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Abstract

Using countable support iterations of S -proper posets, we show that the existence of
a ∆1

3 definable wellorder of the reals is consistent with each of the following: d < c,
b < a = s, b < g.
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1. Introduction

If V = L then there exists a Σ1
2 well-ordering of the reals. Furthermore, by Mans-

field’s Theorem (see (11), Theorem 25.39) the existence of a Σ1
2 well-ordering of the

reals, implies that every real is constructible. Using a finite support iteration of ccc
posets, L. Harrington showed that the existence of a ∆1

3 wellordering of the reals is con-
sistent with the continuum being arbitrarily large (see (12), Theorem A). S. D. Friedman
showed that Martin’s Axiom (and not CH) is consistent with the existence of a ∆1

3 de-
finable wellordering of the reals (see (8) and see (12) for the corresponding boldface
result). As shown in (5) BPFA is consistent with the existence of a ∆1

3 wellorder of the
reals. Note that since in the last two models MA holds, all cardinal characteristics of the
continuum in these models are equal to c. On the other hand large cardinals imply pro-
jective determinacy and so they imply that there are no projective wellorders of the reals
(see (11)). In this paper, using a countable support iteration of S -proper posets, we show
that the existence of a parameter free ∆1

3-definable wellorder of the reals is consistent
with each of the following: d < c, b < a = s, b < g.

Throughout the paper, except if it is explicitly stated otherwise, we work over the
constructible universe L. In section 2, we introduce a particular instance of the method of
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localization, which originates in the work of R. David on Π1
2-singletons (see (6) or (8)).

We show that this instance of the method is proper (see Lemma 3) and does not add reals
(see Lemma 4). In section 3, we define coding with perfect trees, establish its proper-
ness and show that the poset is ωω-bounding. In section 4, we discuss some preservation
theorems for iterations of S -proper posets. In section 5, using a countable support itera-
tion of length ω2 of S -proper posets, we obtain a model in which there is a ∆1

3 definable
wellorder of the reals and the continuum is ω2. At each stage of this iteration, first we
force with an arbitrary proper poset of size at most ℵ1 and then introduce the definable
wellorder of the reals in three successive steps: we destroy countably many stationary
sets from some fixed sequence of stationary, co-stationary sets in the ground model, we
localize this information to a certain class of countable models and finally add a real
coding this same information. The freedom, given by forcing with an arbitrary proper
poset, as well as the combinatorial properties of the posets used to introduce the definable
wellorder of the reals, allow us to modify some of the known cardinal characteristics of
the real line. Thus in section 6, we obtain that the existence of a ∆1

3-definable wellorder-
ing of the reals is consistent with each of the following: d < c (see Theorem 2), b < a = s

(see Theorem 3) and b < g (see Theorem 4). To the best knowledge of the authors, this
is the first work on projective wellorders and cardinal characteristics of the continuum.
We conclude with some open questions.

Following standard notation ωω denotes the set of functions from ω to ω, [ω]ω the
set of infinite subsets of ω. Whenever f , g are in ωω, f is dominated by g, denoted
f ≤∗ g, if there is k ∈ ω such that for all n ≥ k, f (n) ≤ g(n). A family B ⊆ ωω is
unbounded, if there is no single real g which dominates all elements of B. A family
D ⊆ ωω is dominating if every real is dominated by an element of the familyD.

2. Localization

Say that a transitive ZF− modelM is suitable ifωM2 exists andωM2 = ωLM
2 . Through-

out this section assume that the ground model is some generic extension L[G∗] of the
constructible universe L, in which cofinalities (and so cardinals) have not been changed.
Let X ⊆ ω1 and let φ(ω1, X) be a Σ1-sentence with parameters ω1, X, which is true in all
suitable models containing ω1 and X as elements.

Definition 1. Let L(φ) be the poset of all functions r : |r| → 2, where the domain |r| of
r is a countable limit ordinal, such that

1. if γ < |r| then γ ∈ X iff r(2γ) = 1
2. if γ ≤ |r|, M is a countable, suitable model containing r � γ as an element and

γ = ωM1 , then φ(γ, X ∩ γ) holds inM.

The extension relation is end-extension.

Remark 1. If r ∈ L(φ), then the even part of r codes X ∩ |r|.
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Lemma 1. Let r ∈ L(φ) and let γ be a countable limit ordinal greater than |r|. Then there
is r∗ ∈ L(φ) such that |r∗| = γ and r∗ ≤ r.

Proof. Take the odd part of r∗ on the interval [|r|, |r| + ω) to code γ and to consist only
of 0’s on [|r| + ω, γ). Then there are no new instances of requirement (2) for being a
condition to check, because no ZF− model containing r∗ � |r| + ω can have its ω1 in the
interval (|r|, γ].

Lemma 2. Let G beL(φ)-generic and let Y =
⋃

G. LetM be a countable suitable model
containing Y � γ as an element, where γ = ωM1 . Then φ(γ, X ∩ γ) holds inM.

Proof. Note that if r ∈ L(φ) and δ is a limit ordinal, δ < |r|, then r � δ ∈ L(φ). Then by
Lemma 1, the set Dδ = {r ∈ L(φ) : |r| = δ} is predense. LetM be a countable suitable
model, γ = ωM1 and Y � γ ∈ M. Then r = Y � γ is a condition and so by definition the
formula φ(γ, X ∩ γ) holds inM.

Lemma 3. L(φ) is proper.

Proof. LetM be a countable elementary submodel of LΘ[G∗] for some sufficiently large
Θ, such that L(φ), X are elements of M and let p ∈ M ∩ L(φ). Let i = M ∩ ω1,
{ik}k∈ω ⊆ M ∩ ω1 a sequence cofinal in i. Let {Dk}k∈ω enumerate the dense subsets of
L(φ) which belong to M. Define a sequence {pk}k∈ω ⊆ M ∩ L(φ) such that p0 ≤ p
and for all k ∈ ω, pk+1 ≤ pk, |pk| ≥ ik, pk ∈ Dk ∩M. Suppose pk has been defined (to
obtain p0 consider p−1 = p). Since D′ik+1

= {s ∈ L(φ) : |s| ≥ ik+1} is dense in L(φ) and
belongs toM (as it is definable from parameters inM), there is r ∈ D′ik+1

∩M extending
pk+1. Then (by elementarity) there is pk+1 ∈ Dk+1 ∩ M extending r. Since pk ∈ M,
ik ≤ |pk| < i for all k ∈ ω. We will show that q =

⋃
k∈ω pk is a condition in L(φ) and thus

is an (M,L(φ))-generic extension of p.
Let N0 be a countable, suitable model containing q � γ as an element, where γ =

ωN0
1 ≤ |q| = i. Case 1. If ωN0

1 = γ < i, then γ ∈ |pk| for some k ∈ ω. However pk � γ ∈

L(φ) and so φ(γ, X ∩ γ) holds in N0 by definition of pk � γ. Case 2. Let ωN0
1 = γ = i.

SinceM is a countable elementary submodel of LΘ[G∗],M satisfies that φ(ω1, X) holds
in all suitable models containing ω1 and X as elements. Then the transitive collapse M̄
of M satisfies that φ(γ, X ∩ γ) holds in all suitable models containing γ and X ∩ γ as
elements. In particular φ(γ, X ∩ γ) holds in the least suitable model containing γ and
X ∩ γ as elements, and as φ is Σ1 it holds in all suitable models containing γ and X ∩ γ
as elements. As N0 is suitable and contains γ, X ∩ γ as elements, we conclude that
φ(γ, X ∩ γ) holds in N0 as desired.

Lemma 4. L(φ) does not add new reals.

Proof. Let ḟ be a L(φ)-name for a real, letM be a countable elementary submodel of
LΘ[G∗], where Θ is a sufficiently large cardinal such that ḟ ,L(φ), X are elements ofM
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and let p ∈ L(φ) ∩M. Let i = ωM1 and let {ik}k∈ω ⊆ M ∩ ωM1 be a sequence cofinal in
i. Recursively define a sequence {pk}k∈ω of conditions in M ∩ L(φ) such that p0 ≤ p,
pk+1 ≤ pk, pk 
 ḟ (k) = m̌k where mk ∈ ω and |pk| ≥ ik for all k ∈ ω. Let q =

⋃
k∈ω pk.

Just as in the proof of Lemma 3 one can show that q is a condition. Then q is a common
extension of the pk’s, and so q 
 ḟ = ǧ, where g(k) = mk for all k ∈ ω.

Remark 2. In fact, the above arguments show that L(φ) has a countably closed dense
subset. LetM0 be the least suitable model containing ω1 and X as elements, and let C
be the closed unbounded subset ofω1 consisting of the intersections withω1 of countable
elementary submodels ofM0. Then the set D of conditions r such that |r| ∈ C is dense
and the union of a countable sequence of elements of D is also a condition in D.

3. Coding with perfect trees

Let Y ⊆ ω1 be generic over L such that in L[Y] cofinalities have not been changed.
Inductively define a sequence µ̄ = {µi}i∈ω1 of L-countable ordinals as follows: µi is the
least µ >

⋃
{µ j : j < i} (this condition is vacuous if i is equal to 0) such that Lµ[Y ∩ i] �

ZF− and Lµ � ω is the largest cardinal. There are many µ’s with these properties, for
example any µ such that Lµ[Y ∩ i] is an elementary submodel of Lω1[Y ∩ i]. We say that
a real R codes Y below i if for all j < i, j ∈ Y if and only if Lµ j[Y ∩ j,R] � ZF−. For
T ⊆ 2<ω a perfect tree, let |T | be the least i such that T ∈ Lµi[Y ∩ i].

Definition 2. Let C(Y) be the poset of all perfect trees T such that R codes Y below |T |,
whenever R is a branch through T . For T0,T1 conditions in C(Y) let T0 ≤ T1 if and only
if T0 is a subtree of T1.

Remark 3. Note that T0 ≤ T1 if and only if [T0] ⊆ [T1] where [T ] denotes the set of
infinite branches through T . Define T0 ≤n T1 if and only if T0 ≤ T1 and T0,T1 have the
same first n splitting levels. For T a perfect tree, m ∈ ω, let S m(T ) be the set of m-splitting
nodes of T (and so |S m(T )| = 2m), and for t ∈ T let T (t) = {η ∈ T : t ⊆ η or η ⊆ t}.

Remark 4. By absoluteness, if T is a condition then R codes Y below |T | even for
branches R through T in the generic extension. In particular this holds for the generic
branch.

Lemma 5. Let T ∈ C(Y) and |T | ≤ i < ω1. Then there is T ∗ ≤ T such that |T ∗| = i.

Proof. By induction on i. We may assume that |T | is less than i. If i = j + 1 then we
may also assume by induction that |T | = j and hence that T ∈ A j = Lµ j[Y ∩ j]. If j ∈ Y ,
then we take T ∗ ≤ T to have the property that R is PT -generic over A j for R ∈ [T ∗],
where PT is the forcing (isomorphic to Cohen forcing) whose conditions are elements
of T , ordered by extension. Note that T ∗ can be chosen in Ai = Lµi[Y ∩ i], as A j is a
countable element of Ai. Also Lµ j[Y ∩ j,R] � ZF− for R ∈ [T ∗], by the PT -genericity
of R ∈ [T ∗]. So T ∗ is a condition and |T ∗| = i. If j does not belong to Y then choose
a real R0 coding a well ordering of ω of order type µ j, R0 ∈ Ai and take T ∗ ≤ T to be
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the tree whose branches R are exactly the branches through T such that for all n, n ∈ R0
if and only if R goes right at the 2n-th splitting level of T . Then T ∗ belongs to Ai and
for R ∈ [T ∗], (R,T ) computes R0 and hence Lµ j[Y ∩ j,R] is not a model of ZF−, since it
contains R0 as an element.

If i is a limit ordinal then choose {in}n∈ω, where |T | = i0, to be an ω-sequence cofinal
in i which belongs to Ai = Lµi[Y ∩ i]. Let T0 = T , and for each n let Tn+1 ∈ Q(µ̄,Y) be
least in Ain+1 such that |Tn+1| = in+1 and Tn+1 ≤n Tn. Such Tn’s exist by induction. If
T ∗ =

⋂
n∈ω Tn then T ∗ ≤ T belongs toAi and satisfies the requirement for belonging to

C(Y). So T ∗ ≤ T , |T ∗| = i as desired.

Lemma 6. Let G be C(Y)-generic. Then R =
⋂

G codes Y . That is for all j < ω1( j ∈
Y if and only if Lµ j[Y ∩ j,R] � ZF−).

Proof. Let j < ω1. Then by Lemma 5 the set D j = {T ∈ C(Y) : |T | > j} is dense. Thus
there is some T ∈ D j ∩G and so R ∈ [T ]. Then since j < |T | by Remark 4 we have that
j ∈ Y if and only if Lµ j[Y ∩ j,R] � ZF−.

Lemma 7. C(Y) is proper.

Proof. LetM be a countable elementary submodel of LΘ[Y], for some sufficiently large
Θ, which contains C(Y), µ̄,Y as elements. Let T ∈ M ∩ C(Y) and let i = M ∩ ω1.
The transitive collapse isomorphism M̄ of M is of the form Li[̄Y ∩ i]. However M̄ �
(i is uncountable) and so M̄ ∈ Lµi[Y ∩ i]. Since Lµi[Y ∩ i] � (i is countable), we can fix
a sequence ī = {ik}k∈ω which is cofinal in i and belongs to Lµi[Y ∩ i] as an element.

Let {Dk}k∈ω ⊆ M enumerate the dense subsets of C(Y) in M. Inductively define
a sequence {Tk}k∈ω of conditions in C(Y) ∩ M such that T0 ≤ T and for all k ∈ ω,
Tk+1 ≤k+1 Tk, |Tk| ≥ ik (and since Tk ∈ M, also |Tk| < i) and Tk 
 Dk∩M∩Ġ , ∅, where
Ġ is the canonical name for the C(Y)-generic filter. Suppose we have defined Tk ∈ M.
Let D′ik+1

= {S ∈ C(Y) : |S | ≥ ik+1}. By elementarity D′ik+1
∈ M and (D′ik+1

is dense)M.
Let t ∈ S k+1(Tk). Then there is T̃ (t) ∈ D′ik+1

∩ M such that T̃ (t) ≤ Tk(t). Furthermore
there is T̂ (t) ∈ Dk+1 ∩M such that T̂ (t) ≤ T̃ (t). Then let Tk+1 =

⋃
{T̂ (t) : t ∈ S k+1(Tk)}.

Note that since S k+1(Tk) ∈ M, also Tk+1 ∈ M.

Claim. Tk+1 
 Dk+1 ∩M∩ Ġ , ∅.

Proof. The set {X ∈ C(Y) : ∃t ∈ S k+1(Tk+1)(X ≤ Tk+1(T ))} is dense below Tk+1. Let G
be C(Y)-generic filter such that Tk+1 ∈ G and let X ∈ G such that X ≤ Tk+1(t) for some
t ∈ S k+1(Tk+1). However Tk+1(t) = T̂ (t) and so T̂ (t) ∈ Dk+1 ∩M∩G. Claim

Note that we could have chosen {Dk}k∈ω so that {D̄k}k∈ω, where D̄k is the image of Dk

under the transitive collapse isomorphism, belongs to Lµi[Y∩i]. Therefore we could have
also chosen τ̄ = {Tk}k∈ω to belong to Lµi[Y ∩ i]. Then T ∗ =

⋂
τ̄ =
⋂

k∈ω Tk ∈ Lµi[Y ∩ i]
and so T ∗ is a condition in C(Y). Indeed, it is clear that every branch of T ∗ codes Y
below i: let R ∈ [T ∗] and j < i. Then j < ik for some k. However R ∈ [Tk] and so
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j ∈ Y if and only if Lµ j[Y ∩ j,R] � ZF−. Then for every dense subset D of C(Y) inM,
T ∗ 
 D ∩ Ġ ∩ M , ∅. Thus T ∗ ≤ T and T ∗ is (M,C(Y))-generic.

Recall that a posetQ which preserves the ground model reals as a dominating family
is called ωω-bounding (see (1)).

Lemma 8. C(Y) is ωω-bounding.

Proof. Let ḟ be a C(Y)-name for a real, T ∈ C(Y) and letM be a countable elementary
submodel of LΘ[Y] for some sufficiently large Θ such that ḟ , C(Y),T, µ̄,Y are elements
ofM. Let i = M∩ ω1 and let ī = {ik}k∈ω be a sequence (which belongs as an element)
in Lµi[Y ∩ i] cofinal in i. Using the elementarity of M recursively define a sequence
{Tk}k∈ω in M ∩ C(Y) such that T0 ≤ T and for all k ∈ ω, Tk+1 ≤k+1 Tk, |Tk| ≥ ik,
Tk 
 ḟ (k) ∈ ďk for some dk ∈ [ω]<ω. Just as in the proof of Lemma 7, one can argue that
{Tk}k∈ω ∈ Lµi[Y ∩ i] and so T ∗ =

⋂
k∈ω Tk ∈ Lµi[Y ∩ i]. Therefore T ∗ is a condition in

C(Y), which extends T and T ∗ 
 ḟ ≤ ǧ where g(k) = max dk for all k ∈ ω.

4. S-properness and shooting clubs

The poset which we will use for adding a closed unbounded subset to the comple-
ment of a stationary, co-stationary set is well known (see (11)).

Definition 3. Let S ⊆ ω1 be a stationary, co-stationary set. Then Q(S ) is the poset of all
countable closed subsets of ω1\S , with the end-extension as the extension relation.

If G is Q(S )-generic, then
⋃

G is a closed unbounded subset of ω1 disjoint from S .
Thus Q(S ) destroys the stationarity of S .

Lemma 9. Q(S ) is ω-distributive and so Q(S ) does not add new reals.

Proof. See (11).

Since Q(S ) destroys the stationarity of S , it is not proper. However Q(S ) is almost
proper in the following sense (see (10)).

Definition 4. Let T ⊆ ω1 be a stationary set. A poset Q is T-proper, if for every
countable elementary submodel M of H(Θ), where Θ is a sufficiently large cardinal,
such thatM∩ ω1 ∈ T , every condition p ∈ Q ∩M has an (M,Q)-generic extension q.

If S is a stationary, co-stationary subset of ω1 and Q(S ) is the poset defined above
(see Definition 3), then Q(S ) is ω1\S -proper (see (10)). The proofs of the following two
Lemmas can be found in (10).

Lemma 10. If Q is S -proper, then Q preserves ω1. Also Q preserves the stationarity of
every stationary subset S ′ of ω1 which is contained in S .

Lemma 11. If 〈〈Pα : α ≤ δ〉, 〈Q̇α : α < δ〉〉 is a countable support iteration of S -proper
posets, then Pδ is S -proper.

6



The proofs of the next two Lemmas follow almost identically the corresponding
statements for proper posets (see (1), Theorems 2.10 and 2.12).

Lemma 12. Assume CH. Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ ≤ ω2 of S -proper posets of size ω1. Then Pδ is ℵ2-c.c.

Lemma 13. Assume CH. Let 〈Pα : α ≤ δ〉 be a countable support iteration of length
δ < ω2 of S -proper posets of size ω1. Then CH holds in VPδ .

5. Forcing a ∆1
3

well-order of the reals and not CH

Lemma 14. Let V = L. There is a function F : ω2 → Lω2 , which is Σ1 definable over
Lω2 and a sequence S̄ = (S β : β < ω2) of almost disjoint stationary subsets of ω1,
which is Σ1 definable over Lω2 with parameter ω1 such that F−1(a) is unbounded in ω2
for every a ∈ Lω2 , and whenever M,N are suitable models such that ωM1 = ωN1 then
FM, S̄M agree with FN , S̄N on ωM2 ∩ ω

N
2 . In addition ifM is suitable and ωM1 = ω1

then FM, S̄M equal the restrictions of F, S̄ to the ω2 ofM.

Proof. Define F(α) = a iff via Gödel pairing α codes a pair (α0, α1) where a has rank
α0 in the natural wellorder of the sets in L. For the almost disjoint stationary sets, let
(Dγ : γ < ω1) be the canonical Lω1 definable ♦ sequence (see (7)), for each α < ω2 let
Aα be the L-least subset of ω1 coding α and define S α to be the set of all i < ω1 such
that Di = Aα ∩ i.

Let F and S̄ = (S β : β < ω2) be as above. Let S be a stationary subset of ω1
almost disjoint from every element of S̄ . Note that we may assume that such an S exists.
The function F will be used as a bookkeeping function. Recursively, we will define a
countable support iteration 〈〈Pα : α ≤ ω2〉, 〈Q̇α : α < ω2〉〉 such that P = Pω2 will be
a poset adding a ∆1

3-definable wellorder of the reals. We can assume that all names for
reals are nice in the following sense. If ḟ is an H-name for a real, for some poset H,
then ḟ is a nice H-name for a real if ḟ =

⋃
i∈ω{〈〈i, jip〉, p〉 : p ∈ Ai( ḟ )} where for all

i ∈ ω, Ai( ḟ ) is a maximal antichain in H, jip ∈ ω and for all p ∈ Ai( ḟ ), p 
 ḟ (i) = jip.
Then for α < β < ω2 we can assume that all Pα-names for reals precede in the canonical
wellorder <L of L all Pβ-names for reals which are not Pα names. For each α < ω2,
define a wellorder <α on the reals of L[Gα], where Gα is a Pα-generic as follows. If x
is a real in L[Gα] let σαx be the <L-least Pγ-name for x, where γ ≤ α is least so that x
has a Pγ-name. For x, y reals in L[Gα] define x <α y if and only if σαx <L σ

α
y . Abusing

notation, we will identify <α with its Pα-name. Since for α < β, σαx = σ
β
x we have that

<α is an initial segment of <β. Then if G is a P-generic filter, <G=
⋃
{<G

α : α < ω2}

will be the desired wellorder of the reals. If x, y are reals in L[Gα] and x <α y let
x ∗ y = {2n : n ∈ x} ∪ {2n + 1 : n ∈ y}.
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We proceed with the recursive definition of Pω2 . Let P0 be the trivial poset. Suppose
Pα has been defined. Let Q̇α = Q̇0

α ∗ Q̇1
α be a Pα-name for a poset such that Q̇0

α is a Pα-
name for a proper forcing notion of cardinality at most ℵ1 and Q̇1

α is defined as follows.
If F(α) is not of the form {σαx , σ

α
y } for some reals x <α y in L[Gα] then let Q̇1

α be a
Pα ∗ Q̇0

α-name for the trivial poset. Otherwise F(α) = {σαx , σ
α
y } for some reals x <α y in

L[Gα]. Set xα = x, yα = y. Then let Q̇1
α be a Pα ∗ Q̇0

α-name for K0
α ∗ K̇1

α ∗ K̇2
α where:

(1) In VPα∗Q̇0
α , K0

α is the direct limit 〈P0
α,n, K̇0

α,n : n ∈ ω〉, where K̇0
α,n is a P0

α,n-name for
Q(S α+2n) for n ∈ xα ∗ yα, and K̇0

α,n is a P0
α,n-name for Q(S α+2n+1) for n < xα ∗ yα.

(2) Let G0
α be a Pα ∗ Q̇0

α-generic filter and let Hα be a K0
α-generic over L[G0

α]. In L[G0
α ∗

Hα] let Xα be a subset of ω1 coding α, coding the pair (xα, yα), coding a level of L in
which α has size at most ω1 and coding the generic G0

α ∗ Hα, which we can regard as a
subset of an element of Lω2 . Let K1

α = L(φα) where φα = φα(ω1, Xα) is the Σ1-sentence
which holds if and only if Xα codes an ordinal ᾱ < ω2 and a pair (x, y) such that S ᾱ+2n

is nonstationary for n ∈ x ∗ y and S ᾱ+2n+1 is nonstationary for n < x ∗ y. Let Ẋα be a
P0
α ∗ Q̇0

α ∗ K̇0
α-name for Xα and let K̇1

α be a P0
α ∗ Q̇0

α ∗ K̇0
α-name for K1

α.

(3) Let Yα be K1
α-generic over L[G0

α ∗ Hα]. Note that the even part of Yα-codes Xα and
so codes the generic G0

α ∗Hα. Then in L[Yα] = L[G0
α ∗Hα ∗Yα], letK2

α = C(Yα). Finally,
let K̇2

α be a Pα ∗ Q̇0
α ∗ K̇0

α ∗ K̇1
α-name for K2

α.

With this the definition of P = Pω2 is complete.

Lemma 15. P is S -proper and ω2-c.c.

Proof. By Lemma 11 and Lemma 12.

Lemma 16. Let G be a P-generic filter and let x, y be reals in L[G]. If x <G y, then there
is a real R such that for every countable suitableM containing R as an element, there is
ᾱ < ωM2 such that SM

ᾱ+2n is nonstationary inM for n ∈ x ∗ y and SM
ᾱ+2n+1 is nonstationary

inM for n < x ∗ y.

Proof. Let γ1, γ2 be minimal such that x has a Pγ1-name, y has a Pγ2-name. Thus for
every α ≥ max{γ1, γ2}, σαx = σ

γ1
x and σαy = σ

γ2
y . Since F−1({σγ1

x , σ
γ2
y }) is unbounded in

ω2, there is α such that F(α) = {σαx , σ
α
y } and so xα = x, yα = y. Let G0

α be Pα ∗ Q̇0
α-

generic, let Hα be K0
α-generic over L[G0

α], Yα be the K1
α-generic over L[G0

α ∗Hα] and let
Rα be the K2

α-generic over L[Yα]. By Lemma 6, Rα codes Yα and Yα codes Xα which in
turn codes the pair (xα, yα) = (x, y). LetM be a countable suitable model containing Rα
as an element. Then using ωM1 = ωLM

1 , M contains Yα � γ and therefore Xα ∩ γ as an
element, where γ = ωM1 . By Lemma 2, φα(γ, Xα ∩ γ) holds inM and therefore there is
an ordinal ᾱ < ωM2 such that SM

ᾱ+2n is nonstationary inM for n ∈ x ∗ y and SM
ᾱ+2n+1 is

nonstationary inM for n < x ∗ y as desired.
8



Lemma 17. Let G be P-generic. Then for β not of the form α + 2n, n ∈ xG
α ∗ yG

α and not
of the form α + 2n + 1, n < xG

α ∗ yG
α , the set S β is stationary in L[G].

Proof. Let p ∈ P be a condition forcing that β < ω2 is not of the form α+2n, n ∈ xG
α ∗yG

α

and not of the form α + 2n + 1, n < xG
α ∗ yG

α . Now consider the forcing notion P � p,
consisting of all conditions in P which extend p. This is also an iteration, where at stage
α one forces with Qα � p(α). Note that G is also P � p generic. However P � p is
S β-proper and so S β remains stationary in L[G].

Theorem 1. It is consistent with the negation of CH that there is a projective (indeed
∆1

3-definable) wellorder of the reals.

Proof. Let P = Pω2 be the partial order constructed in this section and let G be P-generic.
Then <G=

⋃
{<G

α : α < ω2} is a wellorder on the reals of L[G]. By Lemma 17 for every
pair of reals x, y in L[G] we have that

(1) x < y iff for some α < ω2, S α+2n is nonstationary for n in x ∗ y and S α+2n+1 is
nonstationary for n not in x ∗ y.

However by Lemma 16, L[G] also satisfies:

(2) If x < y then there exists a real R such that for every suitable, countable modelM
containing R there is an ordinal ᾱ < ωM2 such that SM

ᾱ+2n is nonstationary inM for n in
x ∗ y and SM

ᾱ+2n+1 is nonstationary inM for n not in x ∗ y.

However (1) implies the converse of (2). Indeed, assume (1) and let R be a real such
that for every countable suitable ZF− modelM containing R there is an ordinal ᾱ < ωM2
such that SM

ᾱ+2n is nonstationary inM for n in x ∗ y and SM
ᾱ+2n+1 is nonstationary inM

for n not in x∗y. By Löwenheim-Skolem this holds for arbitrary suitable ZF− modelsM
containing R. Note that as our forcing preserves cardinals, LΘ[R] is suitable for a large
regular Θ. Thus letM = LΘ[R] and let α < ωM2 = ω2 be the ordinal guaranteed by the
conclusion of (2) forM. As (S β : β < ω2) is definable over Lω2 and Θ is greater than
ω2, it follows that SMβ equals S β for each β < ω2. Thus S α+2n is nonstationary inM for
n in x ∗ y and S α+2n+1 is nonstationary inM for n not in x ∗ y. It follows that these sets
are nonstationary in the larger model L[G] and therefore by (1), we have x < y.

Therefore in L[G], the union <G of the wellorders <G
α , α < ω2, has a Σ1

3 definition:

x <G y iff there exists a real R such that for all countable, suitable M containing R as
an element there is an α < ωM2 such that SM

α+2n is nonstationary inM for n in x ∗ y and
SM
α+2n+1 is nonstationary inM for n not in x ∗ y.

It remains to observe that since x ≮G y is Π1
3 and <G is a linear order, <G indeed has a

∆1
3 definition.
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6. Cardinal characteristics and projective wellorders

We will use the combinatorial properties of the forcing notions for destroying a sta-
tionary set, “localization”, and coding with perfect trees defined in section 4, 2 and 3
respectively, to show that the existence of a ∆1

3 definable wellorder of the reals is consis-
tent with certain inequalities between some of the known cardinal characteristics of the
continuum. We will need the following preservation theorems.

Lemma 18. Let S ⊆ ω1 be a stationary set and let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a
countable support iteration of length δ ≤ ω2 of S -proper, ωω-bounding posets. That
is, assume that for all i < δ, 
Pi “Q̇i is ωω-bounding and S -proper”. Then Pδ is ωω-
bounding and S -proper.

Proof. The proof follows almost identically the proof of the corresponding theorem for
proper posets (see (10) and (1)).

A forcing notion P is almost ωω-bounding if for every P-name for a real ḟ and
condition p ∈ P, there is a ground model real g such that for every infinite ground model
subset A of ω, there is an extension qA of p such that qA 
P ∃

∞i ∈ A( ḟ (i) ≤ ǧ(i))
(see (14)). A poset which preserves the ground model reals as an unbounded family is
called weakly bounding. Note that even finite iterations of weakly bounding posets may
add a real dominating the ground model reals (see (1), section 4.1).

Lemma 19. Let S ⊆ ω1 be stationary set and let 〈〈Pi : i ≤ δ〉, 〈Q̇i : i < δ〉〉 be a countable
support iteration of length δ ≤ ω2 of S -proper, almost ωω-bounding posets. That is,
assume that for all i < δ, 
Pi “Q̇i is almost ωω-bounding and S -proper”. Then Pδ is
weakly bounding and S -proper.

Proof. The proof follows almost identically the proof of the corresponding theorem for
proper posets (see (10) and (1)).

Recall that the bounding number b is the minimal size of an unbounded family and
that the dominating number d is the minimal size of a dominating family (see (2)).

Theorem 2. It is consistent with d < c that there is a ∆1
3 definable wellorder of the reals.

Proof. In the definition of P = Pω2 from Section 5, for every α < ω2 we defined Q̇0
α

to be a Pα-name for an arbitrary proper poset of size at most ℵ1. Now define PS to
be a countable support iteration of length ω2, defined just as Pω2 with the additional
requirement that for every α < ω2, Q̇0

α is a Pα-name for the trivial forcing notion. By
Lemma 18 (as well as Lemmas 4, 8, and 9) the poset PS is ωω-bounding (and S -proper).
Thus if G is PS-generic, in L[G] the dominating number d is ω1 while c = ω2.
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For convenience of the reader, we will state the definitions of a and s (see also (2)).
A family A ⊆ [ω]ω is almost disjoint, if every two distinct elements of A have finite
intersection. An infinite almost disjoint family A is maximal (abbreviated mad family)
if for every B ∈ [ω]ω there is A ∈ A such that |A ∩ B| = ω. The almost disjointness
number a is the minimal size of a maximal almost disjoint family. Whenever A, B are
infinite subsets of ω, A is split by B if |A ∩ B| = |A ∩ Bc| = ω. A family W ⊆ [ω]ω is
splitting if for every A ∈ [ω]ω there is B ∈ W such that A is split by B. The splitting
number s is the minimal cardinality of a splitting family.

Theorem 3. It is consistent with b < a = s that there is a ∆1
3 definable wellorder of the

reals.

Proof. In (14), S. Shelah obtains a proper almost ωω-bounding poset Q of size c, which
adds a real not split by the ground model reals (see (14), Definition 2.8, Lemma 1.14).
In addition he shows that if V is a model of CH and A is a mad family of size ω1 then
in V1 = VC(ω1), where C(ω1) is the poset for adding ω1 Cohen reals, there is an almost
ωω-bounding, proper poset which destroys the maximality ofA, i.e. forces over V1 that
A is not maximal (see (14), Definition 2.10 and Claim 2.16).

Let F0 be a function with domainω2, such that for everyH-name Ȧ for a mad family
of size ω1, whereH is a poset of size ω1, the set F−1

0 (Ȧ) is unbounded. Note that we can
consider only normalized posets H, i.e. posets which can be realized as subsets of ω1
and also we can assume that all names for reals are nice. Let PQ be a countable support
iteration of length ω2 defined as Pω2 from section 5 with the additional requirement that
for every α < ω2, in LPα we have that Q0

α = H0
α ∗ Ḣ1

α ∗ Ḣ2
α where H0

α, Ḣ1
α and Ḣ2

α are
defined as follows. Let H0

α be the poset for adding ω1 Cohen reals. If F0(α) is not a
Pα-name for a mad family of size ω1, then let Ḣ1

α be an H0
α-name for the trivial poset. If

F0(α) is a Pα-name for a mad family of size ω1, then let Ḣ1
α be a H0

α-name for an almost
ωω-bounding poset which destroys the maximality of A (by the remark in the previous
paragraph such forcing notion exists in LPα∗Ḣ0

α). Let Ḣ2
α be H0

α ∗ Ḣ1
α-name for Shelah’s

poset Q. With this the definition of PQ is complete.
Let G be PQ-generic filter over L. Since Cohen forcing is almost ωω-bounding, by

Lemma 19 (as well as Lemmas 4, 8, and 9) PQ preserves the ground model reals as
an unbounded family, and so L[G] � b = ω1. To see that s = ω2 in L[G] consider an
arbitrary family W ⊆ [ωω] ∩ L[G] of cardinality ω1. Then for some α < ω2, W ⊆ L[Gα]
where Gα = G ∩ Pα. By definition of the poset, H2

α adds a real which is not split by the
reals of L[Gα] and so not split by W. Therefore W is not splitting and so (s = ω2)L[G].
Finally suppose that L[G] � a = ω1 and let A be a maximal almost disjoint family in
L[G] of size ω1. Then for some α < ω2, A ⊆ L[G ∩ Pα] and so A has a Pα-name Ȧ.
Since F−1

0 (Ȧ) is unbounded in ω2 for some β ≥ α we have F(β) = Ȧ. By definition of
H1
β, L[Gβ+1] � A is not mad, which is a contradiction and so (a = ω2)L[G].

Recall that a family D ⊆ [ω]ω is groupwise dense if D is closed with respect to

11



the “almost subset” relation (i.e. whenever X ∈ D and Y\X is finite, Y ∈ D) and for
every family Π of infinitely many pairwise disjoint finite subsets of ω, the union of some
subfamily of Π is in D. The groupwise density number g is the minimal cardinal κ such
that for some familyD of κ-many groupwise dense families,

⋂
D = ∅ (see (2)).

Theorem 4. It is consistent with b < g that there is a ∆1
3 definable wellorder of the reals.

Proof. Let PM be the countable support iteration of length ω2 defined as the poset P
from section 5, with the additional requirement that for every α < ω2, Q̇0

α is a Pα-name
for Miller forcing (for definition see (2), 11.9). Let G be PM-generic over L. Since
Miller forcing is almost ωω-bounding (see (4), Theorem 8.13), by Lemma 19 (as well
as Lemmas 4, 8, and 9) PM is weakly bounding and so L[G] � b = ω1. To see that
(g = ω2)L[G] consider an arbitrary family D = {Di : i ∈ ω1} of groupwise dense sets in
L[G]. For every α < ω2 let Di,α = Di ∩ L[Gα], where Gα = G ∩ Pα. Note that for every
i the set of α’s such that Di,α is a groupwise dense family in L[Gα] forms an ℵ1-closed
unbounded subset of ω2. Therefore there is a limit α < ω2 such that Di,α is a groupwise
dense family in L[Gα] for all i < ω1. Then the Miller real added by Q0

α has supersets in
all Di,α’s (see (3), Lemma 1) and so

⋂
D , ∅.

7. Questions

1. Which other inequalities between the standard cardinal characteristics of the real
line are consistent with the existence of a projective wellorder of the reals?

2. What is the complexity in the projective hierarchy of the witnesses of the corre-
sponding cardinal characteristics in these models?
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