Skip to main content
Log in

Cichoń’s diagram, regularity properties and \({\varvec{\Delta}^1_3}\) sets of reals

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study regularity properties related to Cohen, random, Laver, Miller and Sacks forcing, for sets of real numbers on the \({\varvec{\Delta}^1_3}\) level of the projective hieararchy. For \({\varvec{\Delta}^1_2}\) and \({\varvec{\Sigma}^1_2}\) sets, the relationships between these properties follows the pattern of the well-known Cichoń diagram for cardinal characteristics of the continuum. It is known that assuming suitable large cardinals, the same relationships lift to higher projective levels, but the questions become more challenging without such assumptions. Consequently, all our results are proved on the basis of ZFC alone or ZFC with an inaccessible cardinal. We also prove partial results concerning \({\varvec{\Sigma}^1_3}\) and \({\varvec{\Delta}^1_4}\) sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bagaria, J., Friedman, S.D.: Generic absoluteness. In: Proceedings of the 11th Latin American Symposium on Mathematical Logic (Mérida, 1998), vol. 108, pp. 3–13 (2001)

  2. Bagaria J., Woodin W.H.: \({{\varvec{\Delta}}^1_n }\) sets of reals. J. Symb. Logic 62(4), 1379–1428 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line. A K Peters, USA (1995)

    MATH  Google Scholar 

  4. Brendle, J.: How small can the set of generics be? In: Logic Colloquium ’98 (Prague), vol. 13 of Lecturer Notes Log., pp. 109–126. Assoc. Symb. Logic, Urbana, IL (2000)

  5. Brendle, J.: Forcing and the structure of the real line: the Bogotá lectures. Lecture notes (2009)

  6. Brendle J., Halbeisen L., Löwe B.: Silver measurability and its relation to other regularity properties. Math. Proc. Camb. Philos. Soc. 138(1), 135–149 (2005)

    Article  MATH  Google Scholar 

  7. Brendle J., Khomskii Y.: Polarized partitions on the second level of the projective hierarchy. Ann. Pure Appl. Logic 163(9), 1345–1357 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  8. Brendle J., Löwe B.: Solovay-type characterizations for forcing-algebras. J. Symb. Logic 64(3), 1307–1323 (1999)

    Article  MATH  Google Scholar 

  9. Brendle J., Löwe B.: Eventually different functions and inaccessible cardinals. J. Math. Soc.Jpn. 63(1), 137–151 (2011)

    Article  MATH  Google Scholar 

  10. David, R.: \({\Delta^{1}_{3}}\) reals. Ann. Math. Logic 23(2–3), 121–125 (1983), 1982

  11. Di Prisco C.A., Henle J.M.: Doughnuts, floating ordinals, square brackets, and ultraflitters. J. Symb. Logic 65(1), 461–473 (2000)

    Article  MATH  Google Scholar 

  12. Dow A.: Two classes of Fréchet–Urysohn spaces. Proc. Am. Math. Soc. 108(1), 241–247 (1990)

    MATH  MathSciNet  Google Scholar 

  13. Feng, Q., Magidor, M., Woodin, H.: Universally Baire sets of reals. In: Set Theory of the Continuum (Berkeley, CA, 1989), vol. 26 of Math. Sci. Res. Inst. Publ., pp 203–242. Springer, New York (1992)

  14. Fischer V., Friedman S.D.: Cardinal characteristics and projective wellorders. Ann. Pure Appl. Logic 161(7), 916–922 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  15. Fischer V., Friedman S.D., Zdomskyy L.: Projective wellorders and mad families with large continuum. Ann. Pure Appl. Logic 162(11), 853–862 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  16. Friedman, S.D., Schrittesser, D.: Projective measure without projective Baire. Preprint, March (2013)

  17. Geschke, S., Quickert, S.: On Sacks forcing and the Sacks property. In: Classical and New Paradigms of Computation and Their Complexity Hierarchies, vol. 23 of Trends Log. Stud. Log. Libr., pp. 95–139. Kluwer, Dordrecht (2004)

  18. Goldstern M., Judah H.: Iteration of Souslin forcing, projective measurability and the Borel conjecture. Isr. J. Math. 78(2–3), 335–362 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  19. Goldstern, M.: Tools for your forcing construction. In: Set Theory of the Reals (Ramat Gan, 1991), vol. 6 of Israel Mathematical Conference Proceedings, pp. 305–360. Bar-Ilan Univerity, Ramat Gan (1993)

  20. Halbeisen L.: Making doughnuts of Cohen reals. Math. Logic Q. 49(2), 173–178 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ihoda J.I.: \({\Sigma_2^1}\) -sets of reals. J. Symb. Logic 53(2), 636–642 (1988)

    MATH  MathSciNet  Google Scholar 

  22. Ihoda J.I., Shelah S.: Souslin forcing. J. Symb. Logic 53(4), 1188–1207 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  23. Ihoda J.I., Shelah S.: \({\Delta^1_2}\) -sets of reals. Ann. Pure Appl. Logic 42(3), 207–223 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ikegami D.: Forcing absoluteness and regularity properties. Ann. Pure Appl. Logic 161(7), 879–894 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jensen, R.B., Solovay, R.M.: Some applications of almost disjoint sets. In: Mathematical Logic and Foundations of Set Theory (Proceedings of International Colloquium, Jerusalem, 1968), pp. 84–104. North-Holland, Amsterdam (1970)

  26. Judah H.: Exact equiconsistency results for \({\varvec{\Delta}^1_3}\) -sets of reals. Arch. Math. Logic 32(2), 101–112 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  27. Judah, H.: Absoluteness for projective sets. In: Logic Colloquium ’90 (Helsinki, 1990), vol. 2 of Lecture Notes Logic, pp. 145–154. Springer, Berlin (1993)

  28. Judah, H.: \({\Delta^1_3}\) -sets of reals. In: Set Theory of the Reals (Ramat Gan, 1991), vol. 6 of Israel Mathematical Conference Proceedings, pp. 361–384. Bar-Ilan University, Ramat Gan, (1993)

  29. Judah H., Shelah S.: \({\varvec{\Delta}^1_3}\) -sets of reals. J. Symb. Logic 58(1), 72–80 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Judah H., Spinas O.: On the structure of \({\varvec{\Delta}^1_4}\) -sets of reals. Arch. Math. Logic 34(5), 301–312 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Judah H., Spinas O.: Large cardinals and projective sets. Arch. Math. Logic 36(2), 137–155 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kanoveĭ V.G., Lyubetskiĭ V.A.: On some classical problems in descriptive set theory. Uspekhi Mat. Nauk 58(5(353)), 3–88 (2003)

    Article  Google Scholar 

  33. Kellner J.: Preserving non-null with Suslin+ forcings. Arch. Math. Logic 45(6), 649–664 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Kellner, J.: Non elementary proper forcing. Preprint (2013)

  35. Khomskii, Y.: Regularity properties and definability in the real number continuum. Ph.D. Thesis, University of Amsterdam (2012). ILLC Dissertations DS-2012-04

  36. Laguzzi, G.: Arboreal forcing notions and regularity properties of the real line. Ph.D. Thesis, University of Vienna (2012)

  37. Mathias, A.R.D.: A remark on rare filters. In: Infinite and Finite Sets (Colloquium, Keszthely, 1973; dedicated to P. Erdös on his 60th birthday), vol. 3, pp. 1095–1097. Colloquium Mathematical Society, János Bolyai, vol. 10. North-Holland, Amsterdam (1975)

  38. Mathias A.R.D.: Happy families. Ann. Math. Logic 12(1), 59–111 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  39. Raisonnier J.: A mathematical proof of S. Shelah’s theorem on the measure problem and related results. Isr. J. Math. 48(1), 48–56 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  40. Shelah S.: Can you take Solovay’s inaccessible away?. Isr. J. Math. 48(1), 1–47 (1984)

    Article  MATH  Google Scholar 

  41. Shelah S.: Properness without elementaricity. J. Appl. Anal. 10(2), 169–289 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  42. Solovay R.M.: A model of set-theory in which every set of reals is Lebesgue measurable. Ann. Math. (2) 92, 1–56 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  43. Spinas O.: Generic trees. J. Symb. Logic 60(3), 705–726 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  44. Szpilrajn E.: Sur une classe de fonctions de M. Sierpiski et la classe correspondante d’ensembles. Fund. Math. 24, 14–17 (1935)

    Google Scholar 

  45. Truss, J.: Sets having calibre \({\aleph _{1}}\). In: Logic Colloquium 76 (Oxford, 1976), pp. 595–612. Studies in Logic and Found. Math., vol. 87. North-Holland, Amsterdam (1977)

  46. Woodin, W.H.: On the consistency strength of projective uniformization. In: Proceedings of the Herbrand symposium (Marseilles, 1981), vol. 107 of Stud. Logic Found. Math., pp. 365–384, Amsterdam, North-Holland (1982)

  47. Zapletal J.: Forcing Idealized, volume 174 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurii Khomskii.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischer, V., Friedman, S.D. & Khomskii, Y. Cichoń’s diagram, regularity properties and \({\varvec{\Delta}^1_3}\) sets of reals. Arch. Math. Logic 53, 695–729 (2014). https://doi.org/10.1007/s00153-014-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-014-0385-8

Keywords

Mathematics Subject Classification (2010)

Navigation