A Bayesian Account of Independent Evidence with Applications

Branden Fitelson'*

University of Wisconsin-Madison

December 1, 2000

Abstract. A Bayesian account of independent evidential support is
outlined. This account is partly inspired by the work of C.S. Peirce.
I show that a large class of quantitative Bayesian measures of con-
firmation satisfy some basic desiderata suggested by Peirce for ade-
quate accounts of independent evidence. I argue that, by considering
further natural constraints on a probabilistic account of independent
evidence, all but a very small class of Bayesian measures of confirma-
tion can be ruled out. In closing, another application of my account
to the problem of evidential diversity is also discussed.

1 Terminology, Notation & Basic Assumptions

The present paper is concerned with the degree of incremental confirmation
provided by evidential propositions E for hypotheses under test H, given back-
ground evidence K, according to relevance measures of degree of confirmation
¢. We say that ¢ is a relevance measure of degree of confirmation if and only if
¢ satisfies the following constraints, in cases where E confirms, disconfirms, or
is confirmationally irrelevant to H, given background evidence K.

>0 if Pr(H|E&K) > Pr(H|K),
(R) ¢(H,E|K){<0 ifPr(H|E&K) <Pr(H|K),
=0 if Pr(H|E&K) =Pr(H|K).

I will restrict my attention to the following four relevance measures of de-
gree of confirmation: the difference measure d, the log-ratio measure r, the
log-likelihood ratio measure [, and Christensen’s (1999) “normalized” differ-
ence measure measure s. These measures are representative of the varieties
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of quantitative Bayesian confirmation theory that are currently defended in the
philosophical literature.! The measures d, r, [, and s are defined as follows:?

d(H,E|K) =4 Pr(H | E& K) — Pr(H| K)

r(H, B| K) =4 log {%]
I(H,E| K) =g log {%]

s(HE | K) =4 Pr(H|E& K) —Pr(H|E& K)
1

-5 D -d(H,E|K).?

When we want to consider how degree of confirmation varies with changing
background evidence, we will use the conditional notation ¢(H, F | E2) to denote
the degree to which E; confirms H (according to c), given that Es is part of our
background evidence.* And, we will use the unconditional notation ¢(H, E;) to
denote the degree to which E; confirms H (according to ¢), not conditional on
FE5 being part of our background evidence.

2 Confirmational Independence — Bayesian Style

2.1 The Fundamental Peirceian Desiderata

In his essay “The Probability of Induction”, C.S. Peirce articulates several fun-
damental intuitions concerning the nature of independent inductive support.
Consider the following important excerpt from Peirce (1878, my brackets):

! Many relevance measures have been proposed over the years. For a nice survey, see Kyburg
1983. The three relevance measures d, r, and | have had the most loyal following in recent
years. Advocates of d include Earman (1992), Eells (1982), Gillies (1986), Jeffrey (1992), and
Rosenkrantz (1994). Advocates of r (or measures ordinally equivalent to r) include Horwich
(1982), Keynes (1921), Mackie (1969), Milne (1996), Schlesinger (1995), and Pollard (1999).
Advocates of | (or measures ordinally equivalent to !) include Kemeny and Oppenheim (1952),
Good (1984), Heckerman (1988), Horvitz and Heckerman (1986), Pearl (1988), and Schum
(1994). Recent proponents of s include Christensen (1999) as well as Joyce (1999).

20verbars are used to express negations of propositions (i.e., ‘X’ stands for ‘not-X’).
Logarithms (of any arbitrary base greater than 1) of the ratios Pr(H | E& K)/Pr(H | K) and
Pr(E|H & K)/Pr(E| H & K) are taken to ensure that (i) r and [ satisfy R, and (ii) r and [
are additive in various ways (see footnote 6). Not all advocates of r or [ adopt this convention
(e.g., Horwich 1982 and Sober 1989). But, because logarithms are isotone functions, defining
r and [ in this way will not result in any loss of (or gain in) generality in my argumentation.

3This equality holds provided, of course, that Pr(E|K) # 0. See Christensen (1999) for
further discussion about the relationship between d and s.

4There may be other background evidence besides Es in a confirmational context. However,
this additional background evidence will be held fized in the confirmational comparisons we do
to determine whether E7 and E3 are dependent or independent regarding H in that context.
So, there is no need to indicate this additional background evidence explicitly. As such, I will,
for simplicity, hereafter suppress the (full) background evidence K from my notation.



... two arguments which are entirely independent, neither weakening nor
strengthening the other, ought, when they concur, to produce a[n intensity
of] belief equal to the sum of the intensities of belief which either would
produce separately.

Two crucial intuitions about independent inductive support are contained in
this quote. First, there is the intuition that two pieces of evidence E; and
FE5 provide independent inductive support for a hypothesis H if the degree to
which Ey supports H does not depend on whether E5 is part of our background
evidence (and vice versa). In our confirmation-theoretic framework, we will take
this intuition onboard as a definition of (mutual) confirmational independence
regarding a hypothesis:

Definition. F; and Fs are (mutually) confirmationally independent
regarding H according to ¢ iff both ¢(H, Fy | E3) = ¢(H, E1), and
«(H, Bz | Er) = ¢(H, Es).°

The second intuition expressed by Peirce in this passage is that the joint
support provided by two pieces of independent evidence should be additive. In
our confirmation theoretic framework, this gets unpacked as follows:

(A") If E; and E5 are confirmationally independent regarding H
according to ¢, then ¢(H, E1 & E3) = ¢(H, E1) + ¢(H, E2).

Strictly speaking, we should weaken A’ to require only that ¢(H, E1 & E2) be
some (symmetric) isotone function f of ¢(H, E1) and ¢(H, E3), where f is addi-
tive in some (isotonically) transformed space.® The point is that, if E; and Es
are confirmationally independent regarding H according to ¢, then ¢(H, Fq & Es)
should depend only (and, in some isotonically transformed space, linearly) on
¢(H, Ey) and ¢(H, E3), without any extra “interaction terms”. This leads to the
following refinement of the second basic Peirceian intuition:

5James Joyce and Patrick Maher (private communications) have both voiced concerns
about whether this is an accurate reading of Peirce. They worry that Peirce is talking in this
passage not about the degree of incremental confirmation ¢(H, F), but about the posterior
probability Pr(H | E). While this may be true (as a psychological fact about Peirce — although
Good 1983 and Schum 1994 seem to think otherwise), this would not undermine the cogency
of my subsequent arguments. For, I intend only to take Peirce’s somewhat vague statements
as a historical inspiration for my own account. However, it is interesting to note that, if
Peirce is talking about the posterior probability here, then his requirement of additivity in
cases where Pr(H | E1 & E2) = Pr(H | E1) = Pr(H | E2) makes no sense, since in such cases:
Pr(H|E, & E2) = Pr(H|Ey) = Pr(H|E2) # Pr(H|E1) + Pr(H | E2). So, I consider my
reading of this passage to be a rather charitable one. Moreover, the definition of confirmational
independence I am adopting is a natural and (pre-theoretically) intuitive one. Interestingly,
many researchers in artificial intelligence have adopted the very same definition. They call it
‘modularity’ — see, e.g., Horvitz and Heckerman (1986) and Heckerman (1988).

6 As Peirce did, I prefer to have f be +. So, I have defined r and [ using logarithms (see
footnote 2). If we were to drop the logarithms in our definitions of r and I, then we would have
f = - for the ratio measures r and [, but f = + for the difference measure d. See Heckerman
(1988) for more on the kind of linear decomposability that is at the heart of desideratum .A.

(A) There exists some (symmetric) isotone function f such that,
for all Fy, FEs, and H, if ;1 and FEs are confirmationally in-
dependent regarding H according to ¢, then ¢(H, E1 & Es) =
fle(H, Ey), c(H, E3)], where f is additive (i.e., linear) in some
(isotonically) transformed space.

The following theorem states that each of our four Bayesian relevance mea-
sures — except s — satisfies A (see the Appendix for proofs of all theorems).

Theorem 1. Each of the measures d, r, and | satisfies A, but s violates A.”

So, at this most basic level, the three most popular varieties of quantitative
Bayesian confirmation theory are in agreement about the nature of independent
evidence. All three measures d, r, and [ satisfy the fundamental Peirceian
desideratum A (and A’). However, measure s would seem to be inadequate in
its handling of independent evidence, even at this most basic level.?

The agreement between d, r, and [ ends here. In the next section, I will
describe a symmetry desideratum which is satisfied by d and ! (and s), but
violated by r. This will narrow down the field further to two measures (d
and [) which seem to cope adequately (at a very basic level) with independent
evidence. Later, I will propose additional, probabilistic constraints on accounts
of independent evidence that narrow the field even more.

2.2 A Negation Symmetry Desideratum

If two pieces of evidence are confirmationally independent regarding H, then
they should also be confirmationally independent regarding H. Negation sym-
metry in the confrimational independence relation seems highly intuitive.? After
all, if the degree to which E; confirms H doesn’t depend on whether E5 is al-
ready known, then why should the degree to which E; confirms H depend on
whether Ej is already known? In our confirmation theoretic framework, this
intuitive negation symmetry principle gets formalized as follows:

(S) If E(FI7 E1 | EQ) = _C(FI7 El) and _C(PI7 EQ | El) :_C(PI7 EQ)7 then
«(H,E1|Ez) =c¢(H, Er) and ¢(H, B2 | E1) = ¢(H, Es).

The following theorem states that each of our four Bayesian relevance measures
— except r — satisfies S.

Theorem 2. Each of the measures d, I, and s satisfies S, but r violates S.1°

7Carnap’s (1962, §67) relevance measure t also violates A (proof omitted). See Fitelson
(1999) and Eells and Fitelson (2000b) for other unintuitive features of Carnap’s measure t.

8See Eells and Fitelson (2000a, 2000b) for other unintuitive features of s.

9Many varieties of independence satisfy this kind of negation symmetry requirement (e.g.,
both logical independence and probabilistic independence are negation-symmetric).

10This theorem is closely related to a result reported in Eells and Fitelson (2000b) which

says that each of our four Bayesian relevance measures — except r — satisfies the following
hypothesis symmetry condition: (HS) ¢(H,E|K) = —¢(H,E | K).



The two high-level desiderata .4 and S narrow the field of four relevance mea-
sures down to two (d and [) which seem — so far — to explicate the concept
of independent evidence.!! Next, I will propose a low-level, probabilistic con-
straint that rules out the difference measure d and all other relevance measures,
except those ordinally equivalent to the log-likelihood ratio measure I.

2.3 Screening-Off and Confirmational Independence
2.3.1 Sober’s Intuitive Conjunctive Fork Example

Sober (1989) discusses an example in which two pieces of evidence E; and Es
seem — intuitively — to provide independent support in favor of a hypothe-
sis.!? In Sober’s example, E; is a newspaper report of the outcome H of a
baseball game, and E5 is an (causally) independently derived radio report of
the (same) outcome of the same baseball game. It is assumed that each of
E; and Es individually confirms H. Sober explains that the (intuitive) proba-
bilistic structure of this example is a conjunctive fork, in which E; and E, are
joint effects of a common cause H. Sober also points out (as Reichenbach 1956,
page 159 first did) that E; and Es will not be unconditionally probabilistically
independent in such a case. So, it can’t be probabilistic independence of the
evidence simpliciter which is responsible for our intuitive judgment that F; and
FE5 are confirmationally independent regarding H in Sober’s example. Is there
some probabilistic feature of Sober’s example which undergirds our intuition?
It seems to me (as it did to Sober) that the relevant point is that (in the termi-
nology of Reichenbach 1956, page 189) H screens-off Ep from Es. That is, it
is the fact that £ and E5 are probabilistically independent conditional on the
hypothesis H (and its denial) that undergirds our intuition that Fy and Eo are
confirmationally independent regarding H.

Sober’s conjunctive fork example provides informal motivation for the fol-
lowing two central points concerning the nature of confirmational independence
and its intuitive relation to probabilistic screening-off:

e Confirmational independence is inherently a three-place relation. That is,
when we say Fp and Eo are confirmationally independent regarding H,
we are not saying that E; and FEs are unconditionally independent of
each other. We are talking about a kind of (ternary) independence that
depends crucially on the hypothesis H.

o Screening-off of E; from Ey by H is (intuitively) intimately connected
with confirmational independence of F; and Es regarding H.

1 See Eells and Fitelson (2000b) for an independent set of high-level desiderata which also
narrow the field to the two measures d and I. Pace Milne (1996), d and [ seem, in many ways,
to be the two most serious candidates for “the one true measure of confirmation.”

1280ber presupposes that the likelihood ratio (which is ordinally equivalent to [) is the correct
way to measure degree of evidential support. I will use Sober’s example in what follows to
motivate certain intuitive aspects of confirmational independence which will, ultimately, lead
to an argument in favor of 1 (as opposed to d, r, or s) as a measure of evidential support.

In the next section, I will describe a more general, probabilistic model that is
intended to make the connection between probabilistic screening-off and confir-
mational independence more precise. This formal model will also allow us to
generate concrete, numerical examples which will, ultimately, be used to show
that only the log-likelihood ratio measure | properly handles the (general) rela-
tionship between probabilistic screening-off and confirmational independence.

2.3.2 A Formal Model

To formally motivate the general connection between probabilistic screening-off
and confirmational independence, I will use a simple, abstract model. T will
call this model the urn model.'> The background evidence for the urn model is
assumed at the outset to contain the following information:

An urn has been selected at random from a collection of urns. Each
urn contains some balls. In some of the urns the proportion of white
balls to other balls is z and in all the other urns the proportion of
white balls is y, 0 < x,y < 1. The proportion of urns of the first
type is z, 0 < z < 1. Balls are to be drawn randomly from the
selected urn, with replacement.

Let H be the hypothesis that the proportion of white balls in the urn is z.
Let W; state that the ball drawn on the i*® draw (i > 1) is white. I take it
as intuitively clear that W; and W are mutually confirmationally independent
regarding H, regardless of the values of z, y, and z. Hence, I propose the
following adequacy condition for measures of degree of confirmation:

(UC) If ¢ is an adequate measure of degree of confirmation then, both
c(H,W1|Ws) = ¢(H,W1), and ¢(H, Wy |W7) = ¢(H, Ws) for all urn ex-
amples, regardless of the values of z, y, and z.!

What probabilistic feature of the urn model could be responsible for the
(presumed) fact that W; and W5 are confirmationally independent regarding
H? The feature cannot depend on the values of the probabilities involved, since
we did not specify what these are except to say that they are not zero or one (a
requirement imposed to ensure that the relevant conditional probabilities are all
defined). Moreover, as we saw in Sober’s example, the feature cannot depend
on the unconditional probabilistic independence of W7 and W5, since W7 and

13The urn model is due to Patrick Maher.

4Ellery Eells (private communication) worries that for extreme (or near extreme) values
of z, y, or z, this intuition might break down. He may be right about this (although, as a
defender of [, I will insist that any such breakdown can be explained away, and is probably
just a psychological “edge effect”, owing to the extremity of the values of z, y or z, and
not to considerations relevant to their confirmational independence per se). However, in the
Appendix (Theorem 3), I show that the measures d, r, and s fail to obey this intuition, even
in cases where the values of z, y, and z are all arbitrarily far from extreme. As a result, d, r,
and s will not even judge E; and E> as confirmationally independent regarding H in Sober’s
example. This seems unintuitive, and should cast doubt on the adequacy of d, r, and s.



Wo will not, in general, be independent of each other (e.g., if each of Wi and
Wy individually confirms H). This does not leave much. Two considerations
that remain are that the following two identities hold in all urn examples:

(1) Pr(Wy & Wa | H) = Pr(Wy | H) - Pr(Wo | H)
(2) Pr(Wy & Wa | H) = Pr(Wy | H) - Pr(Wo | H)

Identities (1) and (2) state that H screens-off Wi from Wa (or, equivalently,
Wy from W7). What I am suggesting, then, is that screening-off by H of W3
from W5 is a sufficient condition for W7 and W5 to be mutually confirmationally
independent regarding H. This suggests that (UC) might be strengthened to
the following screening-off adequacy condition for measures of confirmation:

(SC) If ¢ is an adequate measure of confirmation, and if H screens-off F; from
E27 then C(FI7 E1 | EQ) = C(FI7 El) and C(FI7 EQ | El) = C(FI7 EQ)

Ifind (SC) an attractive principle; but, for the purposes of this paper, I will
use only the weaker (and perhaps more intuitive) adequacy condition (UC).'5
The following theorem states that the only measure among our four measures
d, r, I, and s that satisfies (UC) is the log-likelihood ratio measure I:

Theorem 3. The measures d, r, and s violate (UC), but | satisfies (UC).16

Thus, only the log-likelihood ratio [ satisfies the low-level, probabilistic screening-
off desideratum. I think this is a compelling reason to favor the log-likelihood
ratio measure over the other measures currently defended in the philosophical
literature (at least, when it comes to judgments of confirmational independence
regarding a hypothesis).!” As such, this provides a possible (at least, partial)
solution to the problem of the plurality of Bayesian measures of confirmation de-
scribed in Fitelson (1999). In the next section, I will discuss another application
of my account of independent evidence.

15Heckerman (1988, page 19) has suggested an adequacy condition that is equivalent to (SC).
He gives no justification for this principle. I take the urn model to be a partial justification
of (SC). However, I prefer the present approach since it makes use only of the weaker (and, I
think, more intuitive) (UC). Incidentally, I do not think that screening-off by H is a necessary
condition for mutual confirmational independence regarding H (neither does Heckerman). I
discuss this issue further in the Appendix, when I prove Theorem 3.

16Heckerman (1988) claims to prove a much more ambitious, and closely-related result.
He claims to show that only measures that are ordinally equivalent to [ satisfy (SC). Unfor-
tunately, his argument is fallacious for subtle mathematical reasons — see Halpern (1996).
In particular, Heckerman’s argument presupposes that an agent’s probability space is infi-
nite, and satisfies some rather strong (unmotivated) mathematical constraints (Halpern 1996,
pages 1318-1319). Unlike Heckerman’s argument, my argument makes use only of the finitistic
adequacy condition (UC), and requires no additional, strong mathematical presuppositions.

17The intimate connection between probabilistic screening-off of the kind described here
and our intuitive judgments of independent inductive support has been pointed out by several
recent authors (and used by some a reason to favor likelihood-ratio based measures of support),
including: Good (1983), Pearl (1988), Heckerman (1988), and Schum (1994).

3 An Application to Evidential Diversity

Philosophers of science dating back at least to Carnap (1945) have shared the
intuition that collections of evidence that are ‘diverse’ or ‘varied’ should (ceteris
paribus'®) confirm more strongly than collections of evidence that are ‘narrow’
or ‘homogeneous’. T have elsewhere (see Fitelson 1996) called this the confirma-
tional significance of evidential diversity (CSED). I suspect that the notion of
independent evidence can undergird, at least partially, (some of) our intuitions
about the significance of diverse evidence. At least one recent philosopher of
science seems to share this suspicion. Sober (1989) shows (essentially!?) that
the log-likelihood ratio measure [ satisfies the following condition:

(D) If each of Eq and Es individually confirms H, and if E; and E5 are confir-
mationally independent regarding H according to ¢, then ¢(H | E1 & E3) >
C(H | El) and C(H | El&Eg) > C(H | EQ)

It is a direct corollary of Theorem 1 that — according to all three measures
of confirmation d, r, and [ — two pieces of independent confirmatory evidence
will always provide stronger confirmation that either one of them provides in-
dividually. In other words, we have already shown that the three most popular
measures of confirmation d, r, and [ all satisfy D. It seems to me that D could
be used to provide a rather simple and elegant (partial?’) Bayesian account of
CSED. The basic idea behind such an approach would be that it is not evi-
dence of different ‘kinds’ per se that will boost confirmational power. Rather,
it is data whose confirmational power is maximal, given the evidence we already
have that are confirmationally advantageous. And, D provides a robust, general
sufficient?! condition for this sort of confirmational boost.

It is not generally the case (as was pointed out by Carnap 1962) that two
pieces of confirmatory evidence simpliciter will always provide stronger con-
firmation than just one. With D, we have identified a very general sufficient

18See Fitelson (1996) for an elaboration of the ceteris paribus conditions that are tacitly
presupposed in the Bayesian explication of CSED offered by Horwich (1982). I will later dis-
cuss the ceteris paribus clauses implicit in Howson and Urbach’s (1993) ‘correlation’ approach
to CSED. Carnap’s original (1945, page 94) explication of CSED also requires some rather
sophisticated ceteris paribus conditions. But, since Carnap’s original account of CSED does
not make use of any of the measures d, r, [, or s, it is beyond the scope of this paper.

198trictly speaking, Sober proves something weaker than this. He proves that [ satisfies the
consequent of D under the stronger (wrt l) assumption that H screens-off E; from Es. Our
result is also more general than Sober’s in the sense that it applies not only to [ but to d and
r as well (i.e., our result D is not as sensitive to the choice of measure of confirmation).

20T do not mean to suggest that confirmational independence can be used to undergird
all of our intuitions about the value of diverse evidence. But, I do think that there are
many important scientific cases that fit this mold. For instance, the intuition that evidence
from independent domains of application (e.g., celestial vs terrestrial domains) of a theory
often confirm more strongly than the same amount of evidence from domains of application
that are not independent is a canonical example of the kind of intuition I have in mind here.
Moreover, Sober (1989, page 124) explains how the notion of independent evidence regarding a
hypothesis can be useful in the context of phylogenetic inference (e.g., the problem of inferring
the character states of ancestors from the observed character states of their descendants).

21 As was the case with (UC) and (SC), I am not claiming that D is a necessary condition
for increased confirmational power in this sense (indeed, it is not — proofs omitted).



condition for increased confirmational power. One nice feature of this sufficient
condition is that it does not depend sensitively on one’s choice of measure of
confirmation. Below, I compare the present approach to CSED with a recent
Bayesian alternative proposed by Howson and Urbach (1993).

3.1 Comparison with the ‘correlation’ approach

Howson and Urbach (1993) propose a different way to account for our intu-
itions about CSED.?? This approach asks us to consider not whether F; and
FE, are confirmationally independent regarding H. Rather, Howson and Ur-
bach (1993) suggest that the important thing is whether or not F; and Es are
unconditionally stochastically independent. Howson and Urbach (1993, pages
113-114, my italics) summarize the their ‘correlation’ account as follows:

Evidence that is varied is often regarded as offering better support to a
hypothesis than an equally extensive volume of homogeneous evidence . ..
According to the Bayesian, if two data sets are entailed by a hypothesis (or
have similar probabilities relative to it?3), and one of them confirms more
strongly than the other, this must be due to a corresponding difference
between the data in their probabilities ... The idea of similarity between
items of evidence is expressed naturally in probabilistic terms by saying
that e; and ez are similar if P(e2 | e1) is higher than P(e2), and one might
add that the more the first probability exceeds the second, the greater the
similarity. This means that e2 would provide less support if er had already
been cited as evidence than if it was cited by itself.

The most charitable interpretation of the above proposal of Howson and
Urbach would seem to be the following rather complicated nested conditional:

(H) If the following probabilistic ‘ ceteris paribus clause’ is satisfied:
(CP) Pr(E; | H) = Pr(Ey | H) = Pr(Ey & By | H) = 1,
then if PI‘(EQ | El) > PI‘(EQ)7 then C(FI7 Es | El) < C(FI7 EQ).24

In other words, Howson and Urbach are claiming that (ceteris paribus®3) pieces
of evidence F; and FEs that are unconditionally positively correlated will not
be confirmationally independent regarding a hypothesis H (and, that F; and

22Earman (1992) discusses a similar approach. Basically, many of the same criticisms will
apply to his account. I will focus on the account of Howson and Urbach, since their character-
ization of the ‘correlation’ approach is closer in spirit to my presentation. See Forster (1995)
for some independent criticisms of Earman’s particular ‘correlation’ explication of CSED.

23Howson and Urbach’s parenthetical remark that their ‘ceteris paribus condition’ can be
weakened to Pr(Ey | H) = Pr(Es | H) = Pr(E1&E> | H) — while preserving the general truth
of the main tenet of their account of CSED — is false. See footnote 36 in the Appendix (in
the proof of Theorem 4) for a proof that this parenthetical remark is incorrect.

241n fact, Howson and Urbach seem to be making an even stronger, quantitative claim. They
seem to be saying that if (C'P) is satisfied, then the greater Pr(E> | E;) is than Pr(Es2), the
lesser ¢(H, Eo | E1) will be than ¢(H, E2). I have chosen to criticize the (weaker) gualitative
interpretation H, since H’s falsity entails the falsity of the stronger, quantitative claim.

25Howson and Urbach’s (CP) is just a bit stronger than the probabilistic ceteris paribus
clause that is needed to shore-up Horwich’s (1982) account of CSED — see Fitelson (1996).

E5 will tend to cancel each other’s support for H in such cases). I see several
serious problems with Howson and Urbach’s proposal .26

As we have already seen in Sober’s conjunctive fork example, pieces of con-
firmationally independent evidence will often be unconditionally positively cor-
related (and often strongly so). Newspaper reports (E;) and radio reports (E2)
about the outcome (H) of a baseball game often fail to be unconditionally in-
dependent. This does nothing to undermine our intuition that £; and F, are
confirmationally independent regarding H. Moreover, this example is repre-
sentative of a wide range of cases. The conjunctive fork structure is common
in (intuitive) examples of confirmational independence. For example, consider
what doctors do when they seek independent confirmation of a diagnosis. They
look for confirmationally independent corroborating symptoms. Such symptoms
will typically be unconditionally correlated with already observed symptoms.
But, conditional on the relevant diagnostic hypothesis, confirmationally inde-
pendent symptoms will tend to be stochastically independent. It is conditional
independence that is relevant here, not unconditional independence.

At best, Howson and Urbach have shown (via H) that confirmational inde-
pendence and unconditional stochastic dependence cannot co-occur in the ex-
treme, deductive cases in which (C'P) holds.?” If H were true for an interesting
class of Bayesian confirmation measures ¢, then Howson and Urbach’s account
would, at least, provide some useful information about the relationship between
confirmational independence and unconditional stochastic independence in the
case of deductive evidence. Unfortunately, as the following theorem states,
among the four measures we have considered, Howson and Urbach’s H is sat-
isfied only by the log-ratio measure r, which we have already shown to be
inadequate when it comes to judgments about confirmational independence.?®

Theorem 4. H is true if c =1, but H is false if c=d, c =1, or ¢ = s.

Howson and Urbach must either embrace the unattractive option of defend-
ing the measure 7, or they must defend some other measure of confirmation
which satisfies H.2° In either case, Howson and Urbach must reject the general
connection (SC) between screening-off and confirmational independence, since
(SC) and H are logically incompatible. That is, in the case of deterministic
conjunctive forks, (SC) and H cannot both be true.?°

26Note that Howson and Urbach’s H only purports to explain why a lack of evidential
‘diversity’ can be bad. H cannot tell us why or how evidential ‘diversity’ can be good.

27TThe fact that odd things can happen in such extreme cases was pointed out by Sober
(1989, page 279). There, Sober explains that many of the salient epistemological differences
between independent and dependent evidence collapse in the extreme (deterministic) case.

28 Myrvold (1996) has independently articulated some of these same criticisms of Howson and
Urbach’s account. Moreover, Myrvold nicely shows how to remedy many of these problems, by
being sensitive to conditional independence (as well as unconditional independence). While
this is certainly a step in the right direction, the new ‘correlation’ account presented in Myrvold
(1996) is still strongly sensitive to the (inadequate) choice (r) of measure of confirmation.

29This would probably not be an easy task. Other than r (or measures ordinally equivalent
to r), all relevance measures I have studied violate H. See Appendix §D for more on H.

30This is easily proved. Assume that (CP) obtains (which implies that H screens-off Ey
from E3). In such a case, H, E1, and E3 will form a (deterministic) conjunctive fork. Now, if

10



4 Summary of Results

The following table summarizes the main results reported in this paper.

Is C satisfied by the measure:

Name and Section of Condition C d? r? 7 s?
Peirceian Additivity Condition A
(See §2.1 and Appendix §A for discussion) YES YES YES No

Negation Symmetry Condition &
(See §2.2 and Appendix §B for discussion) | YES No | YES | YEs
The Urn Condition (UC)
(See §2.3.2 and Appendix §C for discussion) No No YES No
Howson and Urbach’s Condition H
(See §3.1 and Appendix §D for discussion) No YES No No

5 Conclusion

I have outlined a general Bayesian account of confirmationally independent ev-
idence regarding a hypothesis. At its heart, this account traces back to the
pioneering work of C.S. Peirce. I have shown that a wide variety of (but,
surprisingly, not all) Bayesian measures of degree of confirmation satisfy the
most basic Peirceian desiderata for adequate accounts of independent inductive
support. I have also applied the idea of confirmational independence to two
important problems in Bayesian confirmation theory: (i) the problem of the
plurality of Bayesian measures of confirmation (as described in Fitelson 1999),
and (i) the problem of the confirmational significance of evidential diversity
(as described in Fitelson 1996). I suspect that other useful applications of the
present account of confirmational independence await discovery.

'H is true, then ¢(H, E2 | E1) < ¢(H, Eq). But, if (SC) is true, then ¢(H, Eq | E1) = ¢(H, E»).
Therefore, in the case of deterministic conjunctive forks, (SC) and H cannot both be true. 0O
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Appendix

A Proof of Theorem 1

Theorem 1. Fach of the measures d, v, and | satisfies A, but s violates A.
Proof. This proof has four parts.3! The proofs for d and r are easy:

d(H, Ey| Es) = d(H, Ey)

Pr(H | By & Es) — Pr(H | Ey) = Pr(H | E1) — Pr(H)
(d) . Pr(H| By & Eo) — Pr(H) = (Pr(H | E1) — Pr(H))
+ (Pr(H | B) — Pr(H))

" d(f[7 Eq & EQ) = d(f[7 El) + d(f[7 EQ)

r(H,E1| E2) =r(H,Eq)
- log[Pr(H | By & E3)] — log[Pr(H | E3)] = log[Pr(H | Ey)] — log[Pr(H)]
() . loglPx(H | B & F2)] — log[Pr(H)] = (log[Pr(H | E1)] — log[Pr(H)))
+ (log[Pr(H | E2)] — log[Pr(H)])
T(H, Ey &EQ) = T(H, El) + T(H, EQ)

The proof for [ is only slightly more involved. For the [ case of the theorem, we
will prove that the likelihood ratio (\) is multiplicative under the assumption of
confirmational independence. That the logarithm of X (i.e., l) is additive under
the assumption of confirmational independence then follows straightaway.

I(H,Ey| E2) =1(H, E)
“ MH,E1|E3) =XH,E;) [strict monotonicity of log(e)]
Pr(Ey|H& E.)  Pr(Ei|H)
Pr(E[H& ) Pr(By ) O
Pr(Ey|H) Pr(E\&E,|H) Pr(E|H)
0 " Pr(E, |H) Pr(E & B | H) " Pr(E, |H) [def. of Pr(e[ )]
. Pr(B\& By |H) _ Pr(Ei|H) Pr(Ey|H)
"Pr(E\& By |H) Pr(Ey|H) Pr(BE,|H)
. )\(H,El&Eg) :)\(H7E1) (H EQ)
l(FI7 E1 & EQ) = l(FI7 El) (H EQ) [additivity of log(o)]

The s case of the theorem is the trickiest, because it requires us to show that
there is no (symmetric) isotone function f such that, for all E;, Eo, and H, if
FE, and Es are confirmationally independent regarding H according to s, then
s(H, E1 & E2) = f[s(H, E1),s(H, Es)], where f is linear in some (isotonically)
transformed space. Happily, I have proven the following much stronger result:

31Throughout the Appendix, we will suppress the contents of the background evidence K
other than F; and E5. Moreover, we will try to prove the strongest results we know. Usually,
these will be considerably stronger than the theorems that are stated in the main text.
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(%) There exist probability models M; and M3 such that:

| My H M |
S(H,El‘Eg):S(H,El):% S(H,El‘Eg):S(H,El):%
S(H,EQ‘El):S(H,Eg):% S(H,EQ‘El):S(H,Eg):%
__ 15 96 __ 15 96
s(H,Ex & E2) = 37 — mmmvees || S Er& Be) = 34 + sssion—ant
~ 0.3286 =~ 0.2529

Of course, it follows from (x) that there can be no function f whatsoever such
that for all F, Fs, and H, if E; and E5 are confirmationally independent re-
garding H according to s, then s(H, E1 & E3) = f[s(H, E1), s(H, E3)]. This is
because (i) M7 and My are both such that F; and Es are confirmationally inde-
pendent regarding H according to s, (1) In My and My, s(H, E4) and s(H, E3)
are constant at the same value of 1, but (iii) The value of s(H, E1 & E») in M,
is different from the value of s(H, E1 & E2) in M. So, whatever s(H, Fq & Es)
is in cases where F4 and Fs are confirmationally independent regarding H ac-
cording to s, it cannot (in general) be of the form f[s(H, E1), s(H, E5)] for any f
whatsoever, since functions cannot give different values for identical arguments.
Due to space limitations, I will not display here all the calculations necessary to
show that the models M; and My reported below have the desired properties.3?

| M |
Pr(H & Er1 & Ey) = 155 Pr(H & By & Br) = s
Pr(ﬁ[&E1&E2):ﬁ Pr(H&E1&E2):ﬁ
Pr(H & By & By) = LU VI1204041) Pr(H & By & E») = S-S5 V125011
Pr(H & By & Ez) = 15 Pr(H & By & Bp) = 2L 4 (V125100 _1185)
| M |
Pr(H & B & Bp) = 155 Pr(H & By & ) = 2
Pr(H & B & E>) = 55 Pr(H & E1 & Bs) = 70
Pr(H & B & Ep) = LUI8VIZ000A) Pr(H & B & E) = S-CIS3 VIS0
Pr(H & By & E2) = 15 Pr(H & By & By) = 121 — 3(/125004151155)
This completes the proof of Theorem 1. 0

B Proof of Theorem 2

Theorem 2. FEach of the measures d, I, and s satisfies S, but r violates S.

32The probability models in this Appendix were found and verified using MATHEMATICA .
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Proof. This proof has four parts. The d, [, and s cases reduce to trivial algebraic
identities (due to space limitations, I won’t include here the easy proofs for these
cases). For the r case, we need to show that there exists a probability model M
such that: (i) both r(H, Ey| Es) = r(H, E1) and r(H, E2 | E1) = r(H, E3), but
(ii) either r(H, Ey | Eq) # r(H, Ey) or r(H, Ey| Ey) # r(H, E;). Here is one
such model M (due to space limitations, I omit the computational details).

M
Pr(H&El&Eg):6L4 Pr(H&El&Eg):6i4
Pr(A & E1& By) = & | Pr(H & By & Ey) = 8706263
Pr(H& E1 & E;) =1 Pr(FI&El&Eg):%ﬁ
Pr(H & By & Es) = ¢ Pr(H&15771&]5772):276*7#\/2ij65
This completes the proof of Theorem 2. 0

C Proof of Theorem 3

Theorem 3. The measures d, r, and s violate (UC), but | satisfies (UC).

Proof. For the d, r, and s cases of the theorem, it will suffice to produce an urn
example (i.e., an assignment of values on (0, 1) to the variables z, y, and z) such
that either ¢(H, Wy |Wa) # ¢(H, W) or ¢(H, Wy | Wh) # ¢(H, Ws), for each of
the three measures d, 7, and s. The following (far from extreme33) assignment
does the trick: (z,y, 2) = (£, 2% 1) On this assignment, we have the following

21000 2
salient probabilistic facts (computational details omitted for reasons of space):
(d) d(H, Wy | W1) = 2450/485199 < d(H, W) = 1/198
(r) r(H, Wy | W1) =log (4950/4901) < r(H, W2) = log (100/99)
(s) s(H, Wo | W7) = 245000/24500099 < s(H, W) = 100/9999

For the [ case, we will show that [ satisfies the stronger condition (SC).34

PI‘(El |H&E2) = PI‘(El |H)
(

[screening-off assumption]

Pr(Ey | H& E;) = Pr(Ey | H)  [screening-off assumption]
) _ Pr(EL|H&E;)  Pr(Ei|H)
" Pr(Ey|H&FE;) Pr(E,|H)

S UH, Ev | BE) = U(H, Eh)

It is easy to show that, for any of the three measures d, r, or [ (but not for s),
«(H,Ey|E3) = ¢«(H,Ey) iff ¢«(H,E2| E1) = ¢(H, E2). That, together with the
reasoning above, completes the [ case, and with it the proof of Theorem 3. [

33y can be arbitrarily close to %, while preserving the counterexample. See footnote 14.

341t is interesting to note that [ does not satisfy the converse of (SC), or the converse of
(UC). This is why I do not take screening-off to be necessary for confirmational independence.
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D Proof of Theorem 4

Theorem 4. H is true if c = r, but H is false if c=d, ¢ =1, or ¢ = 5.3%

Proof. For the r case of the theorem, we begin by assuming that the probabilistic
‘ceteris paribus clause’ (CP) is satisfied. That is, we assume: Pr(E;|H) =
Pr(Ey|H) = Pr(E1 & Eo | H) = 1. Then, we apply (CP), the definition of r,
and Bayes’ Theorem to derive the following pair of probabilistic facts:

r(H, Es | E1) = log %}
-1 -PI'(El &EQ‘H)~PI‘(H)~PI‘(E1)
; =8 | Pr(By & By) - Pr(En | H) -Pr(H)}
( ) -1 PI‘(El) :|
=08 _PI‘(El &EQ)
— l [ 1
=% | Pr(E | En}
r(H, E2) = log %}
_ [Pr(E2 | H) - Pr(H)
@ =18 | “pi(E,) - pr(H) }

=log _Pr<1EQ>}

Finally, we assume that E; and Fs are positively correlated under Pr. Or, more
formally, we assume that Pr(E, | Eq) > Pr(E>). In conjunction with facts (3)
and (4) above, this yields r(H, Ez | E1) < r(H, Es), as desired.?¢

For the d, [, and s cases, it will suffice to produce a probability model in which
(i) Pr(Ey |H) = Pr(Ey|H) =Pr(E1 & Eq | H) = 1, (1) Pr(Es | E1) > Pr(E»),
but (i) ¢(H, Ey| E1) > ¢(H, Es), for ¢ = d, ¢ = [, and ¢ = s. The following
example does the trick. A card is drawn at random from a standard deck. Let H
be the hypothesis that the card is the Q#, E; be the proposition that the card
is either a 10 or a face card, and Es be the proposition that the card is either
a O, or the Q#, or the 9#. Due to space limitations, I omit the calculations
which show that this example has the desired properties (i)—(ii4) listed above.

This completes the proof of Theorem 4, as well as the Appendix. O

35 is also false for Carnap’s (1962, §67) relevance measure t (as the example below shows).
36 Notice that Howson and Urbach’s claim that (CP) can be weakened even further to
(CP') Pr(E1|H) = Pr(E2 | H) = Pr(Ey1 & E5 | H) — while still preserving the truth of the
¢ = r case of Theorem 4 — is false. If we only assume (CP’), then we will need to establish
that Pr(E2 | E1) > Pij‘éff;{) , in order to prove that r(H, E3 | E1) < r(H, E). Unfortunately,

Pr(E:
Pr(Ez | B1) > priaiis

under Pr, unless one also assumes that Pr(Es | H) = 1, which brings us back to (CP).

does not follow from the fact that £y and E2 are positively correlated
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