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The Axioms of Subjective Probability

Peter C. Fishburn

Abstract. This survey recounts contributions to the axiomatic foundations
of subjective probability from the pioneering era of Ramsey, de Finetti,
Savage, and Koopman to the mid-1980’s. It is designed to be accessible to
readers who have little prior acquaintance with axiomatics. At the same
time, it provides a fairly complete picture of the present state of the
measurement-theoretic foundations of subjective probability.
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The probability of any event is the ratio between the
value at which an expectation depending on the hap-
pening of the event ought to be computed, and the
value of the thing expected upon its happening.
(Bayes, 1763, page 376)

We are driven therefore to the second supposition that
the degree of a belief is a causal property of it, which
we can express vaguely as the extent to which we are
prepared to act on it. (Ramsey, 1931, page 170)

... the degree of probability attributed by an indi-
vidual to a given event is revealed by the conditions
under which he would be disposed to bet on that
event. (de Finetti, 1937; from Kyburg and Smokler,
1964, page 101)

The intuitive thesis in probability holds that ...
probability derives directly from the intuition, and is
prior to objective experience ... (Koopman, 1940a,
page 269)

Personalistic views hold that probability measures the
confidence that a particular individual has in the truth
of a particular proposition, for example, the proposi-
tion that it will rain tomorrow. (Savage, 1954, page 3)

1. INTRODUCTION

The theory of subjective probability attempts to
make precise the connection between coherent dispo-
sitions toward uncertainty and quantitative probabil-
ity as axiomatized by Kolmogorov (1933) and others.
It accommodates the classical interpretations of prob-
ability in Bayes (1763) and Laplace (1812), the intui-
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tive views of Koopman (1940a, 1940b) and Good
(1950), and the decision-oriented approach of Ramsey
(1931), de Finetti (1931, 1937), and Savage (1954).
The aim of this essay is to recount the axiomatic
development of subjective or personal (Savage) prob-
ability from 1926, when Frank P. Ramsey wrote Truth
and Probability, to the present. My hope is that this
will not only provide a useful current perspective on
subjective probability per se but that it will also pro-
mote appreciation of a vital part of the Bayesian
approach to statistical decision theory pioneered by
Good (1950) and Savage (1954) and further developed
by Schlaifer (1959), Raiffa and Schlaifer (1961),
DeGroot (1970), and Hartigan (1983) among others.
A brief but very informative introduction to problems
and perspectives of the Bayesian approach is given by
Sudderth (1985).

The axioms of subjective probability refer to as-
sumed properties of a binary relation is more probable
than, or its nonstrict companion is at least as probable
as, on a set of propositions or events. This relation,
often referred to as a qualitative or comparative prob-
ability relation, can be taken either as an undefined
primitive (intuitive views) or as a relation derived
from a preference relation (decision-oriented ap-
proach). In the latter case, to say that you regard rain
as more probable tomorrow than shine, or that you
believe the pound sterling is more likely to fall than
rise against the dollar next year means roughly that
you would rather bet on the first-named event for a
valuable prize that you will receive if your chosen
event obtains.

Comparative probability axioms are usually thought
of as criteria of consistency and coherence for a per-
son’s attitudes toward uncertainty. The prevailing
view has been that these criteria do not purport to
describe actual behavioral attitudes so much as they
characterize the partial beliefs of a rational, idealized
individual. Lately, however, some traditional axioms
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have been weakened to yield theories that accommo-
date observed departures from those axioms, and the
lines between the ideal and the actual have become
blurred. I shall say more about this later.

Except when noted otherwise, I adopt the strict
comparative probability relation > as basic. Read
A > B as “event A is (regarded by the individual as)
more probable than event B.” When > is basic, its
symmetric complement ~ and nonstrict companion
> are defined by

A ~B ifneither A>B nor B>A,
A>B ifeither A>B or A~B.

We usually view ~ as a comparative equiprobability
relation in either a precise sense or an approximate
“no significant difference” sense.

On the other hand, when > (“is at least as probable
as”) is taken as basic, then ~ and > are defined from
it by

A~B if A>B and B3xA,
A>B if A>B andnot (B3xA).

This has the advantage of identifying A and B as
noncomparable (Keynes, 1921) when neither A > B
nor B > A. In the > basic case, noncomparability is
embedded in ~ and there is no obvious way to distin-
guish between it and comparative equiprobability
when such a distinction is desired.

It is easily checked that, when > is basic, the defi-
nitions in the preceding paragraphs agree with each
other if and only if > is asymmetric, i.e., whenever
A > B then not (B > A). Alternatively, if > is basic,
the definitions agree if and only if > is complete, i.e.,
A > B or B > A for every pair of events. We shall
generally assume that > is asymmetric when it is
taken as basic, but will consider cases where > is not
complete when it is taken as basic (see Section 3).

The set on which > or > is defined is assumed to
be a Boolean algebra . of subsets A, B, --- of a
universal set S. We refer to each A in &/ as an event.
The empty event is &, the universal event is S, and
@ C A C S for every A in /. We recall that & is a
Boolean clgebra if S € &/, A € & = S\A € &/, and A,
B € & = AU B € «. The complement S\A of A in
S will also be written as A°.

A probability measure on &/ is a real valued function
P on & such that P(S) =1 and, for all A and B in .«&/,
P(A)=0,and ANB=J= P(AUB) =P(A) + P(B).
This last property implies that P is finitely additive:
if Ay, ---, A, are mutually disjoint events in ./, then
P(U;A)) = ¥, P(A)). Countable additivity and o-alge-
bras, which are taken for granted in some standard
works on probability (Loeve, 1960; Feller, 1966), will
be discussed later.

We say that P on &/

partially agrees with > if A>B= P(A)> P(B),
if AxB= P(A)=P(B),
if A>Be& P(A)> P(B),

almost agrees with >
agrees with > (or )

for all A and B in . Partial agreement requires
asymmetry for >, but almost agreement does not
require completeness for 3, so > is the appropriate
basis for consideration of almost agreement.

The most demanding axiomatizations of subjective
probability specify conditions for > on . that are
necessary and sufficient, or perhaps only sufficient,
for the existence of a probability measure that agrees
with >. Less demanding theories seek only partial
agreement or almost agreement. We also mention
cases intermediate between partial and full agreement
and note others in which additivity of P must be
replaced by a weaker concepi to obtain a suitable
numerical representation.

What axioms for > or > on & are so obvious and
uncontroversial as to occasion no serious criticism?
A few that might qualify for this distinction are

asymmetry: If A>B thennot (B> A);
nontriviality: S > &;

nonnegativity: A x &,

monotonicity: If A2 B then AXxB;

inclusion monotonicity:
If AD2B,B>C) or (A>B,B2C)
then A > C.

One might also nominate

transitivity: If A>B and B>C
then A > C;

additivity: If ANC=03=BNC
then A>B<=AUC>BUC;

complementarity: If A>B thennot (A°> B°),

but caution is advised here since these assumptions
have not gone unchallenged. Examples appear in
Section 3.

In any event, axioms like these form the foundations
of theories of subjective probability and of our remarks
about those theories. We begin with agreement when
the event set is finite, then consider weaker finite
representations, finitely and countably additive rep-
resentations with infinite algebras, and conclude with
comments on conditional probability.

Excellent sources for articles of historical interest
for subjective probability are Kyburg and Smokler
(1964) and Savage, Hacking, and Shimony (1967).
Technical surveys are included in Luce and Suppes
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(1965), Krantz et al. (1971), Fine (1973), and Roberts
(1979). Other interpretations of probability are dis-
cussed in Savage (1954), Good (1959), Fishburn
(1964), Fine (1973), de Finetti (1978), and Walley and
Fine (1979).

2. FINITE AGREEMENT

This section and the next assume that .« is finite.
With no loss in generality, let &/ be the family of all
subsets of S =11, 2, ..., n}. Each i in S is a state and
S is the set of states or the set of states of the world
(Savage, 1954).

We take > as basic in the present section. For
convenience, let

pz=P({l})a i=1’"'an’
so that P agrees with > if, for all A and B in %,
(1) A>Be Y pi> ) pi
i€EA iEB

This requires > to be asymmetric and transitive and,
since A ~ B & P(A) = P(B), it also requires ~ to be
transitive. We refer to > as a weak order when it has
these properties.

What else besides weak order is needed for agree-
~ ment? Some time ago de Finetti (1931) noted that
(1) also entails nontriviality (S > &), nonnegativity
(A > O for each A), and additivity (A N C = =
BNC=[A>B< AUC>BU C(]). The question
of whether these axioms are sufficient for agreement
remained open until it was settled in the negative by
Kraft, Pratt, and Se‘denberg (1959). They constructed
an example with n = 5 that satisfies de Finetti’s basic
axioms and includes the comparisons

{4} > {1, 3},

{2, 3} > {1, 4},

{1, 5} > {3, 4},

{1, 3, 4} > {2, 5}.

If (1) holds then

Ps > p1 + ps,
p2 + p3 > p1 + ps,
DP1+ ps > ps + P4,
p1+ ps+ ps>ps + ps.

But these are inconsistent since addition and cancel-
lation leaves us with 0 > 0.

What Kraft, Pratt, and Seidenberg discovered is
that a much stronger additivity condition is needed
for (1). To motivate it, let (A, ---, A,) =0 (By, - -,
B,,) mean that the A; and B; are in ./ and, for each

1 < i =< n, the number of A; that contain i equals the
number of B, that contain i. In other words, the sums
of the indicator functions over the two event sequences
are identical. Then, for any real numbers p, - - -, p,,

(Ala ] Am) =0 (BI’ M) Bm)

=Y Xp=2X X p.
j=1 i€A; Jj=1 i€B;
Consequently, if (1) holds and (A;, ---, A,) =¢
(By, ---, B,), then we cannot have A; > B; for every j
along with A; > B; for at least one j. In the preceding
example,

(Ah A2a A3, A4) = ({4}’ {2a 3}’ {1’ 5}’ {1’ 3’ 4})’
(Bly BZ, B3, B4)’ = ({11 3}a {1’ 4}a {3’ 4}’ {2’ 5})

We shall say that > on .« is strongly additive if, for
all m = 2 and all A; and B,

[(AI’ ""Am) =0 (BI’ Sty Bm), AJRB]
(2) for each j < m]
= not (A, > B,).

As just noted, this is necessary for (1). Its strength is
suggested by the fact that it implies weak order as
well as additivity. For example,

(A, B) =, (B, A), so A>B=not (B> A);
(A’ Ba C) =o (Ba Ca A)’
so (A>B,B>C)=A>C.

But strong additivity implies much more. Namely
(Fishburn, 1970, Chapter 4), > on ./ is strongly addi-
tive if and orly if there are real numbers p;, ---, p,
that satisfy (1). In the special case of subjective prob-
ability with p; = 0 and Y p; = 1, it is enough to assume
that > is nontrivial and nonnegative as well as
strongly additive. Proofs that these or equivalent ax-
ioms are necessary and sufficient for agreement ap-
pear in Kraft, Pratt, and Seidenberg (1959), Scott
(1964), and Krantz et al. (1971).

Those proofs, and ones for theorems in the next
section that use conditions similar to strong additivity,
are based on solution theory for systems of linear
inequalities (Kuhn and Tucker, 1956). Relevant theo-
rems are referred to Farkas’s lemma, the theorem
of the alternative, Fan’s theorem, and separating-
hyperplane lemmas. The basic algebraic results of
linear solution theory are also used by Heath and
Sudderth (1972) and Buehler (1976) among others to
expand on de Finetti’s ideas on coherent systems of
bets.

A crude but instructive comparison between betting
and strong additivity can be made as follows. Suppose
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strong additivity fails with (A,, ---, A,) =0 (By, - -+,
B..), A; = B; for all j < m, and A,, > B,,. Because of
A, > B,,, an individual with these comparisons would
presumably be willing to pay some positive amount to
engage in the following game. For each A; that obtains
he receives $1, and for each B; that obtains he pays
out $1. (Event A obtains if the true state is in A.)
However, this would be foolish, for regardless of which
state obtains, (A, ---, An) =0 (Bi1, ---, B,) ensures
that his net take, exclusive of stake, will be precisely
zero. I shall say more about decision models shortly.

Assuming agreement as in (1) with nonnegative p;
that sum to 1, it is trivial to note that the p; are unique
up to transformations that preserve nonnegativity,
the sum of 1, and the weak order of partial sums in-
duced by >. Of more interest is the question of when
the p; in (1) are unique. A partial answer, sufficient
for uniqueness (Luce, 1967; Krantz et al., 1971) is
that whenever events A, B, C, and D are such that
ANB=@,A> B, and B > D, then there are events
C’, D’, and E such that

E~AUB,

C'ND =0,

C’'uD’ CE,

C’'~C, and D’ ~ D.

This is a difficult condition to unravel and it is
not necessary even in simple cases. An example not
covered by the condition is, for n = 5,

{1, 2} ~ {4},

{1, 4} ~ {2, 3},
{2, 4} ~ {5},

{2, 5} ~ {1, 3, 4}.

Under (1) these yield p; + p2 = ps, p1 + ps = p2 + ps,
Do + ps = ps, and py, + ps = p; + ps + ps. The unique
solution with nonnegative p; that sum to 1 is

(p1, P2, Ps, Pa, Ps) = (2/22, 3/22, 4/22, 5/22, 8/22).
In general, given p; > 0 for all i, the p; are unique if
and only if there are n — 1 event pairs (4;, B;) with
A; N B; = @ and A; ~ B; such that the corresponding
n — 1 linear equations

2 b — 2 pbi = O,
i€EA

i€B,

(3

j= 1, ...,n—l,
are linearly independent.

Other avenues to uniqueness are available in the
finite states setting if .« is embedded in or extended
to a richer structure and something more than (1) is
required of P that will ensure its uniqueness. For
example, ‘Suppes and Zanotti (1976) and Luce and

" identical. [State i is null if (I, - -

Narens (1978) extend .« to infinite structures with
corresponding extensions of > such that the rep-
resentation required of the probability measure for
the extended system implies that it is unique. If P for
(1) is the restriction to .7 of this measure, then P is
unique, but only because of the conditions imposed on
its parent. In particular, the linear independence con-
dition of the preceding paragraph need not hold for ~
on «7. Extendability is treated in detail in Kaplan and
Fine (1977).

A more traditional route to uniqueness arises when
& is embedded in a decision structure and extraneous
scaling probabilities (Anscombe and Aumann, 1963;
Fishburn, 1967, 1970; Myerson, 1979) or canonical
lotteries (Pratt, Raiffa, and Schlaifer, 1964) are used
to derive a subjective expected utility model in which
the state probabilities are unique. One might, for
example, use probabilities associated with events for
a random device to construct lotteries on a set of
monetary outcomes. We then consider an individual’s
preference relation on the set {(/;, -- -, [,): each [; is a
lottery}, where (I, - - -, I,) is a “lottery act” that selects
lottery [; if state i obtains or is the “true state.” The
selected lottery is then played to determine the final
outcome. If the individual’s preference relation on the
set of lottery acts satisfies the expected utility axioms
of von Neumann and Morgenstern (1944), then for
each i in S there is a real valued utility function u; on
the outcome set M such that, for all pairs of lottery
acts,

(ll’ ] ln)

oF T u@>3 ¥ U @u@,

=1 aEM i=1 aEM

is preferred to  (I{, ---, l})

where [l(a) is the probability that lottery [ yields
outcome a.

Subjective probabilities emerge from this utility
representation (Fishburn, 1967) if we adopt an in-
dependence axiom which says that preferences over
lotteries within each nonnull state are essentially
-, 1) is indifferent to
(l1, ---, 1;) whenever [; =[] for all j # i.} We can then
replace u; by p;u under suitable rescaling of the u; to
obtain

(L, -++, 1, is preferred to (I1, ---,1})

n

pi L Wauta) > 3 i 3 li@ula)

=
i aEM aEM

with the p; unique and p; = 0 if and only if state i is
null.

Additional details of this and other lottery-based
theories are given in Fishburn (1981, Section 8). Other
decision-oriented theories that derive P on finite or
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infinite ./ as part of the utility representation for
preferences are described there also.

3. OTHER FINITE MODELS

Finite models weaker than (1) arise when we relax
strong additivity, including perhaps its implication of
weak order. Plausible reasons for considering weaker
models will be illustrated by examples before we get
into specific representations. I omit asymmetry, non-
triviality, and monotonicity from the examples.

3.1 Noncomparability (Incompleteness of )

A = Mexico City’s population will exceed
20,000,000 by 1994;
B =The first card drawn from this old and
probably incomplete bridge deck will be
a heart.
As Keynes (1921) might have argued, A and B are
sufficiently disparate to discourage a reasonable per-
son from judging either A > B or B > A.

3.2 Nontransitive ~

For a slightly bent coin,
A = The next 101 flips will give at least 40

heads;

B = The next 100 flips will give at least 40
heads;

C = The next 1000 flips will give at least 460
heads.

The judgments A ~ C, C ~ B, and A > B do not seem
unreasonable.

3.3 Nontransitive > (May, 1954; Tversky, 1969;
Fishburn, 1983a)

Cyclic patterns could arise from comparisons be-
tween multidimensional events. Sue will meet Mike
X. Smith at a party next Saturday. She knows nothing
about him except that he has just published a hot new
book on winning strategies in real estate. Her judg-
ments on separate attributes for Mr. Smith include

Height: 6’-0” > 6’-1” > 6’-2”,
Age: 40 > 50 > 60,
Hair color: brunette > red > blonde.
» Three composites for Mr. Smith are
A =6’-0" 60-year-old redhead;
B = 6’-1" 40-year-old blonde;
C =6’-2" 50-year-old brunette.
Sue considers one of these more believable than an-
other if the first is more probable on two of the three
attributes. Hence A > B, B > C, and C > A.

3.4 Nonadditivity (Ellsberg, 1961)

An urn contains 90 colored balls, 30 of which are
ecru. The other 60 are red and navy in unknown

proportion. One ball will be chosen at random from
the urn.

E = chosen ball is ecru;

R = chosen ball is red;

N = chosen ball is navy.
An individual can earn a valuable prize by guessing
the color of the chosen ball. Two comparisons are
made: E versus R, and E U N versus R U N. Ellsberg’s
experiments indicate that E>>Rand RUN>EUN
are likely. In each case the “more probable” event has
greater specificity: exactly 30 balls correspond to E,
and exactly 60 correspond to R U N. The noted
judgments clearly violate additivity. They also violate
complementarity.

Two relatives of = in the preceding section will be
used to express necessary and sufficient conditions for
several weaker models. First,

(Ay, -+, An) Z0 (By, -++, Bn)

means that, for each 1 < i < n, the number of A; that
contain i equals or exceeds the number of B; that
contain i. Second,

(Aly STty Am) >0 (Bl’ ] Bm)

means that for every i the number of A; that contain ¢
exceeds the number of B, that contain i. In both cases,
the A; and B; are understood to be in .

We first consider almost agreement with = as basic.
In this case (Kraft, Pratt, and Seidenberg, 1959) there
is a probability measure P on & that almost agrees
with 2 if and only if, for all m = 1 and all A; and B;,

[(Al, Tty Am) >0 (Bl9 Sty Bm)y BJEAJ
4) for each j < m]
= not (B, > An).

This is a very weak condition. Its only implica-
tion for m = 1 is not (& = S). For m = 2, since
(A, A) >, (D, Q), it implies that we cannot have
both @ > A and @ > A°. Indeed, the weakness of
almost agreement is seen by the fact that it does
not forbid cyclic >. For example, if S = {1, 2, 3} with
{1} > {2} > {3} > {1}, almost agreement could hold
with D1=D2=p3= s,

Partial agreement with > as basic forbids cyclic >
and seems somewhat more demanding than almost
agreement. In this case (Adams, 1965; Fishburn, 1969)
there is a probability measure P on . that partially
agrees with > if and only if, for all m = 1 and all A;
and B s

[(Al’ tt Am) ;0 (BI’ "'7Bm)’ Bj>Aj
(5) for all j < m]
= not (B, > Ap,).
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This entails asymmetry, nonnegativity, monotonicity,
and acyclicity, but not nontriviality, transitivity, or
additivity. However, it does forbid additivity reversals
like E> R and R U N > E U N in our fourth example.

Stronger versions of partial agreement have been
developed to explicitly include discriminatory thresh-
olds in “if and only if” representations. They were
motivated by Luce’s (1956) semiorder model and Fish-
burn’s (1970, 1985) interval order model in preference
theory. We call > an interval order if it is asymmetric
and satisfies (A > Band C > D)= (A> D or C > B),
for all A, B, C, ana D. If, in addition, (A > B > C) =
(A>DorD>C),forall A, B, C, and D, then > is a
semiorder. Examples like those given earlier show that
these conditions can be violated by reasonable judg-
ments in some circumstances. For instance, if A D B
and C O D with A and B of a substantially differ-
ent nature than C and D (c.f. A versus B in our
first example), then A > B, C > D, A ~ C ~ B, and
A ~ D ~ B might obtain.

The semiorder partial agreement representation is
a constant threshold model with

A > B e P(A) > P(B) + 4,

and the interval order partial agreement representa-
tion is a variable threshold model with

A > B < P(A) > P(B) + ¢(B),

In both cases, P is a probability measure on /. Nec-
essary and sufficient axioms (Fishburn, 1969; Domo-
tor and Stelzer, 1971) for the semiorder representation
are asymmetry, nontriviality, inclusion monotonicity,
and

0=6<1,

c=0.

[(Al’ "'7A2m) =0 (Bly ) B2m)’
B,z Ajforj=1,---, m, and
Aj>Bjforj=m+1, ---,2m — 1]

= not (Azm > Bzm).

Sufficient axioms (Fishburn, 1969) for the interval
order representation are asymmetry, (A > B and C >
D) = (A > D or C > B), inclusion monotonicity (not
strictly necessary), and

[(Al’ ] Am) =0 (Bl’ ) Bm), AJ >* B]
for all j < m]
=not (A, >* B,),

where A >* B means that, for all C, A > C if B> C,
and for some C, A > C and not (B > C). The displayed
conditions essentially reflect the difference between
the constant and variable threshold notions.

The interval order representation bears comparison
to models of upper and lower probabilities that arise
in Koopman (1940a), Smith (1961), Good (1962),

Dempster (1967, 1968), Suppes (1974), Williams
(1976), Walley and Fine (1979), and Kumar (1982)
among others. See also Shafer (1976) on the concept
of belief functions. One model of this type has

A > B e P,(A) > P*(B),

where P, and P* are monotonic but not necessarily
additive measures on . with P*(S) = P, (S) = 1,
P*(@) = P,(J) =0, and P*(A) = P,(A) for each A. If
we let 0(A) = P*(A) — P,(A), then

A>Be P(A) > P,(B) + o(B),

which is similar to the interval order model. Axioms
for this case consist of the interval order conditions
plus suitable nonnegativity and monotonicity assump-
tions. It requires a special additivity condition only
if there is to be a probability measure P for which
P,=<P=<P*

Davidson and Suppes (1956) and Schmeidler (1984)
axiomatize utility models in which P is monotonic but
not necessarily additive. Davidson and Suppes adopt
Ramsey’s (1931) measurement approach. They first
use an event with subjective probability Y2 to scale
outcome utilities and then use these to scale probabil-
ities of other events. Their outcome utilities are evenly
spaced and P(A) is defined as

u(d*) — u(d)
u(d*) — u(d) + u(c) — ulc*)

when u(c) # ulc*), u(d) # u(d*), and the act that
yields c if A and d if A¢ is indifferent to the act that
yields c¢* if A and d* if A°. This gives P(A) + P(A°) =
1, and their P is unique if n = 5.

Schmeidler (1984) weakens the lottery act axioms
for the model at the end of the preceding section to
obtain a modified expected utility representation in
which P is monotonic and unique. Because P need not
be additive, his definition of expectation (integration)
is special. Schmeidler’s model is designed to accom-
modate Ellsberg-type violations of additivity.

Another nonadditive model, axiomatized in both the
intuitive and decision modes (Fishburn, 1983a, 1983b),
allows intransitivities. Unlike preceding representa-
tions, it uses a two-argument function p on & X &
with

P(A) =

A>Bep(A,B)>0

along with p(Q, D) =1, p(B, A) = —p(A,B),A2B=
p(A4, B) =0, and '

ANB=0
= p(AUB, C) +p@,C) =p4,C) +pB,C).

The last property is a nonseparable generalization of
additivity. Necessary and sufficient conditions are
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nontriviality, monotonicity, and a generalization of
strong additivity.

4. INFINITE ALGEBRAS

This and the next two sections assume that . is an
infinite Boolean algebra of subsets of S. The present
section introduces terminology and special axioms
developed for this case. It also notes a partial agree-
ment axiomatization that does not fit into the next
two sections, which discuss agreement and almost
agreement when > is a weak order. The next section
focuses on finite additivity; Section 6 looks at count-
ably additive measures. We take > as basic through-
out.

The Boolean algebra «/ is a o-algebra if A is in &
whenever A is the union of a countable number of
events in .. A probability measure P is countably
additive if

P(CJ A,») = I P4)
= =1
whenever the A; are mutually disjoint events whose
union is also in .. Note that . does not have to be a
o-algebra for P to be countably additive.

Following Savage (1954), > is fine if, whenever
A > @, S can be partitioned into events B,, ---, B,
with A > B; for all j. Events A and B are almost
equivalent if, for all C and D in &/,

[C>93, D>, ANC=3=BnND]
=AUC>=B and BUD 3z A;

and > is tight if A ~ B whenever A and B are almost
equivalent. Savage (1954, page 37) subsequently
strengthened his definition of fine by replacing A >
B; by A > B, for all j. We refer to > as superfine in the
latter case.

Following Villegas (1964), event A is an atom if
A>@ and A > B > @ for no event B C A. The algebra
& is atomless if it has no atom. It should be noted that
these definitions depend on the behavior of >.

Three of the earliest axioms for infinite algebras are,
" due to de Finetti (1931, 1937) and Savage (1954). The
first of the following is from de Finetti, and also
Bernstein (1917) and Koopman (1940a). The other
two are Savage’s. All three suggest the possibility of
partitioning ./ into a very large number of events with
very small probabilities.

Partition Axiom 1. For each n = 2, S can be parti-
tioned into n equally likely (~) events.

Partition Axiom 2. For each n = 2, S can be parti-
tioned into n events such that the union of no r events
is more probable than the union of any r + 1.

Partition Axiom 3. For all A and B in &, if A > B
then S can be partitioned into a finite number of
events Ci, - .-, C,, such that A > B U C; for all j.

Partitions for Axiom 1 are uniform partitions, and
those for Axiom 2 are almost uniform partitions. Given
de Finetti’s basic axioms (Section 2), Savage notes
that Axiom 3 implies that > is both superfine and
tight and that it implies Axioms 1 and 2.

Partition Axiom 3 is used by Fishburn (1975) to
axiomatize partial agreement with a finitely additive
measure. Sufficient axioms for partial agreement are
inclusion inonotonicity, Axiom 5 with =, in place
of Z,, Partition Axiom 3, and the following part of
additivity:

[ANC=8=BNC,AUC>BUC]=A>B.

Partial additivity is defended by the contention that
if AU C > B U C when (A U B) N C =, then the
difference between the two events will be even more
apparent when the common part C is removed. The
fourth example in the preceding section questions its
general acceptability.

Because of the possibility of atoms, none of the
partition axioms is necessary for agreement. We there-
fore note three more conditions that are necessary for
the existence of a probability measure that agrees with
>. These are referred to as Archimedean axioms be-
cause they lead to real representations with no infin-
itesimal nonstandard numbers or infinitely large
numbers. A few preliminary definitions are needed.

A subset € of & is order dense in . if, whenever
A > B and neither A nor Bisin &, then A > C > B
for some C in &. A countable (finite or denumerable)
sequence of events A;, Ay, - - - is a standard sequence
relative to event A if for each A; there are disjoint
events B; and C; such that A, = By, A;; = B; U C;
(when i + 1 is present), B, ~ A, C; ~ A, and B; ~ A,.
The upshot of this is that if P agrees with > then
P(A,) = iP(A) for each i.

Archimedean Axiom 1. & includes a countable order
dense subset.

Archimedean Axiom 2. For each event A > &, every
standard sequence relative to A is finite.

Archimedean Axiom 3. For all m = 2 and all events
A], ey, Am, Bl, ey, BmI if A1 > B1 then there is a
positive integer N such that, whenever (kJ, nA,, A,,

-+, An) =0 (RS, nBy, By, -+, By) with k=0, n = 1,
and A; > B, for all j = 2, then k/n > 1/N.

The first Archimedean axiom, which dates from
Cantor’s (1895) work on transfinite numbers, is nec-
essary and sufficient in conjunction with weak order
for the existence of a real valued function f on . such
that, for all A and B in &, A > B & f(A) > f(B)
(Birkhoff, 1967; Fishburn, 1970; Krantz et al., 1971).
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Archimedean Axiom 2, from Luce (1967), is one of
several standard sequence conditions used in Krantz
et al. (1971). To be applicable, it requires structural
conditions that allow the construction of such se-
quences. Neither of the first two axioms relates to
additivity of probability, which must enter through
another axiom.

Strong additivity is built into Archimedean Axiom
3via k=0 and n = 1. In its statement, due to
Chateauneuf and Jaffray (1984), kA denotes A re-
peated k times. Its necessity for agreement follows
from the fact that agreement and its hypotheses imply

k = n[P(A)) — P(By)] + ¥ [P(4) — P(B))]

j=2
= n[P(Al) - P(Bl)]’

so k/n = P(A,) — P(B,). Since P(A;) — P(B,) > 0 by
A, > B, k/n cannot be arbitrarily small without
violating agreement.

5. FINITE ADDITIVITY

The basic axioms of de Finetti, i.e., weak order,
nontriviality, nonnegativity, and additivity, have be-
come so standard that they are used more or less
directly in all infinite . axiomatizations for agree-
. ment, and in most axiomatizations for almost agree-
ment. Savage (1954) defines > (or >) as a qualitative
probability when it satisfies de Finetti’s axioms, and
this name has persisted in more or less this form.

Since all axiomatizations in this section and the
next use de Finetti’s basic axioms, they will be taken
for granted until the final section of the paper. The
present section is concerned solely with the existence
of finitely additive probability measures that agree, or
almost agree, with > when ./ is infinite. We consider
almost agreement first.

Savage (1954) proves that there exists a P that
almost agrees with > when Partition Axiom 2 holds
(almost uniform) and .« is the o-algebra of all subsets
of S. Moreover, P is unique, and if P(A) > 0 and
0 < A <1, then P(B) = AP(A) for some B C A. The
same conclusions follow if > is superfine and, in this
case, P(A) > 0 if A > @ and P(A) = P(B) if and only
if A and B are almost equivalent. See also Wakker
(1981, Lemmas 3-5).

Related results for almost agreement have been
obtained by others when . is merely assumed to be a
Boolean algebra. Niiniluoto (1972) and Wakker (1981)
note that there is a unique almost agreeing P when >
is fine. Narens (1974) and Wakker (1981) show that
almost agreement (not necessarily unique) follows
from (4).

The earliest axiomatizations for agreement (Bern-
stein, 1917; de Finetti, 1931, 1937; Koopman, 1940a)
used Partition Axiom 1 (uniform partitions). Savage
(1954), again with ./ as the family of all subsets of S,

obtains a unique agreeing P with Partition Axiom 3.
Since the P(B) = AP(A) property holds here, . must
be atomless. A related result is obtained in French
(1982) by adjoining an auxiliary experiment (extra-
neous scaling probabilities) to S. This approach, of
enriching a possibly finite S with events generated
from a random device, was used earlier by DeGroot
(1970), and indeed did not escape notice by Savage
(1954, pages 33 and 38).

Other axiomatizations for agreement do not assume
that .«/ is a o-algebra. Luce (1967), whose axioms apply
also to finite S, shows that a unique agreeing P follows
from (3) and Archimedean Axiom 2. Roberts (1973)
obtains unique agreement from Partition Axiom 2
and Archimedean Axiom 1, after a similar result in
Fine (1971). Wakker (1981) notes that, when > is fine,
unique agreement holds if and only if either > is tight
or ./ has an atom.

Necessary and sufficient conditions for agreement
are discussed by Domotor (1969) and Chateauneuf
and Jaffray (1984). Domotor’s complex conditions will
not be recalled here. Chateauneuf and Jaffray show
that if & is countable, e.g., the family of finite subsets
of {1, 2, --.} and their complements, then some P
agrees with > if and only if Archimedean Axiom 3
holds. Because their conditions are necessary as well
as sufficient, they do not imply uniqueness. Indeed, a
price payed for uniqueness is nonnecessity since con-
ditions that guarantee unique agreement cannot be
wholly necessary.

Further references on mathematical details of
finitely additive measures include Bochner (1939),
Sobczyk and Hammer (1944), Yosida and Hewitt
(1952), Hewitt and Savage (1955), Dubins (1974),
Purves and Sudderth (1976), Bhashara Rao and
Bhaskara Rao (1983), and Schervish, Seidenfeld, and
Kadane (1984). Contributions of special interest in
decision theory include Dubins and Savage (1965),
de Finetti (1975), Heath and Sudderth (1978),
Lane and Sudderth (1978), and Seidenfeld and
Schervish (1983).

6. COUNTABLE ADDITIVITY

We continue to assume de Finetti’s four basic
axioms.

Villegas (1964) identifies the key assumption on >
needed for countable additivity. Modified slightly to
accommodate Boolean algebras that are not also
g-algebras, his axiom is

Monotone continuity: For all A, B, A,, A,, --- in %/,
if Ay, C A, C ..., A =UA, and B > A; for all i,
then B > A.

Thus, if the nondecreasing A; converge to a limit
event A, then the judgment that B is at least as
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probable as A; for all { cannot be reversed in the limit
by a jump to A > B. Monotone continuity is quite
appealing and is necessary for agreement with a count-
ably additive probability measure. In fact, Villegas
(1964) proves that if &/ is a o-algebra and if P is a
finitely additive probability measure that agrees with
>, then P is countably additive if and only if > is
monotonely continuous. Chateauneuf and Jaffray
(1984) remark that this remains true even when . is
not a o-algebra.

Consequently, for every axiomatization in the pre-
ceding section that implies the existence of P that
agrees with >, such a P is countably additive if and
only if > is monotonely continuous.

Other axiomatizations have been developed specif-
ically for countable additivity when ./ is a ¢-algebra.
All assume monotone continuity. Villegas (1964)
proves that if .« is atomless then there is a unique
countably additive P that agrees with >. DeGroot
(1970) and French (1982) obtain the same conclusion
with the explicit use of an auxiliary experiment that
itself is atomless but allows atoms in the original state
set. Similarly, Chuaqui and Malitz (1983) adopt strong
additivity to obtain unique agreement whenever .« has
a nontrivial atomless subalgebra. They also consider
the purely atomic case, where P is a discrete measure,
and prove an almost agreement theorem under strong
additivity. Finally, Chateauneuf and Jaffray (1984)
show that Archimedean Axiom 3 is necessary and
sufficient for agreement. Their complete set of
axioms for countably additive agreement when ./ is a
o-algebra is equivalent to de Finetti’s axioms, mono-
tone continuity, and Archimedean Axiom 3. Since
these are necessary as well as sufficient, their P is not
necessarily unique.

7. CONDITIONAL PROBABILITY

A typical version of Bayes’ formula for conditional
probability when S = © X Z and the underlying state
or parameter space O and sample space Z are finite is

_ Py(2|0)Po(8)
Pi(0]2) = S Py(z]0)Po(0")

Here P, (- | z) and Py(- | §) are conditional probability
mass functions, and P, is a (marginal) probability
mass function on O. In the usual subjectivistic inter-
pretation, P, is the prior distribution and P; is the
posterior on O given observation z. Each of P,, P,
and P, may be based on a joint distribution over S as
described in the next paragraph.

If there is a unique probability measure P on & that
agrees or almost agrees with > or x>, then subjec-
tive conditional probabilities can be defined unambig-
uously in the usual way as

(6) P(A|B) = P(AN B)/P(B) when P(B) >0,

thus putting Bayes’ theorem and other mathematical
machinery of conditional probability at our disposal.
The theoretical foundations of Bayesian decision the-
ory can be understood in this way when all uncertain-
ties, including those associated  with experiment’s
outcomes, are embedded in /. At least in theory,
if not in common practice, priors and other special
probabilities can be extracted from the global P meas-
ure by the usual operations. For the setting of the
preceding paragraph, Py(8) = P({6} X Z), P,(8|z) =
P({(6, 2)})/P(© X {2}), and P»(z | 8) = P({(6, 2)})/P({6}
X Z) when the denominators do not vanish.

A potential problem with (6) arises when P is not
unique, as for example in Section 2, since conditional
probabilities might not be uniquely ordered. For ex-
ample, one agreeing P may give P(A|B) > P(C| D)
by (6), while another gives P(C | D) > P(A | B).

Partly for this reason, and partly because some
authors, including Koopman (1940a, 1940b), believe
that conditional judgments are basic to subjective
probability, there has been interest in axiomatizing
conditional probability directly. This is usually done
by means of a comparative conditional probability
relation >, on & X &,, where %, is the set of nonnull
events in & and A|B o C| D is interpreted as “A
given B is at least as probable as C given D.” When
2o is complete and ~ is defined by

A|B~C|D
if A|BxzC|D and C|D >y A|B,

a null event is an A in & for which A|S ~, @|S.
A typical representation for comparative conditional
probability is, for all A | B and C | D in &/ X &/,
o A|Bz= C|D
7

< P(A N B)/P(B) = P(C N D)/P(D),

where P is a probability measure on /.
Domotor (1969) includes necessary and sufficient

~ conditions on >, for (7) when . is finite. His axioms

extend the approach of Kraft, Pratt, and Seidenberg
(1959) for finite agreement. Suppes and Zanotti (1982)
give necessary and sufficient conditions for a model
like (7) for general ./ by using extensions of indicator
functions in a manner similar to Suppes and Zanotti
(1976). Other sufficient axiomatizations for (7) and
related representations appear in Koopman (1940a,
1940b), Aczel (1961, 1966), Luce (1968), and Krantz
et al. (1971). The last of these provides a nice de-
scription of previous work (pages 221-228). Their
main axiomatization is based on Luce (1968) and
consists of seven conditions necessary for (7) plus a
nonnecessary solvability condition which says that
if A|B >0 C|D then there is a C’ in & such that
CNDCC’andA|B~,C’|D.
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Conditional probabilities also arise directly from the
preference-based axiomatizations of Ramsey (1931),
Pfanzagl (1967, 1968), Luce and Krantz (1971), Fish-
burn (1973), and Balch and Fishburn (1974). Reviews
of their theories are included in Fishburn (1981).
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