Vera Fischer^{a,1,*}, Sy David Friedman^{a,1}, Lyubomyr Zdomskyy^{a,1}

^aKurt Gödel Research Center, University of Vienna, Währinger Strasse 25, A-1090 Vienna, Austria

Abstract

We show that $\mathfrak{b} = \mathfrak{c} = \omega_3$ is consistent with the existence of a Δ_3^1 -definable wellorder of the reals and a Π_2^1 -definable ω -mad subfamily of $[\omega]^{\omega}$ (resp. ω^{ω}).

Keywords: coding, projective wellorders, projective mad families, large continuum

2000 MSC: 03E15, 03E20, 03E35, 03E45

1. Introduction

The existence of a projective, in fact Δ_3^1 -definable wellorder of the reals in the presence of large continuum, i.e. $\mathfrak{c} \geq \omega_3$, was established by Harrington in [8]. In the present paper, we develop an iteration technique which allows one not only to obtain the consistency of the existence of a Δ_3^1 -definable wellorder of the reals with large continuum (see Theorem 1), but in addition the existence of a Π_2^1 -definable ω -mad family with $\mathfrak{b} = \mathfrak{c} = \omega_3$ (see Theorem 2). The method is a natural generalization to models with large continuum of the iteration technique developed in [5]. We expect that an application of Jensen's coding techniques will lead to the same result with essentially arbitrary values for \mathfrak{c} .

For a more detailed introduction to the subject of projective wellorders of the reals and projective mad families, see [5] and [7]. Recall that a family \mathcal{A} of infinite subsets of ω is almost disjoint if any two of its elements have finite intersection. An infinite almost disjoint family \mathcal{A} is maximal (abbreviated mad family), if for every infinite subset b of ω , there is an element $a \in \mathcal{A}$ such that $|a \cap b| = \omega$. If \mathcal{A} is an almost disjoint family, let $\mathcal{L}(\mathcal{A}) = \{b \in [\omega]^{\omega} : b \text{ is not covered by finitely many elements of } \mathcal{A}\}$. A mad family \mathcal{A}

^{*}Corresponding author; Phone: (43-1) 43 1 4277 50523; Fax: (43-1) 43 1 4277 50599

Email addresses: vfischer@logic.univie.ac.at (Vera Fischer), sdf@logic.univie.ac.at (Sy David Friedman), lzdomsky@logic.univie.ac.at (Lyubomyr Zdomskyy)

¹The authors would like to thank the Austrian Science Fund FWF for the generous support through grants no P. 20835-N13 (Fischer, Friedman), P. 19898-N18 and M1244-N13(Zdomskyy).

is ω -mad if for every $B \in [\mathcal{L}(\mathcal{A})]^{\omega}$, there is $a \in \mathcal{A}$ such that $|a \cap b| = \omega$ for all $b \in B$. For the definition of \mathfrak{b} , as well as an introduction to the subject of cardinal characteristics of the continuum we refer the reader to [1].

In section 2 we introduce a model in which $\mathfrak{b} = \mathfrak{c} = \omega_3$ and there is a Δ_3^1 -definable wellorder of the reals. In section 3 we show how to modify the argument to obtain in addition the existence of a Π_2^1 -definable ω -mad family. We begin by fixing an appropriate sequence $\vec{S} = \langle S_\alpha : 1 < \alpha < \omega_3 \rangle$ of stationary subsets of ω_3 and explicitly destroying the stationarity of each S_α by adding a closed unbounded subset of ω_3 disjoint from it. The wellorder is produced by introducing reals (see Steps 1 through 3 in section 2) which code this stationary kill for certain stationary sets from \vec{S} . For this purpose, we use almost disjoint coding as well as a modified version of the method of localization (see [4] and [5, Definition 1]).

2. Projective Wellorders with Large Continuum

Throughout the paper we work over the constructible universe L, thus unless otherwise specified V=L. Let $\langle G_{\xi}: \xi \in \omega_2 \cap \operatorname{cof}(\omega_1) \rangle$ be a $\Diamond_{\omega_2}(\operatorname{cof}(\omega_1))$ sequence which is Σ_1 definable over L_{ω_2} . For every $\alpha < \omega_3$, let W_{α} be the L-least subset of ω_2 coding the ordinal α . Let $\vec{S}=\langle S_{\alpha}: 1<\alpha<\omega_3 \rangle$ be the sequence of stationary subsets of ω_2 defined as follows: $S_{\alpha}=\{\xi\in\omega_2\cap\operatorname{cof}(\omega_1): G_{\xi}=W_{\alpha}\cap\xi\neq\emptyset\}$. In particular, the sets S_{α} are stationary subsets of $\operatorname{cof}(\omega_1)\cap\omega_2$ which are mutually almost disjoint (that is, for all $1<\alpha,\beta<\omega_3, \alpha\neq\beta$, we have that $S_{\alpha}\cap S_{\beta}$ is bounded). Let $S_{-1}=\{\xi\in\omega_2\cap\operatorname{cof}(\omega_1): G_{\xi}=\emptyset\}$. Note that S_{-1} is a stationary subset of $\omega_2\cap\operatorname{cof}(\omega_1)$ disjoint from all S_{α} 's.

Say that a transitive ZF⁻ model \mathcal{M} is *suitable* if $\omega_3^{\mathcal{M}}$ exists and $\omega_3^{\mathcal{M}} = \omega_3^{L^{\mathcal{M}}}$. From this it follows, of course, that $\omega_1^{\mathcal{M}} = \omega_1^{L^{\mathcal{M}}}$ and $\omega_2^{\mathcal{M}} = \omega_2^{L^{\mathcal{M}}}$.

Step 0. For every $\alpha: \omega_2 \leq \alpha < \omega_3$ shoot a closed unbounded set C_α disjoint from S_α via a poset \mathbb{P}^0_α . The poset \mathbb{P}^0_α consists of all bounded, closed subsets of ω_2 , which are disjoint from S_α . The extension relation is end-extension. Note that \mathbb{P}^0_α is countably closed and \aleph_2 -distributive (see [3]). For every $\alpha \in \omega_2$ let \mathbb{P}^0_α be the trivial poset.

Let $\mathbb{P}^0 = \prod_{\alpha < \omega_3} \mathbb{P}^0_{\alpha}$ be the direct product of the \mathbb{P}^0_{α} 's with supports of size ω_1 . Then \mathbb{P}^0 is countably closed and by the Δ -system Lemma, also ω_3 -c.c. Its ω_2 -distributivity is easily established using the stationary set $S_{-1} \subseteq \omega_2 \cap \text{cof}(\omega_1)$.

Step 1. We begin by fixing some notation. Let X be a set of ordinals. Denote by O(X), I(X), and II(X) the sets $\{\eta : 3\eta \in X\}$, $\{\eta : 3\eta + 1 \in X\}$ and $\{\eta : 3\eta + 2 \in X\}$, respectively. Let Even(X) be the set of even ordinals in X and Odd(X) be the set of odd ordinals in X.

In the following we treat 0 as a limit ordinal. For every $\alpha: \omega_2 \leq \alpha < \omega_3$ let $D_\alpha \subset \omega_2$ be a set coding the tuple $\langle C_\alpha, W_\alpha, W_\gamma \rangle$, where γ is the largest limit ordinal $\leq \alpha$. More precisely D_α is such that $O(D_\alpha)$, $I(D_\alpha)$, and $II(D_\alpha)$ equal C_α , W_α , and W_γ , respectively. Now let E_α be the club in ω_2 of intersections with ω_2 of elementary submodels of $L_{\alpha+\omega_2+1}[D_\alpha]$ which contain $\omega_1 \cup \{D_\alpha\}$ as a subset. (These elementary submodels form an ω_2 -chain.) Now choose Z_α to be a subset of ω_2 such that $Even(Z_\alpha) = D_\alpha$, and if $\beta < \omega_2$ is ω_2^M for some suitable model M such that $Z_\alpha \cap \beta \in M$, then β belongs to E_α . (This is easily done by placing in Z_α a code for a bijection $\phi: \beta_1 \to \omega_1$ on the interval $(\beta_0, \beta_0 + \omega_1)$ for each adjacent pair $\beta_0 < \beta_1$ from E_α .) Then we have:

(*) $_{\alpha}$: If $\beta < \omega_2$ and \mathcal{M} is any suitable model such that $\omega_1 \subset \mathcal{M}$, $\omega_2^{\mathcal{M}} = \beta$, and $Z_{\alpha} \cap \beta \in \mathcal{M}$, then $\mathcal{M} \models \psi(\omega_2, Z_{\alpha} \cap \beta)$, where $\psi(\omega_2, X)$ is the formula "Even(X) codes a tuple $\langle \bar{C}, \bar{W}, \bar{W} \rangle$, where \bar{W} and \bar{W} are the *L*-least codes of ordinals $\bar{\alpha}, \bar{\alpha} < \omega_3$ such that $\bar{\alpha}$ is the largest limit ordinal not exceeding $\bar{\alpha}$, and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}}$ ".

Indeed, given a suitable model \mathcal{M} with $\omega_2^{\mathcal{M}} = \beta$ and $Z_\alpha \cap \beta \in \mathcal{M}$, note that $\beta \in E_\alpha$ by the construction of Z_α and also that $D_\alpha \cap \beta \in \mathcal{M}$. Let \mathcal{N} be an elementary submodel of $L_{\alpha+\omega_2+1}[D_\alpha]$ such that $\omega_1 \cup \{D_\alpha\} \subset \mathcal{N}$ and $\mathcal{N} \cap \omega_2 = \beta$. Denote by $\bar{\mathcal{N}}$ the transitive collapse of \mathcal{N} . Then $\bar{\mathcal{N}} = L_\xi[D_\alpha]$ for some $\omega_2 > \xi > \beta$ and $\omega_2^{\bar{\mathcal{N}}} = \omega_2^{\mathcal{M}} = \beta$. Therefore $\bar{\mathcal{N}} \subset \mathcal{M}$. Let $Z'_\alpha \subset \omega_2$ be such that $Even(Z'_\alpha) = Odd(Z'_\alpha) = D_\alpha$. By the definition of D_α , $L_{\alpha+\omega_2+1}[D_\alpha] \models \psi(\omega_2, Z'_\alpha)$. By elementarity, $\bar{\mathcal{N}} \models \psi(\omega_2, Z'_\alpha \cap \beta)$. Since the formula ψ is Σ_1 , $\omega_2^{\bar{\mathcal{N}}} = \omega_2^{\mathcal{M}}$, we conclude that $\mathcal{M} \models \psi(\omega_2, Z'_\alpha \cap \beta)$. Since $Z_\alpha \cap \beta \in \mathcal{M}$ and $Even(Z'_\alpha) = Even(Z_\alpha)$, we have $\mathcal{M} \models \psi(\omega_2, Z_\alpha \cap \beta)$, which finishes the proof of $(*)_\alpha$.

Now similarly to \vec{S} we can define a sequence $\vec{A} = \langle A_{\xi} : \xi < \omega_2 \rangle$ of stationary subsets of ω_1 using the "standard" \diamond -sequence. Then in particular this sequence is nicely definable over L_{ω_1} and almost disjoint. Now we code Z_{α} by a subset X_{α} of ω_1 with the forcing \mathbb{P}^1_{α} consisting of all tuples $\langle s_0, s_1 \rangle \in [\omega_1]^{<\omega_1} \times [Z_{\alpha}]^{<\omega_1}$ where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ iff s_0 is an initial segment of t_0 , $s_1 \subseteq t_1$ and $t_0 \setminus s_0 \cap A_{\xi} = \emptyset$ for all $\xi \in s_1$. Then X_{α} obviously satisfies the following condition:

(**) $_{\alpha}$: If $\omega_1 < \beta \le \omega_2$ and \mathcal{M} is a suitable model such that $\omega_2^{\mathcal{M}} = \beta$ and $\{X_{\alpha}\} \cup \omega_1 \subset \mathcal{M}$, then $\mathcal{M} \models \phi(\omega_1, \omega_2, X_{\alpha})$, where $\phi(\omega_1, \omega_2, X)$ is the formula: "Using the sequence \vec{A} , \vec{A} almost disjointly codes a subset \vec{Z} of ω_2 , whose even part $Even(\vec{Z})$ codes a tuple $\langle \vec{C}, \bar{W}, \bar{W} \rangle$, where \vec{W} and \vec{W} are the L-least codes of ordinals $\bar{\alpha}, \bar{\alpha} < \omega_3$ such that $\bar{\alpha}$ is the largest limit ordinal not exceeding $\bar{\alpha}$, and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}}$ ".

Let $\mathbb{P}^1 = \prod_{\alpha < \omega_3} \mathbb{P}^1_{\alpha}$, where \mathbb{P}^1_{α} is the trivial poset for $\alpha \in \omega_2$, be the product of the \mathbb{P}^1_{α} 's with countable support. The poset \mathbb{P}^1 is easily seen to be countably closed. Moreover, it has the ω_2 -c.c. by a standard Δ -system argument.

Step 2. Now we shall force a localization of the X_{α} 's. Fix ϕ as in $(**)_{\alpha}$.

Definition 1. Let $X, X' \subset \omega_1$ be such that $\phi(\omega_1, \omega_2, X)$ and $\phi(\omega_1, \omega_2, X')$ hold in any suitable model \mathcal{M} with $\omega_1^{\mathcal{M}} = \omega_1^L$ containing X and X', respectively. We denote by $\mathcal{L}(X, X')$ the poset of all functions $r : |r| \to 2$, where the domain |r| of r is a countable limit ordinal such that:

- 1. if $\gamma < |r|$ then $\gamma \in X$ iff $r(3\gamma) = 1$
- 2. if $\gamma < |r|$ then $\gamma \in X'$ iff $r(3\gamma + 1) = 1$
- 3. if $\gamma \leq |r|$, \mathcal{M} is a countable suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma = \omega_1^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi(\omega_1, \omega_2, X \cap \gamma) \land \phi(\omega_1, \omega_2, X' \cap \gamma)$.

The extension relation is end-extension.

Set $\mathbb{P}^2_{\alpha+m} = \mathcal{L}(X_{\alpha+m}, X_{\alpha})$ for every $\alpha \in Lim(\omega_3) \backslash \omega_2$ and $m \in \omega$. Let $\mathbb{P}^2_{\alpha+m}$ be the trivial poset for every $\alpha \in Lim(\omega_2)$ and $m \in \omega$. Let

$$\mathbb{P}^2 = \prod_{\alpha \in Lim(\omega_3)} \prod_{m \in \omega} \mathbb{P}^2_{\alpha+m}$$

with countable supports. By the Δ -system Lemma in $L^{\mathbb{P}^0*\mathbb{P}^1}$ the poset \mathbb{P}^2 has the ω_2 -c.c. Observe that the poset $\mathbb{P}^2_{\alpha+m}$, where $\alpha>0$, produces a generic function from ω_1 (of $L^{\mathbb{P}^0*\mathbb{P}^1}$) into 2, which is the characteristic function of a subset $Y_{\alpha+m}$ of ω_1 with the following property:

 $(***)_{\alpha}$: For every $\beta < \omega_1$ and any suitable \mathcal{M} such that $\omega_1^{\mathcal{M}} = \beta$ and $Y_{\alpha+m} \cap \beta$ belongs to \mathcal{M} , we have $\mathcal{M} \models \phi(\omega_1, \omega_2, X_{\alpha+m} \cap \beta) \land \phi(\omega_1, \omega_2, X_{\alpha} \cap \beta)$.

Lemma 1. The poset $\mathbb{P}_0 := \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$ is ω -distributive.

Proof. Given a condition $p_0 \in \mathbb{P}_0$ and a collection $\{O_n\}_{n \in \omega}$ of open dense subsets of \mathbb{P}_0 , choose the least countable elementary submodel \mathcal{N} of some large L_{θ} (θ regular) such that $\{p_0\} \cup \{\mathbb{P}_0\} \cup \{O_n\}_{n \in \omega} \subset \mathcal{N}$. Build a subfilter g of $\mathbb{P}_0 \cap \mathcal{N}$, below p_0 , which hits all dense subsets of \mathbb{P}_0 which belong to \mathcal{N} . Write g as g(0) * g(1) * g(2). Now g(0) * g(1) has a greatest lower bound p(0) * p(1) because the forcing $\mathbb{P}^0 * \mathbb{P}^1$ is ω -closed. The condition (p(0), p(1)) is obviously $(\mathcal{N}, \mathbb{P}^0 * \mathbb{P}^1)$ -generic.

On each component $\alpha+m \in \mathcal{N} \cap \omega_3$, where $\alpha \in Lim(\omega_3)$, $m \in \omega$, define $p(2)(\alpha+m) = \bigcup g(2)(\alpha+m)$. It suffices to verify that $p(2)(\alpha+m)$ is a condition in $\mathbb{P}^2_{\alpha+m}$, for this will give us a condition p(2) so that p(0) * p(1) * p(2) meets each of the O_n 's.

As $(p(0)(\alpha), p(0)(\alpha+m), p(1)(\alpha), p(1)(\alpha+m))$ is a $(\mathcal{N}, \mathbb{P}^0_{\alpha} * \mathbb{P}^0_{\alpha+m} * \mathbb{P}^1_{\alpha} * \mathbb{P}^1_{\alpha+m})$ -generic condition, if

$$G := G(0)(\alpha) * G(0)(\alpha + m) * G(1)(\alpha) * G(1)(\alpha + m)$$

is a $\mathbb{P}^0_{\alpha} * \mathbb{P}^0_{\alpha+m} * \mathbb{P}^1_{\alpha} * \mathbb{P}^1_{\alpha+m}$ -generic filter over L containing it, then the isomorphism π of the transitive collapse $\bar{\mathcal{N}}$ of \mathcal{N} , onto \mathcal{N} extends to an elementary embedding from

$$\bar{\mathcal{N}}_0 := \bar{\mathcal{N}}[\overline{g(0)}(\bar{\alpha}) * \overline{g(0)}(\bar{\alpha} + m) * \overline{g(1)}(\bar{\alpha}) * \overline{g(1)}(\bar{\alpha} + m)]$$

into $L_{\theta}[G]$. Here $\overline{g(i)} = \pi^{-1}(g(i))$, $i \in 2$, and $\bar{\xi} = \pi^{-1}(\xi)$ for all $\xi \in \mathcal{N} \cap \text{Ord}$. By the genericity of G we know that, letting $X_{\alpha} = \bigcup G(1)(\alpha)$, $X_{\alpha+m} = \bigcup G(1)(\alpha+m)$, properties $(**)_{\alpha}$ and $(**)_{\alpha+m}$ hold. By elementarity, $\bar{\mathcal{N}}_0$ is a suitable model and $\bar{\mathcal{N}}_0 \models \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$, where $x_{\bar{\alpha}} = \bigcup g(1)(\alpha) = \bigcup g(1)(\bar{\alpha})$ and $x_{\bar{\alpha}+m} = \bigcup g(1)(\alpha+m) = \bigcup g(1)(\bar{\alpha}+m)$. By the construction of \mathbb{P}_0 , $\bar{\mathcal{N}}_0 = \bar{\mathcal{N}}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}]$ and hence $\bar{\mathcal{N}}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}] \models \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$.

Let ξ be such that $\bar{\mathcal{N}} = L_{\xi}$ and let \mathcal{M} be any suitable model containing $p(2)(\alpha)$, $p(2)(\alpha + m)$, and such that $\omega_1^{\mathcal{M}} = \omega_1 \cap \mathcal{N}$. We have to show that $\mathcal{M} \models \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \wedge \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$. Set $\eta = \mathcal{M} \cap \text{Ord}$ and consider the chain $\mathcal{M}_2 \subseteq \mathcal{M}_1 \subseteq \mathcal{M}$ of suitable models, where $\mathcal{M}_2 = L_{\eta}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}]$ and $\mathcal{M}_1 = L_{\eta}[p(2)(\alpha), p(2)(\alpha + m)]$. Three cases are possible.

Case a). $\eta > \xi$. Since \mathcal{N} was chosen to be the least countable elementary submodel of L_{θ} containing the initial condition, the poset and the sequence of dense sets, it follows that ξ (and therefore also δ) is collapsed to ω in $L_{\xi+2}$, and hence this case cannot happen.

Case b). $\eta = \xi$. In this case $\mathcal{M}_2 \vDash \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$. (Indeed, $\mathcal{M}_2 = L_{\eta}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}] = \bar{\mathcal{N}}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}]$.) Since ϕ is a Σ_1 -formula, $\omega_1^{\mathcal{M}_2} = \omega_1^{\mathcal{M}}$ and $\omega_2^{\mathcal{M}_2} = \omega_2^{\mathcal{M}}$, we have $\mathcal{M} \vDash \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$.

Case c). $\eta < \xi$. In this case \mathcal{M}_2 is an element of $\bar{\mathcal{N}}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}]$. Since $L_{\theta}[G]$ satisfies $(**)_{\alpha}$ and $(**)_{\alpha+m}$, by elementarity so does the model $\bar{\mathcal{N}}[x_{\bar{\alpha}}, x_{\bar{\alpha}+m}]$ with X_{α} replaced by $x_{\bar{\alpha}}$ and $X_{\alpha+m}$ replaced by $x_{\bar{\alpha}+m}$. In particular, $\mathcal{M}_2 \models \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$. Since ϕ is a Σ_1 -formula, $\omega_1^{\mathcal{M}_2} = \omega_1^{\mathcal{M}}$, and $\omega_2^{\mathcal{M}_2} = \omega_2^{\mathcal{M}}$, we have $\mathcal{M} \models \phi(\omega_1, \omega_2, x_{\bar{\alpha}}) \land \phi(\omega_1, \omega_2, x_{\bar{\alpha}+m})$, which finishes our proof.

Set $\mathbb{P}_0 = \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$. Let us fix $\xi \in \omega_3$ and denote by $\mathbb{P}^{0, \neq \xi}$, $\mathbb{P}^{1, \neq \xi}$, $\mathbb{P}^{2, \neq \xi}$ the following posets in $L, L^{\mathbb{P}^{0, \neq \xi}}$, and $L^{\mathbb{P}^{0, \neq \xi}}$, respectively:

 $\prod_{\alpha \in \omega_3 \setminus \{\xi\}} \mathbb{P}^0_{\alpha}$ with supports of size ω_1 ; $\prod_{\alpha \in \omega_3 \setminus \{\xi\}} \mathbb{P}^1_{\alpha}$ with countable supports; and

 $\prod_{\alpha\in\omega_3\backslash\{\xi\}}\mathbb{P}^2_\alpha \text{ with countable supports.}$ Observe that $\tilde{\mathbb{P}}_0^{\neq\xi}:=\mathbb{P}^{0,\neq\xi}*\mathbb{P}^{1,\neq\xi}*\mathbb{P}^{2,\neq\xi}<_c\mathbb{P}^0*\mathbb{P}^1*\mathbb{P}^2=\mathbb{P}_0,$ where for posets $\mathbb{P}\subseteq\mathbb{Q}$ the notation $\mathbb{P} <_c \mathbb{Q}$ means that the identity embedding from \mathbb{P} to \mathbb{Q} is complete.² Let $\tilde{\mathbb{R}}$ be the quotient poset $\mathbb{P}_0/\tilde{\mathbb{P}}_0^{\neq \xi}$. Thus $\tilde{\mathbb{P}}_0^{\neq \xi} * \tilde{\mathbb{R}} = \mathbb{P}_0$.

Step 3. We begin with fixing some terminology. For $\alpha:1<\alpha<\omega_3$ we will say that there is a stationary kill of S_{α} , if there is a closed unbounded set C disjoint from S_{α} . We will say that the stationary kill of S_{α} is coded by a real, if there is a closed unbounded set disjoint from S_{α} which is constructible from this real.

Fix a nicely definable sequence $\vec{B} = \langle B_{\zeta,m} : \zeta < \omega_1, m \in \omega \rangle$ of almost disjoint subsets of ω . We will define a finite support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\gamma} : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$ such that \mathbb{P}_0 is as above, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a σ -centered poset, in $L^{\mathbb{P}_{\omega_3}}$ there is a Δ_3^1 -definable wellorder of the reals and $\mathfrak{c}=\mathfrak{b}=\aleph_3$. Every \mathbb{Q}_α is going to add a generic real whose \mathbb{P}_α -name will be denoted by \dot{u}_{α} and we shall prove that $L[G_{\alpha}] \cap \omega^{\omega} = L[\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle] \cap \omega^{\omega}$ for every \mathbb{P}_{α} -generic filter G_{α} (see Lemma 2). This gives us a canonical wellorder of the reals in $L[G_{\alpha}]$, which depends only on the sequence $\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle$, whose \mathbb{P}_{α} -name will be denoted by $\dot{<}_{\alpha}$. We can additionally arrange that for $\alpha < \beta$ we have that $1_{\mathbb{P}_{\beta}}$ forces $\dot{<}_{\alpha}$ to be an initial segment of $\dot{<}_{\beta}$. Then if G is a \mathbb{P}_{ω_3} -generic filter over L, $\dot{<}^G = \bigcup {\dot{<}_{\alpha}^G : \alpha < \omega_3}$ will be the desired wellorder of the reals. Furthermore this wellorder will not depend on the generic set G (see Lemmas 4 and 5).

We proceed with the recursive construction of \mathbb{P}_{ω_3} . Along this construction we shall also define a sequence $\langle \dot{A}_{\alpha}: \alpha \in Lim(\omega_3) \rangle$, where \dot{A}_{α} is a \mathbb{P}_{α} -name for a subset of $[\alpha, \alpha + \omega)$. For every $\omega_2 \le \nu < \omega_3$ fix a bijection $i_{\nu} : \{\langle \zeta, \xi \rangle : \zeta < \xi < \nu\} \to Lim(\omega_2)$. If G_{α} is \mathbb{P}_{α} -generic over L, $<_{\alpha} = <_{\alpha}^{G_{\alpha}}$ and x, y are reals in $L[G_{\alpha}]$ such that $x <_{\alpha} y$, let $x*y = \{2n : n \in x\} \cup \{2n+1 : n \in y\} \text{ and } \Delta(x*y) = \{2n+2 : n \in x*y\} \cup \{2n+1 : n \notin x*y\}.$ Suppose \mathbb{P}_{α} has been defined and fix a \mathbb{P}_{α} -generic filter G_{α} .

Case 1. Suppose α is a limit ordinal and write it in the form $\omega_2 \cdot \alpha' + \xi$, where $\xi < \omega_2$. If $\alpha' > 0$, let $i = i_{o.t.(\xi_{\alpha}^{G_{\alpha}})}$ and $\langle \xi_0, \xi_1 \rangle = i^{-1}(\xi)$. Let $A_{\alpha} := \dot{A}_{\alpha}^{G_{\alpha}}$ be the set $\alpha + (\omega \setminus \Delta(x_{\xi_0} * x_{\xi_1}))$, where $x_{\zeta}^{\omega_2}$ is the ζ -th real in $L[G_{\omega_2 \cdot \alpha'}] \cap [\omega]^{\omega}$ according to the wellorder $<_{\omega_2 \cdot \alpha'}^{G_\alpha}$ (here $G_{\omega_2 \cdot \alpha'} = G_\alpha \cap \mathbb{P}_{\omega_2 \cdot \alpha'}$). Let also

$$\mathbb{Q}_{\alpha} = \{\langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in \left[\bigcup_{m \in \Delta(x_{\xi_0} * x_{\xi_1})} Y_{\alpha+m} \times \{m\}\right]^{<\omega}\},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if $s_1 \subset t_1$, s_0 is an initial segment of t_0 and $(t_0 \setminus s_0) \cap$ $B_{\zeta,m} = \emptyset$ for all $\langle \zeta, m \rangle \in s_1$.

²It might seem unclear why we denote $\mathbb{P}^{0,\neq\xi} * \mathbb{P}^{1,\neq\xi} * \mathbb{P}^{2,\neq\xi}$ by $\widetilde{\mathbb{P}}_0^{\neq\xi}$ and not simply by $\mathbb{P}_0^{\neq\xi}$. It is to reserve the notation $\mathbb{P}_0^{\neq\xi}$ for a certain restriction of $\mathbb{P}^{0,\neq\xi} * \mathbb{P}^{1,\neq\xi} * \mathbb{P}^{2,\neq\xi}$ appearing naturally in the proof of Lemma 3.

Case 2. If α is not of the form above, i.e. α is a successor or $\alpha < \omega_2$, then \dot{A}_{α} is a name for the empty set and $\dot{\mathbb{Q}}_{\alpha}$ is a name for the following poset adding a dominating real:

$$\mathbb{Q}_{\alpha} = \{ \langle s_0, s_1 \rangle : s_0 \in \omega^{<\omega}, s_1 \in [o.t.(\dot{s}_{\alpha}^{G_{\alpha}})]^{<\omega} \},$$

where $\langle t_0, t_1 \rangle \leq \langle s_0, s_1 \rangle$ if and only if s_0 is an initial segment of $t_0, s_1 \subset t_1$, and $t_0(n) > x_{\xi}(n)$ for all $n \in \text{dom}(t_0) \setminus \text{dom}(s_0)$ and $\xi \in s_1$, where x_{ξ} is the ξ -th real in $L[G_{\alpha}] \cap \omega^{\omega}$ according to the wellorder $\dot{<}_{\alpha}^{G_{\alpha}}$.

In both cases \mathbb{Q}_{α} adds the generic real³ $u_{\alpha} = \bigcup \{s_0 : \exists s_1 \langle s_0, s_1 \rangle \in g_{\alpha} \}$, where g_{α} is \mathbb{Q}_{α} -generic over $V[G_{\alpha}]$ and $L[G_{\alpha}][u_{\alpha}] = L[G_{\alpha}][g_{\alpha}]$.

With this the definitions of $\mathbb{P} = \mathbb{P}_{\omega_3}$ and $\langle \dot{A}_{\alpha} : \alpha \in Lim(\omega_3) \rangle$ are complete.

Remark 1. Note that if the first case in the definition of $\dot{\mathbb{Q}}_{\alpha}$ above takes place, then in $L^{\mathbb{P}_{\alpha}}$ the poset $\dot{\mathbb{Q}}_{\alpha}$ produces a real r_{α} , which for certain reals x, y codes $Y_{\alpha+m}$ for all $m \in \Delta(x * y)$.

Let \mathbb{H} be a poset. An \mathbb{H} -name \dot{f} is called a *nice name for a real* if $\dot{f} = \bigcup_{i \in \omega} \{ \langle \langle i, j_p^i \rangle, p \rangle : p \in \mathcal{A}_i(\dot{f}) \}$ where for all $i \in \omega$, $\mathcal{A}_i(\dot{f})$ is a maximal antichain in \mathbb{H} , $j_p^i \in \omega$ and for all $p \in \mathcal{A}_i(\dot{f})$, $p \Vdash \dot{f}(i) = j_p^i$. From now on we will assume that all names for reals are nice.

Using the fact that for every $p \in \mathbb{P}$ and $\alpha > 0$ the coordinate $p(\alpha)$ is a \mathbb{P}_{α} -name for a finite set of ordinals, one can show that the set \mathcal{D} of conditions p fulfilling the following properties is dense in \mathbb{P} :

• For every $\alpha > 0$ in the support of p, $p(\alpha) = \langle s_0, s_1 \rangle$ for some $s_1 \in [Ord]^{<\omega}$ and $s_0 \in [\omega]^{<\omega}$ or $s_0 \in \omega^{<\omega}$ depending on $\dot{\mathbb{Q}}_{\alpha}$.

Lemma 2. Let $\gamma \leq \omega_3$ and let G_{γ} be a \mathbb{P}_{γ} -generic filter over L. Then $L[G_{\gamma}] \cap \omega^{\omega} = L[\langle \dot{u}_{\delta}^{G_{\gamma}} : \delta < \gamma \rangle] \cap \omega^{\omega}$.

Proof. Let $\dot{f} = \bigcup_{i \in \omega} \{\langle \langle i, j_p^i \rangle, p \rangle : p \in \mathcal{A}_i(\dot{f}) \}$ be a nice \mathbb{P}_{γ} -name for a real such that $\bigcup_{i \in \omega} \mathcal{A}_i(\dot{f}) \subset \mathcal{D}, \ f = \dot{f}^{G_{\gamma}}$ and let p_i be the unique element of $\mathcal{A}_i(\dot{f}) \cap G_{\gamma}$. Set $u_{\xi} = \dot{u}_{\xi}^{G_{\gamma}}$ for all $\xi < \gamma$. Since \mathbb{P}_0 is countably distributive, there exists $q \in \mathbb{P}_0 \cap G_{\gamma}$ such that $q \leq p_i(0)$ for all $i \in \omega$.

Observe that $\langle i, j \rangle \in f$ if and only if there exists $p \in \mathcal{A}_i(\dot{f})$ such that $p(0) \geq q$ and for every α in the support of p the following holds:

If $p \upharpoonright \alpha$ forces $\mathring{\mathbb{Q}}_{\alpha}$ to be an almost disjoint coding, i.e. $\alpha = \omega_2 \cdot \alpha' + i(\beta_0, \beta_1)$ for some $\alpha' > 0$ and $\beta_0 < \beta_1 < o.t. (\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\gamma}})$ and \mathbb{Q}_{α} produces a real coding a stationary kill of $S_{\alpha+m}$ for all $m \in \Delta(x_{\beta_0} * x_{\beta_1})$, where x_{δ} is the δ -th real in $L[\langle u_{\xi} : \xi < \omega_2 \cdot \alpha' \rangle]$, then $p(\alpha)_0$ is an initial segment of u_{α} and $u_{\alpha} \setminus p(\alpha)_0$ is disjoint from $B_{\xi,m}$ for all $\langle \xi, m \rangle \in p(\alpha)_1$; and

 $^{{}^3}u_{\alpha} \in [\omega]^{\omega}$ in the first case and $u_{\alpha} \in \omega^{\omega}$ in the second case.

If $p \upharpoonright \alpha$ forces $\dot{\mathbb{Q}}_{\alpha}$ to be a poset adding a dominating function, i.e. \mathbb{Q}_{α} produces a real u_{α} dominating all reals in $L[\langle u_{\xi} : \xi < \alpha \rangle]$, then $p(\alpha)_{0}$ is an initial segment of u_{α} and $u_{\alpha}(n) > x_{\xi}(n)$ for all $\xi \in p(\alpha)_{1}$ and $n \geq \text{dom}(p(\alpha)_{0})$, where x_{ξ} is the ξ -th real in $L[\langle u_{\xi} : \xi < \alpha \rangle]$ according to the wellorder $\dot{<}_{\alpha}^{G_{\gamma}}$.

Since $\dot{<}_{\beta}^{G_{\gamma}}$ depends only on the sequence $\langle u_{\zeta} : \zeta < \beta \rangle$ for all $\beta < \gamma$, the definition of f above implies that $f \in L[\langle u_{\zeta} : \zeta < \gamma \rangle]$, which finishes our proof.

Lemma 3. Let G be a \mathbb{P} -generic filter over L. Then for $\xi \in \bigcup_{\alpha \in Lim(\omega_3)} \dot{A}_{\alpha}^G$ there is no real coding a stationary kill of S_{ξ} .

Proof. Let $p \in G$ be a condition forcing

$$\xi \in \bigcup_{\alpha \in Lim(\omega_3)} \dot{A}_{\alpha}^G.$$

Suppose that $\xi = \beta + 2n - 1$ for some limit β and $n \in \omega$. Without loss of generality, $p \in \mathbb{P}_{\beta} \cap \mathcal{D}$.

We define a finite support iteration of a countably distributive poset followed by c.c.c. posets $\langle \bar{\mathbb{P}}_{\alpha}, \dot{\bar{\mathbb{Q}}}_{\gamma} : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$, where $\bar{\mathbb{P}}_0 = \mathbb{P}_0 \upharpoonright p(0)$ and in $L^{\bar{\mathbb{P}}_{\alpha}}$ we have $\bar{\mathbb{Q}}_{\alpha} = \mathbb{Q}_{\alpha} \upharpoonright p(\alpha)$. Such an iteration is just another way of thinking of the poset $\mathbb{P} \upharpoonright p$ which will appear useful for further considerations.

which will appear useful for further considerations.

Let $p_0^{\neq \xi}, p_0^{\xi}$ be such that $p_0^{\neq \xi} \in \tilde{\mathbb{P}}_0^{\neq \xi}, p_0^{\neq \xi} \Vdash p_0^{\xi} \in \tilde{\mathbb{R}}$ and $\langle p_0^{\neq \xi}, p_0^{\xi} \rangle = p(0)$, where $\tilde{\mathbb{R}}$ is the quotient poset $\mathbb{P}_0/\tilde{\mathbb{P}}_0^{\neq \xi}$. Denote by $\mathbb{P}_0^{\neq \xi}$ the restriction $\tilde{\mathbb{P}}_0^{\neq \xi} \upharpoonright p_0^{\neq \xi}$ and let \mathbb{R} be the $\mathbb{P}_0^{\neq \xi}$ -name for $\tilde{\mathbb{R}} \upharpoonright p_0^{\xi}$. Note that $\mathbb{P}_0^{\neq \xi} * \mathbb{R} = \tilde{\mathbb{P}}_0^4$.

Now we define a finite support iteration $\langle \mathbb{P}_\alpha^{\neq \xi}, \dot{\mathbb{Q}}_\gamma^{\neq \xi} : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$, where $\mathbb{P}_0^{\neq \xi}$ is a sabove and $\dot{\mathbb{Q}}_\gamma^{\neq \xi}$ is a name for a σ -centered poset. Also we define a sequence $\langle \dot{A}_\alpha^{\neq \xi} : \alpha \in \mathbb{P}_0$ where $\dot{A}_\alpha^{\neq \xi}$ is a $\mathbb{P}_0^{\neq \xi}$ name for a subset of $[\alpha, \alpha + \omega)$. The intention is to show

Now we define a finite support iteration $\langle \mathbb{P}_{\alpha}^{\neq \xi}, \dot{\mathbb{Q}}_{\gamma}^{\neq \xi} : \alpha \leq \omega_{3}, \gamma < \omega_{3} \rangle$, where $\mathbb{P}_{0}^{\neq \xi}$ is as above and $\dot{\mathbb{Q}}_{\gamma}^{\neq \xi}$ is a name for a σ -centered poset. Also we define a sequence $\langle \dot{A}_{\alpha}^{\neq \xi} : \alpha \in Lim(\omega_{3}) \rangle$, where $\dot{A}_{\alpha}^{\neq \xi}$ is a $\mathbb{P}_{\alpha}^{\neq \xi}$ -name for a subset of $[\alpha, \alpha + \omega)$. The intention is to show that in $\bar{\mathbb{P}} = \bar{\mathbb{P}}_{\omega_{3}}$ the components \mathbb{P}_{ξ}^{0} , \mathbb{P}_{ξ}^{1} , \mathbb{P}_{ξ}^{2} of \mathbb{P}^{0} , \mathbb{P}^{1} , \mathbb{P}^{2} , respectively, can be left out in a certain sense. Thus the iteration $\langle \mathbb{P}_{\alpha}^{\neq \xi}, \dot{\mathbb{Q}}_{\gamma}^{\neq \xi} : \alpha \leq \omega_{3}, \gamma < \omega_{3} \rangle$ will be introduced along the lines of the definition of $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\gamma} : \alpha \leq \omega_{3}, \gamma < \omega_{3} \rangle$. In particular, every $\mathbb{Q}_{\alpha}^{\neq \xi}$ will add a generic real with $\mathbb{P}_{\alpha}^{\neq \xi} * \mathbb{Q}_{\alpha}^{\neq \xi}$ -name $\dot{u}_{\alpha}^{\neq \xi}$. Given a $\mathbb{P}_{\alpha}^{\neq \xi}$ -generic filter $G = G_{\alpha}^{\neq \xi}$, this gives us a canonical wellorder of the reals in $L[\langle \dot{u}_{\zeta}^{\neq \xi^{G}} : \zeta < \alpha \rangle]$ which depends only on the sequence $\langle \dot{u}_{\zeta}^{\neq \xi^{G}} : \zeta < \alpha \rangle$, whose $\mathbb{P}_{\alpha}^{\neq \xi}$ -name will be denoted by $\dot{\prec}_{\alpha}^{\neq \xi}$. We can additionally arrange that for $\alpha < \beta$ we have that $1_{\mathbb{P}_{\beta}^{\neq \xi}}$ forces $\dot{\prec}_{\alpha}^{\neq \xi}$ to be an initial segment of $\dot{\prec}_{\beta}^{\neq \xi}$. Along the recursive construction for every $\gamma < \omega_{3}$ we will establish the following properties:

1.
$$\mathbb{P}_{\gamma}^{\neq \xi} <_{c} \bar{\mathbb{P}}_{\gamma};$$

⁴In fact, one can prove that $\Vdash_{\mathbb{P}_0^{\neq \xi}} \tilde{\mathbb{R}} = \mathbb{P}_0^{\xi} * \mathbb{P}_1^{\xi} * \mathbb{P}_2^{\xi}$, but this does not simplify the proof.

- 2. $\dot{u}_{\gamma}^{\neq \xi^{H_{\gamma}^{\neq \xi}}} = \dot{u}_{\gamma}^{H_{\gamma}}, \dot{<}_{\gamma}^{\neq \xi^{H_{\gamma}^{\neq \xi}}} = \dot{<}_{\gamma}^{H_{\gamma}} \text{ and } \dot{A}_{\gamma}^{H_{\gamma}} = \dot{A}_{\gamma}^{\neq \xi^{H_{\gamma}^{\neq \xi}}} \text{ for limit } \gamma, \text{ where } H_{\gamma}^{\neq \xi} \subseteq \mathbb{P}_{\gamma}^{\neq \xi} \text{ is the }$ preimage of the $\bar{\mathbb{P}}_{\gamma}$ -generic filter H_{γ} under the complete embedding from (1);
- 3. Let $\mathbb{P}_{[1,\gamma)}^{\neq \xi}$, $\bar{\mathbb{P}}_{[1,\gamma)}$ be the quotient posets $\mathbb{P}_{\gamma}^{\neq \xi}/\mathbb{P}_{0}^{\neq \xi}$ and $\bar{\mathbb{P}}_{\gamma}/\bar{\mathbb{P}}_{0}$ respectively. Then $\Vdash_{\bar{\mathbb{P}}_0} \mathbb{P}_{[1,\gamma)}^{\neq \xi} = \bar{\mathbb{P}}_{[1,\gamma)}$; and
- 4. $L[H_{\gamma}] \cap [\operatorname{Ord}]^{\omega} = L[H_{\gamma}^{\neq \xi}] \cap [\operatorname{Ord}]^{\omega}$ where H_{γ} , $H_{\gamma}^{\neq \xi}$ are as in (2).

For $\gamma = 0$ the properties above follow from the corresponding definitions. Suppose that (1)-(4) are established for all $\eta < \gamma$.

Case 1. If γ is a limit, there is nothing to prove except for (4) (To see that $\mathbb{P}_{\gamma}^{\neq \xi}$ is completely embedded in $\bar{\mathbb{P}}_{\gamma}$ refer to the inductive hypothesis and [2, Lemma 10]). Let $H_0^{\neq\xi} = H_{\gamma}^{\neq\xi} \cap \mathbb{P}_0^{\neq\xi}$, $H_0 = H_{\gamma} \cap \mathbb{P}_0$ and let K be an \mathbb{R} -generic filter over $L[H_0^{\neq\xi}]$ such that $L[H_0] = L[H_0^{\neq \xi}][K]$. Let $\mathbb E$ be the poset $(\mathbb P_{[1,\gamma)}^{\neq \xi})^{H_0^{\neq \xi}} = \bar{\mathbb P}_{[1,\gamma)}^{H_0} \in L[H_0^{\neq \xi}]$ (the latter equality follows from (3)). Then $H_{[1,\gamma)}(=H_\gamma/H_0)$ is $\mathbb E$ -generic over $L[H_0^{\neq \xi}][K]$. Therefore $L[H_0^{\neq \xi}][K][H_{[1,\gamma)}] = L[H_0^{\neq \xi}][K][H_{[1,\gamma)}][K]$.

The following standard fact may be compared to [9, Lemma 15.19].

Claim. Suppose that \mathbb{P}, \mathbb{Q} are in V, \mathbb{P} is ω -distributive and \mathbb{Q} is c.c.c. in $V^{\mathbb{P}}$. Then \mathbb{P} is ω -distributive in $V^{\mathbb{Q}}$. In particular, if \mathbb{P} is ω -distributive and \mathbb{Q} is a finite support iteration of σ -centered posets, then \mathbb{P} is ω -distributive in $V^{\mathbb{Q}}$.

Proof. Let $G \times H$ be $\mathbb{P} \times \mathbb{Q}$ -generic. Let $f : \omega \to \mathrm{Ord}$ be in V[H][G] = V[G][H] and σ be a \mathbb{Q} -name for f in V[G]. Without loss of generality, σ is a nice name which can be written as $\bigcup_{i \in \omega} \{ \langle \langle i, j_p^i \rangle, p \rangle : p \in \mathcal{A}_i \}$, where j_p^i is an ordinal and $\mathcal{A}_i \in V[G]$ is a maximal antichain in \mathbb{Q} . As \mathbb{Q} is c.c.c. in V[G], each \mathcal{H}_i is countable in V[G], and hence σ is countable in V[G]. Therefore $\sigma \in V$ by the countable distributivity of \mathbb{P} . It follows that f belongs to V[H].

By the above Claim, \mathbb{R} is countably distributive in $L[H_0^{\neq \xi}][H_{[1,\gamma)}] = L[H_{\gamma}^{\neq \xi}]$ and hence $L[H_{\gamma}] \cap [\mathrm{Ord}]^{\omega} = L[H_{\gamma}^{\neq \xi}] \cap [\mathrm{Ord}]^{\omega}$.

Let $H_{\eta}^{+\xi}$ be a $\mathbb{P}_{\eta}^{+\xi}$ -generic filter over L and let K be a \mathbb{R} -generic filter over $L[H_{0}^{+\xi}]$, where $H_{0}^{+\xi} = H_{\eta}^{+\xi} \cap \mathbb{P}_{0}^{+\xi}$. In $L[H_{0}^{+\xi}]$, the quotient poset $\mathbb{P}_{[1,\eta)} = \mathbb{P}_{\eta}/\mathbb{P}_{0}$ is a finite support iteration of σ -centered posets. Since $\mathbb{P}_{[1,\eta)}^{+\xi}$ has c.c.c. in $L[H_{0}^{+\xi}][K]$ and \mathbb{R} is ω distributive, $H_{[1,\eta)}^{\neq\xi}$ is $\mathbb{P}_{[1,\eta)}^{\neq\xi}$ -generic over $L[H_0^{\neq\xi}][K]$. By (3), the equality $\mathbb{P}_{[1,\eta)}^{\neq\xi}=\bar{\mathbb{P}}_{[1,\eta)}$ holds in $L[H_0^{\neq\xi}][K]$. Therefore $H_{\eta}:=H_0^{\neq\xi}*K*H_{[1,\eta)}^{\neq\xi}$ is $\bar{\mathbb{P}}_{\eta}$ -generic over L.

Since $p \in \mathcal{D}$, one of the following alternatives holds.

Case a). $\dot{\mathbb{Q}}_{\eta}$ is a name for an almost disjoint coding below the condition $p(\eta) = \langle s_0^{\eta}, s_1^{\eta} \rangle$. Set $\bar{\mathbb{Q}}_{\eta} = \dot{\mathbb{Q}}_{\eta}^{H_{\eta}}$, $u_{\delta} = \dot{u}_{\delta}^{H_{\eta}}$, $A_{\delta} = \dot{A}_{\delta}^{H_{\eta}}$, and $<_{\delta} = \dot{<}_{\delta}^{H_{\eta}}$ for all $\delta \leq \eta$.

It follows that:

- η is a limit ordinal that can be written in the form $\eta = \omega_2 \cdot \nu + \zeta$, where $\zeta = i(\zeta_0, \zeta_1)$ for some $\zeta_0, \zeta_1 < o.t.(<_{\omega_2 \cdot \nu}^{H_{\eta}})$ and $i = i_{o.t.(<_{\omega_2 \cdot \nu}^{H_{\eta}})}$;
- $A_{\eta} = \eta + (\omega \setminus \Delta(x_{\zeta_0} * x_{\zeta_1}))$, where x_{ϵ} is the ϵ -th real in $L[\langle u_{\delta} : \delta < \omega_2 \cdot v] \cap \omega^{\omega}$ according to the natural wellorder $<_{\omega_2 \cdot v}^{H_{\eta}}$ of this set;
- $\bar{\mathbb{Q}}_{\eta} = \{\langle s_0, s_1 \rangle : s_0 \in [\omega]^{<\omega}, s_1 \in [\bigcup_{m \in \Delta(x_{\zeta_0} * x_{\zeta_1})} Y_{\eta + m} \times \{m\}]^{<\omega}, s_0 \text{ end-extends } s_0^{\eta}, s_1 \supseteq s_1^{\eta} \text{ and } s_0 \setminus s_0^{\eta} \cap B_{\epsilon,m} = \emptyset \text{ for all } \langle \epsilon, m \rangle \in s_1^{\eta} \} \text{ ordered as before.}$

Our choice of p and the fact that the upwards closure of H_{η} in \mathbb{P}_{η} is a \mathbb{P}_{η} -generic filter containing p imply that Y_{ξ} is not among the $Y_{\eta+m}$'s involved into the definition of $\bar{\mathbb{Q}}_{\eta}$. Thus $\bar{\mathbb{Q}}_{\eta} \in L[H_{\eta}^{\neq \xi}]$. Moreover, $\bar{\mathbb{Q}}_{\eta}$ is fully determined by the relevant $Y_{\eta+m}$'s and the sequence $\langle u_{\delta} : \delta < \eta \rangle$ which belongs to $L[H_{\eta}^{\neq \xi}]$ and does not depend on K by (2). Therefore $\bar{\mathbb{Q}}_{\eta}$ does not depend on K and hence we may set $\mathbb{Q}_{\eta}^{\neq \xi} := \bar{\mathbb{Q}}_{\eta}$, $A_{\eta}^{\neq \xi} := A_{\eta}$. Let $\dot{\mathbb{Q}}_{\eta}^{\neq \xi}$, $\dot{A}_{\eta}^{\neq \xi}$ be $\mathbb{P}_{\eta}^{\neq \xi}$ -names for $\mathbb{Q}_{\eta}^{\neq \xi}$ and $A_{\eta}^{\neq \xi}$ respectively. By the definition, (3) and the third part of (2) hold true.

The equality $L[H_{\eta}] \cap [\operatorname{Ord}]^{\omega} = L[H_{\eta}^{\neq \xi}] \cap [\operatorname{Ord}]^{\omega}$ and the σ -centeredness of $\bar{\mathbb{Q}}_{\eta}$ imply that any $\mathbb{Q}_{\eta}^{\neq \xi}$ -generic over $L[H_{\eta}^{\neq \xi}]$ is $\bar{\mathbb{Q}}_{\eta}$ -generic over $L[H_{\eta}]$ and vice versa. Therefore $\mathbb{P}_{\eta+1}^{\neq \xi} <_c \bar{\mathbb{P}}_{\eta+1}$ (note that H_{η} may be thought of as being an arbitrary $\bar{\mathbb{P}}_{\eta}$ -generic filter over L). This establishes (1).

Let h_{η} be a $\mathbb{Q}_{\eta}^{\neq \xi}$ -generic over $L[H_{\eta}^{\neq \xi}]$ (or, equivalently, $\overline{\mathbb{Q}}_{\eta}$ -generic filter over $L[H_{\eta}]$). Since a (nice) $\overline{\mathbb{Q}}_{\eta}$ -name for a countable set of ordinals in $L[H_{\eta}]$ can be naturally identified with a countable set of ordinals, every $\overline{\mathbb{Q}}_{\eta}$ -name $\sigma \in L[H_{\eta}]$ for a countable set of ordinals is in fact in $L[H_{\eta}^{\neq \xi}]$. Therefore $L[H_{\eta+1}] \cap [\operatorname{Ord}]^{\omega} = L[H_{\eta+1}^{\neq \xi}] \cap [\operatorname{Ord}]^{\omega}$, where $H_{\eta+1} = H_{\eta} * h_{\eta}$. This proves (4).

Let us denote by $u_{\eta}^{\neq \xi} \in [\omega]^{\omega} \cap L[H_{\eta+1}^{\neq \xi}]$ the union of the first coordinates of elements of h_{η} . By the maximality principle, this gives us a $\mathbb{P}_{\eta+1}^{\neq \xi}$ -name $\dot{u}_{\eta}^{\neq \xi}$. By the definitions of \dot{u}_{η} and $\dot{u}_{\eta}^{\neq \xi}$, $\dot{u}_{\eta}^{H_{\eta}*h_{\eta}} = \dot{u}_{\eta}^{\neq \xi} + \dot{u}_{\eta}^{H_{\eta}*h_{\eta}}$, which proves the first part of (2). By (4) and Lemma 2,

$$\begin{split} L[H_{\eta}^{\neq\xi}*h_{\eta}] \cap [\omega]^{\omega} &= (L[H_{\eta}^{\neq\xi}*h_{\eta}] \cap [\mathrm{Ord}]^{\omega}) \cap [\omega]^{\omega} = \\ &= (L[H_{\eta}*h_{\eta}] \cap [\mathrm{Ord}]^{\omega}) \cap [\omega]^{\omega} = L[H_{\eta}*h_{\eta}] \cap [\omega]^{\omega} = \\ &= L[\langle \dot{u}_{\delta}^{H_{\eta}*h_{\eta}} : \delta \leq \eta \rangle] \cap [\omega]^{\omega} = L[\langle \dot{u}_{\delta}^{\neq\xi}^{H_{\eta}^{\neq\xi}*h_{\eta}} : \delta \leq \eta \rangle] \cap [\omega]^{\omega}, \end{split}$$

which implies the second equality in (2) and thus concludes Case a).

Case b). $\dot{\mathbb{Q}}_{\eta}$ is a name for a poset adjoining a dominating function restricted to the condition $p(\eta) = \langle s_0^{\eta}, s_1^{\eta} \rangle$. This case is analogous to, but easier than the *Case a*) (here we

do not have to worry about $Y_{\mathcal{E}}$) and we leave it to the reader.

This finishes our construction of $\langle \mathbb{P}_{\alpha}^{\neq \xi}, \dot{\mathbb{Q}}_{\gamma}^{\neq \xi} : \alpha \leq \omega_{3}, \gamma < \omega_{3} \rangle$. Observe that conditions (1)-(4) hold for $\gamma = \omega_{3}$. In particular, $L[G] \cap \omega^{\omega} = L[G^{\neq \xi}] \cap \omega^{\omega}$, where $G^{\neq \xi} \subset \mathbb{P}_{\omega_{3}}^{\neq \xi}$ is the preimage of the $\bar{\mathbb{P}}_{\omega_{3}}$ -generic filter G under the complete embedding from (1). So it is sufficient to show that in $L[G^{\neq \xi}]$ there is no real coding a closed unbounded subset disjoint from S_{ξ} . Since $\mathbb{P}_{[1,\omega_{3})}^{\neq \xi}$ is a $\mathbb{P}_{0}^{\neq \xi}$ -name for a c.c.c poset and $\mathbb{P}^{2,\neq \xi}, \mathbb{P}^{1,\neq \xi}$ are $\mathbb{P}^{0,\neq \xi} * \mathbb{P}^{1,\neq \xi}$ -names for ω_{2} -c.c. posets, respectively, every closed unbounded subset of ω_{2} in $L[G^{\neq \xi}]$ contains a closed unbounded subset of ω_{2} in $L[G^{0,\neq \xi}]$, see [9, Lemma 22.25]. (Here $G^{0,\neq \xi} = G^{\neq \xi} \cap \mathbb{P}^{0,\neq \xi}$ is the $\mathbb{P}^{0,\neq \xi}$ -generic filter over L induced by $G^{\neq \xi}$). Thus it suffices to verify that S_{ξ} is stationary in $L^{\mathbb{P}^{0,\neq \xi}}$. We shall use here an idea from [6].

Fix $p \in \mathbb{P}^{0, \neq \xi}$ and let \dot{C} be a name for a club in ω_2 . We would like to find $q \in \mathbb{P}^{0, \neq \xi}$ such that $q \leq p$ and $q \Vdash_{\mathbb{P}^{0, \neq \xi}} \dot{C} \cap S_{\xi} \neq \emptyset$. Let $\langle \mathcal{M}_i : i < \omega_2 \rangle$ be a continuous chain of elementary submodels of some large L_{θ} such that \mathcal{M}_0 contains $p, \alpha, \dot{C}, \omega_1 + 1 \subset \mathcal{M}_0$, $\gamma_i := \mathcal{M}_i \cap \omega_2 \in \omega_2$, $\operatorname{cof}(\gamma_i) = \omega_1$, and $\mathcal{M}_i^{<\omega_1} \subset \mathcal{M}_i$ for all $i \in \omega_2$. Set $S_{\xi}^0 = \{i \in S_{\xi} : \gamma_i = i\}$ and note that S_{ξ}^0 is stationary.

Claim. There exists $i \in S^0_{\varepsilon}$ such that $i \notin S_{\alpha}$ for all $\alpha \in \mathcal{M}_i \setminus \{\xi\}$.

Proof. Note that $\alpha \in \mathcal{M}_i$ is equivalent to $\alpha < \gamma_i$, and hence to $\alpha < i$ since $i \in S^0_{\xi}$. Suppose that for every $i \in S^0_{\xi}$ there exists f(i) < i such that $i \in S_{f(i)}$ and $f(i) \neq \xi$. By Fodor's Lemma there exists $j \in \omega_2$ and a stationary $T \subset S^0_{\xi}$ such that $f(i) \equiv j$ for all $i \in T$. It follows that $T \subset S_j$, and hence $T \subset S_j \cap S_{\xi}$, a contradiction.

Choose i as in the Claim above. We shall build an ω_1 -sequence $p=p_0 \geq p_1 \geq \cdots$ with a lower bound forcing $i \in \dot{C}$. Let $\langle i_\alpha : \alpha < \omega_1 \rangle$ be an increasing continuous sequence of ordinals such that $\sup_{\alpha \in \omega_1} i_\alpha = i$. Given p_α , let $p_{\alpha+1} \leq p_\alpha$ be such a condition in $\mathbb{P}^{0, \neq \xi} \cap \mathcal{M}_i$ such that $p_{\alpha+1}$ forces some ordinal $j_{\alpha+1} \in [i_{\alpha+1}, i)$ to belong to \dot{C} . For limit α and $\zeta \in i \setminus \{\xi\}$ set

$$p_{\alpha}(\zeta) = \bigcup_{\beta < \alpha} p_{\beta}(\zeta) \cup \{\sup \bigcup_{\beta < \alpha} p_{\beta}(\zeta), i_{\alpha}\}.$$

Since S_{ζ} 's consist of ordinals of cofinality ω_1 and \mathcal{M}_i is closed under countable sequences of its elements, $p_{\alpha} \in \mathbb{P}^{0, \neq \xi} \cap \mathcal{M}_i$. This finishes our construction of the sequences $\langle p_{\alpha} : \alpha < \omega_1 \rangle \in \mathcal{M}_i^{\omega_1}$ and $\langle j_{\alpha} : \alpha < \omega_1 \rangle \in i^{\omega_1}$. Set $q(\zeta) = \bigcup_{\alpha \in \omega_1} p_{\alpha}(\zeta) \cup \{i\}$ for all $\zeta \in i \setminus \xi$. Since $i \notin S_{\zeta}$ for all $\zeta \in i \setminus \{\xi\}$, we conclude that $q(\zeta) \cap S_{\zeta} = \emptyset$ for all $\zeta \in i \setminus \{\xi\}$. From the above it follows that $q \in \mathbb{P}^{0, \neq \xi}$ and $q \Vdash_{\mathbb{P}^{0, \neq \xi}} i \in \dot{C}$, which finishes our proof. \square

Corollary 1. Let G be a \mathbb{P} -generic filter over L and let x, y be reals in L[G]. Then $x <^G y$ if and only if there is $\alpha < \omega_3$ such that for all m, the stationary kill of $S_{\alpha+m}$ is coded by a real iff $m \in \Delta(x * y)$.

Proof. Suppose that $x <^G y$. Let $\alpha' > 0$ be minimal such that $x, y \in L[G_{\omega_2 \cdot \alpha'}]$ and let $i = i_{o.t.(\dot{\varsigma}_{\omega_2 \cdot \alpha'}^G)}$. Find $\xi \in Lim(\omega_2)$ such that $i(\xi) = (\xi_x, \xi_y)$ where x and y are the ξ_x -th and ξ_y -th real respectively in $L[G_{\omega_2 \cdot \alpha'}]$ according to the wellorder $\dot{\varsigma}_{\omega_2 \cdot \alpha'}^G$. (By Lemma 2 such a ξ exists). Let $\alpha = \omega_2 \cdot \alpha' + \xi$. Then \mathbb{Q}_α adds a real coding a stationary kill for $S_{\alpha+m}$ for all $m \in \Delta(x * y)$. On the other hand if $m \notin \Delta(x * y)$, then $\alpha + m \in \dot{A}_\alpha^G = \alpha + (\omega \setminus \Delta(x * y))$ and so by Lemma 3, there is no real in L[G] coding the stationary kill of $S_{\alpha+m}$.

Now suppose that there exists α such that the stationary kill of $S_{\alpha+m}$ is coded by a real iff $m \in \Delta(x * y)$. Since the stationary kill of some $\alpha + m$'s is coded by a real in L[G], Lemma 3 implies that $\dot{\mathbb{Q}}_{\alpha}^G$ introduced a real coding stationary kill for all $m \in \Delta(a * b)$ for some reals $a \dot{\prec}_{\alpha}^G b$, while there are no reals coding a stationary kill of $S_{\alpha+m}$ for $m \notin \Delta(a*b)$. Therefore $\Delta(a*b) = \Delta(x*y)$ and hence a = x and b = y, and consequently $x \dot{\prec}_{\alpha}^G y$.

Lemma 4. Let G be \mathbb{P} -generic over L and let x, y be reals in L[G]. If $x <^G y$, then there is a real r such that for every countable suitable model \mathcal{M} such that $r \in \mathcal{M}$, there is $\bar{\alpha} < \omega_3^{\mathcal{M}}$ such that for all $m \in \Delta(x * y)$,

$$(L[r])^{\mathcal{M}} \models S_{\bar{\alpha}+m}$$
 is not stationary.

Proof. By Corollary 1, there exists $\alpha < \omega_3$ such that $\dot{\mathbb{Q}}_{\alpha}^G$ adds a real r coding a stationary kill of $S_{\alpha+m}$ for all $m \in \Delta(x*y)$. Let \mathcal{M} be a countable suitable model containing r. It follows that $Y_{\alpha+m} \cap \omega_1^{\mathcal{M}} \in \mathcal{M}$ and hence $X_{\alpha} \cap \omega_1^{\mathcal{M}}$, $X_{\alpha+m} \cap \omega_1^{\mathcal{M}}$ also belong to \mathcal{M} . Observe that these sets are actually in $\mathcal{N} := (L[r])^{\mathcal{M}}$. Note also that \mathcal{N} is a countable suitable model and consequently by the definition of $\mathcal{L}(X_{\alpha+m}, X_{\alpha})$ we have that for every $m \in \Delta(x*y)$, $\mathcal{N} \models$

"Using the sequence \vec{A} , $X_{\alpha+m} \cap \omega_1$ (resp. $X_{\alpha} \cap \omega_1$) almost disjointly codes a subset \bar{Z}_m (resp. \tilde{Z}_0) of ω_2 , whose even part $Even(\bar{Z}_m)$ (resp. $Even(\tilde{Z}_0)$) codes a tuple $\langle \bar{C}, \bar{W}_m, \bar{W}_m \rangle$ (resp. $\langle \tilde{C}, \tilde{W}_0, \tilde{W}_0 \rangle$), where \bar{W}_m and \bar{W}_m are the L-least codes of ordinals $\bar{\alpha}_m, \bar{\alpha}_m < \omega_3$ (resp. $\tilde{W}_0 = \tilde{W}_0$ is the L-least code for a limit ordinal $\tilde{\alpha}_0$) such that $\bar{\alpha}_m = \tilde{\alpha}_0$ is the largest limit ordinal not exceeding $\bar{\alpha}_m$ and \bar{C} is a club in ω_2 disjoint from $S_{\bar{\alpha}_m}$.

Note that in particular for every $m \neq m'$ in $\Delta(x * y)$, $\bar{\alpha}_m = \bar{\alpha}_{m'}$.

Lemma 5. Let G be \mathbb{P} -generic over L and let x, y be reals in L[G]. If there is a real r such that for every countable suitable model \mathcal{M} containing r as an element, there is $\bar{\alpha} < \omega_3^{\mathcal{M}}$ such that for every $m \in \Delta(x * y)$,

$$(L[r])^{\mathcal{M}} \models S_{\bar{\alpha}+m}$$
 is not stationary,

⁵In the above, \vec{A} , $S_{\bar{\alpha}_m}$, $S_{\bar{\alpha}_m}$, ω_1 , ω_2 , ω_3 refer of course to their interpretations in the model N.

then $x <^G y$.

Proof. Suppose that there is such a real r. By the Löwenheim-Skolem theorem, it has the property described in the formulation with respect to *all* suitable models \mathcal{M} , in particular for $\mathbb{H}_{\Theta}^{\mathbb{P}}$, where Θ is sufficiently large (here \mathbb{H}_{Θ} denotes the set of all sets hereditarily of cardinality $< \Theta$). That is there is $\alpha < \omega_3$ such that for every $m \in \Delta(x * y)$

$$L_{\Theta}[r] \models S_{\alpha+m}$$
 is not stationary.

Thus in particular the stationary kill of at least some $S_{\alpha+m}$ was coded by a real. Lemma 3 implies that $\dot{\mathbb{Q}}_{\alpha}^G$ introduced a real u_{α} (perhaps different from r) coding stationary kill for all $m \in \Delta(a*b)$ for some reals $a \dot{<}_{\alpha}^G b$, while there are no reals coding a stationary kill of $S_{\alpha+m}$ for $m \notin \Delta(a*b)$. Therefore $\Delta(a*b) \supset \Delta(x*y)$, which yields $\Delta(a*b) = \Delta(x*y)$. From the above, it follows that a = x, b = y and hence $x \dot{<}_{\alpha}^G y$, which finishes our proof.

Combining Lemmata 4,5 and the fact that we have added dominating reals cofinally often, we get the following result.

Theorem 1. It is consistent with $\mathfrak{c} = \mathfrak{b} = \aleph_3$, that there is a projective (indeed Δ_3^1 -definable) wellorder of the reals.

3. Projective mad families

The main result of this section and of the whole paper is the following theorem which answers [7, Question 19] in the positive.

Theorem 2. It is consistent with $\mathfrak{c} = \mathfrak{b} = \aleph_3$, that there is a Δ_3^1 -definable wellorder of the reals and a Π_2^1 -definable ω -mad subfamily of $[\omega]^{\omega}$ (resp. ω^{ω}).

The proof is completely analogous to that of Theorem 2. Moreover, we believe that adding the argument responsible for ω -mad families would just make the proof in the previous section messier without introducing any new ideas besides those used in the proof of Theorem 1 and in [7]. Therefore the proof of Theorem 2 is just sketched here. More precisely, we shall define the corresponding poset \mathbb{P}_{ω_3} and leave it to the reader to verify that the proof of Theorem 1 can be carried over.

Let $\vec{B} = \langle B_{\zeta,m} : \zeta < \omega_1, m \in \omega \rangle$ be as in the proof of Theorem 1. We will define a finite support iteration $\langle \mathbb{P}_{\alpha}, \dot{\mathbb{Q}}_{\gamma} : \alpha \leq \omega_3, \gamma < \omega_3 \rangle$, where $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for a σ -centered poset and in $L^{\mathbb{P}_{\omega_3}}$ there is a Δ_3^1 -definable wellorder of the reals, a Π_2^1 -definable ω -mad subfamily of $[\omega]^{\omega}$ (the case of subfamilies of ω^{ω} is completely analogous, see [7]), and $\mathfrak{c} = \mathfrak{b} = \aleph_3$.

 \mathbb{P}_0 is a three step iteration $\mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$, where \mathbb{P}^0 and \mathbb{P}^1 are exactly the same as in the proof of Theorem 1. The poset \mathbb{P}^2 uses the following modification of Definition 1, where ϕ is as in $(**)_{\alpha}$ from the previous section.

Definition 2. Let $X, X' \subset \omega_1$ be such that $\phi(\omega_1, \omega_2, X)$ and $\phi(\omega_1, \omega_2, X')$ hold in any suitable model \mathcal{M} with $\omega_1^{\mathcal{M}} = \omega_1^{\mathcal{L}}$ containing X and X', respectively. Let also η be a countable limit ordinal. We denote by $\mathcal{L}_{\eta}(X, X')$ the poset of all functions $r: |r| \to 2$, where the domain |r| of r is a countable limit ordinal such that:

- 1. $|r| \geq \eta$
- 2. if $\gamma < \eta$ then $r(\gamma) = 0$
- 3. if $\gamma < |r|$ then $\gamma \in X$ iff $r(\eta + 3\gamma) = 1$
- 4. if $\gamma < |r|$ then $\gamma \in X'$ iff $r(\eta + 3\gamma + 1) = 1$
- 5. if $\gamma \leq |r|$, \mathcal{M} is a countable suitable model containing $r \upharpoonright \gamma$ as an element and $\gamma = \omega_1^{\mathcal{M}}$, then $\mathcal{M} \vDash \phi(\omega_1, \omega_2, X \cap \gamma) \land \phi(\omega_1, \omega_2, X' \cap \gamma)$ holds in \mathcal{M} .

The extension relation is end-extension.

For $\alpha \in Lim(\omega_3) \setminus \omega_2$ and $m \in \omega$ set $\mathbb{P}^2_{\alpha+m} = \prod_{\eta \in Lim(\omega_1)} \mathcal{L}_{\eta}(X_{\alpha+m}, X_{\alpha})$. If $\alpha \in Lim(\omega_2)$ and $m \in \omega$, let $\mathbb{P}^2_{\alpha+m}$ be the trivial poset. Then let

$$\mathbb{P}^2 = \prod_{\alpha \in Lim(\omega_3)} \prod_{m \in \omega} \mathbb{P}^2_{\alpha + m}$$

with countable supports. By the Δ -system Lemma in $L^{\mathbb{P}^0*\mathbb{P}^1}$ the poset \mathbb{P}^2 has the ω_2 -c.c. Analogously to Lemma 1 we conclude that $\mathbb{P}_0 = \mathbb{P}^0 * \mathbb{P}^1 * \mathbb{P}^2$ is ω -distributive.

If α is limit and $m \in \omega$, we shall refer to the localizing set for $X_{\alpha+m}$ produced by $\mathcal{L}_{\eta}(X_{\alpha+m}, X_{\alpha})$ as $Y_{\alpha+m,\eta}$. That is $Y_{\alpha+m,\eta} \subseteq \omega_1 \setminus \eta$ and $Y_{\alpha+m,\eta}$ codes both $X_{\alpha+m}$ and X_{α} .

Every \mathbb{Q}_{α} is going to add a generic real whose \mathbb{P}_{α} -name will be denoted by \dot{u}_{α} and similarly to the proof of Lemma 2 one can prove that $L[G_{\alpha}] \cap \omega^{\omega} = L[\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle] \cap \omega^{\omega}$ for every \mathbb{P}_{α} -generic filter G_{α} . This gives us a canonical wellorder of the reals in $L[G_{\alpha}]$ which depends only on the sequence $\langle \dot{u}_{\xi}^{G_{\alpha}} : \xi < \alpha \rangle$, whose \mathbb{P}_{α} -name will be denoted by $\dot{\prec}_{\alpha}$. We can additionally arrange that for $\alpha < \beta$ we have that $1_{\mathbb{P}_{\beta}}$ forces $\dot{\prec}_{\alpha}$ to be an initial segment of $\dot{\prec}_{\beta}$. Then if G is a $\mathbb{P}_{\omega_{3}}$ -generic filter over L, $\langle G \rangle = \bigcup \{\dot{\prec}_{\alpha}^{G} : \alpha < \omega_{3}\}$ will be the desired wellorder of the reals.

We proceed with the recursive construction of \mathbb{P}_{ω_3} . Along this construction we shall also define a sequence $\langle \dot{A}_{\alpha} : \alpha \in Lim(\omega_3) \rangle$, where \dot{A}_{α} is a \mathbb{P}_{α} -name for a subset of $[\alpha, \alpha + \omega)$. Let $i : \omega \times \omega \to \omega$ and

$$j_{\nu}: \nu \cup \{\langle \zeta, \xi \rangle : \zeta < \xi < \nu\} \rightarrow Lim(\omega_2)$$

be some bijections, where $\nu \in [\omega_2, \omega_3)$. Suppose \mathbb{P}_{α} has been defined and fix a \mathbb{P}_{α} -generic filter G_{α} .

Case 1. α is a limit ordinal that can be written in the form $\omega_2 \cdot \alpha' + \xi$ for some $\alpha' > 0$, $\xi < \omega_2$, and the preimage $j^{-1}(\xi)$ is a tuple $\langle \xi_0, \xi_1 \rangle$ for some $\xi_0 \stackrel{G_\alpha}{<}_{\omega_2 \cdot \alpha'} \xi_1$, where $j = j_{o.t.(\stackrel{G_\alpha}{<}_{\omega_2 \cdot \alpha'})}$. In this case the definition of $\dot{\mathbb{Q}}_{\alpha}$ is the same as in the proof of Theorem 1.

Case 2. α is a limit ordinal that can be written in the form $\omega_2 \cdot \alpha' + \xi$ for some $\alpha' > 0$ and the preimage $j^{-1}(\xi)$ is an ordinal $\zeta \in o.t.(\dot{\prec}_{\omega_2 \cdot \alpha'}^{G_\alpha})$, where $j = j_{o.t.(\dot{\prec}_{\omega_2 \cdot \alpha'}^{G_\alpha})}$. In this case we use a simplified version of the poset from [7, Theorem 1]. More precisely, ordinals fulfilling the condition above will be used for the construction of a Π_2^1 definable ω -mad family \mathcal{A} .

For a subset s of ω and $l \in |s|$ (= card(s) $\leq \omega$) we denote by s(l) the l-th element of s. In what follows we shall denote by E(s) and O(s) the sets $\{s(2i) : 2i \in |s|\}$ and $\{s(2i+1) : 2i+1 \in |s|\}$, respectively. Let \mathcal{A}_{α} be the approximation to \mathcal{A} constructed thus far. Suppose also that

$$(*) \qquad \forall \mathcal{D} \in [\mathcal{A}_{\alpha}]^{<\omega} \ \forall B \in \vec{B} (|E(B) \setminus \cup \mathcal{D}| = |O(B) \setminus \cup \mathcal{D}| = \omega).$$

Observe that equation (*) yields $|E(B) \setminus \cup \mathcal{D}| = |O(B) \setminus \cup \mathcal{D}| = \omega$ for every $\mathcal{D} \in [\vec{B} \cup \mathcal{A}_{\alpha}]^{<\omega}$ and $B \in \vec{B} \setminus \mathcal{D}$. Let x_{ζ} be the ζ -th real in $L[G_{\omega_2 \cdot \alpha'}] \cap [\omega]^{\omega}$ according to the wellorder $\dot{<}_{\omega_2 \cdot \alpha'}^{G_{\alpha}}$. Set $C_n = \{x_{\zeta}(i(n,m)) : m \in \omega\} \in [\omega]^{\omega}$ and $C = \{C_n : n \in \omega\}$. Unless the following holds, $\dot{\mathbb{Q}}_{\alpha}$ is a \mathbb{P}_{α} -name for the trivial poset: none of the C_n 's is covered by a finite subfamily of \mathcal{A}_{α} . In the latter case $\mathbb{Q}_{\alpha} := \dot{\mathbb{Q}}_{\alpha}^{G_{\alpha}}$ is defined as follows.

Let us fix a limit ordinal $\eta_{\alpha} \in \omega_1$ such that there are no finite subsets J, \mathcal{E} of $(\omega_1 \setminus \eta_{\alpha}) \times \omega$, \mathcal{A}_{α} , respectively and $n \in \omega$, such that $C_n \subset \bigcup_{(\eta,m)\in J} B_{\eta,m} \cup \bigcup \mathcal{E}$. (The almost disjointness of the $B_{\eta,m}$'s imply that if $C_n \subset \bigcup \mathcal{B}' \cup \bigcup \mathcal{A}'$ for some $\mathcal{B}' \in [\vec{B}]^{<\omega}$ and $\mathcal{A}' \in [\mathcal{A}_{\alpha}]^{<\omega}$, then $C_n \setminus \bigcup \mathcal{A}'$ has finite intersection with all elements of $\vec{B} \setminus \mathcal{B}'$. This easily yields the existence of such an η_{α} .) Let I_{α} be an infinite subset of ω coding a surjection from ω onto η_{α} . For a subset s of ω we denote by Δs the set $\{2k+1: k \in \sup s \setminus s\} \cup \{2k+2: k \in s\}$.

In $V[G_{\alpha}]$, \mathbb{Q}_{α} consists of pairs $\langle s, s^* \rangle$ such that $s \in [\omega]^{<\omega}$, $s^* \in [\{B_{\beta,m} : m \in \Delta(s), \beta \in Y_{\alpha+m,\eta_{\alpha}}\} \cup \mathcal{A}_{\alpha}]^{<\omega}$, and for every $2n \in |s \cap B_{0,0}|$, $n \in I_{\alpha}$ if and only if there exists $m \in \omega$ such that $(s \cap B_{0,0})(2n) = B_{0,0}(2m)$. For conditions $p = \langle s, s^* \rangle$ and $q = \langle t, t^* \rangle$ in \mathbb{Q}_{α} , we let $q \leq p$ if and only if t is an end-extension of s and $t \setminus s$ has empty intersection with all elements of s^* .

Let h_{α} be a \mathbb{Q}_{α} -generic filter over $L[G_{\alpha}]$. Set $u_{\alpha} = \bigcup_{\langle s,s^* \rangle \in h_{\alpha}} s$, $A_{\alpha} = \alpha + (\omega \setminus \Delta(u_{\alpha}))$, and $\mathcal{A}_{\alpha+1} = \mathcal{A}_{\alpha} \cup \{u_{\alpha}\}$. As a consequence of the definition of \mathbb{Q}_{α} and the genericity of

h_{α} we get⁶

- (1) $u_{\alpha} \in [\omega]^{\omega}$, u_{α} is almost disjoint from all elements of \mathcal{A}_{α} , and has infinite intersection with C_n for all $n \in \omega$;
- (2) If $m \in \Delta(u_{\alpha})$, then $|u_{\alpha} \cap B_{\beta,m}| < \omega$ if and only if $\beta \in Y_{\alpha+m,\eta_{\alpha}}$;
- (3) For every $n \in \omega$, $n \in I_{\alpha}$ if and only if there exists $m \in \omega$ such that $(u_{\alpha} \cap B_{0,0})(2n) = B_{0,0}(2m)$; and
- (4) Equation (*) holds for $\alpha + 1$, i.e. for every $B \in \vec{B}$ and a finite subfamily \mathcal{A}' of $\mathcal{A}_{\alpha+1}$, \mathcal{A}' covers neither a cofinite part of E(B) nor of O(B).

By (2) u_{α} codes $Y_{\alpha+m,\eta_{\alpha}}$ for all $m \in \Delta(u_{\alpha})$.

Case 3. If α is not of the form above, i.e. α is a successor or $\alpha < \omega_2$, then \dot{A}_{α} is a name for the empty set and $\dot{\mathbb{Q}}_{\alpha}$ is a name for the poset adding a dominating real defined in Case 2 of the proof of Theorem 1.

With this the definitions of $\mathbb{P} = \mathbb{P}_{\omega_3}$ and $\langle \dot{A}_{\alpha} : \alpha \in Lim(\omega_3) \rangle$ are complete. Let G be a \mathbb{P} -generic over L.

Just as in the proof of Theorem 1 one can verify that Lemmata 2 and 3 hold true. These were of crucial importance for the proof of Corollary 1, which in turn was used in the proofs of Lemmata 4 and 5. Again, a direct verification shows that all of these statements still hold and hence $<^G$ is a Δ_3^1 -wellorder of the reals in L[G].

Lemma 2 implies that the family \mathcal{A} we construct in the instances of $Case\ 2$ is an ω -mad subfamily of $[\omega]^{\omega}$. Condition (3) above yields $\eta_{\alpha} < \omega_{1}^{\mathcal{M}}$ for all countable suitable models \mathcal{M} containing \dot{u}_{α}^{G} provided that at stage α , $Case\ 2$ took place (i.e., there is a condition in G which forces this). Combining this with the ideas of the proofs of Lemmata 4 and 5 we get that $a \in \mathcal{A}$ iff for every countable suitable model \mathcal{M} containing a as an element there exists $\bar{\alpha} < \omega_{3}^{\mathcal{M}}$ such that $S_{\bar{\alpha}+k}^{\mathcal{M}}$ is nonstationary in $(L[a])^{\mathcal{M}}$ for all $k \in \Delta(a)$. This provides a Π_{2}^{1} definition of \mathcal{A} , which finishes our proof of Theorem 2.

4. Questions

The consistency of the existence of a Δ_3^1 -definable wellorder of the reals in the presence of $\mathfrak{c} \geq \aleph_3$ and MA, is still open. A second question naturally emerging from the developed techniques is the existence of a model in which a desired inequality betwen the cardinal characteristics of the real line holds, there is a Δ_3^1 -definable wellorder of the

⁶See [7, Claim 11] for an analogous argument.

reals and $\mathfrak{c} \geq \aleph_3$. Note that the bookkeeping argument which we have used in Theorems 1 and 2 allows only for handling of countable objects, which presents an additional difficulty in obtaining such models.

References

- [1] A. Blass *Combinatorial Cardinal Characteristics of the Continuum*, in: M. Foreman, A. Kanamori (Eds.), Handbook of Set Theory, Springer (2010), 395-489.
- [2] J. Brendle, V. Fischer *Mad families, splitting families and large continuum*, Journal of Symbolic Logic, 76, 1 (2011), 198-208.
- [3] J. Cummings *Iterated forcing and elementary embeddings*, in: M. Foreman, A. Kanamori (Eds.), Handbook of Set Theory, Springer (2010), 775-883.
- [4] R. David A very absolute Π_1^1 real singleton, Ann. Math. Logic 23 (1982) 101-120.
- [5] V. Fischer, S. D. Friedman *Cardinal characteristics and projective wellorders*, Annals of Pure and Applied Logic 161 (2010) 916-922.
- [6] S. D. Friedman, Lecture notes on definable wellorders, http://www.logic.univie.ac.at/~sdf/
- [7] S. D. Friedman, L. Zdomskyy *Projective Mad Families*, Annals of Pure and Applied Logic 161(2010), 1581-1587.
- [8] L. Harrington Long Projective Wellorderings, Ann. Math. Logic 12 (1977), 1-24.
- [9] T. Jech Set Theory Springer, 2002.