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1. Introduction

Our overall programme of research is fmévide a logical framework allow-
ing us to describe both individual rational agents and complex organisdtiona
structure$. In this paper we describe one particular aspect of this work
extending the above statement with..“and to incorporate bounds on the
reasoning (about belief and time) the agent can carry datirther still, we
aim to ensure that the logical descriptions we produce for resounsedied
agents are, in turn, executable. This aim to have executable logical specifi
cations leads us to extend our statement of research one last time.with “
and to ensure that these logical descriptions are directly executableis,

in this paper we provide an overview of our previous and future workig th
area, summarising results from the papers [10, 11, 12, 13].

2. Background

We see that, in the early 21st century, software is increasingly abia-to
grate through large physical/virtual distancesawnnew computations on

a wide variety of platforms, andccessvast amounts of information, etc.
Sophisticated software applications are also expected to handle more and
more tasks bothutonomoushand ‘intelligently’. However, this autonomous

and ‘intelligent’ behaviour is also allowing software to evolweexpected
autonomous behaviour. This presents developers with several probiews

* The authors would like to thank the organisers of the “Logics for RessBaunded
Agents” workshop in 2007 for their invitation to present this work.
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2 Fisher & Ghidini

can weunderstandwvhat such software is doing” and “how can we describe
exactly what itshouldbe doing”? It was partially in an attempt to answer such
guestions that the concept of antonomous agentas introduced [22, 21].

2.1. AGENTS

An agent is an autonomous entity controlling not only its own state (as an
objectdoes), but also controlling its own actions and choices [22]. While
the general concept of an agent has been very influential in the modelling
and development of autonomous systems, a more specific categorisation is
increasingly useful. The concept ofational agentembodies an agent that

is not only autonomous, but is in some sense ‘intelligent’. Rational agents
typically have their own goals and information and carry out reasoning in or
der to decide what to do next. By contrast with simpler agents, rationatsagen
are expected to make decisions that are both ‘rational’ and explainable, em-
ploying flexible autonomous actio’s such, the concept of a rational agent
provides a key abstraction for describing and reasoning about sptiiss-

cated systems [23]. Rational agents must be able to adapt their autonomous
behaviour to cater for the dynamic nature of their dynamic environment,
requirements, and knowledge (with any resource constraints). Traal§ion
such agents involve pro-activeness, social ability, and deliberatign [20

2.2. FORMAL AGENT SPECIFICATIONS

The key problems concerning autonomous software, even when modelled in
terms of rational agents, remain as

1. programmingsoftware to do what we require, and
2. verifyingsoftware to ensure the required behaviour will occur.

Formal logic helps with both of these, providing an unambiguous notation,
in which the formal properties of logical descriptions are well understood
Importantly, logics can be designed to capture many agent varieties.-In par
ticular, choosing the appropriate logic provides a level of abstractioe ttos
the key concepts of the software.

Unsurprisingly, there are many (logic-based) rational agent theories.
The predominant approach is that of tBelief-Desire-Intention (BDI}he-
ory [18]. Here, beliefs represent the information the agent has atsaift
and its environment, desires represent its long-term goals and intentmns re
resent the goals that the agent is actively trying to achieve. Many theanigs
indeed many practical systems, have been built upon these basic cohtepts
providing a logical formalism for rational agents in general (including BDI
agents), combinations ehodalandtemporallogics are typically used [5].
For example, modal logics (technicallgD45 or S5 modal logics) are often
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Exploring the Future with Resource-Bounded Agents 3

used to represekhowledger belief aspects, while temporal (and sometimes
dynamic) logics are used to represent the underlying dynamic naturelof su
agents. Motivational aspects, suchdesires goals intentions or wishesare
also typically captured using modal logics (technicallyp modal logics).

Such logical combinations have been used in many works on the formal
specification of rational agents, for example [19, 17, 20, 8].

2.3. EXECUTABLE SPECIFICATIONS

Formal specifications are very useful for describing the (requireda@our

of rational agents, but how can we use these specifications? Oneaapiso

to use the specifications as a basis from which to develop agent implementa-
tions. Indeed, there are now very many agent programming languages [2
But what is the link between the practical programming language and its
semantics [3]? And how can we be sure that the program proddices
actually implement the logical specification?

Our particular aim has been to bring logical agent theories and pro-
gramming languages closer together, providing both clear program sesnantic
and formal agent verification. One approach is to attempirextly execute
rational agent specifications — in this way, we can be more confident that
the required behaviour is being exhibited by the system. Here, execution of
a formula,, of a logic, L, is taken to mean constructing a modgt(, for
¢, .e. M =, . This not only provides a close link between the theory
and implementation, but also provides high-level, logical concepts within the
programming language [6].

Our approach actually begins simply with agent specifications given in
alinear temporal logic Temporal logic [5] is an extension of classical logic
with the notion of temporal order built in. With such logics we can describe
many complex, dynamic properties, though they all reduce to describing wha
must be truenow, what must be truaext and what is guaranteed to be true at
somepoint in the future. This, seemingly simple, view gives us the flexibility
to represent a wide range of computational activities [7].

In its basic form, temporal logic can be seen as an extension of classical
logic, incorporating additional operators relating to temporal drdEnese
operators are typically:

O e “in the next moment in time”;
2 “at every future moment”;
O e “at some future moment”.

1 For simplicity, we use a discrete, linear model of time, isomorphic to the Hlatur
Numbers.
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4 Fisher & Ghidini

These operators give us useful expressive power, and evenughtassimple
temporal logic as a basis, we are able to describe individual agentsyigot o
their dynamic behaviour, but also how their knowledge/beliefs evolve and
how their goals evolve. In a multi-agent context, this also allows us to de-
scribe the structure and evolution of communication, dynamic organisational
structures, and how computation within each organisation evolves.

Our approach to executable agent specifications can be best ddscribe
by starting with the basic temporal logic given above and then extending
the logic executed in various ways. So, given a simple temporal formula, as
outlined above, we execute this using theperative Futureapproach [1]:

— transform the temporal specification intmarmal form[7];

— from the initial constraintsforward chainthrough the set of temporal
rules constraining theextstate of the agent; and

— constrain the execution by attempting to satisfy eventualities (aka goals),
such as¢ (i.e. g eventually becomes true).

In addition, we require some strategy for handlmgstandingeventualities
(see below). The normal form [7] essentially categorises formulae inte 3 v
rieties:initial rules, of the formstart = ¢, which indicate properties of the
initial state;step rulesof the formy = (O, which indicate properties of
the next state; andsometime rulgsof the formy = <y, which indicate
properties of the future.

2.4. EXECUTION EXAMPLE

Imagine a ‘car’ agent which castart engine turn and stop but can also
break étart fails) or start étarted. In addition, it is able to broadcast infor-
mation to other agents. A simple specification, already in our normal form,
might be:

1. start = —moving

2. =moving = Q start_engine

3. start_engine = O (start_fails V started)
4

. true = O~ (start_fails A moving)

o1

. start_engine = {moving

6. start_fails = O start_fails

~

(started N\ moving) = Obcast(“here we go!’)
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Exploring the Future with Resource-Bounded Agents 5

8. beast(“here we go!) = O (start_fails V moving)

Informally, the meaning of these formulae (or ‘rules’) is as follows.
1. movingis false at the beginning of time.
2. If movingis false,start. enginewill be true in the next moment.

3. Wheneverstart engineis true, then eithestart fails or startedwill be
made true in the next moment in time.

4. Atany future time, we cannot have battart fails andmovingbeing true.

5. Whenevestart engineis true, a commitment to eventually makeving
true is given.

6. If startfails is true, then it will also be true in the next state (note that
this effectively means that, onsgart fails is true, then it will always be
true).

7. If both startedand movingare true then, in he next moment, the agent
broadcasts “here we go!”.

8. Finally, once it has broadcast this, then eitbirt fails or movingwill
again be made true in the next moment in time.

We will briefly show how execution is attempted under itmperative future
view and so how model construction occlurs

Step 1. from rule 1, build an initial state in whicimovingis false.

O

—moving

Step 2: from rule 2, build a next state in whigdtart engineis true.

O- 0

start-

—moving engine

2 Inthe following, ‘O’ represents a constructed state; represents the current state, and
‘®’ represents a state we have backtracked from.
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6 Fisher & Ghidini

Step 3: rule 3 gives us a choice of making eithetart fails or startedtrue
in the next state. We begin by exploring tretdrt fails’ possibility, and note
that rule 5 means that we must also makevingtrue somewhere down this
branch.

/7 maving,
O—- 0O

start-

—moving engine

Step 4: after some further execution it is recognised that we actually cannot
satisfy{>mowving sincestart fails is true along this branch, forcingovingto

be false everywhere along this branch. So, we fail in exploring/exerthia
branch. We return to the other option in rule 3, namely gtattedbecomes
true in the next state. We can now also sati§fynoving from rule 5, by
makingmovingtrue here.

/ —moving,
start_fails
O—- 0O
—moving i;aqctr; e \

O

started,
moving

Step 5: sincestartedandmovingare both true, then rule 7 leads us to broad-
cast “here we go!”. Other agents in the same environment can recéve th
message. Within the execution, however, we are now not allowed to belcktra
past this broadcast event (effectively like a ‘cut’ in Prolog); this ipbreally
represented byy".

/‘ —moving,
start_fails
O - 0O
—moving i?&;ﬁ A \
o - 10

started,

o "
moving here we go!
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Exploring the Future with Resource-Bounded Agents 7

Step 6: now, rule 8 provides us with a choice and, again, if we take the
start fails option, this leads us to problems.

/ —moving,
start_fails
O—- 0O O
—moving fg%aqrjtﬁg \ /‘ start-fails
o - 10
started, “here we go!”

moving

Step 7: however, if we take thenovingchoice then execution (and model
construction) can continue.

/ —moving,
start-fails
O—- 0O 02y
—moving ::“Laqu%e \« / start-fails
O - 10
started, « " \
moving here we go!

O

moving

And so on. Execution can continue in this way, can recognise that a psevio
state has re-occurred (and so can loop round), or can terminate (hadhes
explored lead to contradictions). Various correctness results areldedita
the original papers; see [1], for example.

2.5. DELIBERATION

An important aspect in the above execution approach is the handlingrof eve
tualities of the form {¢’. These are effectivelgoalsthat the agent is trying
to satisfy during execution. In the above example, there was just onaeven
ality, but there are usually several. However, it is likely that only a sutiset
these can be satisfied at any moment in time (for exardpleand<>—p). So,
we must decide which eventualities to attempt at each moment in time. This
turns out to be crucial both to the correctness of the execution mechanism,
and to the agent’s ability tdeliberate

Outstanding eventualities (i.e. those that must be satisfied, but have yet
to be) are stored in a list. The eventualities are attempted in order from the
beginning of the list. However, in between each state constructed, therist ca
be re-ordered. In order to retain correctness, this re-orderinglateir [9].
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8 Fisher & Ghidini

This ensures that no eventuality will remain ‘untried’, i.e. that all eventualities
are attempted sometimes.

As well as affecting correctness, this re-ordering of eventualities is cen
tral to deliberation. If we recall the standard view of deliberation within
agent-based systems, it is essentially the process of deciding which goals
the agent should tackle at present, and which approaches the agaft sh
use to tackle these goals. Since goals in standard (for example, BDksagen
correspond to eventualities within our framework, then our re-ordering o
eventualities can be seen as providing an ordered list of goals to tackle. In
addition, since the re-ordering process can take into account varibas o
aspects, then we can incorporate deciding what plans (if we have a obtion
plans) to use in satisfying the goals.

To explain further, consider the simple example below.

2.6. DELIBERATION EXAMPLE
Suppose we begin with the following list of goals/eventualities:
[{>be_famous, {sleep, {eat_lunch, make_lunch] .
What shall the execution mechanism do?
— The standard approach would be to execute these oldest-first, say:

[$be_famous, {sleep, {eat_lunch, {>make_lunch] .

— However, during deliberation the agent might decide to re-order this list
based on, for example, thmportanceof each goal to the agent. Thus,
the agent might decide that becoming famous is the most important goal
(and that sleeping is less important):

[{be_famous, {eat_lunch, {sleep, make_lunch] .

— Again, the agent might re-order the list, this time based on what it has
available plans for. For example, the agent might not have any mecha-
nism for becoming famous, so it moves this goal to lower priority (i.e.
later in the list). However, it does have a way to makelunch true and
so it moves this goal to the front of the list. While examining this goal, it
notes that a sub-goal, in this caseke_lunch, must be achieved before
eat_lunch and so it puts this sub-goal at the front of the list:

[(make_lunch, {eat_lunch, $sleep, {be_famous] .

— Andsoon....
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Exploring the Future with Resource-Bounded Agents 9

In this way, agents have a flexible and powerful mechanism for deciding
between (and swapping between) goals/eventualities.

2.7. BELIEF CONTEXTS

In addition to a basic temporal specification of an agent, providing the dy-
namic behaviour for that agent, we also incorporate a number of otheafor
components. The most relevant to our discussion here is that of lagjesfs
These represent the agent’s view of itself, other agents and its envinbnme
Such beliefs need not necessarily describe facts, they just captiagehgs
understanding (and possible misunderstanding) of its world.

Formally, adding beliefs to the agent specification involves adding a
belief operatorB;¢, meaning that “agent believes¢”. This allows us to
describe more sophisticated agents that are able to reason about thésr belie
For example, agertis now able to represent and reason about its own beliefs:

(buy_ticket A\ B;lucky) = B;<{>lottery_winner

and is able to interpret external events/communications:

in_view(frog) = Bpart can_see(frog)
advertisement(donut) = Bpomer good(donut)

While it is standard for such beliefs to be described usingC5 modal
logic [16], we instead use multi-context logic of belie{15, 14]. This can
simulate &K D45 modal logic, but allows us much greater control of the belief
structures constructed. As we will see later, this is important when we want
to restrict the depth of beliefs explored during execution.

The reason why multi-context logic facilitates the control of the belief
structures is that it distributes nested belief into different and separatéd mo
ules (also called¢ontext$ which interact with each other. Let us restrict our
discussion just to the simple case of a single age&tto is acting in a world,
who has both beliefs about this world and beliefs about its own beliefs and
it is able to reason about them. Multi-context logic represents aigéata
chain of context

3 For a more detailed description of multi-context logic for belief, see [4][44].
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10 Fisher & Ghidini

\/'\\:\ Level O: basic beliefs of;
N4
B;
G  hali - s alf-
( 43 Level 1: beliefs that ascribes to itself;
%
B;
AT\ , . . . .
(\mz/) Level 2: beliefs about beliefs thatiscribes to itself;

v

Leveln: and so on...

The structure depicted above can be easily extended to represergrdn ag
having beliefs about the world, beliefs about its own beliefs and beliefstab
other agents beliefs. For instance, we represent ageaving beliefs also
about another agerjtas follows

e ) Level 0: basic beliefs of;
E/ xB]
\/ii ) ( l]\\ Level 1: beliefs that ascribes to itself or tg;
- AN
B; Bj Bj

\
‘\\zfz/‘ ng) w 1{3) Level 3: and so on...
We can simulate all the typical properties of belief, and in particular those
of modalK D45 through constraints between adjacent pairs of contexts, con-

nected viaB, labelled edges. For instance, we can simulate mé&daly
imposing the condition that

B;¢is in a context at level if, and only if,¢ is in anyn + 1 level context
reachable via aB; labelled edge;

or we can simulate the properfy;¢ = B;B;¢ of modal4 by imposing a
constraint such as:

if B;¢ is in a context at leveh then B;¢ is in anyn + 1 level context
reachable via aB; labelled edge.

The precise logical formalisation of these intuitive constraints, together with
its sound and complete axiomatisation, can be found in [14].

jolli08.tex; 28/ 01/2008; 11:09; p.10



Exploring the Future with Resource-Bounded Agents 11

The linear or tree shaped structure is potentially of infinite depth. Infinite
structures reflect the fact that, in using modal logic, people micakean ideal
agent able to express and reason about beliefs of arbitrary nedtiageEu-
liarity of multi-context logic is that we can also bind the length of the chain
to a certain depth, thus ensuring that there are ). reachable contexts
beyond a certain level, still allowingto express formulae of arbitrary nested
belief. The main idea is to treat belief formulae as propositional atoms and to
constrain the truth value aB;¢ in a context at leveh with that of ¢ in all
n+1 level contexts reachable viaiy labelled edge, if any. Thus, assume that
1 is an agent able to manage only formulae withested beliefs. A formula
B; B; B;lucky will be true in context

D

( ) B; B; B;lucky;
\\f/ 1D Dy

if, and only if, B; B; lucky will be true in contexti

\\
( 7,/\ B; B; B;lucky;

N
B;

A0

w\u/w B; B;lucky;
B;

‘/zu\‘ B lucky

AN

Once leveR is reached there are no furthBy labelled edges and the formula
B;lucky is treated as a propositional atomic formula with an arbitrary truth
value. In this work, to mimic the behaviour of mod@D45, we set the truth
value of B;lucky (and all formulaeB;¢) at this “bottom” context tdalse.
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12 Fisher & Ghidini
2.8. ADDING BELIEF TO THE TEMPORAL STRUCTURE

Now, agent specifications include beliefs. Thus, as we execute a specifi
tion, we must explore a belief structure in addition to a temporal structure.
In addition we might also explore temporal sequences within belief worlds,
obtaining more complex structures as the one in Figure 1.

o TL TL TL O ,

By Ba

©

~

B2 (TL) Bo(TL)

O >
B,

B1B>(TL) B1B>(TL)

) >
S O

Figure 1. Model exploration during execution

Here, the basic temporal sequence (labelled by ‘TL) is being consttucte
However, at certain points, belief contexts (63j.and Bs) must be explored

in order to decide how to proceed. In addition, within these belief contexts,
temporal execution itself can be simulated, &¢(7'L) andB, Bo(TL). The
extension of the basic execution algorithm to incorporate belief is described
in [10].

3. Resource-Bounded Agents

With unlimited time and space, we can let the agents carry out all the ex-
ploration necessary to build potentially large/deep structures like the one in
Figure 1 and therefore take their time in constructing the execution. However
in more realistic scenarios we wish fiestrict the exploration/reasoning that
the agent can carry out. Below we consider two, complementary, ag@®ac
restricting belief exploration [10] and temporal exploration [12].

3.1. BOUNDS ONBELIEF EXPLORATION

If, in the original agent specification, beliefs are heavily nested, theesore
ing about such beliefs tends to be very resource-intensive. It isdrardgh
to reason about beliefs or beliefs about beliefs, but reasoning &letiats
about beliefs about beliefs, and so on, is very difficult. So, we heoptaal
form of resource-bounding which restricts the depth of nesting of lsaleit
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Exploring the Future with Resource-Bounded Agents 13

can be considered. This captures a form of resource-boundgohiag and
ensures that the agent does not spend all its time ‘thinking'.

As we said in the previous section, Figure 1 shows a sample ‘normal’
execution for an agent. Once we set a belief bound we cut off exploration
below this in the hierarchy of belief contexts, as in Figure 2.

TL TL TL O X

Blf\B2

é o By (TL) By (TL) o

/B_l ___________________________________
B1Bs(TL) B1By(TL)

¢ 0

B1

Figure 2. Exploration with a restricting belief bound

Three specific things to notice about the structures in this approach:

1. Once the depth bounkl is reached there are effectively no furthiy
labelled edges to explore. At this poiBt¢ = - B;—¢ = false.

2. We allow syntactic control of the belief bound by means of “spe-
cial” propositional constants of the formbelief bound (k). Therefore
belief _bound (100 ) would allow quite a lot of reasoning, whilelief _bound(1)
would allow very little. On the negative side, this approach reduces the
expressivity of the language to syntactically specify changes in the belief
depth bound only among a finite set of values; on the positive side, this
enables us to maintain the formalisation as simple as possible and to
use the execution mechanism described in [10] in order to provide the
prototype implementation.

3. The value ofbelief _bound(.) can change over time. The main idea
is that in any temporal state of the basic temporal sequence ‘TL, if
belief -bound (k) is satisfied, then exploration of belief contexts is lim-
ited to depthk at that point. Clearly, we must impose the following
properties orbelief -bound(.) in order to ensure that the bound is always
well-defined.

a) In every state, there is at most ohesuch thatbelief _bound (k) is
satisfied.

N/ —(belief -bound(k) A belief -bound(h))

k=0 h=0,h£k
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14 Fisher & Ghidini

b) In every state, there is at least ohesuch thatbelief _bound (k) is
satisfied.

(1 \/ belief _bound (k)

k=0

Thus, for every specification, the above two properties must be estab-
lished. A particular problem here is (b). This only states that theerize
belief depth bound. In reality we would have further formulae specifying
how the value of the bound relates to previous values. Pushing this idea
forward we could also have agents able to reason about their own limits
in a more sophisticated way, and able to decide about these limits. A
discussion about these aspectédifef _bound(.) can be found in Section

4,

3.2. BOUNDS ONTEMPORAL EXPLORATION

An obvious analogue of restricting reasoning about belief is to restrict the
hypothetical temporal reasoning that is allowed [12]. This bounded texhpor
exploration allows us to restrict the diagram from Figure 2 still further,\e gi
that in Figure 3.

TL TL TL
{ - ~ Q >
By B3 |
1
BA(TL) Bo(TL)
© 0= >
N 1 p g A
1
- 1
______ By- -
B1B3(TL) B1B2(TL)

Figure 3. Restricting hypothetical temporal exploration in addition to belief exploration.

Thus, in addition to bounding the depth of nesting of belief contexts, as ear-
lier, we can also bound the depth of nesting of simulated temporal states. We
might do this as an alternative to belief bounds, or in combination with it. For
example, in Figure 3, we restrict both the belief and temporal dimensions.
This restriction of temporal exploration works in a similar way to the be-
lief bounding, limiting the number of temporal states that can be constructed
in a hypothetical sequence (i.e. one within a belief context). This restriction
can be achieved in a number of ways. The most obvious is to provide gdual
belief _bound(.), namelytl_bound(.) which provides a numerical bound on
the number of temporal states that can be constructed. Again the bound will
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Exploring the Future with Resource-Bounded Agents 15

be selected from a fixed set of numbers. An alternative approachgresp
in [12], is to use specific varieties of temporal operators with which we can
describe finite sequences. For example, we might say that we are onlgdllow
5 nested O’ operators before we reach the end of the possible temporal
sequence.

This approach allows us to bound the temporal, in addition to the belief,
exploration within agent execution.

3.3. EXAMPLE

We now look at an example, derived from that presented in [13, 11]sider
two teams of agents, acting as football players, in the situation depicted in
Figure 4.

» By 4 By
N ’ N
As B, As By
e Al » '.Al
W A;"""

Figure 4. Two possibilities: (a)4; shoots; (b)A; passes tol,.

Ay, Ay, and Az belong to the same team, tealmwhereas3; and B; belong

to the opposing team, tead. A, is the player currently in control of the
ball. The goal ofA; is to help its own team to score. More precisdly must
establish what is the action that (from its point of view) is more likely to help
its own team in scoring. For the sake of simplicity we suppose fhatan
choose between two possible actions, namely

1. trying to score, and
2. giving the ball to another member of its own team.

In order to decide what to do nexti; should reason about its knowledge
about the game and its beliefs about both the current situation and the other
players. Nevertheless, at different stages of the gathenay have different
constraints on how much time it can spend on reasoning. We here consider
two simple cases. In the first scenarit, has plenty of resources and so it
may have a reasonable amount of time for reasoning about beliefs. In the
second scenario the game is going to end very soon and a quick decision is
required. This fact will modify the amount of timé; is able to spend in
reasoning about beliefs. In particular we consider here the extreme situatio
in which A; does not have time to perforamyreasoning about belief, but it
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16 Fisher & Ghidini

has to decide what to do next considering only its own basic knowledgd abo
the current situation.

Let us consider a simplified version of the example presented in [11],
where we concentrate on the relevant knowledgé of

1. start = ball(A1)

2. start = pass(A1, A2) V shoot(Ar)

3. start = By, [shoot(A1) = onssible,score(Al)]

4. start = By, [pass(A1, A2) = O By, [pass(Az, A3)AO B4, (shoot(A3)/\<>likely,score(A3))]]
5. ball(X) A pass(X,Y) = Oball(Y)

6. [ball(X) Ay es, xzy ~Pass(X,Y)] = Oball(X)

7. [ball(Y) A —pass(Y, X)] = O -ball(X)

8. ball(X) = Ay cs, x 2y —ball(Y)

9. ball(X) = Bxball(X)
Informally, the meaning of these formulae (or rules) is as follows.

1. A, isin charge of the ball at the beginning of time;
2. A; can pass the ball td, or shoot;
3. A; believes to have some possibility of scoring in the case of shooting;

4. A, believes that it can pass the ball #3, and thatA4, will pass to Ag
who is in a better position to score;

5. if a playerX is in control of the ball, and passes the ball to a playkt,
then at the next moment in tin¥é is in control of the ball;

6. if a playerX is in control of the ball, and does not pass the ball then at
the next moment in time& is still in control of the ball;

7. if a playerX does not receive the ball then at the next moment in thine
is still not in control of the ball

8. at each moment in time there is a unique playen control of the ball;

9. if X is in control of the ball thedX believes it is in control of the ball.
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ball(A7)
pass(Aq, Ag) V shoot(Aq)

BA/ Ba,

ball(A1) shoot(Aq) ball(Aq) NEXT ball(Ag)
: _
possible_score(Aq) pass(Aq, Ag) 2

Ba,

ball(Az) NEXT
_
pass(Az, Az) ball(4s)

BAS

shoot(As)
likely_score(As)

Figure 5. Execution of the football example.

Rules 5 — 9 are valid in any belief context. We omit the transformation of
these formulae in normal form and show directly how execution is attempted
and how the model depicted in Figure 5 is constructed.

Step 1: from rules 1 and 2 build an initial state in whidiull(A;) and
pass(Ai, Aa) V shoot(Ay) are true.

Step 2: two alternative paths are explored, one in whi¢lvot(A;) is true,
and the other in whichass(A1, As) is true. In the formepossible_score(Ay)
is made true using rule 3.

Step 3: the execution continues exploring the second alternative, and uses
rule 5 to makeDball(As) true.

Step 4: now rule 4 is used to explore the beliefsAf aboutAs that A, will
pass the ball tod3, and then again rule 5 to effectively pass the ballitoin
the next moment in time.

Step 5: Finally rule 4 is used again to explore the beliefsAf about A,
aboutAgs saying thatds will shoot and likely score if he is in charge of the
ball.

If we assume thatd; has some internal ordering concerning eventualities
and{likely_score(.) is preferred ta) possible_score(.), then the agent may
choose to pass the ball td; on the basis of the hypothetical reasoning it
has performed. As we can see from Figure 5 this hypothetical reasocaing
happen under the assumption tiiathas enough resources to explore belief
about belief about belief. Assume now that the game is going to end sabn, an
that A, prefers to reactimmediately to the current situation than to spend time
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ball(A7)
pass(Aq, Ag) V shoot(Aq)

BAl BAl
ball(A1) shoot(Aq) ball(Aq) NEXT ball(Ag)
: _
possible_score(Aq) pass(Aq, Ag) 2

ball(Az) NEXT
_
pass(Az, Az) ball(4s)

BAS

shoot(As)
likely_score(As)

Figure 6. Adding belief bound to the football example.

"thinking”. In this situation the agent could have a very small belief bound
such asbelief -bound(1). In this case most of the hypothetical reasoning is
cut away, as we can see in Figure 6, and the agerdnly has the choice of
shooting directly and trying to score.

4. Exploringthe Future

Once we have bounding of belief and temporal exploration, and we have
syntactic control of this, through predicates suchbaBef _bound() and
tl_bound(), then we can consider a variety of more sophisticated extensions.
In this section, we will outline some of these aspects.

4.1. AGENTSADAPTING THEIR BOUNDS TO THEENVIRONMENT

With an explicit representation of the agent’s limitations, through predicates
such aselief _bound() andtl_bound(), we can think of ways (using formu-
lae) of specifying how the value of the bound relates to previous values or
to the current situation of the agent. As a very simple example of this con-
sider the following formulae which define how the belief bound might evolve
depending upon whether the agent iglimger, is happy, Or is cautious.

(1 (belief -bound (k) A danger O belief _bound(kqanger))

L] (belief -bound(k) A ~danger A happy O belief _bound (ihappy))
[ (belief -bound (k) A —danger N —happy A cautious O belief -bound (icqutious))

O belief -bound(k))

I R

[ (belief -bound (k) A =danger A —happy A —cautious
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Here the values okgunger, IS Knappy, @aNdEcqutious are provided “a priori”
within the specification, but nevertheless provide a simple and effectiye wa
of adapting to different situations.

4.2. AGENTSREASONING ABOUT THEIR OWNLIMITS

Once an agent has an explicit representation of its limitations, through pred-
icates such aselief _bound() andtl_bound(), then it is able to reason about
these. In particular, the agent can assess its own bounds to decidéowhat
do. For example, it may be that, under the constraint &hatf bound (34 )

then we can only dev, but if belief _bound(35) then the agent has a choice

of doing « or . So, deliberation must be extended to incorporate beliefs
about belief _bound() and tl_bound(), for exampleB a1 belief _bound(50).

This allows the agent to select its activities based on whether it believes it
has enough time/space to consider these. (It is important to note that, when
Baibelief _bound(50) is true, this doesn’t imply thakelief _bound(50) is
necessarily true, but just describes agéh' belief about its belief bound —

it could be wrong!)

This leads on to questions of estimating futui€ief _bound() or
tl_bound() values (for example, what value wilklief _bound() have in the
nextmoment?), what will the agent do if it does not have enough resources
(for example, ask another agent to carry out some of the exploratian@),
should we even take the cost of deliberation into account?!

4.3. WORKING WITH OTHER AGENTS LIMITS

While an agent might well know its owhelief -bound() and tl_bound)()
values, it is unlikely to know this for other agents. Unless told explicitly
by another agent, an agent must estimate (or even guess!) theseaffior ex
ple from observations or execution histories. Once an agent canitmkescr
another'sbelief _bound() or tl_bound(), then it can reason about them and
use them in deliberation.

Reasoning about another agent’s limits can help with

— cooperation— in that the agent can plan/decide to do something that
the other agent can cope with,

— competition— if the agent knows that others have small limits, then the
agent can tackle complex problems with less competition,

— negotiation— similarly if an agent knows the extent of an opponents

capabilities, it might use more sophisticated arguments or negotiation
strategies.
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4.4, DECIDING ON YOUR LIMITS

Once the agent is able setits own bounds, then it can decide in which
situations to set them appropriately. Thus the agent might deliberate about its
environment and decide whether to have a sdlkf _bound()/tl_bound()

(i.e. for a quick response) or a large one (i.e. the agent can take its time)?

4.5. EXTENDING THE POWER

In the examples given in this paper, agents are able to specify belief/tdmpora
bounds usingelief _bound()/tl_bound(), where the particular bound is taken
from a fixed set of possibilities. Though this is simple and tractable, there
might well be situations where more complex constraints on bounding are
required. Can we extend the complexity of the bound, for example incorpo-
rating arithmetic or real numbers, while still retaining some tractability?

5. Concluding Remarks

In this paper we have provided an overview of work on executabletagen
specifications, particularly focusing on resource-boundednessin\btir
framework, this resource boundedness is achieved through explinidso

on the depth of nesting of both belief and temporal contexts. This allows
close control of model exploration as execution proceeds; full detatlsiof
approach can be found in [13].

In addition to providing an overview of this work, we have indicated
some extensions being explored. With all such extensions, it is usually a
case of balancing the additional expressive power achieved andaatha
applicability with both tractability and implementation issues, while at the
same time ensuring continued correctness.
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