Cardinal characteristics, projective wellorders and large continuum

Vera Fischer ${ }^{\text {a,1,* }}$, Sy David Friedman ${ }^{\text {a,1 }}$, Lyubomyr Zdomskyy ${ }^{\text {a, }}{ }^{1}$
${ }^{a}$ Kurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria

Abstract

We extend the work of [7] by presenting a method for controlling cardinal characteristics in the presence of a projective wellorder and $2^{\boldsymbol{N}_{0}}>\boldsymbol{\aleph}_{2}$. This also answers a question of Harrington [11] by showing that the existence of a Δ_{3}^{1} wellorder of the reals is consistent with Martin's axiom and $2^{\aleph_{0}}=\boldsymbol{\aleph}_{3}$.

Keywords: coding, projective wellorders, Martin's axiom, cardinal characteristics, large continuum
2000 MSC: 03E15, 03E20, 03E35, 03E45

1. Introduction

In [7] the present authors established the consistency of the existence of a Π_{2}^{1} maximal almost disjoint family together with a lightface projective wellorder and $\mathfrak{b}=2^{\aleph_{0}}=$ $\boldsymbol{\kappa}_{3}$. As the argument used there was only suitable for handling countable objects, it left open the problem of obtaining projective wellorders with $2^{\boldsymbol{N}_{0}}$ greater than $\boldsymbol{\aleph}_{2}$ while simultaneously controlling cardinal characteristics of prominent interest. We solve this problem in the present paper, using an iteration based on the specialization and branching of Suslin trees. As an application we obtain the consistency of $\mathfrak{p}=\mathfrak{b}=\boldsymbol{N}_{2}<\mathfrak{a}=$ $\mathfrak{s}=2^{\boldsymbol{\aleph}_{0}}=\boldsymbol{\aleph}_{3}$ with a lightface Δ_{3}^{1} wellorder.

A consequence of our work is the consistency of Martin's Axiom with a lightface Δ_{3}^{1} wellorder and $2^{\aleph_{0}}=\aleph_{3}$. This improves a result of [9], where $2^{\aleph_{0}}=\aleph_{2}$ was obtained, and also answers a question of Harrington from [11], where he obtained the same result with a boldface Δ_{3}^{1} wellorder.

[^0]
2. Martin's Axiom, Projective Wellorders and Large Continuum

We work over the constructible universe L. Fix a canonical sequence $\vec{S}=\left\langle S_{\alpha}\right.$: $\left.1<\alpha<\omega_{3}\right\rangle$ of stationary subsets of $\omega_{2} \cap \operatorname{cof}\left(\omega_{1}\right)$ and a nicely definable almost disjoint family $\vec{B}=\left\langle B_{\xi}: \xi \in \omega_{2}\right\rangle$ of subsets of ω_{1}. More precisely \vec{S} is Σ_{1}-definable over $L_{\omega_{3}}$ with parameter ω_{2} (the S_{α} 's are obtained from a \diamond-sequence as in [7]) and \vec{B} is Σ_{1}-definable over $L_{\omega_{2}}$ with parameter ω_{1}. For each $\alpha<\omega_{3}$, let W_{α} be the L-least subset of ω_{2} which codes α. Say that a transitive ZF^{-}model \mathcal{M} is suitable if $\omega_{2}^{\mathcal{M}}$ exists and $\omega_{2}^{\mathcal{M}}=\omega_{2}^{L^{\mathcal{M}}}$. From this it follows, of course, that $\omega_{1}^{\mathcal{M}}=\omega_{1}^{L^{\mathcal{M}}}$.

We will define a finite support iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \alpha \leq \omega_{3}, \beta<\omega_{3}\right\rangle$ such that in $L^{\mathbb{P} \omega_{3}}$, MA holds, $2^{\omega}=\omega_{3}$, and there is a Δ_{3}^{1}-definable wellorder of the reals. The construction can be thought of as a preliminary stage followed by a coding stage. In the preliminary stage we provide the necessary apparatus, in order to force a Δ_{3}^{1} definition of our wellorder of the reals.

Preliminary Stage: For each $0<\alpha<\omega_{3}$ and $n \in \omega$, let $\mathbb{K}_{\omega \cdot \alpha+n}^{0}$ be the poset for adding a Suslin tree $T_{\omega \cdot \alpha+n}$ with countable conditions, see [12, Theorem 15.23]. Let $\mathbb{K}_{0, \alpha}=\prod_{n \in \omega} \mathbb{K}_{\omega \cdot \alpha+n}^{0}$ with full support. Then $\mathbb{K}_{0, \alpha}$ is countably closed and has size 2^{ω}. In particular, it does not collapse cardinals provided that CH holds in the ground model.

In what follows we shall identify the T_{α} 's with subsets of ω_{1} using the L-least bijection between $\omega^{<\omega_{1}}$ and ω_{1}. And vice versa, the phrase " $A \subset \omega_{1}$ is an ω_{1}-tree" means throughout the paper that the preimage of A under the L-least bijection between $\omega^{<\omega_{1}}$ of L and ω_{1} is an ω_{1}-tree. (We can consider such a preimage only in models of $\omega_{1}=\omega_{1}^{L}$, which is the case in suitable models.)

In $L^{\mathbb{K}_{0, \alpha}}$, code $T_{\omega \cdot \alpha+n}$ via a stationary kill of $S_{\omega_{1} \cdot(\omega \cdot \alpha+n)+\gamma}$ for $\gamma \in T_{\omega \cdot \alpha+n}$. More precisely, for every $1 \leq \alpha<\omega_{3}$ let $\mathbb{K}_{1, \alpha, n}=\prod_{\gamma \in \omega_{1}} \mathbb{K}_{\alpha, n, \gamma}^{1}$ with full support where for $\gamma \in T_{\omega \cdot \alpha+n}$, $\mathbb{K}_{\alpha, n, \gamma}^{1}$ adds a closed unbounded subset $C_{\omega_{1} \cdot(\omega \cdot \alpha+n)+\gamma}$ of ω_{2} disjoint from $S_{\omega_{1} \cdot(\omega \cdot \alpha+n)+\gamma}$ and for $\gamma \notin T_{\omega \cdot \alpha+n}, \mathbb{K}_{\alpha, n, \gamma}^{1}$ is the trivial poset. Then $\mathbb{K}_{1, \alpha}=\prod_{n \in \omega} \mathbb{K}_{1, \alpha, n}$ with full support is countably closed, ω_{2}-distributive, and ω_{3}-c.c. provided that GCH holds in the ground model ${ }^{2}$.

Next, we shall introduce some auxiliary notation. For a set X of ordinals we denote by $0(X), I(X)$, and $I I(X)$ the sets $\{\eta: 3 \eta \in X\},\{\eta: 3 \eta+1 \in X\}$ and $\{\eta: 3 \eta+2 \in X\}$, respectively. Let $\operatorname{Even}(X)$ be the set of even ordinals in X and $\operatorname{Odd}(X)$ be the set of odd ordinals in X.

[^1]In the following we treat 0 as a limit ordinal. Let $D_{\omega \cdot \alpha+n}$ be a subset of ω_{2} coding $W_{\omega \cdot \alpha+n}, W_{\omega \cdot \alpha}$, and the sequence $\left\langle C_{\omega_{1} \cdot(\omega \cdot \alpha+n)+\gamma}: \gamma \in T_{\omega \cdot \alpha+n}\right\rangle$. More precisely, $0\left(D_{\omega \cdot \alpha+n}\right)=$ $W_{\omega \cdot \alpha+n}, I\left(D_{\omega \cdot \alpha+n}\right)=W_{\omega \cdot \alpha}$, and $I I\left(D_{\omega \cdot \alpha+n}\right)$ equals

$$
\chi\left(\left\{\langle\gamma, \eta\rangle: \gamma \in T_{\omega \cdot \alpha+n}, \eta \in C_{\omega_{1} \cdot(\omega \cdot \alpha+n)+\gamma}\right\}\right),
$$

where $\chi: \omega_{1} \times \omega_{2} \rightarrow \omega_{2}$ is some nicely definable bijection. Let $E_{\omega \cdot \alpha+n}$ be the club in ω_{2} of intersections with ω_{2} of elementary submodels of $L_{(\omega \cdot \alpha+n)+\omega_{2}}\left[D_{\omega \cdot \alpha+n}\right]$ which contain $\omega_{1} \cup\left\{D_{\omega \cdot \alpha+n}\right\}$ as a subset. (These elementary submodels form an ω_{2}-chain.) Now choose $Z_{\omega \cdot \alpha+n}$ to be a subset of ω_{2} such that $\operatorname{Even}\left(Z_{\omega \cdot \alpha+n}\right)=D_{\omega \cdot \alpha+n}$, and if $\beta<\omega_{2}$ is $\omega_{2}^{\mathcal{M}}$ for some suitable model \mathcal{M} such that $Z_{\omega \cdot \alpha+n} \cap \beta \in \mathcal{M}$, then β belongs to $E_{\omega \cdot \alpha+n} \cap E_{\omega \cdot \alpha}$. (This is easily done by placing in $Z_{\omega \cdot \alpha+n}$ a code for a bijection $\phi: \beta_{1} \rightarrow \omega_{1}$ on the interval $\left(\beta_{0}, \beta_{0}+\omega_{1}\right)$ for each adjacent pair $\beta_{0}<\beta_{1}$ from $E_{\omega \cdot \alpha+n} \cap E_{\omega \cdot \alpha}$) Using the same argument as in [7] we have:
$(*)_{\alpha, n}$: If $\beta<\omega_{2}$ and \mathcal{M} is any suitable model such that $\omega_{1} \subset \mathcal{M}, \omega_{2}^{\mathcal{M}}=\beta$, and $Z_{\omega \cdot \alpha+n} \cap$ $\beta, Z_{\omega \cdot \alpha} \cap \beta, T_{\omega \cdot \alpha+n} \in \mathcal{M}$, then $\mathcal{M} \vDash \psi\left(\omega_{1}, \omega_{2}, Z_{\omega \cdot \alpha+n} \cap \beta, T_{\omega \cdot \alpha+n}, Z_{\omega \cdot \alpha} \cap \beta\right)$, where $\psi\left(\omega_{1}, \omega_{2}, Z, T, Z^{\prime}\right)$ is the formula
" $0(\operatorname{Even}(Z))$ and $I(\operatorname{Even}(Z))=I\left(\operatorname{Even}\left(Z^{\prime}\right)\right)$ are the L-least codes for ordinals ω. $\tilde{\alpha}+n$ and $\omega \cdot \tilde{\alpha}$ for some $\tilde{\alpha} \in \omega_{3}^{\mathcal{M}}$ and $n \in \omega$, respectively, and $\chi^{-1}[I I(E v e n(Z))]=$ $\left\{\langle\gamma, \eta\rangle: \gamma \in T, \eta \in \bar{C}_{\gamma}\right\}$, where T is an ω_{1}-tree and \bar{C}_{γ} is a closed unbounded subset of ω_{2} disjoint from $S_{\omega_{1} \cdot(\omega \cdot \tilde{\alpha}+n)+\gamma}$ for all $\gamma \in T$ ".

In $L^{\mathbb{K}_{0, \alpha} * * \mathbb{K}_{1, \alpha}}$ let $\mathbb{K}_{\alpha, n}^{2}$ add a subset $X_{\omega \cdot \alpha+n}$ of ω_{1} which almost disjointly codes $Z_{\omega \cdot \alpha+n}$. More precisely, let $\mathbb{K}_{\alpha, n}^{2}$ be the poset of all pairs $\left\langle s, s^{*}\right\rangle \in\left[\omega_{1}\right]^{<\omega_{1}} \times\left[Z_{\omega \cdot \alpha+n}\right]^{<\omega_{1}}$, where a pair $\left\langle t, t^{*}\right\rangle$ extends $\left\langle s, s^{*}\right\rangle$ if and only if t end-extends s and $t \backslash s \cap B_{\xi}=\emptyset$ for every $\xi \in s^{*}$. Let $\mathbb{K}_{2, \alpha}=\prod_{n \in \omega} \mathbb{K}_{\alpha, n}^{2}$ with full support. Then $\mathbb{K}_{2, \alpha}$ is countably closed and ω_{2}-c.c. provided that CH holds in the ground model.

As a result of this manipulation we get the following:
$(* *)_{\alpha, n}$: If $\beta<\omega_{2}$ and \mathcal{M} is any suitable model such that $\omega_{1} \subset \mathcal{M}, \omega_{2}^{\mathcal{M}}=\beta$, and $X_{\omega^{\cdot} \cdot \alpha+n}, X_{\omega^{\cdot} \cdot \alpha}, T_{\omega^{\prime} \cdot \alpha+n} \in \mathcal{M}$, then $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, X_{\omega \cdot \alpha+n}, T_{\omega^{\cdot} \cdot \alpha+n}, X_{\omega^{\cdot} \alpha}\right)$, where $\phi\left(\omega_{1}, \omega_{2}, X, T, X^{\prime}\right)$ is the following formula:
"Using the sequence \vec{B}, the sets X, X^{\prime} almost disjointly code subsets Z, Z ' of ω_{2} such that $\psi\left(\omega_{1}, \omega_{2}, Z, T, Z^{\prime}\right)$ holds".

Fix ϕ as above and consider the following poset:

Definition 2.1. Let $X, X^{\prime}, T \subseteq \omega_{1}$, be such that $\phi\left(\omega_{1}, \omega_{2}, X, T, X^{\prime}\right)$ holds in any suitable model \mathcal{M} containing X, X^{\prime}, T as elements and such that $\omega_{1}^{L}=\omega_{1}^{\mathcal{M}}$. Denote by $\mathcal{L}\left(X, T, X^{\prime}\right)$ the poset of all functions $r:|r| \rightarrow 2$, where the domain $|r|$ of r is a countable limit ordinal such that:

1. if $\gamma<|r|$ then $\gamma \in X$ iff $r(3 \gamma)=1$,
2. if $\gamma<|r|$ then $\gamma \in X^{\prime}$ iff $r(3 \gamma+1)=1$,
3. if $\gamma \leq|r|, \mathcal{M}$ is a suitable model containing $r \upharpoonright \gamma$ as an element, then $\mathcal{M} \vDash$ $\phi\left(\omega_{1}, \omega_{2}, X \cap \gamma, T \cap \gamma, X^{\prime} \cap \gamma\right)$.

The extension relation is end-extension.
Set $\mathbb{K}_{\alpha, m}^{3}=\mathcal{L}\left(X_{\omega \cdot \alpha+m}, T_{\omega \cdot \alpha+m}, X_{\omega \cdot \alpha}\right)$ for every $\alpha \in \omega_{3} \backslash\{0\}, m \in \omega$, and set $\mathbb{K}_{0, m}^{3}$ to be the trivial poset for every $m \in \omega$. Let $\mathbb{K}_{3, \alpha}=\prod_{m \in \omega} \mathbb{K}_{\alpha, m}^{3}$ with full support. If $\alpha \in \omega_{3} \backslash\{0\}, m \in \omega$, then $\mathbb{K}_{\alpha, m}^{3}$ adds a function $Y_{\omega \cdot \alpha+m}: \omega_{1} \rightarrow 2$ such that for every suitable model \mathcal{M} such that $Y_{\omega \cdot \alpha+m} \upharpoonright \eta$ and $T_{\omega \cdot \alpha+m} \cap \eta$ are in \mathcal{M}, we have $\mathcal{M} \vDash$ $\phi\left(\omega_{1}, \omega_{2}, X_{\omega \cdot \alpha+m} \cap \eta, T_{\omega \cdot \alpha+m} \cap \eta, X_{\omega \cdot \alpha} \cap \eta\right)$.

Let $\mathbb{K}_{\alpha}=\mathbb{K}_{0, \alpha} * \mathbb{K}_{1, \alpha} * \mathbb{K}_{2, \alpha} * \mathbb{K}_{3, \alpha}$. We shall consider only $p=\left\langle p_{i}\right\rangle_{i \leq 3} \in \mathbb{K}_{\alpha}$ with the property that $\mathbb{K}_{\alpha} \upharpoonright i$ forces (i.e., the maximal condition in $\mathbb{K}_{\alpha} \upharpoonright i$ forces) $p_{i} \in \mathbb{K}_{i, \alpha}$, where $\mathbb{K}_{\alpha} \upharpoonright i$ is of course the iteration of $\mathbb{K}_{j, \alpha}$'s for $j<i$. This entails no loss of generality since for every $p \in \mathbb{K}_{\alpha}$ we can find an equivalent condition p^{\prime} with the property above. In its turn, each p_{i} is a sequence $\left\langle p_{i, m}: m \in \omega\right\rangle$, where $p_{i, m}$ is forced by $\mathbb{K}_{\alpha} \upharpoonright i$ to be an element of $\dot{\mathbb{K}}_{\alpha, m}^{i}$. And finally, $p_{1, m}$ can be written as a sequence $\left\langle p_{1, m, \zeta}: \zeta \in \omega_{1}\right\rangle$, where $p_{1, m, \zeta}$ is forced by $\mathbb{K}_{0, \alpha}$ to be an element of $\dot{\mathbb{K}}_{\alpha, m, \zeta}^{1}$. Whenever we consider more than one $\alpha \in \omega_{3}$, we will write $p_{i, \alpha}, p_{i, \alpha, m}$ and $p_{1, \alpha, m, \zeta}$ instead of $p_{i}, p_{i, m}$ and $p_{1, m, \zeta}$.

For every $i \leq 3$ the poset $\mathbb{K}_{\alpha} \upharpoonright i$ is countably closed, and hence the set \mathbb{D}_{α} of such $p \in \mathbb{K}_{\alpha}$ that p_{i} is (the canonical $\mathbb{K}_{\alpha} \upharpoonright i$-name for) an element of $L_{\omega_{1}}$ for all $i \in\{0,2,3\}$ is dense in \mathbb{K}_{α}.

Let $I \subseteq \omega_{3}$ and $p \in \prod_{\alpha \in I} \mathbb{K}_{\alpha}$. Denote by $\operatorname{supp}_{\omega}(p)$ and $\operatorname{supp}_{\omega_{1}}(p)$ the sets $\{\langle i, \alpha\rangle$: $i \in\{0,2,3\}, \alpha \in I, p_{i, \alpha}$ is not the maximal condition in $\left.\mathbb{K}_{i, \alpha}\right\}$ and $\{\langle 1, \alpha, m, \zeta\rangle: \alpha \in I, m \in$ $\omega, \zeta \in \omega_{1}, p_{1, \alpha, m, \zeta}$ is not the maximal condition in $\left.\mathbb{K}_{\alpha, m, \zeta}^{1}\right\}$, respectively. We say that $p \in \prod_{\alpha \in I} \mathbb{K}_{\alpha}$ is a condition with mixed support if $\left|\operatorname{supp}_{\omega}(p)\right|=\omega$ and $\left|\operatorname{supp}_{\omega_{1}}(p)\right|=\omega_{1}$. Let \mathbb{P}_{0} be the suborder of $\prod_{\alpha<\omega_{3}} \mathbb{K}_{\alpha}$ consisting of all conditions with mixed support and $\mathbb{D}=\mathbb{P}_{0} \cap \prod_{\alpha<\omega_{3}} \mathbb{D}_{\alpha}$. It follows from the above that \mathbb{D} is a dense subset of \mathbb{P}_{0}.

The following proposition resembles [7, Lemma 1].
Proposition 2.2. \mathbb{P}_{0} is ω-distributive.
Proof. Given a condition $p_{0} \in \mathbb{P}_{0}$ and a collection $\left\{O_{n}\right\}_{n \in \omega}$ of open dense subsets of \mathbb{P}_{0}, choose the least countable elementary submodel \mathcal{N} of some large L_{θ} (θ regular) such
that $\left\{p_{0}\right\} \cup\left\{\mathbb{P}_{0}\right\} \cup\left\{O_{n}\right\}_{n \in \omega} \subset \mathcal{N}$. Build a subfilter g of $\mathbb{P}_{0} \cap \mathcal{N}$, below p_{0}, which hits all dense subsets of \mathbb{P}_{0} which belong to \mathcal{N}. Let g_{α} be a \mathbb{K}_{α}-generic filter over \mathcal{N} such that $g \subset \prod_{\alpha \in \omega_{3}} g_{\alpha}$. Write g_{α} in the form $g_{0, \alpha} * g_{1, \alpha} * g_{2, \alpha} * g_{3, \alpha}$, where $g_{i, \alpha}$ is a $\mathbb{K}_{i, \alpha}$-generic over $\mathcal{N}\left[{ }_{j<i} g_{j, \alpha}\right]$.

Now for every $\alpha \in \mathcal{N} \cap \omega_{3}$ the filter $g_{0, \alpha} * g_{1, \alpha} * g_{2, \alpha}$ has a greatest lower bound $p_{0, \alpha} * p_{1, \alpha} * p_{2, \alpha}$ because the forcing $\mathbb{K}_{0, \alpha} * \mathbb{K}_{1, \alpha} * \mathbb{K}_{2, \alpha}$ is ω-closed. The condition $\left\langle p_{0, \alpha}, p_{1, \alpha}, p_{2, \alpha}\right\rangle$ is obviously $\left(\mathcal{N}, \mathbb{K}_{0, \alpha} * \mathbb{K}_{1, \alpha} * \mathbb{K}_{2, \alpha}\right)$-generic.

On each component $\alpha \in \mathcal{N} \cap \omega_{3}$ and $m \in \omega$ define $p_{3, \alpha, m}=\bigcup g_{3, \alpha, m} \cdot{ }^{3}$ It suffices to verify that $p_{3, \alpha, m}$ is a condition in $\mathbb{K}_{\alpha, m}^{3}$, for this will give us a condition in \mathbb{P}_{0} which meets each of the O_{n} 's.

Let $G:=G_{0, \alpha, 0} * G_{0, \alpha, m} * G_{1, \alpha, 0} * G_{1, \alpha, m} * G_{2, \alpha, 0} * G_{2, \alpha, m}$ be a $\mathbb{K}_{\alpha, 0}^{0} * \mathbb{K}_{\alpha, m}^{0} * \mathbb{K}_{\alpha, 0}^{1} *$ $\mathbb{K}_{\alpha, m}^{1} * \mathbb{K}_{\alpha, 0}^{2} * \mathbb{K}_{\alpha, m}^{2}$-generic filter over L containing

$$
\left\langle p_{0, \alpha, 0}, p_{0, \alpha, m}, p_{1, \alpha, 0}, p_{1, \alpha, m}, p_{2, \alpha, 0}, p_{2, \alpha, m}\right\rangle
$$

Since the latter is a $\left(\mathcal{N}, \mathbb{K}_{\alpha, 0}^{0} * \mathbb{K}_{\alpha, m}^{0} * \mathbb{K}_{\alpha, 0}^{1} * \mathbb{K}_{\alpha, m}^{1} * \mathbb{K}_{\alpha, 0}^{2} * \mathbb{K}_{\alpha, m}^{2}\right)$ - generic condition, the isomorphism π of the transitive collapse $\overline{\mathcal{N}}$ of \mathcal{N} onto \mathcal{N} extends to an elementary embedding from

$$
\overline{\mathcal{N}}_{0}:=\overline{\mathcal{N}}\left[\bar{g}_{0, \bar{\alpha}, 0} * \bar{g}_{0, \bar{\alpha}, m} * \bar{g}_{1, \bar{\alpha}, 0} * \bar{g}_{1, \bar{\alpha}, m} * \bar{g}_{2, \bar{\alpha}, 0} * \bar{g}_{2, \bar{\alpha}, m}\right]
$$

into $L_{\theta}[G]$. Here $\bar{g}_{i, \bar{\alpha}, j}=\pi^{-1}\left[g_{i, \alpha, j}\right]$, where $i \in 2$ and $j \in\{0, m\}$, and $\bar{\xi}=\pi^{-1}(\xi)$ for all $\xi \in \mathcal{N} \cap$ Ord. By the genericity of G we know that, letting $X_{\omega \cdot \alpha}=\bigcup G_{2, \alpha, 0}$ and $X_{\omega \cdot \alpha+m}=\bigcup G_{2, \alpha, m}$, the property $(* *)_{\alpha, m}$ holds. By elementarity, $\overline{\mathcal{N}}_{0}$ is a suitable model and $\overline{\mathcal{N}}_{0} \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right)$, where $x_{\omega \cdot \bar{\alpha}}=\pi^{-1}\left[\bigcup g_{2, \alpha, 0}\right]=\bigcup \bar{g}_{2, \bar{\alpha}, 0}$, $x_{\omega \cdot \bar{\alpha}+m}=\pi^{-1}\left[\bigcup g_{2, \alpha, m}\right]=\bigcup \bar{g}_{2, \bar{\alpha}, m}$, and $t_{\omega \cdot \bar{\alpha}+m}=\pi^{-1}\left[\bigcup g_{0, \alpha, m}\right]=\bigcup \bar{g}_{0, \bar{\alpha}, m}$. By the construction of \mathbb{P}_{0} and elementarity, $\overline{\mathcal{N}}_{0}=\overline{\mathcal{N}}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]$ and hence

$$
\overline{\mathcal{N}}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right] \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right) .
$$

Let ξ be such that $\overline{\mathcal{N}}=L_{\xi}$ and let \mathcal{M} be any suitable model containing $p_{3, \alpha, m}$, and such that $\omega_{1}^{\mathcal{M}}=\omega_{1} \cap \mathcal{N}\left(=\operatorname{dom} p_{3, \alpha, m}\right)$. We have to show that

$$
\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right) .
$$

Set $\eta=\mathcal{M} \cap$ Ord and consider the suitable model $\mathcal{M}_{2} \subseteq \mathcal{M}, \mathcal{M}_{2}=L_{\eta}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]$.
Three cases are possible.

[^2]Case a). $\eta>\xi$. Since \mathcal{N} was chosen to be the least countable elementary submodel of L_{θ} containing the initial condition, the poset and the sequence of dense sets, it follows that ξ (and therefore also $\omega_{1}^{\overline{\mathcal{N}}}$) is collapsed to ω in $L_{\xi+2}$, and hence this case cannot happen.

Case b). $\eta=\xi$. In this case $\mathcal{M}_{2} \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right)$. (Indeed, $\mathcal{M}_{2}=$ $L_{\eta}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]=\overline{\mathcal{N}}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]=\overline{\mathcal{N}}_{0}$.) Since ϕ is a Σ_{1}-formula, $\omega_{1}^{\mathcal{M}_{2}}=\omega_{1}^{\mathcal{M}}$ and $\omega_{2}^{\mathcal{M}_{2}}=\omega_{2}^{\mathcal{M}}$, we have $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right)$.

Case c). $\eta<\xi$. In this case \mathcal{M}_{2} is an element of $\overline{\mathcal{N}}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]$. Since $L_{\theta}[G]$ satisfies $(* *)_{\alpha, m}$, by elementarity so does the model $\overline{\mathcal{N}}\left[x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}\right]$ with $X_{\omega \cdot \alpha}, X_{\omega \cdot \alpha+m}$, $T_{\omega \cdot \alpha}, T_{\omega \cdot \alpha+m}$ replaced by $x_{\omega \cdot \bar{\alpha}}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}}, t_{\omega \cdot \bar{\alpha}+m}$, respectively. In particular, $\mathcal{M}_{2} \vDash$ $\phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right)$. Since ϕ is a Σ_{1}-formula, $\omega_{1}^{\mathcal{M}_{2}}=\omega_{1}^{\mathcal{M}}, \omega_{2}^{\mathcal{M}_{2}}=\omega_{2}^{\mathcal{M}}$, we have $\mathcal{M} \vDash \phi\left(\omega_{1}, \omega_{2}, x_{\omega \cdot \bar{\alpha}+m}, t_{\omega \cdot \bar{\alpha}+m}, x_{\omega \cdot \bar{\alpha}}\right)$, which finishes our proof.

We say that $q \leq^{*} p$ if $q \leq p, \operatorname{supp}_{\omega}(p)=\operatorname{supp}_{\omega}(q)$, and $p_{l, \alpha}=q_{l, \alpha}$ for all $\langle l, \alpha\rangle \in$ $\operatorname{supp}_{\omega}(p)$.

The proof of the following statement resembles that of [14, Proposition 3.7] and its idea seems to be often used in the context of mixed support iterations.

Proposition 2.3. If $\gamma \notin T_{\omega \cdot \alpha_{0}+n}$ for some $\alpha_{0}<\omega_{3}$ and $n \in \omega$, then $S_{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma}$ is stationary in $L^{\mathbb{P}_{0}}$. In particular, \mathbb{P}_{0} does not collapse ω_{2}.

Proof. Let $p \in \mathbb{D}$ be such that $p \Vdash \gamma \nVdash T_{\omega \cdot \alpha_{0}+n}$ for some $\alpha_{0}<\omega_{3}$ and $n \in \omega$, and \dot{C} be a \mathbb{P}_{0}-name for a club. We shall construct a condition $q \leq p$ which forces $\dot{C} \cap$ $S_{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma} \neq \emptyset$.

Let us construct an increasing chain $\left\langle M_{i}: i<\omega_{2}\right\rangle$ of elementary submodels of L_{θ}, where θ is big enough, such that
(i) $M_{i} \supset\left[M_{i}\right]^{\omega}$ for all $i \in \omega_{2}$;
(ii) $M_{i}=\bigcup_{j<i} M_{j}$ for all $i \in \omega_{2}$ of cofinality ω_{1}; and
(iii) $\omega_{1} \cup\left\{p, \mathbb{P}_{0}, \dot{C}, \alpha, \ldots\right\} \subset M_{0}$.

Now a standard Fodor argument yields $i \in \omega_{2}$ such that $i=M_{i} \cap \omega_{2} \in S_{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma}$ and $i \notin S_{\beta}$ for any $\beta \in M_{i} \backslash\left\{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma\right\}$. Let also $\left\langle O_{\xi}: \xi<\omega_{1}\right\rangle \in M_{i}^{\omega_{1}}$ be the sequence in which all \leq^{*}-dense subsets of \mathbb{P}_{0} which are elements of M_{i} appear cofinally often. Construct by induction on ξ a \leq^{*}-decreasing sequence $\left\langle q^{\xi}: \xi<\omega_{1}\right\rangle \in$ $\left(\mathbb{D} \cap M_{i}\right)^{\omega_{1}}$ such that $q^{0}=p$ and $q^{\xi} \in O_{\xi}$ for all $\xi<\omega_{1}$. Let $q \in \prod_{\alpha<\omega_{3}} \mathbb{K}_{\alpha}$ be such that $\operatorname{supp}(q)=\bigcup_{\xi<\omega_{1}} \operatorname{supp}\left(q^{\xi}\right), q_{l, \alpha}=p_{l, \alpha}$ for all $\langle l, \alpha\rangle \in \operatorname{supp}_{\omega}(p)$, and $q_{0, \alpha} \Vdash q_{1, \alpha, m, \zeta}=$ $\bigcup_{\xi<\omega_{1}} q_{1, \alpha, m, \zeta}^{\xi} \cup\{i\}$ for all $\langle 1, \alpha, m, \zeta\rangle \in \operatorname{supp}_{\omega_{1}}(q)$.

Claim 2.4. $q \in \mathbb{P}_{0}$.
Proof. Since $\omega_{1} \subset M_{i}$ and $q^{\xi} \in M_{i}$ for all $\xi<\omega_{1}$, we conclude that $\operatorname{supp}\left(q^{\xi}\right) \subset M_{i}$ and $q_{v}^{\xi} \in M_{i}$ for all $v \in \operatorname{supp}\left(q^{\xi}\right)$. Let us fix any $\langle 1, \alpha, m, \zeta\rangle \in \operatorname{supp}_{\omega_{1}}(q)$ and find ξ_{0} such that $\langle 1, \alpha, m, \zeta\rangle \in \operatorname{supp}_{\omega_{1}}\left(q^{\xi_{0}}\right)$. For every $j<i$ the set O of those conditions $r \in \mathbb{P}_{0}$ such that $r_{0, \alpha} \Vdash_{\mathbb{K}_{0, \alpha}} \max r_{1, \alpha, m, \zeta}>j$ is \leq^{*}-dense and belongs to M_{i}, consequently $O=O_{\xi}$ for some $\xi>\xi_{0}$, which implies that $q_{0, \alpha}=q_{0, \alpha}^{\xi} \Vdash_{\mathbb{K}_{0, \alpha}} \max q_{1, \alpha, m, \zeta}^{\xi}>j$. Therefore $q_{0, \alpha} \Vdash_{\mathbb{K}_{0, \alpha}} i>\max q_{1, \alpha, m, \zeta}^{\xi}>j$, consequently $q_{0, \alpha} \Vdash_{\mathbb{K}_{0, \alpha}} i=\sup \bigcup_{\xi<\omega_{1}} q_{1, \alpha, m, \zeta}^{\xi}$. It follows from the above that $\omega_{1} \cdot(\omega \cdot \alpha+m)+\zeta \in M_{i}$ and $\omega_{1} \cdot(\omega \cdot \alpha+m)+\zeta \neq \omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma$, and the choice of i was made to ensure $i \notin S_{\beta}$ for all $\beta \in S_{i} \backslash\left\{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma\right\}$. Thus $q_{0, \alpha}$ forces that $q_{1, \alpha, m, \zeta}=\bigcup_{\xi<\omega_{1}} q_{1, \alpha, m, \zeta}^{\xi} \cup\{i\}$ is a closed bounded subset of ω_{2} disjoint from $S_{\omega_{1} \cdot(\omega \cdot \alpha+m)+\zeta}$ which completes our proof.

Claim 2.5. For every open dense subset $E \in M_{i}$ of \mathbb{P}_{0} and $r \leq q$ there exists $r_{1} \in E \cap M_{i}$ such that r and r_{1} are compatible. In other words, q is an $\left\langle M_{i}, \mathbb{P}_{0}\right\rangle$-generic condition.

Proof. Fix E, r as above and set $K=\operatorname{supp}_{\omega}(r) \cap M_{i}$. Without loss of generality, $r \in \mathbb{D}$. Then $K \in M_{i}$ and $r_{k, \alpha} \in M_{i}$ for all $\langle k, \alpha\rangle \in K$ because $M_{i} \supset\left[M_{i}\right]^{\omega}$. Let O be the set of $u \in \mathbb{P}_{0}$ such that either u is \leq^{*}-incompatible with p, or $u \leq^{*} p$ and there exists $\mathbb{D} \cap E \ni z \leq u$ with the following properties:
(1) $K \subset \operatorname{supp}(z)$, and for all $\langle k, \alpha\rangle \in K$ we have $r_{k, \alpha} \leq z_{k, \alpha}$;
(2) $z_{0, \alpha} \Vdash z_{1, \alpha, m, \zeta}=u_{1, \alpha, m, \zeta}$ for all $\langle k, \alpha\rangle \in K$ and $\zeta \in \omega_{1}$.

It is easy to see that $O \in M_{i}$. We claim that O is a \leq^{*}-dense subset of \mathbb{P}_{0}. So let us fix $s \in \mathbb{P}_{0}$. If s is \leq^{*} incompatible with p, then $s \in O$. Otherwise there exists $t \leq^{*} s, p$. Let $w \in \mathbb{P}_{0}$ be such that $\operatorname{supp}_{\omega}(w)=K, w \upharpoonright K=r \upharpoonright K, \operatorname{supp}_{\omega_{1}}(w)=\operatorname{supp}_{\omega_{1}}(t)$, and $w \upharpoonright \operatorname{supp}_{\omega_{1}}(w)=t \upharpoonright \operatorname{supp}_{\omega_{1}}(t)$. Since $t \leq^{*} p$ and $r \leq q \leq p, w$ is a condition in \mathbb{D} and $w \leq t$. Extend w to a condition $z \in E \cap \mathbb{D}$ and let u be such that $\operatorname{supp}_{\omega}(u)=\operatorname{supp}_{\omega}(p)$, $u \upharpoonright \operatorname{supp}_{\omega}(p)=p \upharpoonright \operatorname{supp}_{\omega}(p), \operatorname{supp}_{\omega_{1}}(u)=\operatorname{supp}_{\omega_{1}}(z)$, and $u \upharpoonright \operatorname{supp}_{\omega_{1}}(z)=z\left\lceil\operatorname{supp}_{\omega_{1}}(z)\right.$. Since $z \in \mathbb{D}$ we conclude that $u \in \mathbb{P}_{0}$ and hence $u \leq^{*} p$. By the definition we also have that $z \leq u$, and $z \leq w$ together with the definition of w imply that z satisfies (1). Thus z witnesses that $u \in O$. Moreover, $z \leq w \leq t$ implies $u \leq^{*} t$, and therefore $u \leq^{*} s$. This completes the proof that O is \leq^{*}-dense.

Let $\xi<\omega_{1}$ be such that $O=O_{\xi}$. Then $r \leq q \leq^{*} q^{\xi} \leq^{*} p$ and there exists z witnessing that $q^{\xi} \in O$, i.e., $\mathbb{D} \cap E \ni z \leq q^{\xi}$ and z satisfies (1), (2) with q^{ξ} instead of u. Moreover, since all relevant objects are elements of M_{i}, we can additionally assume that $z \in M_{i}$. Therefore $\operatorname{supp}(z) \subset M_{i}$, which together with (1), (2) implies that $\operatorname{supp}_{\omega}(z) \cap$ $\operatorname{supp}_{\omega}(r)=K$ and $\operatorname{supp}_{\omega_{1}}(z)=\operatorname{supp}_{\omega_{1}}\left(q^{\xi}\right) \subset \operatorname{supp}_{\omega_{1}}(r)$. Define y as follows: $\operatorname{supp}_{\omega}(y)=$ $\operatorname{supp}_{\omega}(r) \cup \operatorname{supp}_{\omega}(z), \operatorname{supp}_{\omega_{1}}(y)=\operatorname{supp}_{\omega_{1}}(r), y_{k, \alpha}=z_{k, \alpha}$ for $\langle k, \alpha\rangle \in \operatorname{supp}_{\omega}(z), y_{k, \alpha}=r_{k, \alpha}$
for $\langle k, \alpha\rangle \in \operatorname{supp}_{\omega}(r) \backslash \operatorname{supp}_{\omega}(z)=\operatorname{supp}_{\omega}(r) \backslash M_{i}$, and $y \upharpoonright \operatorname{supp}_{\omega_{1}}(y)=r \upharpoonright \operatorname{supp}_{\omega_{1}}(r)$. A direct verification shows that $y \in \mathbb{P}_{0}$ and $y \leq r, z$, which completes the proof of the claim.

Finally, we shall show that q forces $\dot{C} \cap S_{\omega_{1} \cdot\left(\omega \cdot \alpha_{0}+n\right)+\gamma} \neq \emptyset$. For this it suffices to prove that $q \Vdash i \in \dot{C}$. Suppose to the contrary that $r \Vdash \dot{C} \cap(j, i)=\emptyset$ for some $r \leq p$ and $j<i$. Let E be the set of those conditions $z \in \mathbb{P}_{0}$ such that there exists $\beta>j$ with the property $z \Vdash \beta \in \dot{C} . E$ is an open dense subset of \mathbb{P}_{0} and $E \in M_{i}$. Therefore there exists $z \in E \cap M_{i}$ and $y \in \mathbb{P}_{0}$ such that $y \leq z, r$. Since $z, j, \dot{C}, \mathbb{P}_{0} \in M_{i}$ and there exists $\beta>j$ such that $z \Vdash \beta \in \dot{C}$, there exists such a $\beta \in M_{i}$, which means that $\beta \in(j, i)$. Therefore $y \Vdash \beta \in \dot{C}$ for some $\beta \in(j, i)$, which together with $y \leq r$ and our choice of r leads to a contradiction.

A simple Δ-system argument gives the following
Proposition 2.6. \mathbb{P}_{0} has the ω_{3}-chain condition.
Combining Propositions $2.2,2.3$, and 2.6 we conclude that \mathbb{P}_{0} preserves cardinals.
Coding stage. We define a finite support iteration $\left\langle\mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\beta}: \alpha \leq \omega_{3}, \beta<\omega_{3}\right\rangle$ of c.c.c. posets such that in $L^{\mathbb{P}_{\omega_{3}}}$, Martin's axiom holds and there is a Δ_{3}^{1} definable wellorder of the reals. Let \mathbb{P}_{0} be the poset defined above and let $F: \omega_{3} \backslash\{0\} \rightarrow L_{\omega_{3}}$ be a bookkeeping function such that for all $a \in L_{\omega_{3}}$, the preimage $F^{-1}(a)$ is cofinal in both $\operatorname{Succ}\left(\omega_{3}\right)$ and $\operatorname{Lim}\left(\omega_{3}\right)$. At limit stages of our iteration we will introduce the wellorder of the reals and at successor stages of the iteration we will take care of all instances of Martin's axiom. Fix a nicely definable sequence of almost disjoint subsets of $\omega, \vec{C}=\left\langle C_{(\xi, \eta)}\right.$: $\left.\xi \in \omega_{1}, \eta \in \omega \cdot 3\right\rangle$. We will assume that all names for reals are nice. Recall that an \mathbb{H}-name \dot{f} for a real is called nice if $\dot{f}=\bigcup_{i \in \omega}\left\{\left\langle\left\langle i, j_{p}^{i}\right\rangle, p\right\rangle: p \in \mathcal{A}_{i}(\dot{f})\right\}$ where for all $i \in \omega, \mathcal{A}_{i}(\dot{f})$ is a maximal antichain in $\mathbb{H}, j_{p}^{i} \in \omega$ and for all $p \in \mathcal{A}_{i}(\dot{f}), p \Vdash \dot{f}(i)=j_{p}^{i}$. If $\alpha<\beta<\omega_{3}$, we can assume that all \mathbb{P}_{α}-names precede in the canonical wellorder $<_{L}$ of L all \mathbb{P}_{β}-names for reals which are not \mathbb{P}_{α}-names. For x a real in $L\left[G_{\alpha}\right]$, where G_{α} is \mathbb{P}_{α}-generic, let γ_{x} be the least γ such that x has a \mathbb{P}_{γ}-name and let σ_{x}^{α} be the $<_{L}$-least $\mathbb{P}_{\gamma_{x}}$-name for x. For x, y reals in $L\left[G_{\alpha}\right]$ define $x<_{\alpha} y$ if and only if $\left(\gamma_{x}<\gamma_{y}\right)$ or $\left(\gamma_{x}=\gamma_{y}\right.$ and $\sigma_{x}^{\alpha}<_{L} \sigma_{y}^{\alpha}$). Then clearly $<_{\alpha}$ is an initial segment of $<_{\beta}$, for $\alpha<\beta$. Now if G is a $\mathbb{P}_{\omega_{3}}$-generic filter, then $<^{G}=\bigcup_{\alpha<\omega_{3}}\left\{\dot{<}_{\alpha}^{G}: \alpha<\omega_{3}\right\}$ where $\dot{<}_{\alpha}$ is a \mathbb{P}_{α}-name for $<_{\alpha}$, is the desired wellorder of the reals. For any pair of reals x, y in $L[G]$ such that $x<_{\alpha} y$, let $x * y=\{2 n: n \in x\} \cup\{2 n+1: n \in y\}$ and let $\Delta(x * y)=\{2 n: n \in x * y\} \cup\{2 n+1: n \notin x * y\}$.

We proceed with the inductive definition of $\mathbb{P}_{\omega_{3}}$. Suppose \mathbb{P}_{α} has been defined.

If $\alpha=\omega \cdot \beta+n$ is a successor: Suppose that $F(\alpha)=\sigma$. If σ is a \mathbb{P}_{α}-name for a c.c.c. poset which involves only conditions $p \in \mathbb{P}_{\alpha}$ such that $p(0)(\eta)$ is the trivial condition in \mathbb{K}_{η} for all $\eta \geq \alpha$, let $\dot{\mathbb{Q}}_{\alpha}=\sigma$. Otherwise, let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for the trivial poset.

If α is a limit: If $\alpha=0$ let $\dot{\mathbb{Q}}_{\alpha}$ be a \mathbb{P}_{α}-name for the trivial poset. If $\alpha \in \operatorname{Lim}\left(\omega_{3}\right) \backslash\{0\}$, $\alpha=\omega \cdot \beta$, then let \mathbb{Q}_{α} be the two stage iteration $\mathbb{Q}_{\alpha}^{0} * \dot{\mathbb{Q}}_{\alpha}^{1}$ defined as follows. First note that:

Claim 2.7. $\left\{T_{\omega \cdot \alpha+n}: n \in \omega\right\}$ is a sequence of Suslin trees in $L^{\mathbb{P}_{\alpha}}$.
Proof. Let $\mathbb{P}_{0,<\alpha}$ and $\mathbb{P}_{0, \geq \alpha}$ be the suborders of $\prod_{\gamma<\alpha} \mathbb{K}_{\gamma}$ and $\prod_{\gamma \geq \alpha} \mathbb{K}_{\gamma}$ respectively, of all conditions with mixed supports. Let $\overline{\mathbb{P}}_{\alpha}$ be the factor poset $\mathbb{P}_{\alpha} / \mathbb{P}_{0}$.

By definition of the finite support iteration, not only $\overline{\mathbb{P}}_{\alpha} \in L^{\mathbb{P}_{0}}$, but in fact $\overline{\mathbb{P}}_{\alpha} \in L^{\mathbb{P}_{0},<\alpha}$. Then identifying $\overline{\mathbb{P}}_{\alpha}$ with its \mathbb{P}_{0}-name we have

$$
\mathbb{P}_{\alpha}=\mathbb{P}_{0} * \overline{\mathbb{P}}_{\alpha}=\left(\mathbb{P}_{0,<\alpha} \times \mathbb{P}_{0, \geq \alpha}\right) * \overline{\mathbb{P}}_{\alpha}=\left(\mathbb{P}_{0,<\alpha} * \overline{\mathbb{P}}_{\alpha}\right) \times \mathbb{P}_{0, \geq \alpha} .
$$

Thus in particular, for every $n \in \omega, T_{\omega \cdot \alpha+n}$ is generic over $L^{\mathbb{P}_{0,<\alpha} * \overline{\mathbb{P}}_{\alpha}}$ and so $T_{\omega \cdot \alpha+n}$ remains a Suslin tree in $L^{\mathbb{P}_{\alpha}}$.

Recall that if T is an \aleph_{1}-tree, then the poset consisting of all finite partial functions p from T to ω such that if $p(s)=p(t)$ then s and t are comparable with extension relation superset, adds a specializing function for T. We will be referring to this poset as a forcing notion for specializing T. By a result of Baumgartner, if T has no ω_{1}-branch then this poset has the countable chain condition (see [2, Theorem 8.2]).

If $F(\alpha)$ is not a pair $\left\{\sigma_{x}^{\alpha}, \sigma_{y}^{\alpha}\right\}$ of names for some reals x, y in $L^{\mathbb{P}_{\alpha}}$ which involve only conditions $p \in \mathbb{P}_{\alpha}$ such that $p(0)(\eta)$ is the trivial condition in \mathbb{K}_{η} for all $\eta \geq \alpha$, let \mathbb{Q}_{α} be a \mathbb{P}_{α}-name for the finite support iteration $\left\langle\mathbb{P}_{n}^{0, \alpha}, \dot{\mathbb{Q}}_{n}^{0, \alpha}: n \in \omega\right\rangle$, where $\dot{\mathbb{Q}}_{n}^{0, \alpha}$ is a $\mathbb{P}_{n}^{0, \alpha}$-name for specializing $T_{\omega \cdot \alpha+n}$ for all $n \in \omega$. Otherwise, let $x=\left(\sigma_{x}^{\alpha}\right)^{G_{\alpha}}, y=\left(\sigma_{y}^{\alpha}\right)^{G_{\alpha}}$. In $L^{\mathbb{P}_{\alpha}}$ define \mathbb{Q}_{α}^{0} to be the finite support iteration $\left\langle\mathbb{P}_{n}^{0, \alpha}, \dot{\mathbb{Q}}_{n}^{0, \alpha}: n \in \omega\right\rangle$ where if $n \in \Delta(x * y)$ then $\dot{\mathbb{Q}}_{n}^{0, \alpha}$ is a $\mathbb{P}_{n}^{0, \alpha}$-name for specializing $T_{\omega \cdot \alpha+n}$; otherwise let $\dot{\mathbb{Q}}_{n}^{0, \alpha}$ be a $\mathbb{P}_{n}^{0, \alpha}$-name for $T_{\omega \cdot \alpha+n}$. For every $n \in \omega$ let $A_{\omega \cdot \alpha+n}$ be the generic subset of ω_{1} added by $\mathbb{Q}_{n}^{0, \alpha}$.

Then let \mathbb{Q}_{α}^{1} almost disjoint code the sequences $\left\langle A_{\omega \cdot \alpha+n}: n \in \omega\right\rangle,\left\langle Y_{\omega \cdot \alpha+n}: n \in \omega\right\rangle$ and $\left\langle T_{\omega \cdot \alpha+n}: n \in \omega\right\rangle$. More precisely, in $L^{\mathbb{P}_{\alpha} * \mathbb{Q}_{\alpha}^{0}}$ let \mathbb{Q}_{α}^{1} be the poset of all pairs $\left\langle s, s^{*}\right\rangle$ where $s \in[\omega]^{<\omega}$ and $s^{*} \in\left[\langle\mu, n\rangle: n \in \omega, \mu \in Y_{\omega \cdot \alpha+n}\right]^{<\omega} \cup[\langle\mu, \eta\rangle: \eta \in[\omega, \omega$. 2), $\left.\mu \in A_{\omega \cdot \alpha+n}\right]^{<\omega} \cup\left[\langle\mu, \eta\rangle: \eta \in[\omega \cdot 2, \omega \cdot 3), \mu \in T_{\omega \cdot \alpha+n}\right]^{<\omega}$. The extension relation is $\left\langle t, t^{*}\right\rangle \leq\left\langle s, s^{*}\right\rangle$ if and only if t end extends s and $(t \backslash s) \cap C_{\mu, \eta}=\emptyset$ for all $(\mu, \eta) \in s^{*}$. Let R_{α} be the generic real added by \mathbb{Q}_{α}^{1} and let $\mathbb{Q}_{\alpha}=\mathbb{Q}_{\alpha}^{0} * \dot{\mathbb{Q}}_{\alpha}^{1}$.

With this the inductive construction of $\mathbb{P}_{\omega_{3}}$ is complete. Clearly in $L^{\mathbb{P}_{\omega_{3}}}$, MA holds and $\mathfrak{c}=\omega_{3}$. We will see that the wellorder $<^{G}$, where G is $\mathbb{P}_{\omega_{3}}$-generic, has a Δ_{3}^{1} definition.

Lemma 2.8. $x<y$ if and only if there is a real R such that for every countable suitable model \mathcal{M} such that $R \in \mathcal{M}$, there is a limit ordinal $\tilde{\alpha} \in\left[\omega \cdot 2, \omega_{3}^{\mathcal{M}}\right)$ such that for every $n \in \omega$ the set $\left\{\gamma \in \omega_{1}: S_{\omega_{1} \cdot(\tilde{\alpha}+n)+\gamma}\right.$ is not stationary $\}$ is an $\omega_{1-\text { tree, }}$ which is specialized for $n \in \Delta(x * y)$ and has a branch for $n \notin \Delta(x * y)$.

Proof. Let G be $\mathbb{P}_{\omega_{3}}$-generic and let x, y be reals in $L[G]$. Suppose $x<y$. Then there is $0<\alpha<\omega_{3}$, a limit ordinal, $\alpha=\omega \cdot \beta$, such that $F(\alpha)=\left\{\sigma_{x}^{\alpha}, \sigma_{y}^{\alpha}\right\}$ and $\sigma_{x}^{\alpha}, \sigma_{y}^{\alpha}$ involve only conditions $p \in \mathbb{P}_{\alpha}$ such that $p(0)(\eta)$ is the trivial condition in \mathbb{K}_{η} for all $\eta \geq \alpha$. Let R_{α} be the real added by \mathbb{Q}_{α}^{1} and let \mathcal{M} be a suitable model containing R_{α}. Then the sequences $\left\langle Y_{\omega \cdot \alpha+n} \cap \eta: n \in \omega\right\rangle,\left\langle T_{\omega \cdot \alpha+n} \cap \eta: n \in \omega\right\rangle,\left\langle A_{\omega \cdot \alpha+n} \cap \eta: n \in \omega\right\rangle$ also belong to \mathcal{M}. Fix n. Since $X_{\omega \cdot \alpha+n} \cap \eta, X_{\omega \cdot \alpha} \cap \eta$ are in \mathcal{M}, we have that $\mathcal{M} \vDash$ $\phi\left(\omega_{1}, \omega_{2}, X_{\omega \cdot \alpha+n} \cap \eta, T_{\omega \cdot \alpha+n} \cap \eta, X_{\omega \cdot \alpha} \cap \eta\right)$. This means that \mathcal{M} models the following statement:
Using the sequence \vec{B}, the sets $X_{\omega \cdot \alpha+n} \cap \eta, X_{\omega \cdot \alpha} \cap \eta$ almost disjointly code subsets Z_{n}, Z of ω_{2}, respectively, such that $0\left(\operatorname{Even}\left(Z_{n}\right)\right)$ and $I\left(\operatorname{Even}\left(Z_{n}\right)\right)=I(\operatorname{Even}(Z))$ are the L-least codes for ordinals $\tilde{\alpha}_{n}+n$ and $\tilde{\alpha}_{n}$ for some limit $\tilde{\alpha}_{n}<\omega_{3}$, and $\chi^{-1}[\operatorname{II}(\operatorname{Even}(Z))]=\{\langle\gamma, \zeta\rangle$: $\left.\gamma \in T_{\omega \cdot \alpha+n} \cap \eta, \zeta \in \bar{C}_{\gamma}\right\}$, where $T_{\omega \cdot \alpha+n} \cap \eta$ is an ω_{1}-tree and \bar{C}_{γ} is a closed unbounded subset of ω_{2} disjoint from $S_{\omega_{1} \cdot\left(\tilde{\alpha}_{n}+n\right)+\gamma}$ for all $\gamma \in T_{\omega \cdot \alpha+n} \cap \gamma$.

Since Z does not depend on n, we conclude that all $\tilde{\alpha}_{n}$'s coincide and we shall denote them simply by $\tilde{\alpha}$. Let us also note that $A_{\omega \cdot \alpha+n} \cap \eta \in \mathcal{M}$ is a specializing function for (resp. a branch through) $T_{\omega \cdot \alpha+n} \cap \eta$ provided so is $A_{\omega \cdot \alpha+n}$ with respect to $T_{\omega \cdot \alpha+n}$.

Thus in \mathcal{M} there is a limit ordinal $\tilde{\alpha} \in\left[\omega \cdot 2, \omega_{3}\right)$ such that for every $n \in \omega$ the set $T_{\omega \cdot \alpha+n} \cap \eta=\left\{\gamma \in \omega_{1}: S_{\omega_{1} \cdot(\tilde{\alpha}+n)+\gamma}\right.$ is not stationary $\}$ is a ω_{1}-tree, which is specialized for $n \in \Delta(x * y)$ and has a branch for $n \notin \Delta(x * y)$.

To see the other implication, suppose x, y are reals in $L[G]$ and there is a real R such as in the formulation. By Löwenheim-Skolem theorem, the same property holds for $\mathcal{M}=L_{\omega_{4}}$. This means that in $L_{\omega_{4}}$ (and hence also in L) there is a limit ordinal $\tilde{\alpha} \in\left[\omega \cdot 2, \omega_{3}\right)$ such that for every $n \in \omega$ the set $I_{n}=\left\{\gamma \in \omega_{1}: S_{\omega_{1} \cdot(\tilde{\alpha}+n)+\gamma}\right.$ is not stationary\} is an ω_{1}-tree, which is specialized for $n \in \Delta(x * y)$ and has a branch for $n \notin \Delta(x * y)$. By the definition of \mathbb{P}_{0} and Proposition 2.3 we have that $I_{n}=T_{\tilde{\alpha}+n}$ and $\tilde{\alpha}=\omega \cdot \tilde{\beta}$ for some limit ordinal $\tilde{\beta}$. Thus for some $n \in \omega$ there exists a branch through $T_{\omega \cdot \tilde{\beta}+n}$, which means that $F(\tilde{\beta})$ is a pair $\left\{\sigma_{a}^{\tilde{\beta}}, \sigma_{b}^{\tilde{\beta}}\right\}$ for some reals $a<b$ in $L^{\mathbb{P}_{\tilde{\beta}}}, \dot{\mathbb{Q}}_{n}^{0, \tilde{\beta}}$ is a $\mathbb{P}_{n}^{0, \tilde{\beta}}$-name for specializing $T_{\omega \cdot \tilde{\beta}+n}$ for all $n \in \Delta(a * b)$, and $\dot{\mathbb{Q}}_{n}^{0, \tilde{\beta}}$ is a $\mathbb{P}_{n}^{0, \tilde{\beta}}$-name for $T_{\omega \cdot \tilde{\beta}+n}$ otherwise. It follows from the above that $\Delta(x * y)=\Delta(a * b)$, consequently $x=a$ and $y=b$, and hence $x<y$.

Thus we have obtained the following.

Theorem 2.9. The existence of a Δ_{3}^{1}-definable wellorder of the reals is consistent with Martin's axiom and $\mathfrak{c}=\omega_{3}$.

3. Cardinal characteristics, projective wellorders and large continuum

We will conclude by pointing out that the model constructed above can be easily modified to obtain the consistency of $\mathfrak{c}=\omega_{3}$, the existence of a Δ_{3}^{1}-definable wellorder of the reals and certain inequalities between some of the cardinal characteristics of the real line. An excellent exposition of the subject of cardinal characteristics of the real line can be found in [4].

Let κ be a regular uncountable cardinal. In [5, Theorem 3.1], Brendle shows that if V is a model of $\mathfrak{c}=\kappa, 2^{\kappa}=\kappa^{+}, \mathcal{H}=\left\langle f_{\alpha}: \alpha\langle\kappa\rangle\right.$ is an unbounded, $<^{*}$-wellordered sequence of strictly increasing functions in ${ }^{\omega} \omega$ and \mathcal{A} is a maximal almost disjoint family, then in V there is a ccc poset $\mathbb{P}(\mathcal{A}, \mathcal{H})$ of size κ which preserves the unboundedness of \mathcal{H} and destroys the maximality of \mathcal{A}. A similar result concerning the bounding and the splitting numbers, was obtained by Fischer and Steprāns. In [8, Lemma 6.2] they show that if V is a model of $\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right), \mathcal{H}$ is an unbounded $<^{*}$-directed family in ${ }^{\omega} \omega$ and $\operatorname{cov}(\mathcal{M})=\kappa$, then there is a ccc poset $\mathbb{P}(\mathcal{H})$ of size κ which preserves the unboundedness of \mathcal{H} and adds a real not split by $V \cap[\omega]^{\omega}$. Thus if V is a model of $\forall \lambda<\kappa\left(2^{\lambda} \leq \kappa\right), \mathcal{H}$ is an unbounded $<^{*}$-directed family in ${ }^{\omega} \omega$, then there is a ccc poset $\mathbb{P}(\mathcal{H})$ which preserves the unboundedness of \mathcal{H} and adds a real not split by $V \cap[\omega]^{\omega}$ (just take $\mathbb{C}_{\kappa} * \mathbb{P}(\mathcal{H})$ where \mathbb{C}_{κ} is the poset for adding κ many Cohen reals).

Also, recall that if \mathcal{H} is an unbounded directed family of reals such that each countable subfamily is dominated by an element of the family, then in order to preserve the unboundedness of \mathcal{H} along a finite support iteration of ccc posets, it is sufficient to preserve its unboundedness at each successor stage of the iteration (see [13]). Note also that the unboundedness of unbounded directed families of reals is preserved by posets of size smaller than the size of the family (see [1]).

Corollary 3.1. There is a generic extension of the constructible universe L in which there is a Δ_{3}^{1}-definable wellorder of the reals and

$$
\mathfrak{p}=\mathfrak{b}=\mathfrak{N}_{2}<\mathfrak{a}=\mathfrak{s}=\mathfrak{c}=\mathfrak{\aleph}_{3} .
$$

Proof. We will modify the coding stage of the construction from Section 2, which produces Theorem 2.9, by changing the successor stages of this construction. Instead of going over all possible names for ccc posets, we will consider only specific ones associated to the chosen cardinal characteristics.

In the following for $j \in\{0,1,2\}$ let $\operatorname{Succ}_{j}\left(\omega_{3}\right)$ be the set of all successor ordinals α such that $\omega_{2}<\alpha<\omega_{3}$ and $\alpha \equiv j(\bmod 3)$. Let $F: \omega_{3} \backslash\{0\} \rightarrow L_{\omega_{3}}$ be a bookkeeping function such that for all $a \in L_{\omega_{3}}$, the set $F^{-1}(a)$ is cofinal in each of the following: $\operatorname{Succ}\left(\omega_{3}\right), \operatorname{Lim}\left(\omega_{3}\right)$ and $\operatorname{Succ}_{j}\left(\omega_{3}\right)$ for every $j \in\{0,1,2\}$. We will define a finite support iteration $\left\langle\tilde{\mathbb{P}}_{\alpha}, \dot{\widetilde{\mathbb{Q}}}_{\beta}: \alpha \leq \omega_{3}, \beta<\omega_{3}\right\rangle$ such that in $L^{\tilde{\mathbb{P}}_{\omega_{3}}}$ there will be a Δ_{3}^{1}-definable well order of the reals and $\mathfrak{p}=\mathfrak{b}=\boldsymbol{\aleph}_{2}<\mathfrak{a}=\mathfrak{s}=\mathfrak{c}=\boldsymbol{\aleph}_{3}$. At successor stages $\alpha<\omega_{2}$, we will add $\mathrm{a}<^{*}$-scale \mathcal{H} of length ω_{2}, which will be our witness of $\mathfrak{b} \leq \boldsymbol{N}_{2}$ in the final generic extension $L^{\tilde{\mathbb{P}}_{\omega_{3}}}$. For this we will use the Hechler poset \mathbb{D} for adding a dominating real (see [12]). Recall that \mathbb{D} consists of all pairs $\langle s, E\rangle \in \omega^{<\omega} \times\left[\omega^{\omega}\right]^{<\omega}$. A condition (t, H) extends (s, E) if $s \subseteq t, E \subseteq H$ and if $i \in \operatorname{dom}(t) \backslash \operatorname{dom}(s)$ then $t(i)>f(i)$ for all $f \in E$. If G is \mathbb{D}-generic, then the function $h=\bigcup\{s: \exists E(s, E) \in G\}$, referred to as the generic real added by \mathbb{D}, dominates all ground model reals. At successor stages $\alpha>\omega_{2}$, we will take care of the values of the remaining cardinal characteristics in which we are interested.

Let $\tilde{\mathbb{P}}_{0}$ be the poset \mathbb{P}_{0} defined in section 2 .
Case 1. Let $0<\alpha<\omega_{2}$. Suppose $\tilde{\mathbb{P}}_{\alpha}$ has been defined and

$$
\tilde{\mathbb{P}}_{\alpha}=\left(\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\widetilde{\mathbb{P}}}_{\alpha}\right) \times \tilde{\mathbb{P}}_{0, \geq \alpha}
$$

where $\tilde{\mathbb{P}}_{0,<\alpha}=\mathbb{P}_{0,<\alpha}, \tilde{\mathbb{P}}_{0, \geq \alpha}=\mathbb{P}_{0, \geq \alpha}$ (here $\mathbb{P}_{0,<\alpha}$ and $\mathbb{P}_{0, \geq \alpha}$ are the posets from section 2) and $\tilde{\mathbb{P}}_{\alpha}$ is the factor poset $\tilde{\mathbb{P}}_{\alpha} / \tilde{\mathbb{P}}_{0}$. Since $\mathbb{P}_{0, \geq \alpha}=\tilde{\mathbb{P}}_{0, \geq \alpha}$ is ω-distributive, we have

$$
L^{\tilde{\mathbb{P}}_{\alpha}} \cap[\omega]^{\omega}=L^{\left(\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}\right) \times \tilde{\mathbb{P}}_{0, \geq \alpha}} \cap[\omega]^{\omega}=L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}} \cap[\omega]^{\omega}
$$

If α is a successor, in $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$ let $\mathbb{Q}_{\alpha}=\mathbb{D}$ and let h_{α} be the generic real added by \mathbb{Q}_{α}. Let $\dot{\tilde{Q}}_{\alpha}$ be a $\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\tilde{\mathbb{P}}}_{\alpha}$-name for \mathbb{Q}_{α}. Since $\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\tilde{\mathbb{P}}}_{\alpha}$ is a complete suborder of $\tilde{\mathbb{P}}_{\alpha}$ we can assume that $\dot{\widetilde{\mathbb{Q}}}_{\alpha}$ is in fact a $\tilde{\mathbb{P}}_{\alpha}$-name. Also note that h_{α} dominates the reals of $L^{\tilde{\mathbb{P}}_{\alpha}}$. If α is a limit, define $\dot{\widetilde{\mathbb{Q}}}_{\alpha}$ as in the limit case of the definition of $\mathbb{P}_{\omega_{3}}$ from Section 2.

With this the definition of $\tilde{\mathbb{P}}_{\omega_{2}}$ is complete. In $L^{\tilde{\mathbb{P}}_{\omega_{2}}}$ let $\mathcal{H}=\left\langle h_{\alpha}: \alpha \in \operatorname{Succ}\left(\omega_{2}\right)\right\rangle$. Then \mathcal{H} is a $<^{*}$-scale. Observe that by the definition of $\tilde{\mathbb{P}}_{\omega_{2}}$,

$$
\mathcal{H} \subseteq L^{\tilde{\mathbb{P}}_{0,<\omega_{2}} * \tilde{\mathbb{P}}_{\omega_{2}}} \cap{ }^{\omega} \omega
$$

Case 2. Let $\omega_{2}<\alpha \leq \omega_{3}$. Suppose $\tilde{\mathbb{P}}_{\alpha}$ has been defined, $\tilde{\mathbb{P}}_{\alpha}=\left(\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\tilde{\mathbb{P}}}_{\alpha}\right) \times \tilde{\mathbb{P}}_{0, \geq \alpha}$ and \mathcal{H} is unbounded in $L^{\tilde{\mathbb{P}}_{\alpha}}$. In particular, by the ω-distributivity of $\tilde{\mathbb{P}}_{0, \geq \alpha}$ we have that the reals of $L^{\tilde{\mathbb{P}}_{\alpha}}$ coincide with the reals of $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$.

Case 2.1. Suppose $\alpha \in \operatorname{Succ}_{1}\left(\omega_{3}\right)$. Note that $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}} \vDash \forall \lambda<\boldsymbol{\aleph}_{2}\left(2^{\lambda} \leq \boldsymbol{N}_{2}\right)$. By the result of Fischer-Steprāns mentioned earlier, in $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$ there is a ccc poset $\tilde{\mathbb{Q}}_{\alpha}$ which preserves the unboundedness of \mathcal{H} and adds a real not split by the reals of $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$. Let
$\dot{\tilde{\mathbb{Q}}}_{\alpha}$ be a $\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\tilde{\mathbb{P}}}_{\alpha}$-name for $\tilde{\mathbb{Q}}_{\alpha}$. Since $\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\tilde{\mathbb{P}}}_{\alpha}$ is a complete suborder of $\tilde{\mathbb{P}}_{\alpha}$, we can assume that $\dot{\widetilde{\mathbb{Q}}}_{\alpha}$ is a $\tilde{\mathbb{P}}_{\alpha}$-name. We have that

$$
\tilde{\mathbb{P}}_{\alpha} * \dot{\widetilde{\mathbb{Q}}}_{\alpha}=\left(\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\tilde{\mathbb{P}}}_{\alpha} * \dot{\widetilde{\mathbb{Q}}}_{\alpha}\right) \times \tilde{\mathbb{P}}_{0, \geq \alpha} .
$$

Since \mathcal{H} is unbounded in $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha} * \tilde{\mathbb{Q}}_{\alpha}}$ and $\tilde{\mathbb{P}}_{0, \geq \alpha}$ does not add any new reals, the family \mathcal{H} is unbounded in $L^{\tilde{\mathbb{P}}_{\alpha} * \tilde{\mathbb{Q}}_{\alpha}}$. Clearly, the real added by $\tilde{\mathbb{Q}}_{\alpha}$ which is not split by the reals of $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$, remains unsplit by $L^{\tilde{\mathbb{P}}_{\alpha}} \cap[\omega]^{\omega}$.

Case 2.2. Suppose $\alpha \in \operatorname{Succ}_{2}\left(\omega_{3}\right)$ and $F(\alpha)=\sigma$ is a $\tilde{\mathbb{P}}_{\alpha}$-name for a maximal almost disjoint family \mathcal{A}, which involves only conditions $p \in \tilde{\mathbb{P}}_{\alpha}$ such that $p(0)(\eta)$ is the trivial condition in \mathbb{K}_{η} for all $\eta \geq \alpha$. Then by Brendle's result mentioned earlier, in $L^{\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}}$ there is a ccc poset $\widetilde{\mathbb{Q}}_{\alpha}$ which preserves the unboundedness of \mathcal{H} and adds a real which has finite intersection with every element of \mathcal{A}. Let $\dot{\mathbb{Q}}_{\alpha}$ be a $\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\tilde{\mathbb{P}}}_{\alpha}$-name for $\tilde{\mathbb{Q}}_{\alpha}$. Since $\tilde{\mathbb{P}}_{0,<\alpha} * \tilde{\mathbb{P}}_{\alpha}$ is a complete suborder of $\tilde{\mathbb{P}}_{\alpha}$, we can assume that $\dot{\widetilde{\mathbb{Q}}}_{\alpha}$ is a $\tilde{\mathbb{P}}_{\alpha}$-name. Also

$$
\tilde{\mathbb{P}}_{\alpha} * \dot{\tilde{\mathbb{Q}}}_{\alpha}=\left(\tilde{\mathbb{P}}_{0,<\alpha} * \overline{\tilde{\mathbb{P}}}_{\alpha} * \dot{\tilde{\mathbb{Q}}}_{\alpha}\right) \times \tilde{\mathbb{P}}_{0, \geq \alpha}
$$

Thus \mathcal{H} remains unbounded in $L^{\tilde{\mathbb{P}}_{\alpha} * \dot{\mathbb{Q}}_{\alpha}}$, as $\tilde{\mathbb{P}}_{0, \geq \alpha}$ is ω-distributive, and clearly \mathcal{A} is not maximal in $L^{\tilde{\mathbb{P}}_{\alpha} * \tilde{\mathbb{Q}}_{\alpha}}$.

If $F(\alpha)$ is not of the above form, let $\dot{\tilde{Q}}_{\alpha}$ be the trivial poset.
Case 2.3. Suppose $\alpha \in \operatorname{Succ}_{0}\left(\omega_{3}\right)$ and $F(\alpha)=\sigma$ is a $\tilde{\mathbb{P}}_{\alpha}$-name for a σ-centered poset of size $\leq \boldsymbol{\aleph}_{1}$ which involves only conditions $p \in \tilde{\mathbb{P}}_{\alpha}$ such that $p(0)(\eta)$ is the trivial condition in \mathbb{K}_{η} for all $\eta \geq \alpha$, let $\dot{\tilde{\mathbb{Q}}}_{\alpha}=\sigma$. If $F(\alpha)$ is not of the above form, let $\dot{\tilde{\mathbb{Q}}}_{\alpha}$ be a $\tilde{\mathbb{P}}_{\alpha}$-name for the trivial poset.

Case 2.4. Suppose α is a limit. Then define $\dot{\widetilde{\mathbb{Q}}}_{\alpha}$ just as $\dot{\mathbb{Q}}_{\alpha}$ in the limit case of the definition of $\mathbb{P}_{\omega_{3}}$ from section 2.

With this the definition of $\tilde{\mathbb{P}}_{\omega_{3}}$ is complete. Clearly in $L^{\tilde{\mathbb{P}}_{\omega_{3}}}$ there is a Δ_{3}^{1}-definable well order of the reals and $\mathfrak{c}=\boldsymbol{\aleph}_{3}$. Since along the iteration we have forced with all σ-centered posets of size $\leq \boldsymbol{\aleph}_{1}$, we have $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \mathrm{MA}_{<\omega_{2}}(\sigma$-centered). However by Bell's theorem $\mathfrak{m}(\sigma$-centered $)=\mathfrak{p}$, where $\mathfrak{m}(\sigma$-centered) is the least cardinal κ for which $M A_{\kappa}\left(\sigma\right.$-centered) fails (see [3] or [4, Theorem 7.12]). Therefore $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \mathfrak{p}=\boldsymbol{N}_{2}$. Since $\mathfrak{p} \leq \mathfrak{b}$ we have also that $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \boldsymbol{\aleph}_{2} \leq \mathfrak{b}$.

The posets used to produce the Δ_{3}^{1}-definable wellorder of the reals are of size \aleph_{1} and so each of them preserve the unboundedness of the family \mathcal{H}. Thus at every successor stage if the iteration $\left\langle\tilde{\mathbb{P}}_{\alpha}, \dot{\widetilde{Q}}_{\beta}: \alpha \leq \omega_{3}, \beta<\omega_{3}\right\rangle$ the family \mathcal{H} is preserved unbounded and so by the preservation theorem mentioned earlier $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash(\mathcal{H}$ is unbounded). Therefore $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \boldsymbol{\aleph}_{2} \leq \mathfrak{b} \leq|\mathcal{H}|=\boldsymbol{\aleph}_{2}$.

On the other hand along the iteration cofinally often we have added reals not split by the ground model reals, which implies that $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \mathfrak{s}=\boldsymbol{N}_{3}$. It remains to observe
that since $F^{-1}(a)$ is cofinal in $\operatorname{Succ}_{2}\left(\omega_{3}\right)$ for all $a \in L_{\omega_{3}}$, every maximal almost disjoint family of size $\leq \boldsymbol{\aleph}_{2}$ has been destroyed along the iteration and so $L^{\tilde{\mathbb{P}}_{\omega_{3}}} \vDash \mathfrak{a}=\boldsymbol{\aleph}_{3}$.

The authors expect that similar methods can be used to establish the results of the paper for $2^{\aleph_{0}}=\aleph_{n}$ where $n \in \omega$. The following question remains of interest.
Question. Is there a generic extension of the constructible universe L in which $2^{\aleph_{0}}=\kappa$, Martin's axiom holds and there is a projective wellorder of the reals, where κ is the least L-cardinal of uncountable L-cofinality such that L_{κ} satisfies ϕ for some sentence ϕ ?
[1] T. Bartoszyński, J. Ihoda[H. Judah] On the cofinality of the smallest covering of the real line by meager sets The Journal of Symbolic Logic 54, no. 3 (1989), 828-832.
[2] J. Baumgartner Iterated Forcing London Mathematical Society, Lecture Notes in Mathematics 87, Surveys in Set Theory.
[3] M. Bell On the combinatorial principle P(c) Fundamenta Mathematicae 114 (1981), 149-157.
[4] A. Blass Combinatorial cardinal characteristics of the continuum Handbook of Set Theory, Springer, 2010.
[5] J. Brendle Mob families and mad families Arch. Math. Logic 37 (1998), 183-197.
[6] V. Fischer, S. D. Friedman Cardinal characteristics and projective wellorders, Ann. Pure Appl. Logic 161 (2010), 916-922.
[7] V. Fischer, S. D. Friedman, L. Zdomskyy Projective wellorders and mad families with large continuum, Ann. Pure Appl. Logic 162 (2011), 853-862.
[8] V. Fischer, J. Steprāns The consistency of $\mathfrak{b}=\kappa<\mathfrak{s}=\kappa^{+}$Fundamenta Mathematicae 201, no. 3 (2008), 283-293.
[9] S. D. Friedman Fine Structure and Class Forcing de Gruyter Series in Logic and its Applications, 3. Walter de Gruyter \& Co., berlin, 2000. x+221 pp.
[10] S. D. Friedman, L. Zdomskyy Projective mad families, Ann. Pure Appl. Logic 161 (2010), 15811587.
[11] L. Harrington Long Projective Wellorderings Annals of Mathematical Logic 12 (1977), 1-24.
[12] T. Jech Set Theory Springer, 2002.
[13] H. Judah, S. Shelah The Kunen-Miller chart (Lebesgue measure, the Baire property, Laver reals and preservation theorems for forcing) The Journal of Symbolic Logic 55 (1990), 909-927.
[14] J. Krueger A general Mitchell style iteration, MLQ Math. Log. Q. 54 (2008), 641-651.

[^0]: *Corresponding author; Phone: (43-1) 4314277 50520; Fax: (43-1) 431427750599
 Email addresses: vfischer@logic.univie.ac.at (Vera Fischer), sdf@logic.univie.ac.at (Sy David Friedman), lzdomsky@logic.univie. ac.at (Lyubomyr Zdomskyy)
 ${ }^{1}$ The authors would like to thank the Austrian Science Fund FWF for the generous support through grants no P. 20835-N13 and M1365-N13 (Fischer), P. 22430-N13 (Friedman) and M1244-N13 (Zdomskyy). Preprint submitted to Elsevier

[^1]: ${ }^{2} \mathrm{~A}$ more general fact will be proven later after we define the final poset

[^2]: ${ }^{3}$ Formally this is $\bigcup\left\{r_{3, \alpha, m}: r_{3, \alpha} \in g_{3, \alpha}\right.$ and $\left.\left\langle r_{i, \alpha}\right\rangle_{i \leq 3} \in \mathbb{D}_{\alpha}\right\}$.

