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Abstract

We show that b = c = ω3 is consistent with the existence of a ∆1
3-definable wellorder of

the reals and a Π1
2-definable ω-mad subfamily of [ω]ω (resp. ωω).
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1. Introduction

The existence of a projective, in fact ∆1
3-definable wellorder of the reals in the pres-

ence of large continuum, i.e. c ≥ ω3, was established by Harrington in [8]. In the
present paper, we develop an iteration technique which allows one not only to obtain the
consistency of the existence of a ∆1

3-definable wellorder of the reals with large contin-
uum (see Theorem 1), but in addition the existence of a Π1

2-definable ω-mad family with
b = c = ω3 (see Theorem 2). The method is a natural generalization to models with large
continuum of the iteration technique developed in [5]. We expect that an application of
Jensen’s coding techniques will lead to the same result with essentially arbitrary values
for c.

For a more detailed introduction to the subject of projective wellorders of the reals
and projective mad families, see [5] and [7]. Recall that a familyA of infinite subsets of
ω is almost disjoint if any two of its elements have finite intersection. An infinite almost
disjoint family A is maximal (abbreviated mad family), if for every infinite subset b of
ω, there is an element a ∈ A such that |a ∩ b| = ω. IfA is an almost disjoint family, let
L(A) = {b ∈ [ω]ω : b is not covered by finitely many elements of A}. A mad familyA
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is ω-mad if for every B ∈ [L(A)]ω, there is a ∈ A such that |a∩b| = ω for all b ∈ B. For
the definition of b, as well as an introduction to the subject of cardinal characteristics of
the continuum we refer the reader to [1].

In section 2 we introduce a model in which b = c = ω3 and there is a ∆1
3-definable

wellorder of the reals. In section 3 we show how to modify the argument to obtain in
addition the existence of a Π1

2-definableω-mad family. We begin by fixing an appropriate
sequence ~S = 〈S α : 1 < α < ω3〉 of stationary subsets of ω3 and explicitly destroying
the stationarity of each S α by adding a closed unbounded subset of ω3 disjoint from
it. The wellorder is produced by introducing reals (see Steps 1 through 3 in section 2)
which code this stationary kill for certain stationary sets from ~S . For this purpose, we
use almost disjoint coding as well as a modified version of the method of localization
(see [4] and [5, Definition 1]).

2. Projective Wellorders with Large Continuum

Throughout the paper we work over the constructible universe L, thus unless other-
wise specified V = L. Let 〈Gξ : ξ ∈ ω2 ∩ cof(ω1)〉 be a ♦ω2(cof(ω1)) sequence which
is Σ1 definable over Lω2 . For every α < ω3, let Wα be the L-least subset of ω2 cod-
ing the ordinal α. Let ~S = 〈S α : 1 < α < ω3〉 be the sequence of stationary subsets
of ω2 defined as follows: S α = {ξ ∈ ω2 ∩ cof(ω1) : Gξ = Wα ∩ ξ , ∅}. In par-
ticular, the sets S α are stationary subsets of cof(ω1) ∩ ω2 which are mutually almost
disjoint (that is, for all 1 < α, β < ω3, α , β, we have that S α ∩ S β is bounded). Let
S −1 = {ξ ∈ ω2 ∩ cof(ω1) : Gξ = ∅}. Note that S −1 is a stationary subset of ω2 ∩ cof(ω1)
disjoint from all S α’s.

Say that a transitive ZF− modelM is suitable if ωM3 exists and ωM3 = ωL
3
M. From

this it follows, of course, that ωM1 = ωL
1
M and ωM2 = ωL

2
M.

Step 0. For every α : ω2 ≤ α < ω3 shoot a closed unbounded set Cα disjoint from
S α via a poset P0

α. The poset P0
α consists of all bounded, closed subsets of ω2, which

are disjoint from S α. The extension relation is end-extension. Note that P0
α is countably

closed and ℵ2-distributive (see [3]). For every α ∈ ω2 let P0
α be the trivial poset.

Let P0 =
∏

α<ω3 P
0
α be the direct product of the P0

α’s with supports of size ω1. Then
P0 is countably closed and by the ∆-system Lemma, also ω3-c.c. Its ω2-distributivity is
easily established using the stationary set S −1 ⊆ ω2 ∩ cof(ω1).

Step 1. We begin by fixing some notation. Let X be a set of ordinals. Denote by 0(X),
I(X), and II(X) the sets {η : 3η ∈ X}, {η : 3η + 1 ∈ X} and {η : 3η + 2 ∈ X}, respectively.
Let Even(X) be the set of even ordinals in X and Odd(X) be the set of odd ordinals in X.
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In the following we treat 0 as a limit ordinal. For every α : ω2 ≤ α < ω3 let
Dα ⊂ ω2 be a set coding the tuple 〈Cα,Wα,Wγ〉, where γ is the largest limit ordinal ≤ α.
More precisely Dα is such that 0(Dα), I(Dα), and II(Dα) equal Cα, Wα, and Wγ, respec-
tively. Now let Eα be the club in ω2 of intersections with ω2 of elementary submodels of
Lα+ω2+1[Dα] which contain ω1 ∪ {Dα} as a subset. (These elementary submodels form
an ω2-chain.) Now choose Zα to be a subset of ω2 such that Even(Zα) = Dα, and if
β < ω2 is ωM2 for some suitable modelM such that Zα ∩ β ∈ M, then β belongs to Eα.
(This is easily done by placing in Zα a code for a bijection φ : β1 → ω1 on the interval
(β0, β0 + ω1) for each adjacent pair β0 < β1 from Eα.) Then we have:

(∗)α: If β < ω2 andM is any suitable model such that ω1 ⊂ M, ωM2 = β, and Zα ∩ β ∈
M, thenM � ψ(ω2,Zα∩β), where ψ(ω2, X) is the formula “Even(X) codes a tuple
〈C̄, W̄, ¯̄W〉, where W̄ and ¯̄W are the L-least codes of ordinals ᾱ, ¯̄α < ω3 such that
¯̄α is the largest limit ordinal not exceeding ᾱ, and C̄ is a club in ω2 disjoint from
S ᾱ”.

Indeed, given a suitable modelM with ωM2 = β and Zα ∩ β ∈ M, note that β ∈ Eα by
the construction of Zα and also that Dα ∩ β ∈ M. Let N be an elementary submodel
of Lα+ω2+1[Dα] such that ω1 ∪ {Dα} ⊂ N and N ∩ ω2 = β. Denote by N̄ the transitive
collapse of N . Then N̄ = Lξ[Dα] for some ω2 > ξ > β and ωN̄2 = ωM2 = β. Therefore
N̄ ⊂ M. Let Z′α ⊂ ω2 be such that Even(Z′α) = Odd(Z′α) = Dα. By the definition of
Dα, Lα+ω2+1[Dα] � ψ(ω2,Z′α). By elementarity, N̄ � ψ(ω2,Z′α ∩ β). Since the formula
ψ is Σ1, ωN̄2 = ωM2 , we conclude that M � ψ(ω2,Z′α ∩ β). Since Zα ∩ β ∈ M and
Even(Z′α) = Even(Zα), we haveM � ψ(ω2,Zα ∩ β), which finishes the proof of (∗)α.

Now similarly to ~S we can define a sequence ~A = 〈Aξ : ξ < ω2〉 of stationary
subsets ofω1 using the “standard” ♦-sequence. Then in particular this sequence is nicely
definable over Lω1 and almost disjoint. Now we code Zα by a subset Xα of ω1 with the
forcing P1

α consisting of all tuples 〈s0, s1〉 ∈ [ω1]<ω1 × [Zα]<ω1 where 〈t0, t1〉 ≤ 〈s0, s1〉 iff
s0 is an initial segment of t0, s1 ⊆ t1 and t0\s0∩Aξ = ∅ for all ξ ∈ s1. Then Xα obviously
satisfies the following condition:

(∗∗)α: If ω1 < β ≤ ω2 andM is a suitable model such that ωM2 = β and {Xα} ∪ ω1 ⊂ M,
thenM � φ(ω1, ω2, Xα), where φ(ω1, ω2, X) is the formula: “ Using the sequence
~A, X almost disjointly codes a subset Z̄ of ω2, whose even part Even(Z̄) codes a
tuple 〈C̄, W̄, ¯̄W〉, where W̄ and ¯̄W are the L-least codes of ordinals ᾱ, ¯̄α < ω3 such
that ¯̄α is the largest limit ordinal not exceeding ᾱ, and C̄ is a club in ω2 disjoint
from S ᾱ”.
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Let P1 =
∏

α<ω3 P
1
α, where P1

α is the trivial poset for α ∈ ω2, be the product of
the P1

α’s with countable support. The poset P1 is easily seen to be countably closed.
Moreover, it has the ω2-c.c. by a standard ∆-system argument.

Step 2. Now we shall force a localization of the Xα’s. Fix φ as in (∗∗)α.

Definition 1. Let X, X′ ⊂ ω1 be such that φ(ω1, ω2, X) and φ(ω1, ω2, X′) hold in any
suitable model M with ωM1 = ωL

1 containing X and X′, respectively. We denote by
L(X, X′) the poset of all functions r : |r| → 2, where the domain |r| of r is a countable
limit ordinal such that:

1. if γ < |r| then γ ∈ X iff r(3γ) = 1
2. if γ < |r| then γ ∈ X′ iff r(3γ + 1) = 1
3. if γ ≤ |r|, M is a countable suitable model containing r � γ as an element and

γ = ωM1 , thenM � φ(ω1, ω2, X ∩ γ) ∧ φ(ω1, ω2, X′ ∩ γ).

The extension relation is end-extension.

Set P2
α+m = L(Xα+m, Xα) for every α ∈ Lim(ω3)\ω2 and m ∈ ω. Let P2

α+m be the
trivial poset for every α ∈ Lim(ω2) and m ∈ ω. Let

P2 =
∏

α∈Lim(ω3)

∏
m∈ω

P2
α+m

with countable supports. By the ∆-system Lemma in LP0∗P1
the poset P2 has the ω2-c.c.

Observe that the poset P2
α+m, where α > 0, produces a generic function from ω1

(of LP0∗P1
) into 2, which is the characteristic function of a subset Yα+m of ω1 with the

following property:

(∗ ∗ ∗)α : For every β < ω1 and any suitableM such that ωM1 = β and Yα+m ∩ β belongs to
M, we haveM � φ(ω1, ω2, Xα+m ∩ β) ∧ φ(ω1, ω2, Xα ∩ β).

Lemma 1. The poset P0 := P0 ∗ P1 ∗ P2 is ω-distributive.

Proof. Given a condition p0 ∈ P0 and a collection {On}n∈ω of open dense subsets of P0,
choose the least countable elementary submodelN of some large Lθ (θ regular) such that
{p0} ∪ {P0} ∪ {On}n∈ω ⊂ N . Build a subfilter g of P0 ∩N , below p0, which hits all dense
subsets of P0 which belong to N . Write g as g(0) ∗ g(1) ∗ g(2). Now g(0) ∗ g(1) has a
greatest lower bound p(0) ∗ p(1) because the forcing P0 ∗ P1 is ω-closed. The condition
(p(0), p(1)) is obviously (N ,P0 ∗ P1)-generic.
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On each component α+m ∈ N∩ω3, where α ∈ Lim(ω3), m ∈ ω, define p(2)(α+m) =⋃
g(2)(α + m). It suffices to verify that p(2)(α + m) is a condition in P2

α+m, for this will
give us a condition p(2) so that p(0) ∗ p(1) ∗ p(2) meets each of the On’s.

As (p(0)(α), p(0)(α+m), p(1)(α), p(1)(α+m)) is a (N ,P0
α∗P0

α+m∗P1
α∗P1

α+m)-generic
condition, if

G := G(0)(α) ∗G(0)(α + m) ∗G(1)(α) ∗G(1)(α + m)

is a P0
α ∗ P0

α+m ∗ P1
α ∗ P1

α+m-generic filter over L containing it, then the isomorphism π of
the transitive collapse N̄ of N , onto N extends to an elementary embedding from

N̄0 := N̄[g(0)(ᾱ) ∗ g(0)(ᾱ + m) ∗ g(1)(ᾱ) ∗ g(1)(ᾱ + m)]

into Lθ[G]. Here g(i) = π−1(g(i)), i ∈ 2, and ξ̄ = π−1(ξ) for all ξ ∈ N ∩ Ord. By the
genericity of G we know that, letting Xα =

⋃
G(1)(α), Xα+m =

⋃
G(1)(α+m), properties

(∗∗)α and (∗∗)α+m hold. By elementarity, N̄0 is a suitable model and N̄0 � φ(ω1, ω2, xᾱ)∧
φ(ω1, ω2, xᾱ+m), where xᾱ =

⋃
g(1)(α) =

⋃
g(1)(ᾱ) and xᾱ+m =

⋃
g(1)(α + m) =⋃

g(1)(ᾱ + m). By the construction of P0, N̄0 = N̄[xᾱ, xᾱ+m] and hence N̄[xᾱ, xᾱ+m] �
φ(ω1, ω2, xᾱ) ∧ φ(ω1, ω2, xᾱ+m).

Let ξ be such that N̄ = Lξ and let M be any suitable model containing p(2)(α),
p(2)(α + m), and such that ωM1 = ω1 ∩ N . We have to show thatM � φ(ω1, ω2, xᾱ) ∧
φ(ω1, ω2, xᾱ+m). Set η = M∩ Ord and consider the chainM2 ⊆ M1 ⊆ M of suitable
models, whereM2 = Lη[xᾱ, xᾱ+m] andM1 = Lη[p(2)(α), p(2)(α + m)]. Three cases are
possible.

Case a). η > ξ. Since N was chosen to be the least countable elementary submodel
of Lθ containing the initial condition, the poset and the sequence of dense sets, it follows
that ξ (and therefore also δ) is collapsed to ω in Lξ+2, and hence this case cannot happen.

Case b). η = ξ. In this caseM2 � φ(ω1, ω2, xᾱ) ∧ φ(ω1, ω2, xᾱ+m). (Indeed,M2 =

Lη[xᾱ, xᾱ+m] = N̄[xᾱ, xᾱ+m].) Since φ is a Σ1-formula, ωM2
1 = ωM1 and ωM2

2 = ωM2 , we
haveM � φ(ω1, ω2, xᾱ) ∧ φ(ω1, ω2, xᾱ+m).

Case c). η < ξ. In this caseM2 is an element of N̄[xᾱ, xᾱ+m]. Since Lθ[G] satisfies
(∗∗)α and (∗∗)α+m, by elementarity so does the model N̄[xᾱ, xᾱ+m] with Xα replaced by
xᾱ and Xα+m replaced by xᾱ+m. In particular, M2 � φ(ω1, ω2, xᾱ) ∧ φ(ω1, ω2, xᾱ+m).
Since φ is a Σ1-formula, ωM2

1 = ωM1 , and ωM2
2 = ωM2 , we have M � φ(ω1, ω2, xᾱ) ∧

φ(ω1, ω2, xᾱ+m), which finishes our proof.

Set P0 = P0∗P1∗P2. Let us fix ξ ∈ ω3 and denote by P0,,ξ,P1,,ξ,P2,,ξ the following
posets in L, LP0,,ξ

, and LP0,,ξ∗P1,,ξ
, respectively:∏

α∈ω3\{ξ} P
0
α with supports of size ω1;∏

α∈ω3\{ξ} P
1
α with countable supports; and
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∏
α∈ω3\{ξ} P

2
α with countable supports.

Observe that P̃,ξ0 := P0,,ξ ∗ P1,,ξ ∗ P2,,ξ <c P0 ∗ P1 ∗ P2 = P0, where for posets P ⊆ Q
the notation P <c Q means that the identity embedding from P to Q is complete.2 Let R̃
be the quotient poset P0/P̃,ξ0 . Thus P̃,ξ0 ∗ R̃ = P0.

Step 3. We begin with fixing some terminology. For α : 1 < α < ω3 we will say that
there is a stationary kill of S α, if there is a closed unbounded set C disjoint from S α. We
will say that the stationary kill of S α is coded by a real, if there is a closed unbounded
set disjoint from S α which is constructible from this real.

Fix a nicely definable sequence ~B = 〈Bζ,m : ζ < ω1,m ∈ ω〉 of almost disjoint subsets
ofω. We will define a finite support iteration 〈Pα, Q̇γ : α ≤ ω3, γ < ω3〉 such that P0 is as
above, Q̇α is a Pα-name for a σ-centered poset, in LPω3 there is a ∆1

3-definable wellorder
of the reals and c = b = ℵ3. Every Qα is going to add a generic real whose Pα-name will
be denoted by u̇α and we shall prove that L[Gα]∩ωω = L[〈u̇Gα

ξ : ξ < α〉]∩ωω for every
Pα-generic filter Gα (see Lemma 2). This gives us a canonical wellorder of the reals
in L[Gα], which depends only on the sequence 〈u̇Gα

ξ : ξ < α〉, whose Pα-name will be
denoted by <̇α. We can additionally arrange that for α < β we have that 1Pβ forces <̇α to
be an initial segment of <̇β. Then if G is a Pω3-generic filter over L, <G=

⋃
{<̇G

α : α < ω3}

will be the desired wellorder of the reals. Furthermore this wellorder will not depend on
the generic set G (see Lemmas 4 and 5).

We proceed with the recursive construction of Pω3 . Along this construction we shall
also define a sequence 〈Ȧα : α ∈ Lim(ω3)〉, where Ȧα is a Pα-name for a subset of
[α, α + ω). For every ω2 ≤ ν < ω3 fix a bijection iν : {〈ζ, ξ〉 : ζ < ξ < ν} → Lim(ω2).
If Gα is Pα-generic over L, <α= <̇Gα

α and x, y are reals in L[Gα] such that x <α y, let
x∗y = {2n : n ∈ x}∪{2n+1 : n ∈ y} and ∆(x∗y) = {2n+2 : n ∈ x∗y}∪{2n+1 : n < x∗y}.

Suppose Pα has been defined and fix a Pα-generic filter Gα.
Case 1. Suppose α is a limit ordinal and write it in the form ω2 · α

′ + ξ, where
ξ < ω2. If α′ > 0, let i = io.t.(<̇Gα

ω2 ·α
′ )

and 〈ξ0, ξ1〉 = i−1(ξ). Let Aα := ȦGα
α be the set

α + (ω \ ∆(xξ0 ∗ xξ1)), where xζ is the ζ-th real in L[Gω2·α′] ∩ [ω]ω according to the
wellorder <̇Gα

ω2·α′
(here Gω2·α′ = Gα ∩ Pω2·α′). Let also

Qα =
{
〈s0, s1〉 : s0 ∈ [ω]<ω, s1 ∈

[ ⋃
m∈∆(xξ0∗xξ1 )

Yα+m × {m}
]<ω}

,

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s1 ⊂ t1, s0 is an initial segment of t0 and (t0 \ s0) ∩
Bζ,m = ∅ for all 〈ζ,m〉 ∈ s1.

2It might seem unclear why we denote P0,,ξ ∗ P1,,ξ ∗ P2,,ξ by P̃,ξ0 and not simply by P,ξ0 . It is to reserve
the notation P,ξ0 for a certain restriction of P0,,ξ ∗ P1,,ξ ∗ P2,,ξ appearing naturally in the proof of Lemma 3.
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Case 2. If α is not of the form above, i.e. α is a successor or α < ω2, then Ȧα is a
name for the empty set and Q̇α is a name for the following poset adding a dominating
real:

Qα = {〈s0, s1〉 : s0 ∈ ω
<ω, s1 ∈ [o.t.(<̇Gα

α )]<ω},

where 〈t0, t1〉 ≤ 〈s0, s1〉 if and only if s0 is an initial segment of t0, s1 ⊂ t1, and t0(n) >
xξ(n) for all n ∈ dom(t0) \ dom(s0) and ξ ∈ s1, where xξ is the ξ-th real in L[Gα] ∩ ωω

according to the wellorder <̇Gα
α .

In both cases Qα adds the generic real3 uα =
⋃
{s0 : ∃s1 〈s0, s1〉 ∈ gα}, where gα is

Qα-generic over V[Gα] and L[Gα][uα] = L[Gα][gα].
With this the definitions of P = Pω3 and 〈Ȧα : α ∈ Lim(ω3)〉 are complete.

Remark 1. Note that if the first case in the definition of Q̇α above takes place, then
in LPα the poset Q̇α produces a real rα, which for certain reals x, y codes Yα+m for all
m ∈ ∆(x ∗ y).

Let H be a poset. An H-name ḟ is called a nice name for a real if ḟ =
⋃

i∈ω{〈〈i, jip〉, p〉 :
p ∈ Ai( ḟ )} where for all i ∈ ω, Ai( ḟ ) is a maximal antichain in H, jip ∈ ω and for all
p ∈ Ai( ḟ ), p  ḟ (i) = jip. From now on we will assume that all names for reals are nice.

Using the fact that for every p ∈ P and α > 0 the coordinate p(α) is a Pα-name for a
finite set of ordinals, one can show that the setD of conditions p fulfilling the following
properties is dense in P:

• For every α > 0 in the support of p, p(α) = ˇ〈s0, s1〉 for some s1 ∈ [Ord]<ω and
s0 ∈ [ω]<ω or s0 ∈ ω

<ω depending on Q̇α.

Lemma 2. Let γ ≤ ω3 and let Gγ be a Pγ-generic filter over L. Then L[Gγ] ∩ ωω =

L[〈u̇Gγ

δ : δ < γ〉] ∩ ωω.

Proof. Let ḟ =
⋃

i∈ω{〈〈i, jip〉, p〉 : p ∈ Ai( ḟ )} be a nice Pγ-name for a real such that⋃
i∈ωAi( ḟ ) ⊂ D, f = ḟ Gγ and let pi be the unique element ofAi( ḟ ) ∩Gγ. Set uξ = u̇Gγ

ξ

for all ξ < γ. Since P0 is countably distributive, there exists q ∈ P0 ∩ Gγ such that
q ≤ pi(0) for all i ∈ ω.

Observe that 〈i, j〉 ∈ f if and only if there exists p ∈ Ai( ḟ ) such that p(0) ≥ q and
for every α in the support of p the following holds:

If p � α forces Q̇α to be an almost disjoint coding, i.e. α = ω2 · α
′ + i(β0, β1) for

some α′ > 0 and β0 < β1 < o.t.(<̇Gγ

ω2·α′
) and Qα produces a real coding a stationary kill of

S α+m for all m ∈ ∆(xβ0 ∗ xβ1), where xδ is the δ-th real in L[〈uξ : ξ < ω2 ·α
′〉], then p(α)0

is an initial segment of uα and uα \ p(α)0 is disjoint from Bζ,m for all 〈ζ,m〉 ∈ p(α)1; and

3uα ∈ [ω]ω in the first case and uα ∈ ωω in the second case.
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If p � α forces Q̇α to be a poset adding a dominating function, i.e. Qα produces a
real uα dominating all reals in L[〈uξ : ξ < α〉], then p(α)0 is an initial segment of uα
and uα(n) > xξ(n) for all ξ ∈ p(α)1 and n ≥ dom(p(α)0), where xξ is the ξ-th real in
L[〈uζ : ζ < α〉] according to the wellorder <̇Gγ

α .
Since <̇Gγ

β depends only on the sequence 〈uζ : ζ < β〉 for all β < γ, the definition of
f above implies that f ∈ L[〈uζ : ζ < γ〉], which finishes our proof.

Lemma 3. Let G be a P-generic filter over L. Then for ξ ∈
⋃
α∈Lim(ω3) ȦG

α there is no real
coding a stationary kill of S ξ.

Proof. Let p ∈ G be a condition forcing

ξ ∈
⋃

α∈Lim(ω3)

ȦG
α .

Suppose that ξ = β + 2n − 1 for some limit β and n ∈ ω. Without loss of generality,
p ∈ Pβ ∩D.

We define a finite support iteration of a countably distributive poset followed by
c.c.c. posets 〈P̄α, ˙̄Qγ : α ≤ ω3, γ < ω3〉, where P̄0 = P0 � p(0) and in LP̄α we have
Q̄α = Qα � p(α). Such an iteration is just another way of thinking of the poset P � p
which will appear useful for further considerations.

Let p,ξ0 , pξ0 be such that p,ξ0 ∈ P̃,ξ0 , p,ξ0  pξ0 ∈ R̃ and 〈p,ξ0 , pξ0〉 = p(0), where R̃
is the quotient poset P0/P̃,ξ0 . Denote by P,ξ0 the restriction P̃,ξ0 � p,ξ0 and let R be the
P,ξ0 -name for R̃ � pξ0. Note that P,ξ0 ∗ R = P̄0

4.
Now we define a finite support iteration 〈P,ξα , Q̇

,ξ
γ : α ≤ ω3, γ < ω3〉, where P,ξ0 is

as above and Q̇,ξγ is a name for a σ-centered poset. Also we define a sequence 〈Ȧ,ξα : α ∈
Lim(ω3)〉, where Ȧ,ξα is a P,ξα -name for a subset of [α, α + ω). The intention is to show
that in P̄ = P̄ω3 the components P0

ξ , P
1
ξ , P

2
ξ of P0, P1, P2, respectively, can be left out in

a certain sense. Thus the iteration 〈P,ξα , Q̇
,ξ
γ : α ≤ ω3, γ < ω3〉 will be introduced along

the lines of the definition of 〈Pα, Q̇γ : α ≤ ω3, γ < ω3〉. In particular, every Q,ξα will add
a generic real with P,ξα ∗ Q

,ξ
α -name u̇,ξα . Given a P,ξα -generic filter G = G,ξα , this gives

us a canonical wellorder of the reals in L[〈u̇,ξ
G

ζ : ζ < α〉] which depends only on the

sequence 〈u̇,ξ
G

ζ : ζ < α〉, whose P,ξα -name will be denoted by <̇,ξα . We can additionally

arrange that for α < βwe have that 1P,ξβ
forces <̇,ξα to be an initial segment of <̇,ξβ . Along

the recursive construction for every γ < ω3 we will establish the following properties:

1. P,ξγ <c P̄γ;

4In fact, one can prove that P̃,ξ0
R̃ = Pξ0 ∗ P

ξ
1 ∗ P

ξ
2, but this does not simplify the proof.
8



2. u̇,ξ
H,ξγ

γ = u̇Hγ
γ , <̇,ξ

H,ξγ

γ = <̇
Hγ
γ and ȦHγ

γ = Ȧ,ξ
H,ξγ

γ for limit γ, where H,ξγ ⊆ P,ξγ is the
preimage of the P̄γ-generic filter Hγ under the complete embedding from (1);

3. Let P,ξ[1,γ), P̄[1,γ) be the quotient posets P,ξγ /P
,ξ
0 and P̄γ/P̄0 respectively. Then

P̄0
P,ξ[1,γ) = P̄[1,γ); and

4. L[Hγ] ∩ [Ord]ω = L[H,ξγ ] ∩ [Ord]ω where Hγ, H,ξγ are as in (2).

For γ = 0 the properties above follow from the corresponding definitions. Suppose
that (1)-(4) are established for all η < γ.

Case 1. If γ is a limit, there is nothing to prove except for (4) (To see that P,ξγ is
completely embedded in P̄γ refer to the inductive hypothesis and [2, Lemma 10]). Let
H,ξ0 = H,ξγ ∩ P,ξ0 , H0 = Hγ ∩ P0 and let K be an R-generic filter over L[H,ξ0 ] such that

L[H0] = L[H,ξ0 ][K]. Let E be the poset (P,ξ[1,γ))
H,ξ0 = P̄H0

[1,γ) ∈ L[H,ξ0 ] (the latter equal-

ity follows from (3)). Then H[1,γ)(= Hγ/H0) is E-generic over L[H,ξ0 ][K]. Therefore
L[H,ξ0 ][K][H[1,γ)] = L[H,ξ0 ][H[1,γ)][K].

The following standard fact may be compared to [9, Lemma 15.19].

Claim. Suppose that P,Q are in V , P is ω-distributive and Q is c.c.c. in VP. Then P is
ω-distributive in VQ. In particular, if P is ω-distributive and Q is a finite support iteration
of σ-centered posets, then P is ω-distributive in VQ.

Proof. Let G × H be P ×Q-generic. Let f : ω→ Ord be in V[H][G] = V[G][H] and σ
be a Q-name for f in V[G]. Without loss of generality, σ is a nice name which can be
written as

⋃
i∈ω{〈〈i, jip〉, p〉 : p ∈ Ai}, where jip is an ordinal andAi ∈ V[G] is a maximal

antichain in Q. As Q is c.c.c. in V[G], each Ai is countable in V[G], and hence σ is
countable in V[G]. Therefore σ ∈ V by the countable distributivity of P. It follows that
f belongs to V[H].

By the above Claim, R is countably distributive in L[H,ξ0 ][H[1,γ)] = L[H,ξγ ] and
hence L[Hγ] ∩ [Ord]ω = L[H,ξγ ] ∩ [Ord]ω.

Case 2). γ = η + 1.
Let H,ξη be a P,ξη -generic filter over L and let K be a R-generic filter over L[H,ξ0 ],

where H,ξ0 = H,ξη ∩ P,ξ0 . In L[H,ξ0 ], the quotient poset P[1,η) = Pη/P0 is a finite sup-
port iteration of σ-centered posets. Since P,ξ[1,η) has c.c.c. in L[H,ξ0 ][K] and R is ω-

distributive, H,ξ[1,η) is P,ξ[1,η)-generic over L[H,ξ0 ][K]. By (3), the equality P,ξ[1,η) = P̄[1,η)

holds in L[H,ξ0 ][K]. Therefore Hη := H,ξ0 ∗ K ∗ H,ξ[1,η) is P̄η-generic over L.
Since p ∈ D, one of the following alternatives holds.
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Case a). ˙̄Qη is a name for an almost disjoint coding below the condition p(η) = ˇ〈sη0, s
η
1〉.

Set Q̄η = ˙̄Q
Hη

η , uδ = u̇Hη

δ , Aδ = ȦHη

δ , and <δ= <̇
Hη

δ for all δ ≤ η.
It follows that:
• η is a limit ordinal that can be written in the form η = ω2 · ν+ ζ, where ζ = i(ζ0, ζ1)

for some ζ0, ζ1 < o.t.(<Hη
ω2·ν) and i = i

o.t.(<
Hη
ω2 ·ν)

;

• Aη = η + (ω \ ∆(xζ0 ∗ xζ1)), where xε is the ε-th real in L[〈uδ : δ < ω2 · ν] ∩ ωω

according to the natural wellorder <Hη
ω2·ν of this set;

• Q̄η =
{
〈s0, s1〉 : s0 ∈ [ω]<ω, s1 ∈

[⋃
m∈∆(xζ0∗xζ1 ) Yη+m × {m}

]<ω
, s0 end-extends sη0,

s1 ⊇ sη1 and s0 \ sη0 ∩ Bε,m = ∅ for all 〈ε,m〉 ∈ sη1
}

ordered as before.
Our choice of p and the fact that the upwards closure of Hη in Pη is a Pη-generic

filter containing p imply that Yξ is not among the Yη+m’s involved into the definition of
Q̄η. Thus Q̄η ∈ L[H,ξη ]. Moreover, Q̄η is fully determined by the relevant Yη+m’s and
the sequence 〈uδ : δ < η〉 which belongs to L[H,ξη ] and does not depend on K by (2).
Therefore Q̄η does not depend on K and hence we may set Q,ξη := Q̄η, A,ξη := Aη. Let
Q̇,ξη , Ȧ,ξη be P,ξη -names for Q,ξη and A,ξη respectively. By the definition, (3) and the third
part of (2) hold true.

The equality L[Hη]∩ [Ord]ω = L[H,ξη ]∩ [Ord]ω and the σ-centeredness of Q̄η imply
that any Q,ξη -generic over L[H,ξη ] is Q̄η-generic over L[Hη] and vice versa. Therefore
P,ξ
η+1 <c P̄η+1 (note that Hη may be thought of as being an arbitrary P̄η-generic filter over

L). This establishes (1).
Let hη be a Q,ξη -generic over L[H,ξη ] (or, equivalently, Q̄η-generic filter over L[Hη]).

Since a (nice) Q̄η-name for a countable set of ordinals in L[Hη] can be naturally identified
with a countable set of ordinals, every Q̄η-nameσ ∈ L[Hη] for a countable set of ordinals
is in fact in L[H,ξη ]. Therefore L[Hη+1] ∩ [Ord]ω = L[H,ξ

η+1] ∩ [Ord]ω, where Hη+1 =

Hη ∗ hη. This proves (4).
Let us denote by u,ξη ∈ [ω]ω ∩ L[H,ξ

η+1] the union of the first coordinates of elements

of hη. By the maximality principle, this gives us a P,ξ
η+1-name u̇,ξη . By the definitions of

u̇η and u̇,ξη , u̇Hη∗hη
η = u̇,ξ

H,ξη ∗hη

η , which proves the first part of (2). By (4) and Lemma 2,

L[H,ξη ∗ hη] ∩ [ω]ω = (L[H,ξη ∗ hη] ∩ [Ord]ω) ∩ [ω]ω =

= (L[Hη ∗ hη] ∩ [Ord]ω) ∩ [ω]ω = L[Hη ∗ hη] ∩ [ω]ω =

= L[〈u̇Hη∗hη
δ : δ ≤ η〉] ∩ [ω]ω = L[〈u̇,ξ

H,ξη ∗hη

δ : δ ≤ η〉] ∩ [ω]ω,

which implies the second equality in (2) and thus concludes Case a).

Case b). ˙̄Qη is a name for a poset adjoining a dominating function restricted to the
condition p(η) = ˇ〈sη0, s

η
1〉. This case is analogous to, but easier than the Case a) (here we
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do not have to worry about Yξ) and we leave it to the reader.

This finishes our construction of 〈P,ξα , Q̇
,ξ
γ : α ≤ ω3, γ < ω3〉. Observe that condi-

tions (1)-(4) hold for γ = ω3. In particular, L[G]∩ωω = L[G,ξ]∩ωω, where G,ξ ⊂ P,ξω3

is the preimage of the P̄ω3-generic filter G under the complete embedding from (1). So
it is sufficient to show that in L[G,ξ] there is no real coding a closed unbounded sub-
set disjoint from S ξ. Since P,ξ[1,ω3) is a P,ξ0 -name for a c.c.c poset and P2,,ξ,P1,,ξ are
P0,,ξ ∗ P1,,ξ,P0,,ξ-names for ω2-c.c. posets, respectively, every closed unbounded sub-
set of ω2 in L[G,ξ] contains a closed unbounded subset of ω2 in L[G0,,ξ], see [9, Lemma
22.25]. (Here G0,,ξ = G,ξ∩P0,,ξ is the P0,,ξ-generic filter over L induced by G,ξ). Thus
it suffices to verify that S ξ is stationary in LP0,,ξ

. We shall use here an idea from [6].
Fix p ∈ P0,,ξ and let Ċ be a name for a club in ω2. We would like to find q ∈ P0,,ξ

such that q ≤ p and q P0,,ξ Ċ ∩ S ξ , ∅. Let 〈Mi : i < ω2〉 be a continuous chain of
elementary submodels of some large Lθ such that M0 contains p, α, Ċ, ω1 + 1 ⊂ M0,
γi := Mi ∩ ω2 ∈ ω2, cof(γi) = ω1, andM<ω1

i ⊂ Mi for all i ∈ ω2. Set S 0
ξ = {i ∈ S ξ :

γi = i} and note that S 0
ξ is stationary.

Claim. There exists i ∈ S 0
ξ such that i < S α for all α ∈ Mi \ {ξ}.

Proof. Note that α ∈ Mi is equivalent to α < γi, and hence to α < i since i ∈ S 0
ξ .

Suppose that for every i ∈ S 0
ξ there exists f (i) < i such that i ∈ S f (i) and f (i) , ξ. By

Fodor’s Lemma there exists j ∈ ω2 and a stationary T ⊂ S 0
ξ such that f (i) ≡ j for all

i ∈ T . It follows that T ⊂ S j, and hence T ⊂ S j ∩ S ξ, a contradiction.

Choose i as in the Claim above. We shall build an ω1-sequence p = p0 ≥ p1 ≥ · · ·

with a lower bound forcing i ∈ Ċ. Let 〈iα : α < ω1〉 be an increasing continuous
sequence of ordinals such that supα∈ω1

iα = i. Given pα, let pα+1 ≤ pα be such a condition
in P0,,ξ∩Mi such that pα+1 forces some ordinal jα+1 ∈ [iα+1, i) to belong to Ċ. For limit
α and ζ ∈ i \ {ξ} set

pα(ζ) =
⋃
β<α

pβ(ζ) ∪ {sup
⋃
β<α

pβ(ζ), iα}.

Since S ζ’s consist of ordinals of cofinality ω1 and Mi is closed under countable se-
quences of its elements, pα ∈ P0,,ξ∩Mi. This finishes our construction of the sequences
〈pα : α < ω1〉 ∈ M

ω1
i and 〈 jα : α < ω1〉 ∈ iω1 . Set q(ζ) =

⋃
α∈ω1 pα(ζ) ∪ {i} for all

ζ ∈ i \ ξ. Since i < S ζ for all ζ ∈ i \ {ξ}, we conclude that q(ζ)∩ S ζ = ∅ for all ζ ∈ i \ {ξ}.
From the above it follows that q ∈ P0,,ξ and q P0,,ξ i ∈ Ċ, which finishes our proof.

Corollary 1. Let G be a P-generic filter over L and let x, y be reals in L[G]. Then x <G y
if and only if there is α < ω3 such that for all m, the stationary kill of S α+m is coded by
a real iff m ∈ ∆(x ∗ y).
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Proof. Suppose that x <G y. Let α′ > 0 be minimal such that x, y ∈ L[Gω2·α′] and let
i = io.t.(<̇G

ω2 ·α
′ ). Find ξ ∈ Lim(ω2) such that i(ξ) = (ξx, ξy) where x and y are the ξx-th and

ξy-th real respectively in L[Gω2·α′] according to the wellorder <̇G
ω2·α′

. (By Lemma 2 such
a ξ exists). Let α = ω2 ·α

′ + ξ. Then Qα adds a real coding a stationary kill for S α+m for
all m ∈ ∆(x ∗ y). On the other hand if m < ∆(x ∗ y), then α + m ∈ ȦG

α = α + (ω\∆(x ∗ y))
and so by Lemma 3, there is no real in L[G] coding the stationary kill of S α+m.

Now suppose that there exists α such that the stationary kill of S α+m is coded by a
real iff m ∈ ∆(x ∗ y). Since the stationary kill of some α+ m’s is coded by a real in L[G],
Lemma 3 implies that Q̇G

α introduced a real coding stationary kill for all m ∈ ∆(a ∗ b) for
some reals a<̇G

αb, while there are no reals coding a stationary kill of S α+m for m < ∆(a∗b).
Therefore ∆(a ∗ b) = ∆(x ∗ y) and hence a = x and b = y, and consequently x<̇G

α y.

Lemma 4. Let G be P-generic over L and let x, y be reals in L[G]. If x <G y, then there
is a real r such that for every countable suitable model M such that r ∈ M, there is
¯̄α < ωM3 such that for all m ∈ ∆(x ∗ y),

(L[r])M � S ¯̄α+m is not stationary.

Proof. By Corollary 1, there exists α < ω3 such that Q̇G
α adds a real r coding a stationary

kill of S α+m for all m ∈ ∆(x ∗ y). LetM be a countable suitable model containing r. It
follows that Yα+m ∩ ω

M
1 ∈ M and hence Xα ∩ ωM1 , Xα+m ∩ ω

M
1 also belong to M.

Observe that these sets are actually in N := (L[r])M. Note also that N is a countable
suitable model and consequently by the definition of L(Xα+m, Xα) we have that for every
m ∈ ∆(x ∗ y), N �

“ Using the sequence ~A, Xα+m ∩ ω1 (resp. Xα ∩ ω1) almost disjointly codes
a subset Z̄m (resp. Z̃0) of ω2, whose even part Even(Z̄m) (resp. Even(Z̃0))
codes a tuple 〈C̄, W̄m,

¯̄Wm〉 (resp. 〈C̃, W̃0,
˜̃W0〉), where W̄m and ¯̄Wm are the

L-least codes of ordinals ᾱm, ¯̄αm < ω3 (resp. W̃0 = ˜̃W0 is the L-least code
for a limit ordinal ˜̃α0) such that ¯̄αm = ˜̃α0 is the largest limit ordinal not
exceeding ᾱm and C̄ is a club in ω2 disjoint from S ᾱm .5”

Note that in particular for every m , m′ in ∆(x ∗ y), ¯̄αm = ¯̄αm′ .

Lemma 5. Let G be P-generic over L and let x, y be reals in L[G]. If there is a real r such
that for every countable suitable modelM containing r as an element, there is ¯̄α < ωM3
such that for every m ∈ ∆(x ∗ y),

(L[r])M � S ¯̄α+m is not stationary,

5In the above, ~A, S ᾱm , S ¯̄αm , ω1, ω2, ω3 refer of course to their interpretations in the model N .
12



then x <G y.

Proof. Suppose that there is such a real r. By the Löwenheim-Skolem theorem, it has the
property described in the formulation with respect to all suitable modelsM, in particular
for HP

Θ
, where Θ is sufficiently large (here HΘ denotes the set of all sets hereditarily of

cardinality < Θ). That is there is α < ω3 such that for every m ∈ ∆(x ∗ y)

LΘ[r] � S α+m is not stationary.

Thus in particular the stationary kill of at least some S α+m was coded by a real. Lemma 3
implies that Q̇G

α introduced a real uα (perhaps different from r) coding stationary kill for
all m ∈ ∆(a ∗ b) for some reals a<̇G

αb, while there are no reals coding a stationary kill of
S α+m for m < ∆(a∗b). Therefore ∆(a∗b) ⊃ ∆(x∗y), which yields ∆(a∗b) = ∆(x∗y). From
the above, it follows that a = x, b = y and hence x<̇G

α y, which finishes our proof.

Combining Lemmata 4,5 and the fact that we have added dominating reals cofinally
often, we get the following result.

Theorem 1. It is consistent with c = b = ℵ3, that there is a projective (indeed ∆1
3-

definable) wellorder of the reals.

3. Projective mad families

The main result of this section and of the whole paper is the following theorem which
answers [7, Question 19] in the positive.

Theorem 2. It is consistent with c = b = ℵ3, that there is a ∆1
3-definable wellorder of

the reals and a Π1
2-definable ω-mad subfamily of [ω]ω (resp. ωω).

The proof is completely analogous to that of Theorem 2. Moreover, we believe that
adding the argument responsible for ω-mad families would just make the proof in the
previous section messier without introducing any new ideas besides those used in the
proof of Theorem 1 and in [7]. Therefore the proof of Theorem 2 is just sketched here.
More precisely, we shall define the corresponding poset Pω3 and leave it to the reader to
verify that the proof of Theorem 1 can be carried over.

Let ~B = 〈Bζ,m : ζ < ω1,m ∈ ω〉 be as in the proof of Theorem 1. We will define
a finite support iteration 〈Pα, Q̇γ : α ≤ ω3, γ < ω3〉, where Q̇α is a Pα-name for a σ-
centered poset and in LPω3 there is a ∆1

3-definable wellorder of the reals, a Π1
2-definable

ω-mad subfamily of [ω]ω (the case of subfamilies of ωω is completely analogous, see
[7]), and c = b = ℵ3.
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P0 is a three step iteration P0 ∗ P1 ∗ P2, where P0 and P1 are exactly the same as in
the proof of Theorem 1. The poset P2 uses the following modification of Definition 1,
where φ is as in (∗∗)α from the previous section.

Definition 2. Let X, X′ ⊂ ω1 be such that φ(ω1, ω2, X) and φ(ω1, ω2, X′) hold in any
suitable model M with ωM1 = ωL

1 containing X and X′, respectively. Let also η be a
countable limit ordinal. We denote by Lη(X, X′) the poset of all functions r : |r| → 2,
where the domain |r| of r is a countable limit ordinal such that:

1. |r| ≥ η
2. if γ < η then r(γ) = 0
3. if γ < |r| then γ ∈ X iff r(η + 3γ) = 1
4. if γ < |r| then γ ∈ X′ iff r(η + 3γ + 1) = 1
5. if γ ≤ |r|, M is a countable suitable model containing r � γ as an element and

γ = ωM1 , thenM � φ(ω1, ω2, X ∩ γ) ∧ φ(ω1, ω2, X′ ∩ γ) holds inM.

The extension relation is end-extension.

For α ∈ Lim(ω3)\ω2 and m ∈ ω set P2
α+m =

∏
η∈Lim(ω1)Lη(Xα+m, Xα). If α ∈ Lim(ω2)

and m ∈ ω, let P2
α+m be the trivial poset. Then let

P2 =
∏

α∈Lim(ω3)

∏
m∈ω

P2
α+m

with countable supports. By the ∆-system Lemma in LP0∗P1
the poset P2 has the ω2-c.c.

Analogously to Lemma 1 we conclude that P0 = P0 ∗ P1 ∗ P2 is ω-distributive.
If α is limit and m ∈ ω, we shall refer to the localizing set for Xα+m produced by

Lη(Xα+m, Xα) as Yα+m,η. That is Yα+m,η ⊆ ω1 \ η and Yα+m,η codes both Xα+m and Xα.
Every Qα is going to add a generic real whose Pα-name will be denoted by u̇α and

similarly to the proof of Lemma 2 one can prove that L[Gα]∩ωω = L[〈u̇Gα

ξ : ξ < α〉]∩ωω

for every Pα-generic filter Gα. This gives us a canonical wellorder of the reals in L[Gα]
which depends only on the sequence 〈u̇Gα

ξ : ξ < α〉, whose Pα-name will be denoted by
<̇α. We can additionally arrange that for α < β we have that 1Pβ forces <̇α to be an initial
segment of <̇β. Then if G is a Pω3-generic filter over L, <G=

⋃
{<̇G

α : α < ω3} will be the
desired wellorder of the reals.

We proceed with the recursive construction of Pω3 . Along this construction we shall
also define a sequence 〈Ȧα : α ∈ Lim(ω3)〉, where Ȧα is a Pα-name for a subset of
[α, α + ω). Let i : ω × ω→ ω and

jν : ν ∪ {〈ζ, ξ〉 : ζ < ξ < ν} → Lim(ω2)
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be some bijections, where ν ∈ [ω2, ω3). Suppose Pα has been defined and fix a Pα-
generic filter Gα.

Case 1. α is a limit ordinal that can be written in the form ω2 · α
′ + ξ for some

α′ > 0, ξ < ω2, and the preimage j−1(ξ) is a tuple 〈ξ0, ξ1〉 for some ξ0 <̇
Gα

ω2·α′
ξ1, where

j = jo.t.(<̇Gα
ω2 ·α

′ )
. In this case the definition of Q̇α is the same as in the proof of Theorem 1.

Case 2. α is a limit ordinal that can be written in the form ω2 ·α
′+ ξ for some α′ > 0

and the preimage j−1(ξ) is an ordinal ζ ∈ o.t.(<̇Gα

ω2·α′
), where j = jo.t.(<̇Gα

ω2 ·α
′ )

. In this case

we use a simplified version of the poset from [7, Theorem 1]. More precisely, ordinals
fulfilling the condition above will be used for the construction of a Π1

2 definable ω-mad
familyA.

For a subset s of ω and l ∈ |s| (= card(s) ≤ ω) we denote by s(l) the l-th element
of s. In what follows we shall denote by E(s) and O(s) the sets {s(2i) : 2i ∈ |s|} and
{s(2i + 1) : 2i + 1 ∈ |s|}, respectively. LetAα be the approximation toA constructed thus
far. Suppose also that

(∗) ∀D ∈ [Aα]<ω ∀B ∈ ~B (|E(B) \ ∪D| = |O(B) \ ∪D| = ω).

Observe that equation (∗) yields |E(B) \ ∪D| = |O(B) \ ∪D| = ω for every D ∈
[~B ∪ Aα]<ω and B ∈ ~B \ D. Let xζ be the ζ-th real in L[Gω2·α′] ∩ [ω]ω according to the
wellorder <̇Gα

ω2·α′
. Set Cn = {xζ(i(n,m)) : m ∈ ω} ∈ [ω]ω and C = {Cn : n ∈ ω}. Unless

the following holds, Q̇α is a Pα-name for the trivial poset: none of the Cn’s is covered
by a finite subfamily ofAα. In the latter case Qα := Q̇Gα

α is defined as follows.
Let us fix a limit ordinal ηα ∈ ω1 such that there are no finite subsets J,E of (ω1 \

ηα) × ω, Aα, respectively and n ∈ ω, such that Cn ⊂
⋃
〈η,m〉∈J Bη,m ∪

⋃
E. (The almost

disjointness of the Bη,m’s imply that if Cn ⊂
⋃
B′ ∪

⋃
A′ for some B′ ∈ [~B]<ω and

A′ ∈ [Aα]<ω, then Cn \
⋃
A′ has finite intersection with all elements of ~B \ B′. This

easily yields the existence of such an ηα.) Let Iα be an infinite subset of ω coding a
surjection from ω onto ηα. For a subset s of ω we denote by ∆s the set {2k + 1 : k ∈
(sup s \ s)} ∪ {2k + 2 : k ∈ s}.

In V[Gα], Qα consists of pairs 〈s, s∗〉 such that s ∈ [ω]<ω, s∗ ∈
[
{Bβ,m : m ∈ ∆(s), β ∈

Yα+m,ηα} ∪ Aα
]<ω, and for every 2n ∈ |s ∩ B0,0|, n ∈ Iα if and only if there exists m ∈ ω

such that (s ∩ B0,0)(2n) = B0,0(2m). For conditions p = 〈s, s∗〉 and q = 〈t, t∗〉 in Qα, we
let q ≤ p if and only if t is an end-extension of s and t \ s has empty intersection with all
elements of s∗.

Let hα be a Qα-generic filter over L[Gα]. Set uα =
⋃
〈s,s∗〉∈hα s, Aα = α+ (ω \∆(uα)),

and Aα+1 = Aα ∪ {uα}. As a consequence of the definition of Qα and the genericity of
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hα we get6

(1) uα ∈ [ω]ω, uα is almost disjoint from all elements ofAα, and has infinite intersec-
tion with Cn for all n ∈ ω;

(2) If m ∈ ∆(uα), then |uα ∩ Bβ,m| < ω if and only if β ∈ Yα+m,ηα ;

(3) For every n ∈ ω, n ∈ Iα if and only if there exists m ∈ ω such that (uα∩B0,0)(2n) =

B0,0(2m); and

(4) Equation (∗) holds for α + 1, i.e. for every B ∈ ~B and a finite subfamily A′ of
Aα+1,A′ covers neither a cofinite part of E(B) nor of O(B).

By (2) uα codes Yα+m,ηα for all m ∈ ∆(uα).

Case 3. If α is not of the form above, i.e. α is a successor or α < ω2, then Ȧα is a
name for the empty set and Q̇α is a name for the poset adding a dominating real defined
in Case 2 of the proof of Theorem 1.

With this the definitions of P = Pω3 and 〈Ȧα : α ∈ Lim(ω3)〉 are complete. Let G be
a P-generic over L.

Just as in the proof of Theorem 1 one can verify that Lemmata 2 and 3 hold true.
These were of crucial importance for the proof of Corollary 1, which in turn was used
in the proofs of Lemmata 4 and 5. Again, a direct verification shows that all of these
statements still hold and hence <G is a ∆1

3-wellorder of the reals in L[G].
Lemma 2 implies that the family A we construct in the instances of Case 2 is an

ω-mad subfamily of [ω]ω. Condition (3) above yields ηα < ωM1 for all countable suit-
able models M containing u̇G

α provided that at stage α, Case 2 took place (i.e., there
is a condition in G which forces this). Combining this with the ideas of the proofs of
Lemmata 4 and 5 we get that a ∈ A iff for every countable suitable modelM containing
a as an element there exists ᾱ < ωM3 such that SM

ᾱ+k is nonstationary in (L[a])M for all
k ∈ ∆(a). This provides a Π1

2 definition ofA, which finishes our proof of Theorem 2.

4. Questions

The consistency of the existence of a ∆1
3-definable wellorder of the reals in the pres-

ence of c ≥ ℵ3 and MA, is still open. A second question naturally emerging from the
developed techniques is the existence of a model in which a desired inequality betwen
the cardinal characteristics of the real line holds, there is a ∆1

3-definable wellorder of the

6See [7, Claim 11] for an analogous argument.
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reals and c ≥ ℵ3. Note that the bookkeeping argument which we have used in Theo-
rems 1 and 2 allows only for handling of countable objects, which presents an additional
difficulty in obtaining such models.
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