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Abstract

We show that b = ¢ = w3 is consistent with the existence of a A%—deﬁnable wellorder of
the reals and a Hé—deﬁnable w-mad subfamily of [w]® (resp. w®).
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1. Introduction

The existence of a projective, in fact Aé -definable wellorder of the reals in the pres-
ence of large continuum, i.e. ¢ > w3, was established by Harrington in [8]. In the
present paper, we develop an iteration technique which allows one not only to obtain the
consistency of the existence of a Aé-deﬁnable wellorder of the reals with large contin-
uum (see Theorem 1), but in addition the existence of a Hé—deﬁnable w-mad family with
b = ¢ = w3 (see Theorem 2). The method is a natural generalization to models with large
continuum of the iteration technique developed in [5]. We expect that an application of
Jensen’s coding techniques will lead to the same result with essentially arbitrary values
for c.

For a more detailed introduction to the subject of projective wellorders of the reals
and projective mad families, see [5] and [7]. Recall that a family ‘A of infinite subsets of
w is almost disjoint if any two of its elements have finite intersection. An infinite almost
disjoint family A is maximal (abbreviated mad family), if for every infinite subset b of
w, there is an element a € A such that |a N b| = w. If A is an almost disjoint family, let
L(A) = {b € [w]¥ : b is not covered by finitely many elements of A}. A mad family A
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is w-mad if for every B € [L(A)]®, there is a € A such that [aNb| = w for all b € B. For
the definition of b, as well as an introduction to the subject of cardinal characteristics of
the continuum we refer the reader to [1].

In section 2 we introduce a model in which b = ¢ = w3 and there is a A%—deﬁnable
wellorder of the reals. In section 3 we show how to modify the argument to obtain in
addition the existence of a H;—deﬁnable w-mad family. We begin by fixing an appropriate
sequence §=(Sq:1<a<ws)of stationary subsets of w3 and explicitly destroying
the stationarity of each S, by adding a closed unbounded subset of w3 disjoint from
it. The wellorder is produced by introducing reals (see Steps 1 through 3 in section 2)
which code this stationary Kkill for certain stationary sets from S'. For this purpose, we
use almost disjoint coding as well as a modified version of the method of localization
(see [4] and [5, Definition 1]).

2. Projective Wellorders with Large Continuum

Throughout the paper we work over the constructible universe L, thus unless other-
wise specified V = L. Let (G¢ : ¢ € wy N cof(w)) be a O, (cof(wr)) sequence which
is X1 definable over L,,. For every @ < ws, let W, be the L-least subset of w, cod-
ing the ordinal @. Let S = (Sq 1 1 < @ < w;3) be the sequence of stationary subsets
of w, defined as follows: §, = {§ € wy Ncof(wy) : G¢ = W, NE # 0} In par-
ticular, the sets S, are stationary subsets of cof(w;) N wy which are mutually almost
disjoint (that is, for all 1 < a,8 < w3, @ # B, we have that §, N Sg is bounded). Let
S_1 ={& € wa Ncof(w) : G¢ = 0}. Note that §_ is a stationary subset of w> N cof(wy)
disjoint from all §,’s.

Say that a transitive ZF~ model M is suitable if wéw exists and wgw = w_%M. From
this it follows, of course, that w} = wa and ' = w%M
Step 0. For every @ : wy < @ < wj3 shoot a closed unbounded set C,, disjoint from
S via a poset P0. The poset P) consists of all bounded, closed subsets of w,, which
are disjoint from S ,. The extension relation is end-extension. Note that P¥ is countably
closed and N,-distributive (see [3]). For every a € w; let ]P’g be the trivial poset.

Let PO = [To<ws PO be the direct product of the P’s with supports of size w;. Then
IPY is countably closed and by the A-system Lemma, also ws-c.c. Its w-distributivity is
easily established using the stationary set S_; C wy N cof(wy).

Step 1. We begin by fixing some notation. Let X be a set of ordinals. Denote by 0(X),

I(X), and II(X) the sets {n : 3n € X}, {n : 3n+ 1 € X} and {n : 3 + 2 € X}, respectively.

Let Even(X) be the set of even ordinals in X and Odd(X) be the set of odd ordinals in X.
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In the following we treat O as a limit ordinal. For every @ : wy < a < w3 let
D, C w; be a set coding the tuple (C,, W,, W, ), where 7 is the largest limit ordinal < a.
More precisely D, is such that 0(D,), I(D,), and II(D,) equal C,, W,, and W, respec-
tively. Now let E,, be the club in w; of intersections with w, of elementary submodels of
Lo+w,+1[Dqo] which contain wy U {D,} as a subset. (These elementary submodels form
an wy-chain.) Now choose Z, to be a subset of w, such that Even(Z,) = D,, and if
B < wsis a)gw for some suitable model M such that Z, N 8 € M, then g belongs to E,.
(This is easily done by placing in Z, a code for a bijection ¢ : §; — w; on the interval

(Bo, Bo + wy) for each adjacent pair Sy < 1 from E,.) Then we have:

(%)q: If B < wr and M is any suitable model such that w; C M, wé"( =B,and Z, NGB €
M, then M E Y(w;, Z,NB), where y(w-, X) is the formula “Even(X) codes a tuple
(C, W, W), where W and W are the L-least codes of ordinals &, & < w3 such that
@ is the largest limit ordinal not exceeding @, and C is a club in w; disjoint from
Sa”.

Indeed, given a suitable model M with wé\’( =B and Z, N B € M, note that 8 € E, by
the construction of Z, and also that D, N B € M. Let N be an elementary submodel
of Ly+w,+1[De] such that wy U {Dy,} € N and N N wy = B. Denote by N the transitive
collapse of M. Then N = L¢[Dg] for some wy > & > B and a)/zv = wgw = B. Therefore
N c M. Let Z!, C w, be such that Even(Z.,) = Odd(Z!) = D,. By the definition of
Dy, Lovan+1[De] E (w2, Z)). By elementarity, N' F y(w>,Z,, N B). Since the formula
Yois Xy, wév = wé"(, we conclude that M F y(wz,Z), N B). Since Z, NS € M and
Even(Z]) = Even(Z,), we have M F y(w2, Z, N B), which finishes the proof of (x),.

Now similarly to S we can define a sequence A= (A¢ © & < wy) of stationary
subsets of w; using the “standard” ¢-sequence. Then in particular this sequence is nicely
definable over L,,, and almost disjoint. Now we code Z, by a subset X, of w; with the
forcing ]P)Cly consisting of all tuples {sq, s1) € [w1]"“' X [Z,]°“! where {ty, t1) < (59, 51) iff
50 is an initial segment of 7, s1 C 1 and #o\so NAg = 0 for all £ € s1. Then X,, obviously
satisfies the following condition:

(x%)y: If w; < B < wy and M is a suitable model such that wéw =B and {X,} U w; Cc M,
then M F ¢(w1, w2, Xo), where ¢(w1, wy, X) is the formula: “ Using the sequence
A, X almost disjointly codes a subset Z of w,, whose even part Even(Z) codes a
tuple (C, W, W), where W and W are the L-least codes of ordinals @, & < w3 such
that @ is the largest limit ordinal not exceeding @, and C is a club in w; disjoint
from S ;.



Let P! = [To<ws P!, where P! is the trivial poset for @ € w,, be the product of
the P1’s with countable support. The poset P! is easily seen to be countably closed.
Moreover, it has the w,-c.c. by a standard A-system argument.

Step 2. Now we shall force a localization of the X,,’s. Fix ¢ as in (x%),.

Definition 1. Let X, X’ C w; be such that ¢(w, w2, X) and ¢(w1, w2, X’) hold in any
suitable model M with w{w = wf containing X and X', respectively. We denote by
L(X, X’) the poset of all functions r : |r] — 2, where the domain |r| of r is a countable
limit ordinal such that:

1. ify <|rltheny € X iff r(3y) = 1

2. ify<|rftheny e X" iff rGy+1)=1

3. if y < |r|, M is a countable suitable model containing » | y as an element and
v = w{w, then M F ¢(w1, w2, X N y) A (w1, w2, X' Ny).

The extension relation is end-extension.

Set ]P%m = L(Xag+m»> Xq) for every @ € Lim(ws)\w, and m € w. Let P2 be the

a+m
trivial poset for every a € Lim(w;) and m € w. Let

P? = ﬂ l_[ ]P)czwm

aeLim(w3) MEw

«P!

with countable supports. By the A-system Lemma in PP the poset P? has the ws-c.c.

Observe that the poset P2, , where @ > 0, produces a generic function from w;
(of LP*P") into 2, which is the characteristic function of a subset Y., of w; with the

following property:

(* % %), : For every 8 < w; and any suitable M such that w{” = S and Y44, N B belongs to
M, we have M F H(w1, W2, Xorm N P) A (w1, w2, Xy N ).

Lemma 1. The poset Py := PY « P! x P? is w-distributive.

Proof. Given a condition py € Py and a collection {O,,},¢,, of open dense subsets of Py,
choose the least countable elementary submodel N of some large Ly (6 regular) such that
{po} U {Po} U{O0,}new € N. Build a subfilter g of Py N N, below pg, which hits all dense
subsets of Py which belong to N. Write g as g(0) = g(1) = g(2). Now g(0) = g(1) has a
greatest lower bound p(0) * p(1) because the forcing PY %« P! is w-closed. The condition
(p(0), p(1)) is obviously (N, PO « Pl)—generic.

4



On each component a+m € NNws, where a € Lim(ws), m € w, define p(2)(a+m) =
U g(2)(a + m). Tt suffices to verify that p(2)(a + m) is a condition in P2, , for this will
give us a condition p(2) so that p(0) = p(1) = p(2) meets each of the O,’s.

As (p(0) (@), p(O)(a+m), p(1) (@), p()(a+m))isa (N, IP’g *}P’gm *P}x *]P’}Hm)—generic
condition, if

G = G0O) (@) * GO)a + m) * G(1)(a) * G(1)(a + m)

isaPY«P0, «Pl«Pl  _oeneric filter over L containing it, then the isomorphism 7 of

the transitive collapse A of NV, onto N extends to an elementary embedding from
No = Nig(0)(@) * g(0)(@ +m) * g(1)(@) * g(D)(@ + m)]

into Ly[G). Here g(i) = 7~ '(g(i)), i € 2, and & = 77'(&) for all £ € N N Ord. By the
genericity of G we know that, letting X, = | G(1)(@), Xo+m = U G(1)(a+m), properties
(#%)q and (**)q4, hold. By elementarity, N is a suitable model and Ny F ¢(wy, w3, Xa)A
¢, w2, Xgem), Where xz = Ug(1)(@) = Ug(D)@) and xgim = Ug()(@ +m) =
U g(1)(@ + m). By the construction of Py, Ny = N[xa, Xg+m] and hence N[xg, Xg+m] F
P(w1, w2, Xa) A P(W1, W2, Xg+m)-

Let & be such that N' = L and let M be any suitable model containing p(2)(a),
p(2)(a + m), and such that w{” = w1 N N. We have to show that M F ¢(w1, w3, x3) A
d(w1, w2, Xg+m). Setn = M N Ord and consider the chain My € M; € M of suitable
models, where My = L,[xa, Xa+m] and My = L,;[p(2)(@), p(2)(a + m)]. Three cases are
possible.

Case a). n > £. Since N was chosen to be the least countable elementary submodel
of Ly containing the initial condition, the poset and the sequence of dense sets, it follows
that £ (and therefore also 0) is collapsed to w in L¢y5, and hence this case cannot happen.

Case b). n = &. In this case My F ¢(wy, wy, x5) A (w1, W2, Xg+m). (Indeed, M, =
Ly[xa, Xg+m] = Nlxa, Xa+m].) Since ¢ is a ;-formula, w{v{z = w{w and wém = wéw,
have M E ¢(w1, w3, x5) A ¢(w1, W2, Xg4m)-

Case ¢). n < &. In this case M is an element of N[xg, Xz+m]. Since Ly[G] satisfies
(#%)q and (¥%)44m, by elementarity so does the model Nlxz, Xg4m] With X, replaced by
x5 and Xy4m replaced by xz.,. In particular, My F ¢(w1, w2, Xz) A ¢(w1, W2, Xg+m)-
{V‘z = wi”, Q", we have M E ¢(w1, w2, Xz) A
(w1, w2, Xg+m), Which finishes our proof. O

we

Since ¢ is a X;-formula, w and wéwz = w

Set Py = PV« P! «P?. Let us fix £ € w3 and denote by P%#¢, P1-#¢ P2#¢ the following

. 0,£& 0,£& 1,#&
posets in L, P77 and LF7HF

, respectively:
[ecws\ia) PO with supports of size w;

[Tocws\ i) P with countable supports; and
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[Tocws\ie) P2 with countable supports.
Observe that Iﬁ’gg = POFE 4 PL#E 5 P2#6 < PV« P!« P2 = [P, where for posets P C Q
the notation P <. Q means that the identity embedding from PP to Q is complete.? Let R
be the quotient poset Py/ I@gf. Thus If”z;f R = Py.

Step 3. We begin with fixing some terminology. For @ : 1 < a@ < w3 we will say that
there is a stationary kill of S, if there is a closed unbounded set C disjoint from S ,. We
will say that the stationary kill of S, is coded by a real, if there is a closed unbounded
set disjoint from S, which is constructible from this real.

Fix a nicely definable sequence B= (Bym : { < w1, m € w) of almost disjoint subsets
of w. We will define a finite support iteration (P, @7 :a £ w3,y < ws)such that Py is as
above, Q, is a P,-name for a o-centered poset, in LF5 there is a Aé -definable wellorder
of the reals and ¢ = b = X3. Every Q, is going to add a generic real whose P,-name will
be denoted by i1, and we shall prove that L[G,] N w® = L[(u?“ 1 & < a)] Nw? for every
P,-generic filter G, (see Lemma 2). This gives us a canonical wellorder of the reals
in L[G,], which depends only on the sequence <u§“ : & < @), whose P,-name will be

denoted by <,. We can additionally arrange that for & < 8 we have that 1p, forces <, to

G .
a -

be an initial segment of <g. Then if G is a P,,,-generic filter over L, <O= (<Y : o < w3}
will be the desired wellorder of the reals. Furthermore this wellorder will not depend on
the generic set G (see Lemmas 4 and 5).

We proceed with the recursive construction of IP,,,. Along this construction we shall
also define a sequence (Ay @ a € Lim(ws3)), where A, is a P,-name for a subset of
[a, @ + w). For every wy < v < w3 fix a bijection i, : {{{, &) : { < & < v} — Lim(wy).
If G, is P,-generic over L, <,= <§“ and x,y are reals in L[G,] such that x <, y, let
xxy={2n:ne€xju{2n+1:neyland A(xxy) = {2n+2 :n € xxy}U{2n+1 :n ¢ x=xy}.

Suppose P, has been defined and fix a P,-generic filter G,.

Case 1. Suppose « is a limit ordinal and write it in the form w, - &’ + &, where

E<wy. Ifad >0, leti = io.p(&“t ) and (&, &) = i‘l(f). Let A, := AS‘* be the set
@+ (w\ Alxg, * x¢,)), where x; i2s the {-th real in L[G,.«r] N [w]® according to the

wellorder <g§a (here G,.or = G4 NP,,,.o). Let also

Qo = {(s0,51) : 50 € [W]™“, 51 €[ U Youm X {m}]~*}
meA(x_gO #Xg, )

bl

where (fp, 1) < (so, s1) if and only if 51 C #1, s is an initial segment of 7o and (7o \ sg) N
By = 0 for all (,m) € sy.

2It might seem unclear why we denote PO# « P'# « P2# by B** and not simply by IP{°. It is to reserve
the notation P;* for a certain restriction of P*#¢ « P'* x P2# appearing naturally in the proof of Lemma 3.
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Case 2. If « is not of the form above, i.e. « is a successor or @ < ws, then A, is a
name for the empty set and Q, is a name for the following poset adding a dominating
real:

Qu = ((s0,51) 50 € @, 51 € [0.0.(25)]*),

where (t9, 1) < (S0, 51 if and only if sg is an initial segment of 7y, s1 C #1, and #o(n) >
x¢(n) for all n € dom(7p) \ dom(sp) and & € s1, where x¢ is the &-th real in L[G,] N w®
according to the wellorder <S".

In both cases Q, adds the generic real® u, = U{so : ds1 (50, 81) € go}, Where g, is
Qq-generic over V[G,] and L[G,]lus] = LIGollge]-

With this the definitions of P = P, and (A, : @ € Lim(w3)) are complete.

Remark 1. Note that if the first case in the definition of Q, above takes place, then
in LPe the poset Qo produces a real r,, which for certain reals x,y codes Y., for all
m € A(x *y).

Let H be a poset. An H-name f is called a nice name for a real if f = Uje,, ({0, jb,), p) :
p € Ai(f)} where for all i € w, A;(f) is a maximal antichain in H, /), € w and for all
p € Ai(f), pI- f(i) = j,. From now on we will assume that all names for reals are nice.

Using the fact that for every p € P and @ > 0 the coordinate p(«) is a P,-name for a
finite set of ordinals, one can show that the set D of conditions p fulfilling the following
properties is dense in P

e For every @ > 0 in the support of p, p(a) = (so,vsl) for some s1 € [Ord]=“ and

50 € [w]< or 59 € w<* depending on Q.

Lemma 2. Let y < w3 and let G, be a P,-generic filter over L. Then L[G,] N w* =
LIS = 6 <] Nw,

Proof. Let f = Uieo 144, jj,),p) 1 p € ?[i(f)} be a nice IP,-name for a real such that

Uiew Ai(f) € D, f = O and let p; be the unique element of A;(f) N G,. Setug = L't?’
for all £ < y. Since Py is countably distributive, there exists g € Pp N G, such that
q < pi(0)foralli € w.

Observe that (i, j) € f if and only if there exists p € A;(f) such that p(0) > ¢ and
for every « in the support of p the following holds:

If p | « forces Q, to be an almost disjoint coding, i.e. @ = w> - @’ + i(By, B1) for
some @’ > 0and By < B < o.t.(<gz.a,) and QQ, produces a real coding a stationary kill of
S o+m for all m € A(xg, * xg,), where x; is the 6-th real in L[{uz : ¢ < w>-a’)], then p(a)y

is an initial segment of u, and u, \ p(a)o is disjoint from By ,, for all ({,m) € p(a); and

3u, € [w]“ in the first case and u, € w* in the second case.
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If p | a forces Q, to be a poset adding a dominating function, i.e. Q, produces a
real u, dominating all reals in L[{u; : £ < @)], then p(a) is an initial segment of u,
and uy(n) > xg(n) for all & € p(a); and n > dom(p(a)o), where x¢ is the £-th real in
L[{u; : { < a)] according to the wellorder <§V.

Since &g’ depends only on the sequence (u; : { < ) for all 8 < v, the definition of
S above implies that f € L[{u; : { < y)], which finishes our proof. O

Lemma 3. Let G be a P-generic filter over L. Then for & € Uyerim(ws) AG there is no real
coding a stationary kill of S .

Proof. Let p € G be a condition forcing

£e U AS.
aeLim(ws)
Suppose that ¢ = S+ 2n — 1 for some limit 5 and n € w. Without loss of generality,
pE Pﬁ N D.

We define a finite support iteration of a countably distributive poset followed by
c.c.c. posets (IF”(,,@y fa < w3,y < ws), where Py = Py | p(0) and in LP: we have
Qu = Qu | p(@). Such an iteration is just another way of thinking of the poset P | p
which will appear useful for further considerations.

Let pz)tf,pg be such that pé‘f € P;‘f, pgg - pg € R and (pz;‘f, pg) = p(0), where R
is the quotient poset Py /INP’gg. Denote by ng the restriction Iﬁ’f [ pz)&f and let R be the
}P’;f-name forR | pg. Note that ]P’z;f * R = Py*.

Now we define a finite support iteration (Pf, )%

A
as above and Q;ﬁf is a name for a o-centered poset. Also we define a sequence (Aj;‘\’c ta €

a < w3,y < w3), where IP’BE‘f is

Lim(w3)), where Aif isa P(ff—name for a subset of [a, @ + w). The intention is to show
thatin P = IF’Q,S the components PO, IP’;, IP’? of PO, P, P2, respectively, can be left out in
a certain sense. Thus the iteration <IP>§§, Q;g ta < w3,y < wsz) will be introduced along
the lines of the definition of (IP,, Qy s < w3,y < wsy). In particular, every Qf&f will add
a generic real with }P’i‘f * (@z‘f—name uf Given a Pf—generic filter G = Gf;f, this gives
us a canonical wellorder of the reals in L[(I/'t?fc : { < a)] which depends only on the
sequence <L't;£c 1 { < @), whose ]P’Z:f—name will be denoted by <§§. We can additionally
arrange that for @ < 8 we have that 1 forces <§§ to be an initial segment of <;§. Along

]
the recursive construction for every vy < w3 we will establish the following properties:

1. P <. Py

“In fact, one can prove that IF]T,,;; R= IP"; * Pf * ]P)‘;, but this does not simplify the proof.
8



e H. Lol H H. ol
2.8 =iy, <0 =< and Ay = AJF7 for limit y, where H® C P} is the

preimage of the ]?’y-generic filter H, under the complete embedding from (1);
3. Let Pﬁf’y), P[l,y) be the quotient posets }P’f;é:/]Péf and ]ny /Py respectively. Then
” _
b, P, = Py and
4. L[H,] N [Ord]® = LIH,] N [Ord]“ where H,, H}" are as in (2).
Y Y v, Hy

For vy = 0 the properties above follow from the corresponding definitions. Suppose
that (1)-(4) are established for all n < .

Case 1. If y is a limit, there is nothing to prove except for (4) (To see that IF’f;‘f is
completely embedded in Py refer to the inductive hypothesis and [2, Lemma 10]). Let
Hz; - Hff N ]P’gf, Hy = H, NPy and let K be an R-generic filter over L[Hg f] such that

LIHo] = LIH}][K]. Let E be the poset (B¢ %' = P e L[H7] (the latter equal-
ity follows from (3)). Then Hy,)(= H,/Hy) is E-generic over L[H;;f][K], Therefore
LIHZVKHy15)] = LIH 1 Hiip 1K

The following standard fact may be compared to [9, Lemma 15.19].

Claim. Suppose that P, Q are in V, P is w-distributive and Q is c.c.c. in VP, Then P is
w-distributive in VQ. In particular, if P is w-distributive and Q is a finite support iteration
of o-centered posets, then P is w-distributive in V2.

Proof. Let G X H be P x Q-generic. Let f : w — Ord be in V[H][G] = V[G][H] and o
be a Q-name for f in V[G]. Without loss of generality, o is a nice name which can be
written as | ;e {¢(i, jfp), p): p € A;}, where ji, is an ordinal and A; € V[G] is a maximal
antichain in Q. As Q is c.c.c. in V[G], each A; is countable in V[G], and hence o is
countable in V[G]. Therefore o € V by the countable distributivity of PP. It follows that
f belongs to V[H]. [l

By the above Claim, R is countably distributive in L[Hgg] [Hii ] = L[H;t‘f] and
hence L[H,] N [Ord]® = LIH*] N [Ord]®.

Case?2). y=n+1.
Let H,f “be a P;f-generic filter over L and let K be a R-generic filter over L[Hg f],
where Hgf = Hf;f N ]P’g‘f. In L[Hz;‘f], the quotient poset Py, = P,/Py is a finite sup-

port iteration of o-centered posets. Since Pﬁ‘fn) has c.c.c. in L[Hgf][K] and R is w-

distributive, H[il‘i]) is ]P’rfn)—generic over L[H:;f][K]. By (3), the equality ]P’rfn) = IF’[],,])

holds in L[Hg ‘f][K ]. Therefore H,, := H; ¥ K x H[il‘fn) is }I_”,]—generic over L.

Since p € D, one of the following alternatives holds.



Case a). Qn is a name for an almost disjoint coding below the condition p(n) = (sg,v s?).
Set @n = QnH , Us = u(S T As = Agl”, and <s= <§1’7 for all 6 < n.

It follows that:

e 77is a limit ordinal that can be Written in the form n = w; - v+ ¢, where ¢ = i({y, (1)
for some ¢y, {1 < o.t. (<“,2 yandi= t(<w2 V)

o A, =n+ (w)\ Alxg * xz,)), where xc is the e-th real in L[{us : 6 < wz - v] N w?
according to the natural wellorder <,,).,, of this set;

. Qn {(s0, 51) @ 50 € [W]™¥, 51 € [UmeA(xgo*xgl) Yyem X {m}]~, so end-extends sg,
51 2 s1 and sg \ sO N B,y = 0 for all (e,m) € s'17} ordered as before.

Our choice of p and the fact that the upwards closure of H,, in P, is a IP,-generic
filter containing p imply that Y, is not among the Y,,,’s involved into the definition of
@,,. Thus Qn € L[H,;;'f]. Moreover, @,7 is fully determined by the relevant Y,,,’s and
the sequence (us : 6 < 1) which belongs to L[Hf;f] and does not depend on K by (2).
Therefore Q, does not depend on K and hence we may set Q,ff = Qy, A;g = A, Let

¢§ be ]P’qtf -names for (@9tf and Aqtf respectively. By the definition, (3) and the third
part of (2) hold true.

The equality L[H,]N[Ord]® = L[Hf]t 5] N [Ord]“ and the o-centeredness of @,7 imply
that any Q:f-generic over L[Hf;f] is Qn—generic over L[H,] and vice versa. Therefore
}P’:fl <c P,]H (note that H,, may be thought of as being an arbitrary Pn‘ generic filter over
L). This establishes (1).

Let h;, be a Qf;f—generic over L[H,;; ‘f] (or, equivalently, @,7— generic filter over L[H,]).
Since a (nice) (Q,-name for a countable set of ordinals in L[H,)] can be naturally identified
with a countable set of ordinals, every @,,—name o € L[H,;] for a countable set of ordinals
is in fact in L[H,*]. Therefore L[Hy41] N [Ord]® = LIH % 10 [Ord]®, where Hyyy =
H,, + hy,. This proves (4)

Let us denote by u,7 € [w]® N L[H ! the union of the first coordlnates of elements
of h;. By the maximality principle, this gives us a Pn L ,-hame u,7 . By the definitions of

#&
£ MH,,*//L,7 _ gt

it; and uf; Uy ity , which proves the first part of (2). By (4) and Lemma 2,

LIH;® % hy) 0 [0]° = (LIH;® % hy] 0 [Ord]?) N [w]© =
= (L[Hy * hy] N [Ord]”) N [w]® = LIH, * hy] N [w]® =

*

= LM 5 <yl ] = LG T s <IN o),

which implies the second equality in (2) and thus concludes Case a).

Case b). @,, is a name for a poset adjoining a dominating function restricted to the

condition p(n) = (sg,vs'{). This case is analogous to, but easier than the Case a) (here we
10



do not have to worry about Y¢) and we leave it to the reader.

This finishes our construction of (]P’Z:f, g ;ff :a < w3,y < w3). Observe that condi-
tions (1)-(4) hold for y = ws. In particular, L[G] N w® = L[G*¢] N w®, where G*¢ C sz
is the preimage of the IP,,,-generic filter G under the complete embedding from (1). So
it is sufficient to show that in L[G**] there is no real coding a closed unbounded sub-

set disjoint from Sz. Since IP’ﬁf is a }P’(fsc—name for a c.c.c poset and P>*¢, P1-#¢ are

PO-#¢ 5 PL# PO#¢_pnames for wza—)i:).c. posets, respectively, every closed unbounded sub-
set of wy in L[G*¥] contains a closed unbounded subset of w, in L[G%#%], see [9, Lemma
22.25]. (Here G%#¢ = G* NPY#¢ is the P*#¢-generic filter over L induced by G*%). Thus
it suffices to verify that S is stationary in L. We shall use here an idea from [6].

Fix p € P%*¢ and let C be a name for a club in w,. We would like to find g € P%#¢
such that ¢ < p and g IFpose C NS ¢ # 0. Let (M; : i < w>) be a continuous chain of
elementary submodels of some large Ly such that My contains p, a, C,w +1c Mo,
vi = MiNwy € wy, cof(y;) = wi, and Mf“" Cc M; foralli € w,. Set Sg ={ieS¢:
v; = i} and note that S g is stationary.

Claim. There exists i € Sg such thati ¢ S, for all @ € M; \ {¢}.

Proof. Note that @ € M; is equivalent to @ < v;, and hence to @ < i since i € § g.
Suppose that for every i € Sg there exists f(i) < i such thati € §s; and f(i) # £. By
Fodor’s Lemma there exists j € w, and a stationary 7 C § 2 such that f(i) = j for all
i€T.Itfollows that T C S, and hence T C § ;N S, a contradiction. O

Choose i as in the Claim above. We shall build an w;-sequence p = pg > p; > -+
with a lower bound forcing i € C. Let {iy : @ < wp) be an increasing continuous
sequence of ordinals such that sup,,,, o =1 Given py, let po+1 < po be such a condition
in P%#¢ N M; such that p,.| forces some ordinal j,41 € [ig+1,1) to belong to C. For limit
aand £ €\ {£} set

o) =) pp@ Utsup | pp(). ial.
B<a p<a
Since S;’s consist of ordinals of cofinality w; and M; is closed under countable se-
quences of its elements, p, € P%*¢ N M;. This finishes our construction of the sequences
(Pa : @ < W) € M;‘” and (j, : @ < wy) € i“'. Set g({) = Ugew, Pa() U {i} for all
Je€i\& Sincei ¢ S, forall £ €i\{£}, we conclude that g({) NS, = O forall £ €7\ {£}.
From the above it follows that ¢ € P*#¢ and g IFpo+ i € C, which finishes our proof. [

Corollary 1. Let G be a P-generic filter over L and let x, y be reals in L[G]. Then x <© y
if and only if there is @ < w3 such that for all m, the stationary kill of S ,.,, is coded by
areal iff m € A(x  y).

11



Proof Suppose that x <G y. Let @ > 0 be minimal such that x,y € L[G,,,] and let

[=dy, S Find ¢ € Lim(w,) such that i(£) = (£, &,) where x and y are the &,-th and
&,-th real respectively in L[G,,,.o- | according to the wellorder < o+ (By Lemma 2 such
a ¢ exists). Let @ = wy - @ +&. Then QQ, adds a real coding a statlonary kill for S 4, for
all m € A(x * y). On the other hand if m ¢ A(x * y), then @ + m € AS = a + (W\A(x * y))
and so by Lemma 3, there is no real in L[G] coding the stationary kill of S 4.

Now suppose that there exists a such that the stationary kill of S 4+, is coded by a
real iff m € A(x = y). Since the stationary kill of some « + m’s is coded by a real in L[G],
Lemma 3 implies that Q¥ introduced a real coding stationary kill for all m € A(a * b) for
some reals a<gb, while there are no reals coding a stationary kill of S ., for m ¢ A(axb).

Therefore A(a * b) = A(x * y) and hence a = x and b = y, and consequently xigy. O

Lemma 4. Let G be P-generic over L and let x, y be reals in L[G]. If x <© y, then there
is a real r such that for every countable suitable model M such that r € M, there is
such that for all m € A(x * y),

c=y<w§w

(LM E S &+m 18 NOt stationary.

Proof. By Corollary 1, there exists a < wj3 such that Q¢ adds a real r coding a stationary
kill of S 44, for all m € A(x = y). Let M be a countable suitable model containing r. It
follows that Y, N a)f’( € M and hence X, N a){w, Xoam N a) also belong to M.
Observe that these sets are actually in A := (L[r]). Note also that N is a countable
suitable model and consequently by the definition of £(X,+.,, Xo) we have that for every
meAx=*y), NFE

“ Using the sequence ff, Xo+m Nw (resp. X, N wy) almost disjointly codes
a subset Z,, (resp. Zy) of w,, whose even part Even(Z,,) (resp. Even(Zy))
codes a tuple (C, W,,, W) (resp. (C, W, Wo)), where W,, and W,, are the
L-least codes of ordinals &,,, @, < w3 (resp. Wy = ﬁ/o is the L-least code
for a limit ordinal &) such that &,, = & is the largest limit ordinal not

exceeding @, and C is a club in w, disjoint from S @,,1.5”

Note that in particular for every m # m’ in A(x * y), @ = @y - O

Lemma 5. Let G be P-generic over L and let x, y be reals in L[G]. If there is a real r such
that for every countable suitable model M containing r as an element, there is @ < a)gw

such that for every m € A(x * y),

(L[r])M F S 5., 18 NOt stationary,

5In the above, X, S, Sa,, Wi, Wy, ws refer of course to their interpretations in the model N.
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then x <@ y.

Proof. Suppose that there is such areal r. By the Lowenheim-Skolem theorem, it has the
property described in the formulation with respect to all suitable models M, in particular
for Hg, where O is sufficiently large (here Hg denotes the set of all sets hereditarily of
cardinality < @). That is there is @ < w3 such that for every m € A(x * y)

Lolr] E S 4+m 1s not stationary.

Thus in particular the stationary kill of at least some S ,+,, Was coded by a real. Lemma 3
implies that Q¥ introduced a real u, (perhaps different from ) coding stationary kill for
all m € A(a * b) for some reals a<gb, while there are no reals coding a stationary kill of
S o+m for m ¢ A(axb). Therefore A(axb) O A(x+y), which yields A(a+b) = A(x+*y). From
the above, it follows that a = x, b = y and hence xkgy, which finishes our proof. U

Combining Lemmata 4,5 and the fact that we have added dominating reals cofinally
often, we get the following result.

Theorem 1. It is consistent with ¢ = b = N3, that there is a projective (indeed A;—
definable) wellorder of the reals.

3. Projective mad families

The main result of this section and of the whole paper is the following theorem which
answers [7, Question 19] in the positive.

Theorem 2. It is consistent with ¢ = b = N3, that there is a A;—deﬁnable wellorder of
the reals and a H;—deﬁnable w-mad subfamily of [w]® (resp. w®).

The proof is completely analogous to that of Theorem 2. Moreover, we believe that
adding the argument responsible for w-mad families would just make the proof in the
previous section messier without introducing any new ideas besides those used in the
proof of Theorem 1 and in [7]. Therefore the proof of Theorem 2 is just sketched here.
More precisely, we shall define the corresponding poset P,,, and leave it to the reader to
verify that the proof of Theorem 1 can be carried over.

Let B = (Bzym + ¢ < wy,m € w) be as in the proof of Theorem 1. We will define
a finite support iteration (P, Qy @ £ w3,y < ws), where Q, is a Py-name for a o--
centered poset and in L' there is a Aé -definable wellorder of the reals, a Hé-deﬁnable
w-mad subfamily of [w]“ (the case of subfamilies of w®“ is completely analogous, see
[7]), and ¢ = b = N3.

13



IPy is a three step iteration PO P! « P2, where P* and P! are exactly the same as in
the proof of Theorem 1. The poset P? uses the following modification of Definition 1,
where ¢ is as in (%), from the previous section.

Definition 2. Let X, X’ C w; be such that ¢(w, w7, X) and ¢(w1, w2, X’) hold in any
suitable model M with w{w = a)f containing X and X’, respectively. Let also 1 be a
countable limit ordinal. We denote by £, (X, X") the poset of all functions r : [r| — 2,

where the domain |r| of r is a countable limit ordinal such that:

Irl=n

ify<nthenr(y)=0
ify<|rftheny e Xiff r(n+3y)=1
ify<lrithenye X" iff r(in+3y+1)=1

ok wh =

if y < |r|, M is a countable suitable model containing r | y as an element and
v = w{w, then M E ¢(w1, w2, X Ny) A ¢(wy, wa, X’ N7y) holds in M.

The extension relation is end-extension.

For a € Lim(w3)\w, and m € w set IP% +m = nerim() LnXarm, Xo). f @ € Lim(w,)
2

and m € w, let P/,

be the trivial poset. Then let

P? = l_l l_[ ]P)czwm

a€Llim(wz) Mew

with countable supports. By the A-system Lemma in L*"F" the poset P has the w»-c.c.
Analogously to Lemma 1 we conclude that Py = P? x P! « P? is w-distributive.

If @ is limit and m € w, we shall refer to the localizing set for X4+, produced by
Ly(Xom> Xo) @S Yoymy. Thatis Yoymy € wr \ nand Yoy, codes both X4, and X,,.

Every Q, is going to add a generic real whose P,-name will be denoted by i, and
similarly to the proof of Lemma 2 one can prove that L[G,]Nw® = L[<u§a €< a)]Nw?
for every P,-generic filter G,. This gives us a canonical wellorder of the reals in L[G,]
which depends only on the sequence (L’t?“ : & < ), whose P,-name will be denoted by
<q- We can additionally arrange that for @ < 8 we have that 1p; forces <, to be an initial
G . @ < w3} will be the

segment of <g. Then if G is a P,,,-generic filter over L, <G=UI<§ -
desired wellorder of the reals.

We proceed with the recursive construction of IP,,,. Along this construction we shall
also define a sequence (Ay : @ € Lim(ws)), where A, is a P,-name for a subset of

[a,0 + w). Leti: wXw — wand

Jr v UKL €)1 L <& <vp— Lim(ws)
14



be some bijections, where v € [wj,w3). Suppose P, has been defined and fix a P,-
generic filter G,.

Case 1. « is a limit ordinal that can be written in the form w, - @’ + & for some
« > 0, & < w, and the preimage j~!(£) is a tuple (&, &) for some & ig‘z’.a, &1, where

J=1, (<% ) In this case the definition of Q, is the same as in the proof of Theorem 1.
wy-a!

Case 2. « is a limit ordinal that can be written in the form w; - @’ + & for some &’ > 0

and the preimage j~'(¢) is an ordinal € 0.t.(<g‘2'_a,), where j = j In this case

0.0.(<8 1y
we use a simplified version of the poset from [7, Theorem 1]. More pu;ze(::isely, ordinals
fulfilling the condition above will be used for the construction of a Hé definable w-mad
family A.

For a subset s of w and [/ € |s| (= card(s) < w) we denote by s(/) the /-th element
of s. In what follows we shall denote by E(s) and O(s) the sets {s(2i) : 2i € |s|} and
{s(2i+1):2i+1 € |s]}, respectively. Let A, be the approximation to A constructed thus

far. Suppose also that
(*) VD € [A)° VB € B (E(B) \ UD| = |0(B) \ UD| = w).
Observe that equation (x) yields |E(B) \ UD| = |O(B) \ UD| = w for every D €
[BUA, and B € B \ D. Let x; be the {-th real in L[G,.«'] N [w]® according to the
g;a,. Set C,, = {x;(i(n,m)) : m € w} € [w]” and C = {C, : n € w}. Unless
the following holds, Q, is a P,-name for the trivial poset: none of the C,’s is covered

by a finite subfamily of A, . In the latter case Q, := C g” is defined as follows.

wellorder <

Let us fix a limit ordinal 1, € w; such that there are no finite subsets J, & of (w; \
Na) X W, Ay, respectively and n € w, such that C,, C Uy myes Bym YU U E. (The almost
disjointness of the By ,’s imply that if C, c (JB' U [JA’ for some B’ € [§]<“' and
A € [ALJY, then C, \ |J A’ has finite intersection with all elements of B\ B. This
easily yields the existence of such an n,.) Let I, be an infinite subset of w coding a
surjection from w onto 7,. For a subset s of w we denote by As the set {2k +1 : k €
(sups\ HU{2k+2: ke s}

In V[G,], Qq consists of pairs (s, s*) such that s € [w]*“, 5™ € [{Bg, : m € A(s),B €
Yoimpa} U ﬂa]<w, and for every 2n € |s N Bogl, n € I, if and only if there exists m € w
such that (s N By o)(2n) = By o(2m). For conditions p = (s, s*) and g = {t,*) in Q,, we
let g < pif and only if ¢ is an end-extension of s and ¢\ s has empty intersection with all
elements of s*.

Let h, be a Q,-generic filter over L[G.]. Set ug = s s4yen, 5> Aa = @+ (0 \ Alug)),
and Ay+1 = Ay U {u,}. As a consequence of the definition of (Q, and the genericity of
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h, we get6

(1) uq € [w]?, uqy is almost disjoint from all elements of A, and has infinite intersec-
tion with C,, for all n € w;

(2) If m € A(ug), then |uy, N Bg | < w if and only if B € Yo iy, s

(3) Foreveryn € w, n € I, if and only if there exists m € w such that (u, N By o)(2n) =
By o(2m); and

(4) Equation () holds for a + 1, i.e. for every B € B and a finite subfamily A’ of
Ag+1, A’ covers neither a cofinite part of E(B) nor of O(B).

By (2) u, codes Yo im,y, forall m € A(ug).

Case 3. If « is not of the form above, i.e. @ is a successor or @ < w,, then A, is a
name for the empty set and Q,, is a name for the poset adding a dominating real defined
in Case 2 of the proof of Theorem 1.

With this the definitions of P = P,,, and (A, : @ € Lim(w3)) are complete. Let G be
a [P-generic over L.

Just as in the proof of Theorem 1 one can verify that Lemmata 2 and 3 hold true.
These were of crucial importance for the proof of Corollary 1, which in turn was used
in the proofs of Lemmata 4 and 5. Again, a direct verification shows that all of these
statements still hold and hence <© is a A%—Wellorder of the reals in L[G].

Lemma 2 implies that the family A we construct in the instances of Case 2 is an
w-mad subfamily of [w]®. Condition (3) above yields r, < w{w for all countable suit-
able models M containing #$ provided that at stage a, Case 2 took place (i.e., there
is a condition in G which forces this). Combining this with the ideas of the proofs of

Lemmata 4 and 5 we get that a € A iff for every countable suitable model M containing

M
3

k € A(a). This provides a Hé definition of A, which finishes our proof of Theorem 2.

a as an element there exists @ < w3 such that S é‘:‘k is nonstationary in (L[a))M for all

4. Questions

The consistency of the existence of a A%—deﬁnable wellorder of the reals in the pres-
ence of ¢ > N3 and MA, is still open. A second question naturally emerging from the
developed techniques is the existence of a model in which a desired inequality betwen
the cardinal characteristics of the real line holds, there is a A; -definable wellorder of the

6See [7, Claim 11] for an analogous argument.
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reals and ¢ > N3. Note that the bookkeeping argument which we have used in Theo-

rems 1 and 2 allows only for handling of countable objects, which presents an additional
difficulty in obtaining such models.
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