantics just specified [deRosset and Fine, 2023,

T3.1, T8.6]. GG comprises the following rules and axioms, which inductively

define a derivabiliy relation 
 among finite sets of grounding claims:

Structural rules:

THINNING If T 
 S, then T, T ′ 
 S, S′

SNIP If σ, S 
 T and S′ 
 T ′, σ, then S, S′ 
 T, T ′
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In the statement of the structural rules, T ′ and S′ are finite sets of grounding

claims. Since 
 relates sets, contraction and permutation rules are not needed.

The Pure Logic of Ground:

IDENTITY σ 
 σ

SUBSUMPTION (≤ / �) : ∆, φ ≤ ψ 
 φ � ψ (< / ≤) : ∆ < φ 
 ∆ ≤ φ

(< / ≺) : ∆, φ < ψ 
 φ ≺ ψ (≺ / �) : φ ≺ ψ 
 φ � ψ

TRANSITIVITY (� / �) : φ � ψ; ψ � θ 
 φ � θ (� / ≺) : φ � ψ; ψ ≺ θ 
 φ ≺ θ

IRREVERSIBILITY φ � ψ 
 φ ≺ ψ; ψ � φ

REFLEXIVITY 
 φ ≤ φ

NON-CIRCULARITY φ ≺ φ 
 ∅

CUT ∆ ≤ φ; φ, ψ0, ψ1, . . . , ψn ≤ ψ 
 ∆, ψ0, ψ1, . . . , ψn ≤ ψ

REVERSE SUBSUMPTION φ0, φ1, . . . , φn ≤ ψ; φ0 ≺ ψ; φ1 ≺ ψ; · · · ; φn ≺ ψ 
 φ0, φ1, . . . , φn < ψ

Let S0, S1, . . . be finite sets of grounding claims. Then S 
 (S0|S1| . . . ) is

defined to hold iff S 
 σ0, σ1, . . . for each set σo, σ1, . . . such that σi ∈ Si. It

is easily shown that a model M verifies every such set σ0, σ1, ... iff, for some Si,

M verifies every grounding claim in Si.

Introduction Rules:


 φ < ¬¬φ


 φ < (φ ∨ ψ) 
 ψ < (φ ∨ ψ)


 φ, ψ < (φ ∧ ψ)


 ¬φ < ¬(φ ∧ ψ) 
 ¬ψ < ¬(φ ∧ ψ)


 ¬φ,¬ψ < ¬(φ ∨ ψ)

Elimination Rules:

∆ < ¬¬φ 
 ∆ ≤ φ

∆ < (φ ∧ ψ) 
 ( ∆0
φ ≤ φ; ∆0

ψ ≤ ψ | ∆1
φ ≤ φ; ∆1

ψ ≤ ψ | . . . )

∆ < (φ ∨ ψ) 
 ∆ ≤ φ; ∆ ≤ ψ; ∆ < (φ ∧ ψ)

∆ < ¬(φ ∨ ψ) 
 ( ∆0
φ ≤ ¬φ; ∆0

ψ ≤ ¬ψ | ∆1
φ ≤ ¬φ; ∆1

ψ ≤ ¬ψ | . . . )

∆ < ¬(φ ∧ ψ) 
 ∆ ≤ ¬φ; ∆ ≤ ¬ψ; ∆ < (¬φ ∧ ¬ψ)

In the statement of the elimination rules for ∧ and ¬∨, 〈∆0
φ,∆

0
ψ〉, 〈∆1

φ,∆
1
ψ〉, . . .

are taken to be all of the ordered pairs 〈∆n
φ,∆

n
ψ〉 for which ∆ = ∆n

φ ∪∆n
ψ. For

any sets S and T of grounding claims, let S ` T iff there are S′ ⊆ S and T ′ ⊆ T
such that S′ 
 T ′.
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