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Abstract. Questions concerning the proof-theoretic strength of classical versus nonclassical
theories of truth have received some attention recently. A particularly convenient case study
concerns classical and nonclassical axiomatizations of fixed-point semantics. It is known that
nonclassical axiomatizations in four- or three-valued logics are substantially weaker than their
classical counterparts. In this paper we consider the addition of a suitable conditional to First-
Degree Entailment—a logic recently studied by Hannes Leitgeb under the label HYPE. We
show in particular that, by formulating the theory PKF over HYPE, one obtains a theory that
is sound with respect to fixed-point models, while being proof-theoretically on a par with its
classical counterpart KF. Moreover, we establish that also its schematic extension—in the sense
of Feferman—is as strong as the schematic extension of KF, thus matching the strength of
predicative analysis.

§1. Introduction. The question whether there are nonclassical formal systems of
primitive truth that can achieve significant proof-theoretic strength has received much
attention in the recent literature. SolomonFeferman [3] famously claimed that ‘nothing
like sustained ordinary reasoning can be carried on’ in the standard nonclassical
systems that support strong forms of inter-substitutivity of A and ‘ “A” is true’.
One way of understanding this claim is by measuring how much mathematics can
be encoded in such systems. Since the strength of mathematical systems (whether
classical or nonclassical) is traditionally measured in terms of the ordinals that can be
well-ordered by them, the ordinal analysis of nonclassical systems of truth becomes
relevant.
We are mainly interested in the proof-theoretic analysis of nonclassical systems

inspired by fixed-point semantics [18]. Since fixed-point semantics has nice axiom-
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2 MARTIN FISCHER ET AL.

atizations, both classical and nonclassical, it represents a particularly convenient
arena to measure the impact of weakening the logic on proof-theoretic strength. The
axiomatization of fixed-point semantics in classical logic—a.k.a.KF—is known to have
the proof-theoretic ordinal ϕε00 [1, 4].

1 Halbach and Horsten have proposed in [15]
a nonclassical axiomatization, known as PKF, and showed that it has proof-theoretic
ordinal ϕù0. There have been some attempts to overcome this mismatch in strength
on the nonclassical side. Nicolai [22] showed that even without expanding the logical
resources of the theory, PKF can be extended with suitable instances of transfinite
induction to recover all classical true theorems of KF. Fischer et al. [10] showed that
a simple theory featuring nonclassical initial sequents of the form A⇒ TrpAq and
TrpAq⇒A can be closed under special reflection principles to recover the arithmetical
strength of PKF and KF. More recently, Field showed in [8] that, by enlarging the
primitive concepts of PKFwith a predicate for ‘classicality’, one can achieve the proof-
theoretic strength of KF in both the schematic and non-schematic versions.
In the paper we explore a different option, which in a sense completes the picture

above. We enlarge the standard four-valued logic of PKF with a new conditional,
which is based on the logic HYPE recently proposed by [19]. The conditional has
several features that resemble an intuitionistic conditional, but its weaker interaction
with the FDE -negation makes it possible to sustain the intersubstitutivity of A and
‘ “A” is true’ for sentences not containing the conditional. This extended theory, that
we call KFL, is shown to be proof-theoretically equivalent to KF. Its extension with a
schematic substitution rule, called KFL∗, is shown to be proof-theoretically equivalent
to the schematic extension of KF—called Ref∗(PA(P)) in [4].
In particular, we show that the conditional of the logicHYPE enables one to mimic,

when carefully handled, the standard lower bound proofs by Gentzen and Feferman–
Schütte for transfinite induction in classical arithmetic (Theorem 1) and predicative
analysis (Proposition 4), respectively. This enables us to define, in our theories KFL
and KFL∗, ramified truth predicates indexed by ordinals smaller than ε0 (Corollary
4) and Γ0 (Corollary 7). Moreover, the proof-theoretic analysis of KFL and KFL

∗

is completed by showing that their truth predicates can be suitably interpreted in
their classical counterparts KF and Ref∗(PA(P)) without altering the arithmetical
vocabulary (Propositions 2 and 5).

§2. HYPE. In this section we will present the logical basis of our systems of truth.
We will work with a sequent calculus variant of the logicHYPE introduced by Leitgeb
in [19] by means of a Hilbert style calculus. Essentially, the calculus is obtained by
extending First-Degree Entailment with an intuitionistic conditional and with rules
for it in a multi-conclusion style.

2.1. G1hcd. We present a multi-conclusion system based on a multi-conclusion
calculus for intuitionistic logic:2 we call it G1hcd for Gentzen system for the logic
HYPE with constant domains. Sequents are understood as pairs of multisets. We
work with a language whose logical symbols are ¬, ∨ , →, ∀, ⊥. For Γ = ã1, ...,ãn a

1 Or Γ0, depending on whether one focuses on a version of the theory with or without suitable
open-ended substitution rule schemata.

2 This system goes back to Maehara’s version used in Takeuti [26, p. 52f] and Dragalin’s
system used in Negri and Plato [21, p. 108f].
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NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 3

multiset ¬Γ is the multiset ¬ã1, ...,¬ãn. The logical constants ∧,∃,↔ can be defined as
usual and⊤ is defined as ¬⊥. Moreover, we can define ‘intuitionistic’ negation ∼A as
A→⊥, the material conditional A⊃ B as ¬A∨B , and material equivalence A≡ B as
(A ⊃ B)∧ (B ⊃ A). For A a formula, we write FV(A) for the set of its free variables,
and FV(Γ) for the set of free variables in all formulas in Γ.
The system G1hcd consists of the following initial sequents and rules:

(IDp) A⇒ A (L⊥) ⊥⇒

Γ⇒ ∆,A A,Γ⇒ ∆
(Cut)

Γ⇒ ∆

Γ⇒ ∆
(LW)

A,Γ⇒ ∆
Γ⇒ ∆

(RW)
Γ⇒ ∆,A

A,A,Γ⇒ ∆
(LC)

A,Γ⇒ ∆

Γ⇒ ∆,A,A
(RC)

Γ⇒ ∆,A

A,Γ⇒ ∆ B,Γ⇒ ∆
(L∨)

A∨B,Γ⇒ ∆

Γ⇒ A,B,∆
(R∨)

Γ⇒ A∨B,∆

Γ⇒ ∆,A B,Γ⇒ ∆
(L→)

A→ B,Γ⇒ ∆

Γ,A⇒ B
(R→)

Γ⇒ A→ B,∆

Γ⇒¬∆(ConCp)
∆⇒¬Γ

¬Γ⇒ ∆(ClCp)
¬∆⇒ Γ

A(t),Γ⇒ ∆
(L∀ )

∀xA,Γ⇒ ∆

Γ⇒ ∆,A(y)
(R∀)

Γ⇒ ∆,∀xA

y /∈ FV(Γ,∆,∀xA)

We write rk(A) for the logical complexity of A, defined as the number of nodes in
the longest branch of its syntactic tree. For a derivation d we let

• hgt(d ) := supi<n{hgt(di ) + 1 |di an immediate subderivation of d} (the
height of the derivation), where d0, ...,dn are the immediate subderivations
of d.

We say that a formula A is derivable in a system, if the sequent⇒ A is derivable in it.
The next lemma collects some basic facts about G1hcd. They mostly concern the

admissibility of some basic inferences in G1hcd.

Lemma 1.

(i) The sequents⇒⊤, A⇒¬¬A, ¬¬A⇒ A are derivable in G1hcd.
(ii) The rule of contraposition

Γ⇒ ∆
¬∆⇒¬Γ

is admissible in G1hcd.
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4 MARTIN FISCHER ET AL.

(iii) The following rules are admissible in G1hcd:

A,B,Γ⇒ ∆
(L∧)

A∧B,Γ⇒ ∆

Γ⇒ A,∆ Γ⇒ B,∆
(R∧)

Γ⇒ A∧B,∆

A(y),Γ⇒ ∆
(L∃) y /∈ FV(Γ,∆,∃xA)

∃xA,Γ⇒ ∆

Γ⇒ ∆,A(t)
(R∃)

Γ⇒ ∆,∃xA

(iv) Intersubstitutivity: If ÷ ⇒ ÷′ and ÷′ ⇒ ÷, as well as ø are derivable in G1hcd,
thenø(÷′/÷) is derivable, whereø(÷′/÷) is obtained by replacing all occurrences
of ÷ in ø by ÷′.

Proof. Claims (i)–(iii) are direct consequences of the contraposition rules (ConCp)
and (ClCp). (iv) is proved by a straightforward induction on the height of the derivation
in G1hcd. �

We opted for this specific formulation of G1hcd mainly because it substantially
simplifies the presentation of the results of the next sections 3–5, which are the
main focus of the paper. From a proof-theoretic point of view, the calculus has some
drawbacks even at the propositional level, as the rules ConCp and ClCp compromise the
induction needed for cut-elimination. In the propositional case, even if one removes
ConCp and ClCp and splits the contraposition rule of Lemma 1(ii) on a case by case
manner, problems for cut-elimination remain [9]. Moreover, when one moves to the
quantificational system, there are deeper problems. The same counterexample that
is employed to show that cut is not admissible in systems of intuitionistic logic with
constant domains canbe employed for the systemswe are investigating.3 Bothproblems
can be addressed by employing techniques from Kashima and Shimura [17], which
however rely on the extension of the systems with additional resources.
Since cut elimination is not the main focus of our paper, we opt for a more compact

presentation of G1hcd that fits nicely our purpose of extending it with arithmetic and
truth rules.

2.2. Semantics. In this section we present the semantics of G1hcd (and therefore
of HYPE) and sketch the completeness of G1hcd. We follow a simplification of the
semantics in Leitgeb [19] suggested by Speranski [25]. Speranski connects HYPE-
models with Routley semantics. A Routley frame F is a triple 〈W, ≤ ,∗〉, where:

(i) W is a non-empty set of states;
(ii) ≤ is a preorder;
(iii) ∗ is a function fromW toW, which is:

– antimonotone, i.e., for all w,v ∈W , if w ≤ v, then v∗ ≤ w∗;
– involutive, i.e., for all w ∈W , w∗∗ = w.

A constant domain model M for HYPE is a triple (F,D,I ) where F is a Routley
frame, D is a non-empty set (the domain of the model), and I is an interpretation
function. In particular, I assigns to every constant c an element of D and it associates
with each state w and n-place predicate P a set Pw ⊆ Dn. Constants are interpreted
rigidly and, although domains do not grow, we impose the following hereditariness
condition: for all v,w ∈W , if v ≤ w, then for all predicates P, Pv ⊆ Pw .

3 See for example [20].
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NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 5

LetM be a constant domainmodel,w ∈W and ó : VAR→D a variable assignment
on D, then the forcing relationM,w,ó 
 A is defined inductively:

M,w,ó 
 P(x1, ...,xn) iff (ó(x1), ...,ó(xn)) ∈ P
w ;

M,w,ó 
 ¬A iffM,w∗,ó 1 A;
M,w,ó 
 A∨B iffM,w,ó 
 A orM,w,ó 
 B ;
M,w,ó 
 A→ B iff for all v, with w ≤ v, ifM,v,ó 
 A, thenM,v,ó 
 B ;
M,w,ó 
 ∀xA iff for all x-variants ó′ of ó,M,w,ó′ 
 A;
M,w,ó 1⊥.

Finally, we define logical consequence. We write, for Γ,∆ sets of sentences:

• M,w 
 Γ⇒ ∆ iff: ifM,w 
 ã for all ã ∈ Γ, thenM,w 
 ä for some ä ∈ ∆;
• Γ 
 ∆ iff for allM,w:M,w 
 Γ⇒ ∆.

The systemG1hcd is equivalent to the Hilbert-style systemQN
◦ featuring the axiom

schemata

A→ (B → A) A→ (B → C )→ ((A→ B)→ (A→ C ))

A∧B → A A∧B → B

A→ A∨B B → A∨B

A→ (B → A∧B) (A→ C )→ ((B → C )→ (A∨B → C ))

¬¬A→ A A→¬¬A

∀xA→ A(t) A(t)→∃xA

and the following rules of inference:

A A→ B
(MP)

B
A→ B

(CP)
¬B →¬A

A→ B(x)
x not free in A

A→∀xB

A(x)→ B
x not free in B

∃xA→ B

QN
◦ is a neater presentation ofHYPE where a few redundant principles are dropped.

The consequences of the two systems are identical.
That our system G1hcd is equivalent to QN

◦ can be seen as follows. G1hcd is an
extension of intuitionistic logic (modulo the definition of ∼ A as A→⊥). Therefore,
since all axioms of QN◦ except for the double negation axioms are intuitionistically
valid, Lemma 1 enables us to show that all axioms ofQN◦ are consequences of G1hcd.
Additionally, Lemma 1 shows that contraposition is admissible in G1hcd. Rules for
quantifiers are easily established inG1hcd. For the other direction a proof on the length
of the derivation is sufficient. The fact that the deduction theoremholds inQN◦ renders
the proof particularly simple. Therefore, we have:

Lemma 2. G1hcd ⊢ Γ⇒ ∆ iff QN◦ ⊢
∧

Γ→
∨

∆.

Lemma 2 then entails that G1hcd is equivalent to Leitgeb’s HYPE.
Speranski [25] establishes a strong completeness result (for countable signatures)

for QN◦.4 Speranski uses a Henkin-style proof similar to the strategy employed in
Gabbay et al. [11, sec. 7.2] for intuitionistic logic with constant domains. Leitgeb [19]
establishes a (weak) completeness proof for his Hilbert style system based on the work

4 In the published version of [25] Speranski uses the label QN• for the relevant system of
HYPE.
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6 MARTIN FISCHER ET AL.

of Görnemann [12]. By Lemma 2 we can employ Speranski’s completeness result for
our system G1hcd with respect to Routley semantics:

Proposition 1 (Completeness of G1hcd [25]). Γ 
 ∆ iff there is a finite ∆0 ⊆ ∆, such
that Γ ⊢QN◦ ∆0.

We now turn to investigating how much classical reasoning can be reproduced in
our logic. Such questions will turn out to be essential components of the analysis of
truth theories over HYPE.

2.3. HYPE and recapture. One of the desirable properties of the nonclassical logics
employed in the debate on semantic paradoxes is the capability of recapturing classical
reasoning in domains where there is no risk of paradoxicality, such as mathematics [7,
chap. 4].5

The following lemma summarizes the recapture properties of G1hcd and extensions
thereof. It essentially states that, in systems based on G1hcd, once we restrict our
attention to a fragment of the language satisfying the excluded middle and/or
explosion, the native HYPE-negation and conditional, as well as the defined
intuitionistic negation, all behave classically.

Lemma 3.

(i) The following rules are admissible in extensions of G1hcd:

⇒ A,¬A Γ,A⇒ ∆

Γ⇒¬A,∆

A,¬A⇒ Γ⇒A,∆

Γ,¬A⇒ ∆
⇒ A,¬A Γ,A⇒ B,∆

Γ⇒ A→ B,∆
A,¬A⇒

¬A⇒ A→⊥

A,¬A⇒

A→⊥⇒¬A
⇒ A,¬A

A→ B ⇒ A⊃ B

⇒ A,¬A

A⊃ B ⇒ A→ B

(ii) The previous fact can be used to show, by an induction on rk(A), that⇒A,¬A is
derivable for any formula whenever⇒ P,¬P is derivable for any atomic P in A.

Proof. We prove the claims for the crucial cases in which a conditional is involved:
For (i):

⇒ A,¬A

Γ⇒ A,¬A,B,∆

Γ,A⇒ B,∆

Γ,A⇒¬A,B,∆

Γ⇒¬A,B,∆

Γ⇒ B,¬A,A→ B,∆

B,A⇒ B

B ⇒ A→ B
Γ,B ⇒¬A,A→ B,∆

Γ⇒¬A,A→ B,∆

A,¬A⇒

A,¬A⇒ B

¬A⇒ A→ B
Γ,¬A⇒ A→ B,∆

Γ⇒ A→ B,∆

5 This form of recapture is a slightly different phenomenon from a direct, provability
preserving, translation of the entire language of one theory in the other, as it happens for
instance in the famous Gödel–Gentzen translation or the S4 interpretations of classical in
intuitionistic logic, or intuitionistic logic in modal logic, respectively. Those translations
provide a method to reinterpret the logical vocabulary—by keeping the non-logical
vocabulary fixed—in a provability-preserving way. On the contrary, recapture strategies
typically show that, for a specific fragment of its language—e.g., the truth-free fragment of
the language—the nonclassical theory behaves according to the rules of classical logic. To
carry on with the analogy with the relationships between classical and intuitionistic logic,
recapture strategies are much closer to the identity between the ∆1-fragments of classical and
intuitionistic arithmetic.
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NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 7

For (ii):

¬A,A⇒ B

¬A⇒ A→ B
¬(A→ B)⇒ A

B,A⇒ B

B ⇒A→ B
¬(A→ B)⇒¬B

B,¬(A→ B)⇒

A→ B,¬(A→ B)⇒ �

Remark 1. The induction involved in Lemma 3(ii) does not go through in intuitionistic
logic with the HYPE-negation ¬ replaced by the intuitionistic negation ∼.

2.4. Equality. For our purposes it’s important to extend G1hcd with a theory of
equality. G1h=cd is obtained by adding to G1hcd the following initial sequents for
equality.

⇒ t = t, (Ref)

s = t,A(s)⇒ A(t). (Rep)

By an essential use of ConCp, we can establish in G1h=cd that identity statements
behave classically.

Lemma 4. G1h=cd derives⇒ s = t,¬s = t and s = t,¬s = t⇒.

Proof. We use the identity sequents:

s = t,¬s = t⇒¬t = t
⇒ t = t
¬t = t⇒

s = t,¬s = t⇒
⇒¬s = t,¬¬s = t
⇒¬s = t,s = t �

Lemma 4 reveals some subtle issues concerning the treatment of identity in
subclassical logics generally employed to deal with semantical paradoxes. It tells us
that identity is essentially treated as a classical notion in G1h=cd. To obtain a similar
phenomenon in absence of ConCp and ClCp, onewould have to add the counterpositives
of Rep and Ref to the system. A nonclassical treatment of identity would require some
non-trivial changes to Rep and Ref. That identity is a classical notion is perfectly in line
with our framework, in which identity is a non-semantic notion akin to mathematical
notions.

§3. Arithmetic in HYPE. Starting with the logical constants introduced above and
the identity symbol, we now work with a suitable expansion of the usual signature
{0,S,+,×} by finitelymany function symbols for selected primitive recursive functions.
Such function symbols are needed for a smooth representation of formal syntax. We
call this language L→

N
. We will also make use of the→-free fragment of the language of

arithmetic, which we label as LN. Our base theory will then be obtained by extending
the logic G1h=cd with the basic axioms for 0,S,+ ,× (axioms Q1–2, Q4–7 of [13]), and
the recursive clauses for these additional function symbols. The resulting system will
be called HYA–.
In the following, the role of rule and axiom schemata will be crucial. It will be

particularly important to keep track of the classes of instances of a particular schema,
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8 MARTIN FISCHER ET AL.

and therefore we will always relativize schemata to specific languages and understand
the schema as the set of all its instances in that language. For example, in the case of
the induction axioms we use the label IND→(L) to refer to the set of all sequents of the
form

⇒ A(0)∧∀x(A(x)→A(x+1))→∀xA(x), (IND→(L))

where A is a formula of L. Similarly, induction rules INDR(L) will refer to all rule
instances

Γ,A(x)⇒ A(x+1),∆
(INDR(L))

Γ,A(0)⇒ A(t),∆

for A a formula of L.
We call HYA the extension of HYA– by the induction axiom IND→(L). HYA

is equivalent to Peano Arithmetic PA. This is essentially because of the recapture
properties of our logic. For formulas A containing only classical vocabulary, the
properties stated in Lemma 3 entail that the rule and sequent formulations of induction
are equivalent.

Lemma 5. Let L ⊇ L→
N
. Over HYA– : INDR(L) and IND→(L) are equivalent when

restricted to formulas A such that⇒ A,¬A.

Since for A ∈ L→
N
, ⇒ A,¬A and A,¬A ⇒ are derivable in G1hcd, we have the

immediate corollary that:

Corollary 1. HYA and PA are identical theories.

Corollary 1 tells us that, in the absence of non-arithmetical predicates, such as the
truth predicate, the conditional of HYPE collapses into the material conditional. It
is only in the presence of semantical predicates interacting with the conditional that
allows for full proof-theoretic strength of classical reasoning.
It is important to highlight thatHYA is the base theory for our theory of truth, which

is not the same as the object-theory for which our theory of truth is formulated. HYA
contains already some tools that will be essential for the formulation of the theory of
truth, such as induction principles extended with the conditional of HYPE.

3.1. Ordinals and transfinite induction. Our notational conventions for schemata
generalize to schemata other than induction. A prominent role in the paper will be
played by transfinite induction schemata. In order to introduce them, we need to assume
a notation system (OT, ≺) for ordinals up to the Feferman–Schütte ordinal Γ0 as it can
be found, for instance, in [23, chap. 2]. OT is a primitive recursive set of ordinal codes
and ≺ a primitive recursive relation on OT that is isomorphic to the usual ordering of
ordinals up to Γ0. We distinguish between fixed ordinal codes, which we denote with
α,â,ã, ..., and æ,ç,è,î, ... as abbreviations for variables ranging over elements of OT.
Our representation of ordinals satisfies all standard properties. In particular, we will
make implicit use of the properties listed in [28, p. 322].
We will make extensive use of the following abbreviations. We call a formula

progressive if it is preserved upward by the ordinals:

Prog(A) := ∀ç(∀æ ≺ çA(æ)→ A(ç)),

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020321000137
Downloaded from https://www.cambridge.org/core. IP address: 212.114.229.15, on 08 Mar 2022 at 14:37:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020321000137
https://www.cambridge.org/core


NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 9

where ∀æ ≺ çA(æ) is short for ∀æ(æ ≺ ç→A(æ)).We will use this (standard) notational
convention in several occasions in what follows. Similarly, we will write ∃æ ≺ çA(æ)
for ∃æ(æ ≺ ç∧A(æ)).
This formulation of progressiveness isHYA-equivalent to a formulation as a sequent

∀æ ≺ çA(æ)⇒ A(ç). Moreover, if A(x)∨¬A(x) is provable, then Prog(A) is HYA-
equivalent to:

∀ç(∀æ ≺ çA(æ)⊃ A(ç)). (1)

Transfinite induction up to the ordinal α (≺ Γ0) will be formulated as the following
sequent:

Prog(A)⇒∀î ≺ αA(î). (TIα(A))

An alternative would be to use a rule-formulation:

Γ,∀æ ≺ çA(æ)⇒ A(ç)
TIrα(A) := Γ⇒∀î ≺ αA(î),∆

.

TIrα(A) differs from the standard rule formulation of transfinite induction (see, e.g.,
[14]) in that its premise features only one formula in the succedent: this is because of
the intuitionistic nature of the HYPE-conditional that is apparent in the rule (R→).
The two formulations of induction just introduced are equivalent over HYA–, i.e.,

given TIα(A), TI
r

α(A) is admissible, and given TI
r

α(A), TIα(A) is derivable.
6

TIα(L) is short for TIα(A) for every formula A of the language L. TI<α(L) is short
for TIâ(L) for all â ≺ α. The function ùn is recursively defined in the standard way as:
ù0 = 1, ùn+1 = ù

ùn .

3.2. Transfinite induction and nonclassical predicates. Our main purpose in this
paper is to study the proof-theoretic properties of extensions of HYA with additional
predicates that may not behave classically—i.e., they may not satisfy Lemma 5. In
fact, in the case of the pure arithmetical language, Lemma 5 gives us immediately that
HYA derives TI<ε0(L

→
N
). In this section we show directly that Gentzen’s original proof

of TI<ε0(L
→
N
) can be carried out in HYA for suitable expansions of L→

N
.7 To abuse

slightly of notation, we will keep the labelHYA for the versions of HYA formulated in
languages with additional predicate symbols.

Theorem 1. Let L+ be a language expansion of L→
N
by finitely many predicate symbols.

Then HYA ⊢ TI<ε0(L
+).

The rest of this subsection will be devoted to the proof of Theorem 1, which will
involve several preliminary lemmata.
A key ingredient of Gentzen’s proof—which will also play an important role in

sections 4 and 5—is Gentzen’s jump formula:

A+(è) := ∀î(∀ç(ç ≺ î→ A(ç))→∀ç(ç ≺ î+ùè → A(ç))).

Lemma 6. For any A ∈ L+, HYA proves Prog(A)⇒ Prog(A+) .

6 The notion of admissible rule that we employ is the one from [28, p. 76].
7 Troelstra & Schwichtenberg [28] already established that Gentzen’s proof can be carried out
in the minimal fragment of IL based only on the language containing→ ,∀,⊥.
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10 MARTIN FISCHER ET AL.

Proof. The argument is as follows: We assume Prog(A) and we want to show
Prog(A+), i.e., ∀æ ≺ è A+(æ)→ A+(è). So we also assume ∀æ ≺ è A+(æ) and ∀æ(æ ≺
î→ A(æ)) and ç ≺ î+ùè to show A(ç).
Informally, we make a case distinction: Either è = 0 or è ≻ 0.
Case 1 : If è = 0, then

è = 0,ç ≺ î+ùè ⇒ ç ≺ î ∨ ç = î. (2)

We have, by the reflexivity sequents and logical rules:

∀æ (æ ≺ î→ A(æ)),ç ≺ î⇒ A(ç). (3)

Again by reflexivity and the identity axioms:

Prog(A),∀æ (æ ≺ î→ A(æ)),ç = î⇒ A(ç). (4)

By (2)–(4) and (Cut), we obtain

è = 0, Prog(A),∀æ (æ ≺ î→ A(æ)),ç ≺ î+ùè ⇒ A(ç). (5)

Case 2 : è ≻ 0. Then by a derivable version of Cantor’s Normal Form Theorem:

è ≻ 0,ç ≺ î+ùè ⇒∃n∃è0 ≺ è(ç ≺ î+ù
è0 ·n). (†)

Given that induction for ordinal notations up to ù is provable inHYA, we will show
by induction on n ≺ ù that

∀æ ≺ è A+(æ),è0 ≺ è⇒∀æ(æ ≺ î+ùè0 ·n→ A(æ)).

The base case is straightforward because the following is trivially derivable (by property
(ord6) in [28, p. 322]):

∀ç ≺ îA(ç)⇒ (∀ç ≺ î+ùè0 ·0)A(ç). (6)

For the induction step, we start by noticing that by instantiating î in A+(è0) with
î+ùè0 ·n, we obtain

A+(è0)⇒∀æ ≺ î+ùè0 ·nA(æ)→∀æ ≺ î+ùè0 · (n+1)A(æ). (7)

As mentioned, by letting

B(x) := ∀æ ≺ î+ùè0 ·xA(æ),

HYA proves the ù-induction principle (with n ≺ ù)

B(0),∀n(B(n)→ B(n+1))⇒∀nB(n).

Therefore, by a series of cuts, we obtain

A+(è0),∀æ ≺ îA(æ)⇒∀n∀æ ≺ î+ùè0 ·nA(æ). (8)

From (8) we obtain

∀æ ≺ îA(æ),∀æ ≺ è A+(æ),è0 ≺ è⇒∀n∀æ ≺ î+ùè0 ·nA(æ). (9)

Therefore, we can instantiate n and æ (with ç), and move the antecedent of ç ≺
î+ùè0 ·n→A(ç) from the right-hand side to the left hand side of the sequent arrow.
Since both n and ç are general, we can existentially generalize over them to get

è ≻ 0,∀æ ≺ îA(æ),∀æ ≺ è A+(æ),∃n∃è0 ≺ è(ç ≺ î+ù
è0 ·n)⇒ A(ç), (10)
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NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 11

which in turn by (†) gives us

è ≻ 0,∀æ ≺ îA(æ),∀æ ≺ è A+(æ),ç ≺ î+ùè ⇒ A(ç). (11)

Now we combine the two cases. Together with our (5) in Case 1, the last sequent
enables us to derive

è = 0∨è ≻ 0, Prog(A),∀æ ≺ îA(æ),∀æ ≺ è A+(æ),ç ≺ î+ùè ⇒ A(ç).

By the provability of è = 0∨ è ≻ 0 and applications of the rules (R→) and (R∀) we
finally get

Prog(A)⇒ Prog(A+). �

The progressiveness of Gentzen’s jump formula enables us then to establish:

Lemma 7. If TIα(L
+) is derivable in HYA, then TIùα (L

+) is derivable in HYA.

Proof. We assume TIα(L
+). Specifically we have

Prog(A+)⇒∀î ≺ αA+(î). (12)

By the meaning of Prog(A+), we obtain

Prog(A+)⇒ A+(α). (13)

By the previous Lemma 6 and cut we also have

Prog(A)⇒ A+(α), (14)

which is

Prog(A)⇒∀î(∀ç ≺ îA(ç)→∀ç ≺ î+ùαA(ç)). (15)

But also

⇒∀ç ≺ 0A(ç), (16)

and therefore by (15) taking î = 0, we obtain

Prog(A)⇒∀ç ≺ ùαA(ç),

as desired. �

Corollary 2. If A is such that HYA proves A(x)∨¬A(x), we have that, if HYA
proves the classical transfinite induction axiom schema for α

(∀æ ≺ çA(æ)⊃ A(ç))⊃ ∀î ≺ αA(î),

then HYA proves

(∀æ ≺ çA(æ)⊃ A(ç))⊃ ∀î ≺ ùαA(î).

By Lemmas 3(ii) and 4, HYA proves A(x)∨¬A(x) for any formula A(x) of LN.
Therefore, Corollary 2 entails the proof above can be carried out by replacing the
HYPE-conditional with the material conditional when arithmetical properties are at
stake.
All is set up to finally prove the main result of this section, the admissibility inHYA

of the required schema of transfinite induction up to any ordinal α ≺ ε0.
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12 MARTIN FISCHER ET AL.

Proof of Theorem 1. The result follows immediately from Lemma 7. Since TIù0(A)
is trivially derivable inHYA, the lemma tells us that TIùn (A), for each n, can be reached
in finitely many proof steps.

Theorem 1 is key to our proof-theoretic analysis of a theory of truth over HYPE.
We now turn to the definition of such a truth theory.

§4. The theory of truth KFL. In this section we introduce the theory of truth KFL,
standing for Kripke–Feferman–Leitgeb. The theory is formulated in the language
L→
Tr
:= L→

N
∪{Tr}, where Tr is a unary predicate for truth. KFL is a theory of truth

for a→-free language LTr, which is simply the→-free fragment of L
→
Tr
. Semantically

(cf. Section 4.1), the conditional amounts to a device to navigate between fixed-point
models of LTr in the sense of [18]. The basic idea is that, given different interpretations
of the truth predicate corresponding to different fixed-point models, the conditional
enables us to evaluate hypothetical claims involving truth ascriptions that belong to
‘non-actual’ extensions. In other words, in evaluating a conditional A→ B at a state
(fixed point) s, we are in fact analyzing whether the satisfaction ofA in expansions s ′ of
the extension of the truth predicate at s implies the satisfaction of B at s ′. For instance,
if our structure of fixed points comprises the minimal and maximal fixed points only,
the conditional ô → Trpôq—with ô a truth-teller sentence—will be satisfied at the
minimal fixed point because of the properties of the other fixed point. We elaborate
further on the role of the conditional in Section 6. However, we would like to stress
that the specific semantic interpretation of the conditional is not our primary concern
in this work, but we are mainly concerned with its proof-theoretic properties.

Definition 1 (The language LTr). The logical symbols ofLTr are⊥,¬,∨,∀. In addition,
we have the identity symbol =. Its non-logical vocabulary amounts to the arithmetical
vocabulary of LN and the truth predicate Tr.

We assume a canonical representation of the syntax of LTr in HYA. Given the
equivalence of HYA and PA for arithmetical vocabulary stated in Corollary 1, we can
assume one of the standard ways of achieving this (e.g., [1]). We apply most of the
notational conventions—e.g., Feferman’s dot notation—described in [14, sec. I.5].

Definition 2 (The theory KFL). KFL extends HYA formulated in L→
Tr
—i.e., with the

induction schema extended to L→
Tr
—with the following truth initial sequents:

CtermLTr
(x)∧CtermLTr

(y)⇒ Tr(x=. y)↔ val(x) = val(y), (KFL1)

⇒ Tr(pTrẋq)↔ Trx, (KFL2)

SentLTr
(x)⇒ Tr¬. x↔¬Trx, (KFL3)

SentLTr
(x)∧SentLTr

(y)⇒ Tr(x∨. y)↔ Trx∨Try, (KFL4)

SentLTr
(∀. vx)∧var(v)⇒ Tr(∀. vx)↔∀y(CTermLTr

(y)→ Trx(y/v)), (KFL5)

Trx⇒ SentLTr
(x). (KFL6)

In KFL5, x(y/v) denotes the result of substituting, in the formula with code x, the
variable with code v with the closed term coded by y. In particular, in KFL2, pTrẋq
stands for the result of substituting, in the code of Trv, the variable v with the numeral
for x.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020321000137
Downloaded from https://www.cambridge.org/core. IP address: 212.114.229.15, on 08 Mar 2022 at 14:37:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020321000137
https://www.cambridge.org/core


NONCLASSICAL TRUTH WITH CLASSICAL STRENGTH 13

According to Lemma 3 we have that⊥,⊃ and→ obey the classical introduction and
elimination rules when the antecedent is a formula of L→

N
. An important property of

KFL is that it entails an object-linguistic version of the Tr-schema for sentences that
do not contain the conditional→. We will return to the philosophical implications of
this property in Section 6.

Lemma 8. The following are provable in KFL:

(i) SentLTr
(x)⇒ Trp¬Tr ẋq↔ Tr¬. x;

(ii) For A ∈ LTr,⇒ TrpAq↔ A.

Proof. (i) is immediate by the axioms of KFL, and (ii) is obtained by an external
induction on the rank of A. �

4.1. Semantics. The intended interpretation of our theory of truth is based on
Kripke’s fixed point semantics [18] and stems from the HYPE-models presented in
Leitgeb [19, sec. 7]. Our model will feature a state space, whose states are fixed-points
of the usual monotone operator associated with the four-valued evaluation schema as
stated in [29, 30].
Let Φ: Pù −→ Pù be the monotone operator defined in [14, lemma 15.6]: given

some set X of codes of sentences of LTr, Φ(X ) returns its closure under the FDE-
evaluation. States will have the form (N,S), where S is a fixed point of Φ. Since we are
interested in constant domains and in keeping the interpretation of the arithmetical
vocabulary fixed, we omit reference to N and identify states with the fixed points
themselves. Therefore, we let

W := {X ⊆ SentLTr
|Φ(X ) = X}, (17)

S ≤W S
′ :⇔ S ⊆ S ′, (18)

S∗ := ù \S, with X = {¬ϕ | ϕ ∈ X}, (19)

the interpretation of Tr is denoted with TrS := S. (20)

The intended full modelMΦ is the HYPE model based on the frame (W, ≤W ,∗) with
the constant domain ù. The intended minimal model Mmin

Φ is given by restricting the
set of states to the minimal and maximal fixed points. By a straightforward induction
on the height of the derivation in KFL, we obtain:

Lemma 9. If KFL ⊢ Γ⇒ ∆, thenMΦ 
 Γ⇒ ∆.

4.2. Proof theory: lower bound. We show that KFL can define (and therefore prove
the well-foundedness of) Tarskian truth predicates for any α ≺ ε0. By the techniques
employed in Feferman and Cantini’s analyses of the proof theory of KF [1, 4], this
entails that KFL can prove TI<ϕε00(LN).
We first define the Tarskian languages.

Definition 3. For 0≤ α < Γ0, we let

SentLTr
(0,x) :↔ SentLN

(x),

SentLTr
(æ+1,x) :↔ SentLTr

(æ,x)∨

(∃y ≤ x)(x = pTr ẏq∧SentLTr
(æ,y))∨

(∃y ≤ x)(x = (¬. y)∧SentLTr
(æ+1,y))∨

(∃y,z ≤ x)(x = (y∨. z)∧SentLTr
(æ+1,y)∧SentLTr

(æ+1,z))∨
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14 MARTIN FISCHER ET AL.

(∃v,y ≤ x)(x = (∀.vy)∧SentLTr
(æ+1,y)),

SentLTr
(ë,x) :↔∃æ < ëSentLTr

(æ,x) for ë a limit ordinal.

We then write

Sent<α
LTr
(x) :↔∃æ ≺ α SentLTr

(æ,x),

Trα(x) :↔ Sent<α
LTr
(x)∧Tr(x).

As we mentioned in Section 3, the arithmetical vocabulary behaves classically in
KFL.

Lemma 10. KFL ⊢ ∀x(SentLN
(x)→ Trx∨Tr¬. x).

Proof. By formal induction on the complexity of the ‘sentence’ x ∈ LN. �

The next two claims establish that the previous fact can be extended to all Tarskian
languages whose indices can be proved to be well-founded. First, one shows that the
claim ‘sentences in Sent

<ç
LTr
are either determinately true or determinately false’ is

progressive.

Lemma 11. KFL proves:

(∀æ ≺ ç)(SentLTr
(æ,x)→ Trx∨Tr¬. x)⇒ SentLTr

(ç,x)→ Trx∨Tr¬. x

Proof. By the definition of OT, KFL proves that ç ∈ OT is either 0, or a successor
ordinal, or a limit. By arguing informally in KFL, we show that the statement of the
lemma holds, thereby establishing the claim.
Lemma 10 gives us the base case. The limit case follows immediately by the definition

of SentLTr
(ë,x). For the successor step, one needs to establish (cf.[22, lemma 7]):

SentLTr
(æ,x)→ Trx∨Tr¬. x⇒ SentLTr

(æ+1,y)→ Try ∨Tr¬. y. (21)

Claim (21) is obtained by a formal induction on the complexity of y. Crucially, the
proof rests on the followingKFL-derivable claims, which provide the cases required by
the induction:

SentLTr
x,Trx∨Tr¬. x⇒ Tr¬. x∨Tr¬.¬. x, (22)

SentLTr
(x∨. y),Trx∨Tr¬. x,Try ∨Tr¬. y⇒ Tr(x∨. y)∨Tr¬. (x∨. y), (23)

SentLTr
(∀.vx),∀t Trx(t/v)∨¬∀t Trx(t/v)⇒ Tr(∀.vx)∨Tr(¬. ∀vx), (24)

Trx∨Tr¬. x⇒ TrpTrẋq∨Trp¬Trẋq. (25)

�

By Theorem 1, we obtain:

Corollary 3. For any α < ε0, KFL ⊢ ∀x (SentLTr
(α,x)→ Trx∨Tr¬. x).

Since, by Theorem 1, KFL proves transfinite induction up to ordinals smaller than
ε0, it follows that we are able to establish the fundamental properties of Tarskian truth
predicates up to any ordinal smaller than ε0. For α < Γ0, RT<α refers to the theory of
ramified truth predicates up to α, as defined in [14, sec. 9.1].

Corollary 4. KFL defines the truth predicates of RT<α , for α ≺ ε0.

By the proof-theoretic equivalence of systems of ramified truth and ramified analysis
established by Feferman [2, 4], we obtain:
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Corollary 5. KFL proves TI<ϕε00(LN).

Feferman andCantini established thatKF is proof-theoretically equivalent toRT<ε0 .
Our results so far then establish that KFL is proof-theoretically at least as strong as
KF. In subsection 4.3, we will show that KFL and KF are in fact proof-theoretically
equivalent.

4.3. Proof theory: upper bound. We interpret KFL in the Kripke–Feferman system
KF. For definiteness, we consider the version of KF formulated in a language LT,F

featuring truth (T) and falsity (F) predicates. Such a version of KF is basically the one
presented in [1, sec. 2], but without the consistency axiom that rules out truth-value
gluts.
In order to interpret KFL into KF, we consider a two-layered translation that

differentiates between the external and internal structures ofL→
Tr
-formulas. Essentially,

the external translation fully commutes with negation, and translates the HYPE
conditional as classical material implication. The internal translation treats negated
truth ascriptions as falsity ascriptions, and is defined by an induction on the positive
complexity of formulas that adheres to the semantic clauses of FDE-style fixed-point
models. The internal translation therefore translates truth and non-truth of KFL as
truth and falsity ofKF, respectively. Since we want to uniformly translate formulas and
their codes inside the truth predicate, we essentially employ the recursion theorem, as
described for instance by [14, sec. 5.3].

Definition 4. We define the translations ô : LTr −→ LT,F, and ó : L
→
Tr

−→ LT,F as

follows:

(i)

(s = t)ô = s = t (s 6= t)ô = s 6= t

(Tr t)ô = Tô(t) (¬Tr t)ô = Fô(t)

(¬¬ϕ)ô = (ϕ)ô

(ϕ∨ø)ô = (ϕ)ô ∨ (ø)ô (¬(ϕ∨ø))ô = (¬ϕ)ô ∧ (¬ø)ô

(∀xϕ)ô = ∀xϕô (¬∀xϕ)ô = ∃x(¬ϕ)ô .

(ii)

(s = t)ó = s = t

(Tr t)ó = Tô(t)

(¬ϕ)ó =











Fô(t),if ϕ is Tr t,

s 6= t,if ϕ is s = t,

¬ϕó,else.

(ϕ∨ø)ó = (ϕ)ó ∨ (ø)ó

(∀xϕ)ó = ∀xϕó

(ϕ→ ø)ó = ¬(ϕ)ó ∨ (ø)ó .

KFL-proofs can then be turned, by the translation ó, into KF-proofs, as the next
proposition shows.

Proposition 2. If KFL ⊢ Γ⇒ ∆, then KF ⊢ (
∧

Γ→
∨

∆)ó .
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16 MARTIN FISCHER ET AL.

Proof. The proof is by induction on the height of the derivation in KFL and follows
almost directly from the definition of the translation ó. Only the case of (KFL3) is
slightly more involved: we require that (with ≡ expressing material equivalence)

KF ⊢ SentLTr
⇒ Tô(¬. x)≡ Fô(x). (26)

However, this can be proved by formal induction on the complexity of x. �

The combination of Proposition 2 and Corollary 4 yields that KF and KFL have
the same arithmetical theorems, and in particular they have the same proof-theoretic
ordinal—cf. [23, sec. 6.7].

Corollary 6. |KFL|= |KF|= ϕε00.

In Section 5, we extend our results to schematic extensions of KFL and KF.

§5. Schematic extension.

5.1. KFL∗: rules and semantics.. In this sectionwe study the schematic extension of
KFL in the sense of [4]. This is obtained by extending KFL with a special substitution
rule that enables us to uniformly replace the distinguished predicate P in arithmetical
theorems A(P) of our extended theory for arbitrary formulas of L→

Tr
. More precisely,

following Feferman, we will employ a schematic language L→
Tr
(P) (and sub-languages

thereof) featuring a fresh schematic predicate symbol P, which is assumed to behave
classically.

Definition 5. The system KFL∗ in L→
Tr
(P) extends KFL with:

(i) The induction schema IND→(L→
Tr
(P));

(ii) ∀x(P(x)∨¬P(x));
(iii) Disquotational axiom for P:

⇒ Tr(pPẋq)↔ P(x); (KFLP)

(iv) The substitution rule:

⇒∀x(B(x)∨¬B(x)) Γ(P)⇒ ∆(P)
for B in L→

Tr
(P);Γ,∆⊆ L→

N
(P).

Γ(B/P)⇒ ∆(B/P)

The properties of KFL expressed by Lemma 8 transfer directly to KFL∗, and are
proved in an analogous fashion.
The semantics given in Section 4.1 can be modified to provide a class of fixed-point

models for KFL∗. We call ΦX the result of relativizing the operator from Section 4.1
to an arbitrary X ⊆ù.8 In particular, this means supplementing the positive inductive
definition associated with Φ with the clause:

a sentence Pz, with z a closed term of LTr, is in the extension of the
truth predicate (relativized to X) iff val(z) ∈ X .

This modification clearly does not compromise the monotonicity of the operator.
Therefore, let MINΦX be the minimal fixed point of ΦX , and MAXΦX its maximal one.

8 Feferman [4] provides a relativized fixed-point construction to arbitrary subsets of natural
numbers and establishes the soundness of KF∗.
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For any X, we then obtain the minimal HYPE model

Mmin

ΦX
:= ({MINΦX ,MAXΦX }, ⊆ ,∗).

Again in Mmin

ΦX
all arithmetical vocabulary is interpreted standardly at its two states

(fixed-points). Only the interpretation of the truth predicate varies. Our notation
reflects this.

Proposition 3. If KFL∗ ⊢ Γ⇒ ∆, then for all X,Mmin

ΦX

 Γ⇒ ∆.

Proof. By induction on the length of the derivation in KFL∗.
We consider the case of the substitution rule applied to an arithmetical sequent

Γ(P)⇒ ∆(P). That is, our proof ends with

⇒∀x(B(x)∨¬B(x)) Γ(P)⇒ ∆(P)

Γ(B/P)⇒ ∆(B/P)

with B(x) an arbitrary formula of L→
Tr
.

By induction hypothesis, for all X, Mmin

ΦX

 Γ(P)⇒ ∆(P). Since Γ(P)⇒ ∆(P) is

arithmetical, for all interpretations Y of P, (N,Y ) � Γ(P)⇒ ∆(P). Then, following
[4], we can let Y be

{n |Mmin

ΦX

 Γ(B(n)/P)⇒ ∆(B(n)/P)}

to obtain that

Mmin

ΦX

 Γ(B/P)⇒ ∆(B/P). �

5.2. Proof-theoretic analysis. Wefirst consider the proof-theoretic lower-bound for
KFL∗. We adapt to the present setting the strategy outlined in [6, p. 84]. In particular,
Feferman and Strahm formalize the notion ofA-jump hierarchy, which is a hierarchy of
sets of natural numbers obtained by iterating an arithmetical operator expressed by an
arithmetical formula A(X,è,y). An A-jump hierarchy is relativized when the starting
point is a specific set of natural numbers expressed by some predicate P. The notion of
A-jump hierarchy is quite general, and has as special cases familiar hierarchies such as
the Turing-jump hierarchy.
For our purposes, it’s useful to considerA-jump hierarchies in which membership in

second-order parameters is replaced by the notion of satisfaction. In order to achieve
this, we employ Feferman’s strategy in [4] in which the stages of the Turing jump-
hierarchy are represented by means of suitable primitive recursive functions on codes
of LTr-formulas. Specifically, we encode in suitable primitive recursive functions the
stages of a hierarchy in which the formula A is the Veblen-jump formula that will be
introduced shortly.
We denote with A(TrfA,ç,y) the result of replacing every occurrence of (u,v) ∈ X

in A(X,ç,y) with

Tr sub(fAv ,pxq, num(u)),

where the functions fAx (y) are recursively defined as follows:

fA0 (x) := pPẋq,

fA,æ(x) := pẋ0 ≺ æ̇ ∧TrfAẋ0(ẋ1)q,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1755020321000137
Downloaded from https://www.cambridge.org/core. IP address: 212.114.229.15, on 08 Mar 2022 at 14:37:23, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1755020321000137
https://www.cambridge.org/core


18 MARTIN FISCHER ET AL.

fAæ (x) := pA(TrfA,æ̇,æ̇,ẋ)q.

In the clause for fA,æ , the input x is intended to be an ordered pair (x0,x1). As in
the definitions of translations ó and ô above, the existence of the function fA can be
obtained by employing the recursion theorem, as it needs to apply to its arithmetical
code.
Recall the general pattern of the Gentzen jump formula—with → the HYPE

conditional:

J (B,î) := ∀ç(∀æ ≺ çB(æ)→∀æ ≺ ç+îB(æ)).

We build our A-hierarchy on the more complex Veblen-jump formula A, as stated by
Schütte in [24, p. 185], which is crucial for the proof-theoretic analysis of predicative
systems.
One first defines the functions:

e(0) = 0 h(0) = 0
e(ùç) = ç h(ùç) = 0
e(ùç1 + ···+ùçn ) = çn h(ùç1 + ···+ùçn ) = ùç1 + ···+ùçn–1

with çn � ··· � ç1.
The Veblen-jump formula A is then the following:

A(TrfA,î,y) := ∀æ(h(î)4 æ ≺ îJ (TrfA

æ ,ϕe(î)y)).

It expresses that, given some ordinal î, the A-jump hierarchy in the interval between
the ordinal h(î) and î itself is closed under the Gentzen jump relative to ϕ

e(î)y (with
y a parameter). In the following we will omit the superscripts specifying the formula,
since we will keep A fixed.
An essential ingredient of the lower-bound proof for KFL∗ is the ‘disquotational’

behavior of our truth predicate for stages in the hierarchy that are provably well-
founded.

Lemma 12. If we have TIα(L
→
Tr
), then for all ç, with 0≺ ç ≺ α

Trf. ç(n)↔A(Trf.
ç,ç,n).

Proof. For all ç and all n, we can show that Sentç(f
ç((n0,n1))) and Sentç(fç(n)) by

transfinite induction on ç making use of the properties of the ramified truth predicates
such as, for ë≺ α limit:

∀æ ≺ ë
(

Trë(Træ t)↔ Træval(t)
)

.

Such properties just state that Tarskian truth predicates are fully compositional for
ordinals for which we have transfinite induction ([4], [14, sec. 9.1]).
Since all truth predicates in Trf. ç(n) are provably compositional by TIα(L

→
Tr
), the

claim is obtained by the fact that full compositionality entails disquotation as shown
by [27]. �

The disquotational properties allow us to establish some fundamental properties
of the A-jump hierarchy. In particular, we show that the A-jump hierarchy can be
elegantly expressed by truth ascriptions on the functions fα . This is because the truth
predicate enables us to quantify over the stages of the construction of the A-jump
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hierarchy, and also to retrieve specific information about all the previous stages of the
hierarchy, thanks to the disquotational property.

Lemma 13. If TIα(L
→
Tr
) is derivable in KFL∗ for some α > 0, then we can derive in

KFL∗:
∀y(P(y)↔Trf0(y))∧∀æ[0≺ æ ≺ α→∀y[Trfæ(y)↔∀z(h(æ)4 z ≺ æ

→J (Trfz,ϕe(æ)y))]].

Proof. By our disquotational axioms for P, it immediately follows that ∀y(P(y)↔
Trf0(y)).
Let’s assume now that 0≺ æ ≺ α. We have

Trfæ(y)↔ TrpA(Trf æ̇,æ̇,ẏ)q

the right hand side is equivalent by the disquotational property to

A(Trfæ,æ,y).

By the definition of fæ , the latter formula is in turn equivalent to

A(Trpż ≺ æ̇ ∧Trfż(ẋ)q,æ,y),

which is again equivalent to

∀z(h(æ)4 z ≺ æ (J (Trpż ≺ æ̇ ∧Trfż(ẋ)q,ϕe(æ)y))). (27)

By applying the disquotational property to (27), we obtain

∀z(h(æ)4 z ≺ æJ (Trfz(x),ϕe(æ)y)). �

Just like the Gentzen jump enabled us to establish the preservation of properties via
‘steps’ determined by fundamental sequence of ordinals ùn up to ε0, the Veblen jump
allows us to establish the preservation of properties along the ‘steps’ governed by a
fundamental sequence of ordinals up to Γ0. The progressiveness of the Veblen jump is
the main engine that enables us to climb the A-hierarchy: this is what the next lemma
establishes, which is analogous to Schütte’s Lemma 9 in [24, p. 186], a lemma that has
become a standard tool in predicative proof-theory.

Lemma 14. If TIα(L
→
Tr
) is provable in KFL∗ for α < Γ0, then KFL

∗ proves

∀æ(0≺ æ ≺ α∧ (∀è ≺ æ Prog(Trfè)→ Prog(Trfæ))).

Proof. Let l(·) be the function that keeps track of the syntactic complexity of an
ordinal code. One first shows that the following claims

æ ≺ α (28)

∀x ≺ æ Prog(Trfx) (29)

∀y ≺ çTrfæ(y) (30)

∀y(l(y)< l(è)→ (y ≺ ϕ
e(æ)ç→ (∀z(h(æ)4 z ≺ æ →J (Trfz,y)))) (31)

è ≺ ϕ
e(æ)ç (32)

h(æ)� î ≺ æ (33)

entail J (Trfî,è).
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First we apply the principle of induction on the syntactic composition of ordinal
codes [24, theorem 20.10, p. 173] (provable in KFL∗):

∀x(∀y(l(y)< l(x)→ φ(y))→ φ(x))→ φ(t) (34)

to the formula

φ(u) :↔ u ≺ ϕ
e(æ)ç→∀z(h(æ)4 z ≺ æ J (Trfz,u)).

Since we can prove that

∀x ≺ æ Prog(Trfx)→
(

∀y ≺ è (l(y)< l(è)→ (y ≺ ϕ
e(æ)è→∀z(h(æ)4 z

≺ æ J (Trfz,y))))
)

,

we obtain by the above-mentioned induction principle

∀x ≺ æ Prog(Trfx)→ (∀y ≺ çTrfæ(y)→ (è ≺ ϕe(æ)ç→∀z(h(æ)4 z

≺ æ J (Trfz,è)))). (35)

By the definition of progressiveness we obtain

Prog(Trfî)→ (∀x ≺ ϕe(æ)çJ (Trfî,x)→J (Trfî,ϕe(æ)ç)). (36)

Therefore, by combining the previous two claims, we obtain

∀x ≺ æ Prog(Trfx)→
(

∀y ≺ çTrfæ(y)→∀z(h(æ)4 z ≺ æ J (Trfz,ϕe(æ)ç))
)

. (37)

Finally, by Lemma 13 applied to (37), we can conclude that

∀x ≺ æ Prog(Trfx)→
(

∀y ≺ çTrfæ(y)→ Trfæ(ç))
)

. (38)

�

Let’s characterize the fundamental series of ordinals < Γ0 as functions of natural
numbers in the standard way: ã0 := ù, and ãn+1 := ϕãn0. Then, we have:

Proposition 4. If TIãn (P) is derivable in KFL
∗, then TIϕãn 0(P) is derivable in KFL

∗.

Proof. We assume Prog(P). If TIãn (P) is derivable in KFL
∗, then by Corollary 2

and the determinateness of P we can show TIùãn+1(P). By the substitution rule we get
that the hierarchy predicates are well-defined. Additionally we can prove that

∀æ ≺ ùãn +1 ∀x(Træ(x)∨¬Træ(x)). (39)

Notice that by (39) we can reformulate this fragment of the hierarchy by replacing all
the occurrences of the HYPE-conditional by the material conditional. Therefore, we
have

∀æ ≺ ùãn +1(Trfæ(x)↔A(Trfæ,æ,x)). (40)

By the previous lemma, for a ≺ ùãn +1,

∀b ≺ a Prog(Trfb)→ Prog(Trfa), (41)

and therefore, by the substitution rule applied to TIãn (P) and (41), we have that
Prog(Trfùãn ), which entails Trfùãn (0).
Using (40), we have

∀æ(h(ùãn )4 æ ≺ ùãn J (Trfæ,ϕe(ùãn )0). (42)
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However, since h(ùãn ) = 0 and e(ùãn ) = ãn we can then infer

∀æ ≺ ùãn (∀y(∀x ≺ yTrfæ(x)→∀x ≺ y+ϕãn0Trfæ(x))). (43)

By letting æ = y = 0, we obtain ∀x ≺ ϕ
e(ùãn )0 P(x), as desired. �

Corollary 7. KFL∗ defines the truth predicates of RT<α , for α ≺ Γ0.

Following the characterization of predicative analysis in terms of ramified systems
given in [2, 4], and the relationships between ramified truth and ramified analysis
studied there, one can then conclude that the systems of ramified analysis below Γ0 are
proof-theoretically reducible to our system KFL∗.
In subsection 4.3 we showed that KFL can be proof-theoretically reduced—w.r.t.

arithmetical sentences—toKF. That argument can be lifted toKFL∗. One can consider
the system KF∗— Ref∗(PA(P)) in [4]—and slightly modify the translations ó, ô from
Definition 4: in particular, we let

(Ps)ó = (Ps)ô = Ps (¬Ps)ô = ¬Ps.

Then, by induction on the length of proof in KFL∗, we can prove:

Proposition 5. If KFL∗ ⊢ Γ⇒ ∆, then KF∗ ⊢ (
∧

Γ→
∨

∆)ó .

Given the analysis of KF∗ given in [4], the combination of Propositions 5 and 4
yields a sharp proof-theoretic analysis also for KFL∗:

Corollary 8. |KFL∗|= |KF∗|= Γ0.

§6. Laws of truth and intensionality. The main aim of the paper is to show that
KFL andKFL∗ are proof-theoretically strong. We now conclude by discussing some of
their philosophical virtues. We focus on KFL, but our discussion transfers with little
modification toKFL∗. In particular, we now argue thatKFL displays some advantages
with respect to its direct competitors in classical logic (KF) and nonclassical logic
(PKF).
Even truth theorists that consider classical logic as superior do not question the

importance of the disquotational intuition for our philosophical notion of truth [5,
p. 189]. Theories such as KF can only approximate such intuition, by restricting it to
sentences that are ‘grounded’, in the sense of being provably true or false. KFL can
preserve such intuition in great generality, by validating the Tr-schema for sentences
not containing the conditional→. Typically, however, nonclassical theories pay tribute
to this greater vicinity to the unrestricted Tr-schema (cf. Lemma 8) with a substantial
loss in logical and deductive power. This is not so for KFL: its proof-theoretic strength
matches the one of KF.
KFL appears also to improve on the philosophical rationale behind the fully

disquotational truthpredicate ofPKF. Because of theirmissing conditional, all variants
of PKF do not have the means to express in the object language their basic principles
of truth. KFL overcomes these limitations by replacing this metatheoretic inferential
apparatus by truth theoretic laws formulated by means of the HYPE conditional.
This also enables us to formulate fully in the language of KFL principles of ‘mixed’
nature, such as induction principles open to the truth predicate or, in the case ofKFL∗,
additional predicates. This is the root of the increased proof-theoretic strength ofKFL.
As a consequence, we are also able to speak more fully about the truth (and falsity)
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of non-semantic sentences of L→
Tr
[19, p. 391]: for instance, if compared to PKF, KFL

can prove many more iterations of the truth predicate over basic non-semantic truths
such as 0 = 0 (Corollary 4).
For a full philosophical defense ofKFL—which, however, is not the main aim of this

paper—it is important to say something about the role of the conditional ofHYPE and
its interaction with the truth predicate of KFL. There are at least two ways of doing
so. One could follow Leitgeb in providing a semantic explanation of the intensional
nature of theHYPE conditional. According to Leitgeb, truth ascriptions are evaluated
locally, at each fixed-point, whereas conditional statements are evaluated globally, that
is, by looking at the entire structure of fixed points. Therefore, if the Tr-schema held
also for conditional claims, a truth ascription that contains the conditional would need
to be evaluated both locally and globally, which would amount to a category mistake
inMΦ.
Alternatively, one could attempt a direct proof-theoretic explanation of the inter-

action of the truth predicate and the HYPE-conditional. Leon Horsten [16] defends
PKF on the basis of inferential deflationism: the basic principles of disquotational
truth are given inferentially, and essentially so [16, sec. 10.2]. Horsten claims in
particular that the laws of truth can only be expressed against the background of
an inferential apparatus which is not part of the language to which truth is applied.
One might extend Horsten’s inferential approach to the present case, and argue that
KFL characterizes truth in a similar fashion. The laws of truth are given against
the background of a theoretical apparatus that essentially involves the conditional of
HYPE. Such theoretical apparatus amounts to the inferential structure of the truth
laws of PKF, but now formulated in the language of our theory of truth. This would
also explainwhy the Tr-schema only holds for sentences that do not contain theHYPE-
conditional. On this picture, one should not expect the conditional ofHYPE to appear
in truth ascriptions inKFL, in the sameway as one should not expect inferential devices
of PKF (such as sequent arrows) to appear under the scope of its truth predicate.
As mentioned, a full philosophical defense ofKFL is outside the scope of our paper,

and it will be carried out in future work.
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