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Abstract

We extend the work of [7] by presenting a method for controlling cardinal characteristics
in the presence of a projective wellorder and 2ℵ0 > ℵ2. This also answers a question of
Harrington [11] by showing that the existence of a ∆1

3 wellorder of the reals is consistent
with Martin’s axiom and 2ℵ0 = ℵ3.
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1. Introduction

In [7] the present authors established the consistency of the existence of a Π1
2 maxi-

mal almost disjoint family together with a lightface projective wellorder and b = 2ℵ0 =

ℵ3. As the argument used there was only suitable for handling countable objects, it left
open the problem of obtaining projective wellorders with 2ℵ0 greater than ℵ2 while si-
multaneously controlling cardinal characteristics of prominent interest. We solve this
problem in the present paper, using an iteration based on the specialization and branch-
ing of Suslin trees. As an application we obtain the consistency of p = b = ℵ2 < a =

s = 2ℵ0 = ℵ3 with a lightface ∆1
3 wellorder.

A consequence of our work is the consistency of Martin’s Axiom with a lightface ∆1
3

wellorder and 2ℵ0 = ℵ3. This improves a result of [9], where 2ℵ0 = ℵ2 was obtained,
and also answers a question of Harrington from [11], where he obtained the same result
with a boldface ∆1

3 wellorder.
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2. Martin’s Axiom, Projective Wellorders and Large Continuum

We work over the constructible universe L. Fix a canonical sequence ~S = 〈S α :
1 < α < ω3〉 of stationary subsets of ω2 ∩ cof(ω1) and a nicely definable almost disjoint
family ~B = 〈Bξ : ξ ∈ ω2〉 of subsets of ω1. More precisely ~S is Σ1-definable over
Lω3 with parameter ω2 (the S α’s are obtained from a ♦-sequence as in [7]) and ~B is
Σ1-definable over Lω2 with parameter ω1. For each α < ω3, let Wα be the L-least subset
of ω2 which codes α. Say that a transitive ZF− model M is suitable if ωM2 exists and

ωM2 = ωL
2
M. From this it follows, of course, that ωM1 = ωL

1
M.

We will define a finite support iteration 〈Pα, Q̇β : α ≤ ω3, β < ω3〉 such that in
LPω3 , MA holds, 2ω = ω3, and there is a ∆1

3-definable wellorder of the reals. The
construction can be thought of as a preliminary stage followed by a coding stage. In the
preliminary stage we provide the necessary apparatus, in order to force a ∆1

3 definition
of our wellorder of the reals.

Preliminary Stage: For each 0 < α < ω3 and n ∈ ω, let K0
ω·α+n be the poset for

adding a Suslin tree Tω·α+n with countable conditions, see [12, Theorem 15.23]. Let
K0,α =

∏
n∈ωK0

ω·α+n with full support. Then K0,α is countably closed and has size 2ω.
In particular, it does not collapse cardinals provided that CH holds in the ground model.

In what follows we shall identify the Tα’s with subsets of ω1 using the L-least bijec-
tion between ω<ω1 and ω1. And vice versa, the phrase “A ⊂ ω1 is an ω1-tree” means
throughout the paper that the preimage of A under the L-least bijection between ω<ω1 of
L and ω1 is an ω1-tree. (We can consider such a preimage only in models of ω1 = ωL

1 ,
which is the case in suitable models.)

In LK0,α , code Tω·α+n via a stationary kill of Sω1·(ω·α+n)+γ for γ ∈ Tω·α+n. More precisely,
for every 1 ≤ α < ω3 let K1,α,n =

∏
γ∈ω1 K

1
α,n,γ with full support where for γ ∈ Tω·α+n,

K1
α,n,γ adds a closed unbounded subset Cω1·(ω·α+n)+γ of ω2 disjoint from Sω1·(ω·α+n)+γ and

for γ < Tω·α+n, K1
α,n,γ is the trivial poset. Then K1,α =

∏
n∈ωK1,α,n with full support is

countably closed, ω2-distributive, and ω3-c.c. provided that GCH holds in the ground
model 2.

Next, we shall introduce some auxiliary notation. For a set X of ordinals we denote
by 0(X), I(X), and II(X) the sets {η : 3η ∈ X}, {η : 3η + 1 ∈ X} and {η : 3η + 2 ∈ X},
respectively. Let Even(X) be the set of even ordinals in X and Odd(X) be the set of odd
ordinals in X.

2A more general fact will be proven later after we define the final poset
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In the following we treat 0 as a limit ordinal. Let Dω·α+n be a subset of ω2 coding
Wω·α+n,Wω·α, and the sequence 〈Cω1·(ω·α+n)+γ : γ ∈ Tω·α+n〉. More precisely, 0(Dω·α+n) =

Wω·α+n, I(Dω·α+n) = Wω·α, and II(Dω·α+n) equals

χ({〈γ, η〉 : γ ∈ Tω·α+n, η ∈ Cω1·(ω·α+n)+γ}),

where χ : ω1 ×ω2 → ω2 is some nicely definable bijection. Let Eω·α+n be the club in ω2

of intersections with ω2 of elementary submodels of L(ω·α+n)+ω2[Dω·α+n] which contain
ω1∪{Dω·α+n} as a subset. (These elementary submodels form an ω2-chain.) Now choose
Zω·α+n to be a subset of ω2 such that Even(Zω·α+n) = Dω·α+n, and if β < ω2 is ωM2 for
some suitable model M such that Zω·α+n ∩ β ∈ M, then β belongs to Eω·α+n ∩ Eω·α.
(This is easily done by placing in Zω·α+n a code for a bijection φ : β1 → ω1 on the
interval (β0, β0 +ω1) for each adjacent pair β0 < β1 from Eω·α+n∩Eω·α.) Using the same
argument as in [7] we have:

(∗)α,n: If β < ω2 andM is any suitable model such that ω1 ⊂ M, ωM2 = β, and Zω·α+n ∩

β,Zω·α ∩ β,Tω·α+n ∈ M, thenM � ψ(ω1, ω2,Zω·α+n ∩ β,Tω·α+n,Zω·α ∩ β), where
ψ(ω1, ω2,Z,T,Z′) is the formula

“0(Even(Z)) and I(Even(Z)) = I(Even(Z′)) are the L-least codes for ordinals ω ·
α̃ + n and ω · α̃ for some α̃ ∈ ωM3 and n ∈ ω, respectively, and χ−1[II(Even(Z))] =

{〈γ, η〉 : γ ∈ T, η ∈ C̄γ}, where T is an ω1-tree and C̄γ is a closed unbounded
subset of ω2 disjoint from Sω1·(ω·α̃+n)+γ for all γ ∈ T”.

In LK0,α∗K1,α let K2
α,n add a subset Xω·α+n of ω1 which almost disjointly codes Zω·α+n.

More precisely, let K2
α,n be the poset of all pairs 〈s, s∗〉 ∈ [ω1]<ω1 × [Zω·α+n]<ω1 , where

a pair 〈t, t∗〉 extends 〈s, s∗〉 if and only if t end-extends s and t\s ∩ Bξ = ∅ for every
ξ ∈ s∗. Let K2,α =

∏
n∈ωK2

α,n with full support. Then K2,α is countably closed and
ω2-c.c. provided that CH holds in the ground model.

As a result of this manipulation we get the following:

(∗∗)α,n: If β < ω2 and M is any suitable model such that ω1 ⊂ M, ωM2 = β, and
Xω·α+n, Xω·α,Tω·α+n ∈ M, thenM � φ(ω1, ω2, Xω·α+n,Tω·α+n, Xω·α), where φ(ω1, ω2, X,T, X′)
is the following formula:

“Using the sequence ~B, the sets X, X′ almost disjointly code subsets Z,Z′ of ω2

such that ψ(ω1, ω2,Z,T,Z′) holds”.

Fix φ as above and consider the following poset:
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Definition 2.1. Let X, X′,T ⊆ ω1, be such that φ(ω1, ω2, X,T, X′) holds in any suitable
modelM containing X, X′,T as elements and such thatωL

1 = ωM1 . Denote byL(X,T, X′)
the poset of all functions r : |r| → 2, where the domain |r| of r is a countable limit ordinal
such that:

1. if γ < |r| then γ ∈ X iff r(3γ) = 1,
2. if γ < |r| then γ ∈ X′ iff r(3γ + 1) = 1,
3. if γ ≤ |r|, M is a suitable model containing r � γ as an element, then M �

φ(ω1, ω2, X ∩ γ,T ∩ γ, X′ ∩ γ).

The extension relation is end-extension.

Set K3
α,m = L(Xω·α+m,Tω·α+m, Xω·α) for every α ∈ ω3\{0}, m ∈ ω, and set K3

0,m
to be the trivial poset for every m ∈ ω. Let K3,α =

∏
m∈ωK3

α,m with full support.
If α ∈ ω3\{0}, m ∈ ω, then K3

α,m adds a function Yω·α+m : ω1 → 2 such that for
every suitable modelM such that Yω·α+m � η and Tω·α+m ∩ η are inM, we haveM �
φ(ω1, ω2, Xω·α+m ∩ η,Tω·α+m ∩ η, Xω·α ∩ η).

Let Kα = K0,α ∗K1,α ∗K2,α ∗K3,α. We shall consider only p = 〈pi〉i≤3 ∈ Kα with the
property that Kα � i forces (i.e., the maximal condition in Kα � i forces) pi ∈ K̇i,α, where
Kα � i is of course the iteration of K j,α’s for j < i. This entails no loss of generality
since for every p ∈ Kα we can find an equivalent condition p′ with the property above.
In its turn, each pi is a sequence 〈pi,m : m ∈ ω〉, where pi,m is forced by Kα � i to be an
element of K̇i

α,m. And finally, p1,m can be written as a sequence 〈p1,m,ζ : ζ ∈ ω1〉, where
p1,m,ζ is forced by K0,α to be an element of K̇1

α,m,ζ . Whenever we consider more than
one α ∈ ω3, we will write pi,α, pi,α,m and p1,α,m,ζ instead of pi, pi,m and p1,m,ζ .

For every i ≤ 3 the poset Kα � i is countably closed, and hence the set Dα of such
p ∈ Kα that pi is (the canonical Kα � i-name for) an element of Lω1 for all i ∈ {0, 2, 3} is
dense in Kα.

Let I ⊆ ω3 and p ∈
∏

α∈I Kα. Denote by suppω(p) and suppω1
(p) the sets {〈i, α〉 :

i ∈ {0, 2, 3}, α ∈ I, pi,α is not the maximal condition in Ki,α} and {〈1, α,m, ζ〉 : α ∈ I,m ∈
ω, ζ ∈ ω1, p1,α,m,ζ is not the maximal condition in K1

α,m,ζ}, respectively. We say that
p ∈
∏

α∈I Kα is a condition with mixed support if |suppω(p)| = ω and |suppω1
(p)| = ω1.

Let P0 be the suborder of
∏

α<ω3 Kα consisting of all conditions with mixed support and
D = P0 ∩

∏
α<ω3 Dα. It follows from the above that D is a dense subset of P0.

The following proposition resembles [7, Lemma 1].

Proposition 2.2. P0 is ω-distributive.

Proof. Given a condition p0 ∈ P0 and a collection {On}n∈ω of open dense subsets of P0,
choose the least countable elementary submodel N of some large Lθ (θ regular) such
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that {p0} ∪ {P0} ∪ {On}n∈ω ⊂ N . Build a subfilter g of P0 ∩ N , below p0, which hits all
dense subsets of P0 which belong to N . Let gα be a Kα-generic filter over N such that
g ⊂
∏

α∈ω3 gα. Write gα in the form g0,α ∗ g1,α ∗ g2,α ∗ g3,α, where gi,α is a Ki,α-generic
over N[∗ j<ig j,α].

Now for every α ∈ N ∩ ω3 the filter g0,α ∗ g1,α ∗ g2,α has a greatest lower bound
p0,α ∗ p1,α ∗ p2,α because the forcing K0,α ∗ K1,α ∗ K2,α is ω-closed. The condition
〈p0,α, p1,α, p2,α〉 is obviously (N ,K0,α ∗K1,α ∗K2,α)-generic.

On each component α ∈ N ∩ ω3 and m ∈ ω define p3,α,m =
⋃

g3,α,m.3 It suffices
to verify that p3,α,m is a condition in K3

α,m, for this will give us a condition in P0 which
meets each of the On’s.

Let G := G0,α,0 ∗ G0,α,m ∗ G1,α,0 ∗ G1,α,m ∗ G2,α,0 ∗ G2,α,m be a K0
α,0 ∗ K

0
α,m ∗ K1

α,0 ∗

K1
α,m ∗K2

α,0 ∗K
2
α,m-generic filter over L containing

〈p0,α,0, p0,α,m, p1,α,0, p1,α,m, p2,α,0, p2,α,m〉.

Since the latter is a (N ,K0
α,0 ∗ K

0
α,m ∗ K1

α,0 ∗ K
1
α,m ∗ K2

α,0 ∗ K
2
α,m)- generic condition,

the isomorphism π of the transitive collapse N̄ of N onto N extends to an elementary
embedding from

N̄0 := N̄[ḡ0,ᾱ,0 ∗ ḡ0,ᾱ,m ∗ ḡ1,ᾱ,0 ∗ ḡ1,ᾱ,m ∗ ḡ2,ᾱ,0 ∗ ḡ2,ᾱ,m]

into Lθ[G]. Here ḡi,ᾱ, j = π−1[gi,α, j], where i ∈ 2 and j ∈ {0,m}, and ξ̄ = π−1(ξ)
for all ξ ∈ N ∩ Ord. By the genericity of G we know that, letting Xω·α =

⋃
G2,α,0

and Xω·α+m =
⋃

G2,α,m, the property (∗∗)α,m holds. By elementarity, N̄0 is a suitable
model and N̄0 � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ), where xω·ᾱ = π−1[

⋃
g2,α,0] =

⋃
ḡ2,ᾱ,0,

xω·ᾱ+m = π−1[
⋃

g2,α,m] =
⋃

ḡ2,ᾱ,m, and tω·ᾱ+m = π−1[
⋃

g0,α,m] =
⋃

ḡ0,ᾱ,m. By the
construction of P0 and elementarity, N̄0 = N̄[xω·ᾱ, xω·ᾱ+m] and hence

N̄[xω·ᾱ, xω·ᾱ+m] � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ).

Let ξ be such that N̄ = Lξ and letM be any suitable model containing p3,α,m, and
such that ωM1 = ω1 ∩ N(= domp3,α,m). We have to show that

M � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ).

Set η =M∩ Ord and consider the suitable modelM2 ⊆ M,M2 = Lη[xω·ᾱ, xω·ᾱ+m].
Three cases are possible.

3Formally this is
⋃
{r3,α,m : r3,α ∈ g3,α and 〈ri,α〉i≤3 ∈ Dα}.

5



Case a). η > ξ. Since N was chosen to be the least countable elementary submodel
of Lθ containing the initial condition, the poset and the sequence of dense sets, it follows
that ξ (and therefore also ωN̄1 ) is collapsed to ω in Lξ+2, and hence this case cannot
happen.

Case b). η = ξ. In this caseM2 � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ). (Indeed, M2 =

Lη[xω·ᾱ, xω·ᾱ+m] = N̄[xω·ᾱ, xω·ᾱ+m] = N̄0.) Since φ is a Σ1-formula, ωM2
1 = ωM1 and

ωM2
2 = ωM2 , we haveM � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ).

Case c). η < ξ. In this case M2 is an element of N̄[xω·ᾱ, xω·ᾱ+m]. Since Lθ[G]
satisfies (∗∗)α,m, by elementarity so does the model N̄[xω·ᾱ, xω·ᾱ+m] with Xω·α, Xω·α+m,
Tω·α, Tω·α+m replaced by xω·ᾱ, xω·ᾱ+m, tω·ᾱ, tω·ᾱ+m, respectively. In particular, M2 �
φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ). Since φ is a Σ1-formula, ωM2

1 = ωM1 , ωM2
2 = ωM2 , we

haveM � φ(ω1, ω2, xω·ᾱ+m, tω·ᾱ+m, xω·ᾱ), which finishes our proof.

We say that q ≤∗ p if q ≤ p, suppω(p) = suppω(q), and pl,α = ql,α for all 〈l, α〉 ∈
suppω(p).

The proof of the following statement resembles that of [14, Proposition 3.7] and its
idea seems to be often used in the context of mixed support iterations.

Proposition 2.3. If γ < Tω·α0+n for some α0 < ω3 and n ∈ ω, then Sω1·(ω·α0+n)+γ is
stationary in LP0 . In particular, P0 does not collapse ω2.

Proof. Let p ∈ D be such that p  γ < Tω·α0+n for some α0 < ω3 and n ∈ ω, and
Ċ be a P0-name for a club. We shall construct a condition q ≤ p which forces Ċ ∩
Sω1·(ω·α0+n)+γ , ∅.

Let us construct an increasing chain 〈Mi : i < ω2〉 of elementary submodels of Lθ,
where θ is big enough, such that

(i) Mi ⊃ [Mi]ω for all i ∈ ω2;

(ii) Mi =
⋃

j<i M j for all i ∈ ω2 of cofinality ω1; and

(iii) ω1 ∪ {p,P0, Ċ, α, . . .} ⊂ M0.

Now a standard Fodor argument yields i ∈ ω2 such that i = Mi ∩ ω2 ∈ Sω1·(ω·α0+n)+γ

and i < S β for any β ∈ Mi \ {ω1 · (ω · α0 + n) + γ}. Let also 〈Oξ : ξ < ω1〉 ∈ Mω1
i

be the sequence in which all ≤∗-dense subsets of P0 which are elements of Mi appear
cofinally often. Construct by induction on ξ a ≤∗-decreasing sequence 〈qξ : ξ < ω1〉 ∈

(D ∩ Mi)ω1 such that q0 = p and qξ ∈ Oξ for all ξ < ω1. Let q ∈
∏

α<ω3 Kα be such
that supp(q) =

⋃
ξ<ω1 supp(qξ), ql,α = pl,α for all 〈l, α〉 ∈ suppω(p), and q0,α  q1,α,m,ζ =⋃

ξ<ω1 qξ1,α,m,ζ ∪ {i} for all 〈1, α,m, ζ〉 ∈ suppω1
(q).
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Claim 2.4. q ∈ P0.

Proof. Since ω1 ⊂ Mi and qξ ∈ Mi for all ξ < ω1, we conclude that supp(qξ) ⊂ Mi and
qξν ∈ Mi for all ν ∈ supp(qξ). Let us fix any 〈1, α,m, ζ〉 ∈ suppω1

(q) and find ξ0 such
that 〈1, α,m, ζ〉 ∈ suppω1

(qξ0). For every j < i the set O of those conditions r ∈ P0 such
that r0,α K0,α max r1,α,m,ζ > j is ≤∗-dense and belongs to Mi, consequently O = Oξ

for some ξ > ξ0, which implies that q0,α = qξ0,α K0,α max qξ1,α,m,ζ > j. Therefore

q0,α K0,α i > max qξ1,α,m,ζ > j, consequently q0,α K0,α i = sup
⋃
ξ<ω1 qξ1,α,m,ζ . It follows

from the above that ω1 · (ω ·α+ m) + ζ ∈ Mi and ω1 · (ω ·α+ m) + ζ , ω1 · (ω ·α0 + n) +γ,
and the choice of i was made to ensure i < S β for all β ∈ S i \ {ω1 · (ω ·α0 + n) + γ}. Thus
q0,α forces that q1,α,m,ζ =

⋃
ξ<ω1 qξ1,α,m,ζ ∪ {i} is a closed bounded subset of ω2 disjoint

from Sω1·(ω·α+m)+ζ which completes our proof.

Claim 2.5. For every open dense subset E ∈ Mi of P0 and r ≤ q there exists r1 ∈ E ∩Mi

such that r and r1 are compatible. In other words, q is an 〈Mi,P0〉-generic condition.

Proof. Fix E, r as above and set K = suppω(r) ∩ Mi. Without loss of generality, r ∈ D.
Then K ∈ Mi and rk,α ∈ Mi for all 〈k, α〉 ∈ K because Mi ⊃ [Mi]ω. Let O be the
set of u ∈ P0 such that either u is ≤∗-incompatible with p, or u ≤∗ p and there exists
D ∩ E 3 z ≤ u with the following properties:

(1) K ⊂ supp(z), and for all 〈k, α〉 ∈ K we have rk,α ≤ zk,α;
(2) z0,α  z1,α,m,ζ = u1,α,m,ζ for all 〈k, α〉 ∈ K and ζ ∈ ω1.
It is easy to see that O ∈ Mi. We claim that O is a ≤∗-dense subset of P0. So let us

fix s ∈ P0. If s is ≤∗ incompatible with p, then s ∈ O. Otherwise there exists t ≤∗ s, p.
Let w ∈ P0 be such that suppω(w) = K, w � K = r � K, suppω1

(w) = suppω1
(t), and

w � suppω1
(w) = t � suppω1

(t). Since t ≤∗ p and r ≤ q ≤ p, w is a condition in D and
w ≤ t. Extend w to a condition z ∈ E ∩ D and let u be such that suppω(u) = suppω(p),
u � suppω(p) = p � suppω(p), suppω1

(u) = suppω1
(z), and u � suppω1

(z) = z � suppω1
(z).

Since z ∈ D we conclude that u ∈ P0 and hence u ≤∗ p. By the definition we also have
that z ≤ u, and z ≤ w together with the definition of w imply that z satisfies (1). Thus z
witnesses that u ∈ O. Moreover, z ≤ w ≤ t implies u ≤∗ t, and therefore u ≤∗ s. This
completes the proof that O is ≤∗-dense.

Let ξ < ω1 be such that O = Oξ. Then r ≤ q ≤∗ qξ ≤∗ p and there exists z
witnessing that qξ ∈ O, i.e., D ∩ E 3 z ≤ qξ and z satisfies (1), (2) with qξ instead of u.
Moreover, since all relevant objects are elements of Mi, we can additionally assume that
z ∈ Mi. Therefore supp(z) ⊂ Mi, which together with (1), (2) implies that suppω(z) ∩
suppω(r) = K and suppω1

(z) = suppω1
(qξ) ⊂ suppω1

(r). Define y as follows: suppω(y) =

suppω(r) ∪ suppω(z), suppω1
(y) = suppω1

(r), yk,α = zk,α for 〈k, α〉 ∈ suppω(z), yk,α = rk,α
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for 〈k, α〉 ∈ suppω(r) \ suppω(z) = suppω(r) \ Mi, and y � suppω1
(y) = r � suppω1

(r).
A direct verification shows that y ∈ P0 and y ≤ r, z, which completes the proof of the
claim.

Finally, we shall show that q forces Ċ ∩ Sω1·(ω·α0+n)+γ , ∅. For this it suffices to
prove that q  i ∈ Ċ. Suppose to the contrary that r  Ċ ∩ ( j, i) = ∅ for some r ≤ p and
j < i. Let E be the set of those conditions z ∈ P0 such that there exists β > j with the
property z  β ∈ Ċ. E is an open dense subset of P0 and E ∈ Mi. Therefore there exists
z ∈ E ∩ Mi and y ∈ P0 such that y ≤ z, r. Since z, j, Ċ,P0 ∈ Mi and there exists β > j
such that z  β ∈ Ċ, there exists such a β ∈ Mi, which means that β ∈ ( j, i). Therefore
y  β ∈ Ċ for some β ∈ ( j, i), which together with y ≤ r and our choice of r leads to a
contradiction.

A simple ∆-system argument gives the following

Proposition 2.6. P0 has the ω3-chain condition.

Combining Propositions 2.2, 2.3, and 2.6 we conclude that P0 preserves cardinals.

Coding stage. We define a finite support iteration 〈Pα, Q̇β : α ≤ ω3, β < ω3〉 of c.c.c.
posets such that in LPω3 , Martin’s axiom holds and there is a ∆1

3 definable wellorder of
the reals. Let P0 be the poset defined above and let F : ω3\{0} → Lω3 be a bookkeeping
function such that for all a ∈ Lω3 , the preimage F−1(a) is cofinal in both Succ(ω3) and
Lim(ω3). At limit stages of our iteration we will introduce the wellorder of the reals
and at successor stages of the iteration we will take care of all instances of Martin’s
axiom. Fix a nicely definable sequence of almost disjoint subsets of ω, ~C = 〈C(ξ,η) :
ξ ∈ ω1, η ∈ ω · 3〉. We will assume that all names for reals are nice. Recall that an
H-name ḟ for a real is called nice if ḟ =

⋃
i∈ω{〈〈i, jip〉, p〉 : p ∈ Ai( ḟ )} where for all

i ∈ ω, Ai( ḟ ) is a maximal antichain in H, jip ∈ ω and for all p ∈ Ai( ḟ ), p  ḟ (i) = jip.
If α < β < ω3, we can assume that all Pα-names precede in the canonical wellorder <L

of L all Pβ-names for reals which are not Pα-names. For x a real in L[Gα], where Gα

is Pα-generic, let γx be the least γ such that x has a Pγ-name and let σαx be the <L-least
Pγx-name for x. For x, y reals in L[Gα] define x <α y if and only if (γx < γy) or (γx = γy

and σαx <L σαy ). Then clearly <α is an initial segment of <β, for α < β. Now if G is
a Pω3-generic filter, then <G=

⋃
α<ω3{<̇

G
α : α < ω3} where <̇α is a Pα-name for <α, is

the desired wellorder of the reals. For any pair of reals x, y in L[G] such that x <α y, let
x∗y = {2n : n ∈ x}∪{2n+1 : n ∈ y} and let ∆(x∗y) = {2n : n ∈ x∗y}∪{2n+1 : n < x∗y}.

We proceed with the inductive definition of Pω3 . Suppose Pα has been defined.
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If α = ω · β+ n is a successor: Suppose that F(α) = σ. If σ is a Pα-name for a c.c.c.
poset which involves only conditions p ∈ Pα such that p(0)(η) is the trivial condition in
Kη for all η ≥ α, let Q̇α = σ. Otherwise, let Q̇α be a Pα-name for the trivial poset.

If α is a limit: If α = 0 let Q̇α be a Pα-name for the trivial poset. If α ∈ Lim(ω3)\{0},
α = ω · β, then let Qα be the two stage iteration Q0

α ∗ Q̇1
α defined as follows. First note

that:

Claim 2.7. {Tω·α+n : n ∈ ω} is a sequence of Suslin trees in LPα .

Proof. Let P0,<α and P0,≥α be the suborders of
∏

γ<αKγ and
∏

γ≥αKγ respectively, of
all conditions with mixed supports. Let P̄α be the factor poset Pα/P0.

By definition of the finite support iteration, not only P̄α ∈ LP0 , but in fact P̄α ∈ LP0,<α .
Then identifying P̄α with its P0-name we have

Pα = P0 ∗ P̄α = (P0,<α × P0,≥α) ∗ P̄α = (P0,<α ∗ P̄α) × P0,≥α.

Thus in particular, for every n ∈ ω, Tω·α+n is generic over LP0,<α∗P̄α and so Tω·α+n remains
a Suslin tree in LPα .

Recall that if T is an ℵ1-tree, then the poset consisting of all finite partial functions p
from T to ω such that if p(s) = p(t) then s and t are comparable with extension relation
superset, adds a specializing function for T . We will be referring to this poset as a forcing
notion for specializing T . By a result of Baumgartner, if T has no ω1-branch then this
poset has the countable chain condition (see [2, Theorem 8.2]).

If F(α) is not a pair {σαx , σ
α
y } of names for some reals x, y in LPα which involve only

conditions p ∈ Pα such that p(0)(η) is the trivial condition in Kη for all η ≥ α, let Qα be
a Pα-name for the finite support iteration 〈P0,α

n , Q̇0,α
n : n ∈ ω〉, where Q̇0,α

n is a P0,α
n -name

for specializing Tω·α+n for all n ∈ ω. Otherwise, let x = (σαx )Gα , y = (σαy )Gα . In LPα

define Q0
α to be the finite support iteration 〈P0,α

n , Q̇0,α
n : n ∈ ω〉 where if n ∈ ∆(x ∗ y)

then Q̇0,α
n is a P0,α

n -name for specializing Tω·α+n; otherwise let Q̇0,α
n be a P0,α

n -name for
Tω·α+n. For every n ∈ ω let Aω·α+n be the generic subset of ω1 added by Q0,α

n .
Then let Q1

α almost disjoint code the sequences 〈Aω·α+n : n ∈ ω〉, 〈Yω·α+n : n ∈ ω〉
and 〈Tω·α+n : n ∈ ω〉. More precisely, in LPα∗Q̇0

α let Q1
α be the poset of all pairs 〈s, s∗〉

where s ∈ [ω]<ω and s∗ ∈ [〈µ, n〉 : n ∈ ω, µ ∈ Yω·α+n]<ω ∪ [〈µ, η〉 : η ∈ [ω,ω ·
2), µ ∈ Aω·α+n]<ω ∪ [〈µ, η〉 : η ∈ [ω · 2, ω · 3), µ ∈ Tω·α+n]<ω. The extension relation is
〈t, t∗〉 ≤ 〈s, s∗〉 if and only if t end extends s and (t\s) ∩ Cµ,η = ∅ for all (µ, η) ∈ s∗. Let
Rα be the generic real added by Q1

α and let Qα = Q0
α ∗ Q̇1

α.
With this the inductive construction of Pω3 is complete. Clearly in LPω3 , MA holds

and c = ω3. We will see that the wellorder <G, where G is Pω3-generic, has a ∆1
3-

definition.
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Lemma 2.8. x < y if and only if there is a real R such that for every countable suitable
modelM such that R ∈ M, there is a limit ordinal α̃ ∈ [ω · 2, ωM3 ) such that for every
n ∈ ω the set {γ ∈ ω1 : Sω1·(α̃+n)+γ is not stationary} is an ω1-tree, which is specialized
for n ∈ ∆(x ∗ y) and has a branch for n < ∆(x ∗ y).

Proof. Let G be Pω3-generic and let x, y be reals in L[G]. Suppose x < y. Then there
is 0 < α < ω3, a limit ordinal, α = ω · β, such that F(α) = {σαx , σ

α
y } and σαx , σαy

involve only conditions p ∈ Pα such that p(0)(η) is the trivial condition in Kη for all
η ≥ α. Let Rα be the real added by Q1

α and let M be a suitable model containing Rα.
Then the sequences 〈Yω·α+n ∩ η : n ∈ ω〉, 〈Tω·α+n ∩ η : n ∈ ω〉, 〈Aω·α+n ∩ η : n ∈ ω〉
also belong to M. Fix n. Since Xω·α+n ∩ η, Xω·α ∩ η are in M, we have that M �
φ(ω1, ω2, Xω·α+n ∩ η,Tω·α+n ∩ η, Xω·α ∩ η). This means that M models the following
statement:
Using the sequence ~B, the sets Xω·α+n ∩ η, Xω·α ∩ η almost disjointly code subsets Zn,Z
of ω2, respectively, such that 0(Even(Zn)) and I(Even(Zn)) = I(Even(Z)) are the L-least
codes for ordinals α̃n +n and α̃n for some limit α̃n < ω3, and χ−1[II(Even(Z))] = {〈γ, ζ〉 :
γ ∈ Tω·α+n ∩ η, ζ ∈ C̄γ}, where Tω·α+n ∩ η is an ω1-tree and C̄γ is a closed unbounded
subset of ω2 disjoint from Sω1·(α̃n+n)+γ for all γ ∈ Tω·α+n ∩ γ.

Since Z does not depend on n, we conclude that all α̃n’s coincide and we shall denote
them simply by α̃. Let us also note that Aω·α+n ∩ η ∈ M is a specializing function for
(resp. a branch through) Tω·α+n ∩ η provided so is Aω·α+n with respect to Tω·α+n.

Thus inM there is a limit ordinal α̃ ∈ [ω · 2, ω3) such that for every n ∈ ω the set
Tω·α+n ∩ η = {γ ∈ ω1 : Sω1·(α̃+n)+γ is not stationary} is a ω1-tree, which is specialized for
n ∈ ∆(x ∗ y) and has a branch for n < ∆(x ∗ y).

To see the other implication, suppose x, y are reals in L[G] and there is a real R
such as in the formulation. By Löwenheim-Skolem theorem, the same property holds
for M = Lω4 . This means that in Lω4 (and hence also in L) there is a limit ordinal
α̃ ∈ [ω · 2, ω3) such that for every n ∈ ω the set In = {γ ∈ ω1 : Sω1·(α̃+n)+γ is not
stationary} is an ω1-tree, which is specialized for n ∈ ∆(x ∗ y) and has a branch for
n < ∆(x ∗ y). By the definition of P0 and Proposition 2.3 we have that In = Tα̃+n and
α̃ = ω · β̃ for some limit ordinal β̃. Thus for some n ∈ ω there exists a branch through
Tω·β̃+n, which means that F(β̃) is a pair {σβ̃a, σ

β̃
b} for some reals a < b in LPβ̃ , Q̇0,β̃

n is a

P0,β̃
n -name for specializing Tω·β̃+n for all n ∈ ∆(a ∗ b), and Q̇0,β̃

n is a P0,β̃
n -name for Tω·β̃+n

otherwise. It follows from the above that ∆(x ∗ y) = ∆(a ∗ b), consequently x = a and
y = b, and hence x < y.

Thus we have obtained the following.
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Theorem 2.9. The existence of a ∆1
3-definable wellorder of the reals is consistent with

Martin’s axiom and c = ω3.

3. Cardinal characteristics, projective wellorders and large continuum

We will conclude by pointing out that the model constructed above can be easily
modified to obtain the consistency of c = ω3, the existence of a ∆1

3-definable wellorder
of the reals and certain inequalities between some of the cardinal characteristics of the
real line. An excellent exposition of the subject of cardinal characteristics of the real line
can be found in [4].

Let κ be a regular uncountable cardinal. In [5, Theorem 3.1], Brendle shows that if
V is a model of c = κ, 2κ = κ+, H = 〈 fα : α < κ〉 is an unbounded, <∗-wellordered se-
quence of strictly increasing functions in ωω andA is a maximal almost disjoint family,
then in V there is a ccc poset P(A,H) of size κ which preserves the unboundedness of
H and destroys the maximality of A. A similar result concerning the bounding and the
splitting numbers, was obtained by Fischer and Steprāns. In [8, Lemma 6.2] they show
that if V is a model of ∀λ < κ(2λ ≤ κ),H is an unbounded <∗-directed family in ωω and
cov(M) = κ, then there is a ccc poset P(H) of size κ which preserves the unboundedness
ofH and adds a real not split by V ∩ [ω]ω. Thus if V is a model of ∀λ < κ(2λ ≤ κ),H is
an unbounded <∗-directed family in ωω, then there is a ccc poset P(H) which preserves
the unboundedness ofH and adds a real not split by V∩ [ω]ω (just take Cκ ∗P(H) where
Cκ is the poset for adding κ many Cohen reals).

Also, recall that ifH is an unbounded directed family of reals such that each count-
able subfamily is dominated by an element of the family, then in order to preserve the
unboundedness ofH along a finite support iteration of ccc posets, it is sufficient to pre-
serve its unboundedness at each successor stage of the iteration (see [13]). Note also
that the unboundedness of unbounded directed families of reals is preserved by posets
of size smaller than the size of the family (see [1]).

Corollary 3.1. There is a generic extension of the constructible universe L in which
there is a ∆1

3-definable wellorder of the reals and

p = b = ℵ2 < a = s = c = ℵ3.

Proof. We will modify the coding stage of the construction from Section 2, which pro-
duces Theorem 2.9, by changing the successor stages of this construction. Instead of
going over all possible names for ccc posets, we will consider only specific ones associ-
ated to the chosen cardinal characteristics.
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In the following for j ∈ {0, 1, 2} let Succ j(ω3) be the set of all successor ordinals α
such that ω2 < α < ω3 and α ≡ j(mod3). Let F : ω3\{0} → Lω3 be a bookkeeping
function such that for all a ∈ Lω3 , the set F−1(a) is cofinal in each of the following:
Succ(ω3), Lim(ω3) and Succ j(ω3) for every j ∈ {0, 1, 2}. We will define a finite support
iteration 〈P̃α, ˙̃Qβ : α ≤ ω3, β < ω3〉 such that in LP̃ω3 there will be a ∆1

3-definable well
order of the reals and p = b = ℵ2 < a = s = c = ℵ3. At successor stages α < ω2, we will
add a <∗-scale H of length ω2, which will be our witness of b ≤ ℵ2 in the final generic
extension LP̃ω3 . For this we will use the Hechler poset D for adding a dominating real
(see [12]). Recall that D consists of all pairs 〈s, E〉 ∈ ω<ω × [ωω]<ω. A condition (t,H)
extends (s, E) if s ⊆ t, E ⊆ H and if i ∈ dom(t)\dom(s) then t(i) > f (i) for all f ∈ E. If
G is D-generic, then the function h =

⋃
{s : ∃E(s, E) ∈ G}, referred to as the generic real

added by D, dominates all ground model reals. At successor stages α > ω2, we will take
care of the values of the remaining cardinal characteristics in which we are interested.

Let P̃0 be the poset P0 defined in section 2.
Case 1. Let 0 < α < ω2. Suppose P̃α has been defined and

P̃α = (P̃0,<α ∗
¯̃Pα) × P̃0,≥α

where P̃0,<α = P0,<α, P̃0,≥α = P0,≥α (here P0,<α and P0,≥α are the posets from section 2)
and ¯̃Pα is the factor poset P̃α/P̃0. Since P0,≥α = P̃0,≥α is ω-distributive, we have

LP̃α ∩ [ω]ω = L(P̃0,<α∗
¯̃Pα)×P̃0,≥α ∩ [ω]ω = LP̃0,<α∗

¯̃Pα ∩ [ω]ω.

If α is a successor, in LP̃0,<α∗
¯̃Pα let Qα = D and let hα be the generic real added by Qα.

Let ˙̃Qα be a P̃0,<α ∗
¯̃Pα-name for Qα. Since P̃0,<α ∗

¯̃Pα is a complete suborder of P̃α we
can assume that ˙̃Qα is in fact a P̃α-name. Also note that hα dominates the reals of LP̃α .
If α is a limit, define ˙̃Qα as in the limit case of the definition of Pω3 from Section 2.

With this the definition of P̃ω2 is complete. In LP̃ω2 let H = 〈hα : α ∈ Succ(ω2)〉.
ThenH is a <∗-scale. Observe that by the definition of P̃ω2 ,

H ⊆ LP̃0,<ω2∗
¯̃Pω2 ∩ ωω.

Case 2. Let ω2 < α ≤ ω3. Suppose P̃α has been defined, P̃α = (P̃0,<α ∗
¯̃Pα) × P̃0,≥α

and H is unbounded in LP̃α . In particular, by the ω-distributivity of P̃0,≥α we have that
the reals of LP̃α coincide with the reals of LP̃0,<α∗

¯̃Pα .
Case 2.1. Suppose α ∈ Succ1(ω3). Note that LP̃0,<α∗

¯̃Pα � ∀λ < ℵ2(2λ ≤ ℵ2). By the
result of Fischer-Steprāns mentioned earlier, in LP̃0,<α∗

¯̃Pα there is a ccc poset Q̃α which
preserves the unboundedness ofH and adds a real not split by the reals of LP̃0,<α∗

¯̃Pα . Let
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˙̃Qα be a P̃0,<α ∗
¯̃Pα-name for Q̃α. Since P̃0,<α ∗

¯̃Pα is a complete suborder of P̃α, we can
assume that ˙̃Qα is a P̃α-name. We have that

P̃α ∗ ˙̃Qα = (P̃0,<α ∗
¯̃Pα ∗ ˙̃Qα) × P̃0,≥α.

Since H is unbounded in LP̃0,<α∗
¯̃Pα∗ ˙̃Qα and P̃0,≥α does not add any new reals, the family

H is unbounded in LP̃α∗ ˙̃Qα . Clearly, the real added by Q̃α which is not split by the reals
of LP̃0,<α∗

¯̃Pα , remains unsplit by LP̃α ∩ [ω]ω.
Case 2.2. Suppose α ∈ Succ2(ω3) and F(α) = σ is a P̃α-name for a maximal almost

disjoint familyA, which involves only conditions p ∈ P̃α such that p(0)(η) is the trivial
condition in Kη for all η ≥ α. Then by Brendle’s result mentioned earlier, in LP̃0,<α∗

¯̃Pα

there is a ccc poset Q̃α which preserves the unboundedness of H and adds a real which
has finite intersection with every element of A. Let ˙̃Qα be a P̃0,<α ∗

¯̃Pα-name for Q̃α.
Since P̃0,<α ∗

¯̃Pα is a complete suborder of P̃α, we can assume that ˙̃Qα is a P̃α-name.
Also

P̃α ∗ ˙̃Qα = (P̃0,<α ∗
¯̃Pα ∗ ˙̃Qα) × P̃0,≥α.

Thus H remains unbounded in LP̃α∗ ˙̃Qα , as P̃0,≥α is ω-distributive, and clearly A is not
maximal in LP̃α∗ ˙̃Qα .

If F(α) is not of the above form, let ˙̃Qα be the trivial poset.
Case 2.3. Suppose α ∈ Succ0(ω3) and F(α) = σ is a P̃α-name for a σ-centered

poset of size ≤ ℵ1 which involves only conditions p ∈ P̃α such that p(0)(η) is the trivial
condition in Kη for all η ≥ α, let ˙̃Qα = σ. If F(α) is not of the above form, let ˙̃Qα be a
P̃α-name for the trivial poset.

Case 2.4. Suppose α is a limit. Then define ˙̃Qα just as Q̇α in the limit case of the
definition of Pω3 from section 2.

With this the definition of P̃ω3 is complete. Clearly in LP̃ω3 there is a ∆1
3-definable

well order of the reals and c = ℵ3. Since along the iteration we have forced with all
σ-centered posets of size ≤ ℵ1, we have LP̃ω3 � MA<ω2(σ-centered). However by
Bell’s theorem m(σ-centered) = p, where m(σ-centered) is the least cardinal κ for which
MAκ(σ-centered) fails (see [3] or [4, Theorem 7.12]). Therefore LP̃ω3 � p = ℵ2. Since
p ≤ b we have also that LP̃ω3 � ℵ2 ≤ b.

The posets used to produce the ∆1
3-definable wellorder of the reals are of size ℵ1 and

so each of them preserve the unboundedness of the family H . Thus at every successor
stage if the iteration 〈P̃α, ˙̃Qβ : α ≤ ω3, β < ω3〉 the familyH is preserved unbounded and
so by the preservation theorem mentioned earlier LP̃ω3 � (H is unbounded). Therefore
LP̃ω3 � ℵ2 ≤ b ≤ |H| = ℵ2.

On the other hand along the iteration cofinally often we have added reals not split
by the ground model reals, which implies that LP̃ω3 � s = ℵ3. It remains to observe
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that since F−1(a) is cofinal in Succ2(ω3) for all a ∈ Lω3 , every maximal almost disjoint
family of size ≤ ℵ2 has been destroyed along the iteration and so LP̃ω3 � a = ℵ3.

The authors expect that similar methods can be used to establish the results of the
paper for 2ℵ0 = ℵn where n ∈ ω. The following question remains of interest.

Question. Is there a generic extension of the constructible universe L in which 2ℵ0 = κ,
Martin’s axiom holds and there is a projective wellorder of the reals, where κ is the least
L-cardinal of uncountable L-cofinality such that Lκ satisfies φ for some sentence φ?
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