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Recall our definition of “inaccuracy”/“accuracy dominance”
for a (complete) set of comparative judgments C.

Comparative. Let C be the full set of S’s comparative
judgments over B×B. The innaccuracy of C at a world w is
given by the number of incorrect judgments in C at w.

p ∼S q is (in)correct at w iff p ≡ q is true (false) at w.

p �S q is (in)correct at w iff p &∼q is true (false) at w.

C′ accuracy-dominates C iff C′ contains strictly fewer
incorrect judgments than C at some w’s, and C′ contains at
most as many incorrect judgments as C at every w.

This simple, 2-valed scoring scheme may seem overly
simplistic. It is based on the following underlying norm:

(†) S should be more confident in truths than falsehoods.

So, if p is T and q is F, then the judgments q �S p and
p ∼S q are in violation of this basic underlying norm (†).

But, (†) alone does not justify our choice of 2-valued
scheme. Indeed, other scoring schemes seem plausible.
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Let’s use “+1” to denote best epistemic status, “−1” to
denote worst epistemic status, and “0” to denote “middling”
epistemic status. Our simplest, 2-valued scheme is:

P Q P �S Q Q �S P Q ∼S P
w1 T T −1 −1 +1
w2 T F +1 −1 −1
w3 F T −1 +1 −1
w4 F F −1 −1 +1

If we’re going to use only 2-values (“correct/incorrect”),
then it seems to me that this scheme is forced on us, by (†).

But, one might think that a 3-valued scheme makes more
sense. David Christensen makes the following observation.

Suppose I’m going to flip a coin. Can I rationally be
indifferent between heads (H) and tails (T )? It seems that
H ∼S T would be dominated by H �S T (or T �S H), since
H ∼S T is guaranteed to be “incorrect” and the latter aren’t.

Christensen is right. And, he suggests a 3-valued scheme.
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P Q P �S Q Q �S P Q ∼S P
w1 T T 0 0 +1
w2 T F +1 −1 0
w3 F T −1 +1 0
w4 F F 0 0 +1

I agree that D.C.’s scheme does seem superior (intuitively)
to our simplest 2-valued scoring scheme (in various ways).

If we use this (or some other) 3-valued scheme, the obvious
way to calculate the score of C (at w) is to take the sum of
these 3-valued scores for all the propositions in C (at w).

Then, we would define accuracy-dominance as follows:

C′ accuracy-dominates C iff C′ has a higher score than C at
some w, and C′ doesn’t have a lower score than C at any w.

In any event, moving to a 3-valued scheme can not fill the
gap in de Finetti’s justification/grounding of subjective
probability theory. Indeed, we have an impossibility result.
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Theorem. No 2 or 3-valued scoring scheme is such that:

(0) S entails (at least some instances of) both transitivity and
additivity as (weak) dominance norms.

and, the the following eight (8) scoring desiderata are met:

(1) Having a subset of judgments {p �S q, p �S r , q ∼S r}
should not — in and of itself — ensure “incoherence”.

(2) Ditto for subsets of the form {p �S q, p �S r , q �S r}.
(3) p �S q should get a “worst” score when p is F and q is T.

(4) p �S q should get the same score when p and q are both T
as it does when p and q are both F.

(5) p ∼S q should get the same score when p and q are both T
as it does when p and q are both F.

(6) p ∼S q should get the same score when p is T and q is F as
it does when p is F and q is T.

(7) The score of p �S q when p is T and q is F should not be
strictly worse than the score of p �S q when p, q are both T.

(8) The score of p �S q when p is T and q is F should be strictly
better than the score of p �S q when p is F and q is T.
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These eight desiderata seem to be sacrosanct (Christensen
and everyone else I’ve talked to seems to accept all of them).

The upshot of our Theorem is that — it doesn’t matter which
scoring scheme you use. No scoring scheme can ground all
of de Finetti’s axioms for comparative probability.

In fact, our simplest 2-valued scheme gets as close as any 2
or 3-valued scheme to grounding all of de Finetti’s axioms.
[This is why I introduced it first. It is simple, and maximally
charitable to de Finetti (with respect to his project).]

So, it seems there is no accuracy-dominance justification of
all of de Finetti’s intuitive axioms (much less the unintuitive
Scott Axiom — see Extras slides). This re-raises a question:

+ Why should we think �S has a numerical Pr-representation?

There seems to be no compelling reason to suppose that
our comparative confidence orderings are (numerically)
probabilistically representable. This is an important lacuna.

Next: Quantitative judgments (viz., numerical credences).
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Let’s suppose (arguendo) that S has a numerical credence
function b : B, R (these b’s are opinionated, of course, and
so we’re ignoring suspension of judgment here, once again).

As usual, we need to settle on a way of scoring b’s for
inaccuracy at each possible world w — call this I(b, w).

For simplicity, I’ll assume I(b, w) is an additive function,
which sums-up the inaccuracies of b, for each p ∈ B at w.

If we associate the number 1 with T and the number 0 with
F (at each world w), then the inaccuracy of b(p) at world w
will be b’s “distance (d) from the 0/1-truth-value of p” at w.

Example. Suppose S has just two (contingent) propositions
{P,∼P} in their doxastic space. Then, there are two salient
possible worlds (w1 in which P is T, and w2 in which P is F).

I(b, w1) = d(b(P), 1)+ d(b(∼P), 0).

I(b, w2) = d(b(P), 0)+ d(b(∼P), 1).
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Various measures (d) of “distance from 0/1-truth-value”
have been proposed/defended in the historical literature.

The most popular choice (for giving an accuracy-dominance
justification of probabilism) has been the squared-difference
measure of “distance from 0/1-truth-value”, which is:

s(x, y) = (x −y)2.

The distance measure s gives rise to a measure of
inaccuracy (Is), which is known as the Brier Score. In our toy
example, the Brier Scores of b in worlds w1 and w2 are:

Is(b, w1) = s(b(P), 1)+ s(b(∼P), 0) = (b(P)− 1)2 + b(∼P)2.

Is(b, w2) = s(b(P), 0)+ s(b(∼P), 1) = b(P)2 + (b(∼P)− 1)2.

If one adopts the Brier Score as one’s measure of b’s
inaccuracy, then one can give an accuracy-dominance
argument for the axioms of the probability calculus.

de Finetti [1] was the first to prove such a Brier-dominance
theorem. Joyce [6, 5] interprets this as accuracy-dominance.
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Theorem (de Finetti). b is non-probabilistic if and only if
there exists a probabilistic credence function b′ such that (a)
b′ has a strictly lower Brier Score than b at some worlds, and
(b) b′ never has a greater Brier Score than b at any world.

And, the proof of de Finetti’s theorem is constructive — it
tells us precisely which functions b′ “Brier-dominate” b.

Joyce [6, 5] uses de Finetti’s Theorem (and generalizations
of it) to ground an (epistemic) probabilistic coherence norm.

(PC) S’s credences b should be probabilistic — on pain of being
Brier-dominated by (specific) credence functions b′.

Because Joyce thinks that Brier Score is a good measure of
“credal inaccuracy”, he thinks this provides incoherent
agents with some “epistemic reason” to be Pr-coherent.

Maher [10] points out that other prima facie plausible
measures of “inaccuracy” do not undergird (PC). I’ll return
to that issue below. But, first, a concrete toy example.
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Suppose S adopts the Brier Score as their I-measure, and
that S’s b is non-probabilistic. Then, there are alternative
(coherent) credence functions b′ that accuracy-dominate b.

Intuitively, these b′ functions should “look epistemically
better” (in a precise sense) than S’s current credences b.

But, our “evidentialist” (“Kolodny’s revenge”) worry lingers.

Consider a very simple toy agent S with one sentence P in
their language. And, suppose S’s credence function assigns
b(P) = 0.2 and b(∼P) = 0.7. So, S’s b is non-probabilistic.

It follows from de Finetti/Joyce’s theorems that there is a
specific set of credence functions b′ that Brier-dominate b.

The figure on the next slide depicts this situation. The red
dot is S’s credence function b. And, the shaded region
depicts the credence functions b′ that Brier-dominate b.
[The black dot at 〈0.2, 0.8〉 depicts the only probabilistic

credence function that is compatible with b(P) = 0.2.]
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Suppose that S has good reason to
assign b(P) = 0.2 (e.g., S knows that
the objective chance of P is 0.2).

Here, all the Brier-dominating
functions b′ are s.t. b′(p) , 0.2.

So, all the Brier-dominating functions
b′ may be “ruled-out” by S’s evidence.

Perhaps, b′ needn’t “look better” than b.

I don’t have the space to delve into the various other
worries I have about Joyce’s argument(s) for probabilism.
[But, in my lecture next week, I will discuss another worry.]

For now, I have a suggestion re the quantitative case.

Based on our experience from the qualitative and
comparative cases, we should not expect an AD-justification
of the full probabilistic norm(s) in the quantitative case. . .
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Rather than trying to “justify” the use of s (or some other
“distance measure” that yields the full probabilistic norms),
why not start with desiderata for distance measures d? E.g.,

d(x, x) = 0.

d(x, y) = d(y, x).

d(x, y) ≤ d(x, z)+ d(z, y).

Once we settle on desiderata (D) for adequate measures of
distance (in this context), then we could ask the following:

(Q) What accuracy-dominance norms are entailed by D?

In other words, (Q) is asking what accuracy-dominance
norms are agreed upon by all inaccuracy measures Id(b, w),
where all we assume about d is that it satisfies desiderata D.

I don’t have an answer to (Q). But, I conjecture that this will
lead to norms for b that are similar to those we saw in the
comparative case — e.g., if p î q, then b(p) ≤ b(q), etc.

Idea: start with s(x, y) and Maher’s d(x, y) = |x −y|.
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If S violates Monotonicity (4), then S is accuracy-dominated.

(4) If p entails q, then p æS q.

P Q P �S Q Q �S P
w1 T T B B
w2 T F — —
w3 F T C A
w4 F F B B

Indeed, as this table shows, any scoring scheme that satisfies
our desiderata [viz., (†) =⇒ A < C] entails Monotonicity.

To see that de Finetti’s additivity axiom (3) does not have a
dominance justification, one must look at all the possible
ways of “fixing” a violation of (3), and show that none of
these lead to a comparison set that dominates the original.

There aren’t that many cases to check. [I won’t show them.]

On the next slides, I’ll discuss the Scott Axiom. . .
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Before stating the Scott Axiom, we’ll need one definition:

Definition. For each state description s and each sequence
(n-tuple) of propositions Z = 〈z1, . . . , zn〉 ∈

∏
nB, let c(s, Z)

be the number of elements of Z that are entailed by s.

OK, here’s the (dreaded) Scott Axiom:

(SA) Let X, Y ∈∏
nB be (arbitrary) sequences of propositions,

each having length n > 0. Let 〈x1, . . . , xn〉 denote the
members of X, and 〈y1, . . . , yn〉 denote the members of Y.

If the following two conditions are satisfied

i. For every state description s, c(s, X) = c(s, Y).

ii. For all i ∈ (1, n], xi �S yi.

then, the following must also be the case

iii. y1 �S x1.

Not only is (SA) unintuitive, it is also quite strong. It entails
both de Finetti’s “additivity” (3) and (full) transitivity of �S .
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I think the best way to grasp the content of (SA) is via the
following illuminating theorem of Fishburn [4, Ch. 4].

Theorem (Fishburn). (SA) is true if and only if there exists a
mass function m on B such that, for all propositions p and
q in B, the following real-valued representation holds:

(?) p �S q if and only if
∑

spîp
m(sp) >

∑
sqîq

m(sq).

And, given de Finetti’s axiom (2), there will always be a
probability mass function m satisfying (?).

Fishburn’s Theorem reveals that (SA) alone ensures a
real-valued representation (R�S ) of the �S -ordering.

Not only does this imply de Finetti’s additivity axiom (3), but
it also implies axiom (1) as well (>R is a strict total order).

Thus, once we have (SA) on board, the only axiom of de
Finetti that can do any work is his axiom (2), which just
ensures that R�S is a probabilistic representation of �S .
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