Re-Cap 00	Comparative II 00000	Quantitative 000000	References		Re-Cap 00	Comparative ●○○○○	П	Quantitati 000000	ve	References	Extras 000
					•	Recall our def for a (complet				uracy dominan 1ents C.	.ce"
		acy & Coherene randen Fitelson ¹	ce II			judgment given by t • $p \sim_s$	s over 1 he num q is (in)o	$B \times B$. The <i>in</i> ber of incorport of w is a second to be the second	nnaccuracy rect judgm ff p ≡ q is tr	comparative of \mathbb{C} at a world ents in \mathbb{C} at w . rue (false) at w . true (false) at w .	w is
	Center f	partment of Philosophy & or Cognitive Science (Rud Rutgers University nden@fitelson.org o://fitelson.org/	5		9	incorrect (<i>most as m</i> This simple, 2 simplistic. It i	judgme l <i>any</i> inc e-valed s basec	nts than C a orrect judgr scoring sch l on the fol	t <i>some w</i> 's nents as C leme may lowing un		
	nis talk includes joint wo ni (Northwestern), Kenny	ork with Rachael Brigg	s (Sydney/ANU), Fabr			So, if p is T a	nd <i>q</i> is violatio does n	F, then the on of this b ot justify o	judgment asic under ur choice (Ts $q \succ_S p$ and relying norm (†). of 2-valued	
Branden Fitelso	on	Accuracy & Coherence	П	1	Branden Fitel	son		Accuracy &	& Coherence II		4
Re-Cap oo	Comparative II ○●○○○	Quantitative 000000	References		Re-Cap 00	Comparative ○○●○○	II	Quantitati 000000	ve	References	Extras 000
	$egin{array}{c c} w_1 & \mathbf{T} & \mathbf{T} \ w_2 & \mathbf{T} & \mathbf{T} \ w_3 & \mathbf{F} \end{array}$	nic status, and "0"r simplest, 2-value $Q P \succ_S Q Q \succ_S$ $\Gamma -1 -1$ $F +1 -1$ $\Gamma -1 +1$	to denote "middli ed scheme is: $\begin{array}{c c} P & Q \sim_{S} P \\ \hline & +1 \\ \hline & -1 \\ \hline & -1 \end{array}$	ng"	۹	-		$\begin{array}{c c} 0 \\ \hline +1 \\ \hline -1 \\ \hline 0 \\ \hline \end{array}$ heme does	_	$\begin{array}{c c} Q \sim_{S} P \\ +1 \\ \hline 0 \\ \hline 0 \\ +1 \end{array}$ erior (intuitivel (in various way	-
•]	If we're going to use then it seems to me But, one might think sense. David Christe Suppose I'm goin indifferent betwe	that this scheme is that a 3-valued sc	<i>forced</i> on us, by theme makes more flowing observations of the second s	e on.	۹	If we use this way to calcula these 3-valued Then, we wou • C' accurate some w, a	(or son ite the l score ld defin <i>cy-domi</i> ind ¢' d	ne other) 3- score of C (s for all the ne accuracy <i>nates</i> C iff C oesn't have	Evalued scl (at w) is to proposition dominan (' has a hig a lower sco	heme, the obvious take the sum ons in \mathfrak{C} (at w)	of Cat v w.

• Christensen is right. And, he suggests a 3-valued scheme.

probability theory. Indeed, we have an *impossibility result*.

6

Re-Cap Comparative II Quantitative References Extras	Re-CapComparative IIQuantitativeReferencesExtrasooooooooooooooooo
 Theorem. No 2 or 3-valued scoring scheme is such that: (0) S entails (at least <i>some</i> instances of) <i>both</i> transitivity <i>and</i> additivity as (weak) dominance norms. <i>and</i>, the the following eight (8) scoring <i>desiderata</i> are met: (1) Having a subset of judgments {p ≻_S q, p ≻_S r, q ~_S r} should not — <i>in and of itself</i> — ensure "incoherence". (2) <i>Ditto</i> for subsets of the form {p ≻_S q, p ≻_S r, q ≻_S r}. (3) p ≻_S q should get a "worst" score when p is F and q is T. (4) p ≻_S q should get the same score when p and q are both T as it does when p and q are both F. (5) p ~_S q should get the same score when p and q are both T as it does when p and q are both F. (6) p ~_S q should get the same score when p is T and q is F as it does when p is F and q is T. (7) The score of p ≻_S q when p is T and q is F should not be strictly worse than the score of p ≻_S q when p, q are both T. 	 These eight <i>desiderata</i> seem to be sacrosanct (Christensen and everyone else I've talked to seems to accept all of them). The upshot of our Theorem is that — <i>it doesn't matter which scoring scheme you use. No</i> scoring scheme can ground <i>all</i> of de Finetti's axioms for comparative probability. In fact, our simplest 2-valued scheme <i>gets as close as any 2 or 3-valued scheme</i> to grounding all of de Finetti's axioms. [This is why I introduced it first. It is <i>simple</i>, and <i>maximally charitable</i> to de Finetti (with respect to his project).] So, it seems there is no accuracy-dominance justification of all of de Finetti's intuitive axioms (much less the <i>unintuitive</i> Scott Axiom — see Extras slides). This <i>re</i>-raises a question: Why should we think ≻_S has a numerical Pr-representation? There seems to be no compelling reason to suppose that our comparative confidence orderings are (numerically) probabilistically representable. This is an important <i>lacuna</i>.
(8) The score of $p \succ_S q$ when p is T and q is F should be strictly better than the score of $p \succ_S q$ when p is F and q is T . Branden Fitelson Accuracy & Coherence II 7	Next: Quantitative judgments (<i>viz.</i> , numerical credences). Branden Fitelson Accuracy & Coherence II 8
Re-CapComparative IIQuantitativeReferencesExtras000000000000000	Re-CapComparative IIQuantitativeReferencesExtras000000000000000000000
	 <u>Re-Cap</u> <u>coooco</u> <u>Quantitative</u> <u>oooco</u> <u>References</u> <u>Extras</u> <u>coooco</u> Various measures (<i>d</i>) of "distance from 0/1-truth-value" have been proposed/defended in the historical literature. The most popular choice (for giving an accuracy-dominance justification of probabilism) has been the <i>squared-difference</i> measure of "distance from 0/1-truth-value", which is: <i>s</i>(<i>x</i>, <i>y</i>) = (<i>x</i> − <i>y</i>)². The distance measure <i>s</i> gives rise to a measure of inaccuracy (<i>I_s</i>), which is known as the Brier Score. In our toy example, the Brier Scores of <i>b</i> in worlds <i>w</i>₁ and <i>w</i>₂ are: <i>I_s</i>(<i>b</i>, <i>w</i>₁) = <i>s</i>(<i>b</i>(<i>P</i>), 1) + <i>s</i>(<i>b</i>(~<i>P</i>), 0) = (<i>b</i>(<i>P</i>) − 1)² + <i>b</i>(~<i>P</i>)². <i>I_s</i>(<i>b</i>, <i>w</i>₂) = <i>s</i>(<i>b</i>(<i>P</i>), 0) + <i>s</i>(<i>b</i>(~<i>P</i>), 1) = <i>b</i>(<i>P</i>)² + (<i>b</i>(~<i>P</i>) − 1)². If one adopts the Brier Score as one's measure of <i>b</i>'s inaccuracy, then one can give an accuracy-dominance argument for the axioms of the probability calculus. de Finetti [1] was the first to prove such a <i>Brier</i>-dominance

Accuracy & Coherence II

Branden Fitelson

Re-CapComparative IIQuantitativeReferences0000000000000000000	Extras Re-Cap 000 00	Comparative II 00000	Quantitative	References	Extras 000	
 Theorem (de Finetti). b is non-probabilistic if and there exists a probabilistic credence function b' so b' has a strictly lower Brier Score than b at some (b) b' never has a greater Brier Score than b at an 	such that (a) worlds, and	 Suppose <i>S</i> adopts the Brier Score as their <i>I</i>-measure, and that <i>S</i>'s <i>b</i> is non-probabilistic. Then, there are alternative (coherent) credence functions <i>b</i>' that accuracy-dominate <i>b</i>. 				
 And, the proof of de Finetti's theorem is <i>construc</i> tells us <i>precisely which functions b</i>' "Brier-domination" 	• ective — it	 Intuitively, these b' functions should "look epistemically better" (in a precise sense) than S's current credences b. But, our "evidentialist" ("Kolodny's revenge") worry lingers. Consider a very simple toy agent S with one sentence P in their language. And, suppose S's credence function assigns 				
• Joyce [6, 5] uses de Finetti's Theorem (and general	alizations					
of it) to ground an (epistemic) probabilistic cohere	ence norm.					
(PC) S's credences b should be probabilistic — on pair Brier-dominated by (specific) credence functions b	<i>b</i> ′.	$b(P) = 0.2$ and $b(\sim P)$	() = 0.7. So, <i>S</i> 's <i>b</i> is	<i>non</i> -probabilistic.		
 Because Joyce thinks that Brier Score is a good me "credal inaccuracy", he thinks this provides incohe 	easure of	 It follows from de Finetti/Joyce's theorems that there is a specific set of credence functions b' that Brier-dominate b. 				
agents with some " <i>epistemic</i> reason" to be Pr-cohe		The figure on the nex	-			
• Maher [10] points out that other <i>prima facie</i> plaus measures of "inaccuracy" do <i>not</i> undergird (PC). I' to that issue below. But, first, a <i>concrete</i> toy examines the total state of the prime of t	i'll return	dot is <i>S</i> 's credence fu depicts the credence $(The black dot at (0.2, 0))$ credence function that	functions <i>b</i> ′ that <i>B</i> 0.8) depicts the <i>only</i>	rier-dominate b. probabilistic		
, , ,,,,			to compatible multip	(1) 0121]		
Branden Fitelson Accuracy & Coherence II	11 Branden Fitel		Accuracy & Coherence II		12	
Branden Fitelson Accuracy & Coherence II Re-Cap Comparative II Quantitative References		son	Quantitative	References	Extras	
Branden Fitelson Accuracy & Coherence II	Extras Re-Cap ooo oo n to oo s that oo o. oo 2. oo nctions oo idence. oo than b. oo ther oo obilism. oo		Quantitative \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc	f \$ (or some other robabilistic norms) ce measures d ? <i>E.g.</i> quate measures of ask the following: mtailed by \mathfrak{D} ? acy-dominance v measures $I_d(b, w)$	Extras 000	
Branden FiteIsonAccuracy & Coherence IIRe-Cap ∞ Comparative II $\infty 00000$ Quantitative 0000000 References $000000000000000000000000000000000000$	Extras Re-Cap ooo oo n to s that). 2. actions idence. than b. ther abilism. her worry.] ase.	Comparative II Comparative II Note: Second Secon	Quantitative \bigcirc (justify" the use of hat yields the <i>full</i> p <i>siderata</i> for distance + d(z, y). siderata (D) for ade ext), then we could minance norms are en- asking what accuracy about <i>d</i> is that it same er to (Q). But, I conju- hat are similar to the	f \$ (or some other robabilistic norms) ce measures d ? <i>E.g.</i> quate measures of ask the following: entailed by \mathbb{D} ? acy-dominance v measures $I_d(b, w)$ attisfies desiderata \mathbb{I} ecture that this <i>will</i> nose we saw in the	Extras 000	

Re-Cap Comparative II Quantitative References Extras 00 00000 000000 000 000	Re-Cap Comparative II Quantitative References Extras 00 00000 000000 •00
[1] B. de Finetti, <i>The Theory of Probability</i> , Wiley, 1974.	• If <i>S</i> violates <i>Monotonicity</i> (4), then <i>S</i> is accuracy-dominated.
 [2], Foresight: Its Logical Laws, Its Subjective Sources, in H. Kyburg and H. Smokler (eds.), Studies in Subjective Probability, Wiley, 1964. 	(4) If p entails q , then $p \succ_S q$. $\ P \ Q \ P \succ_S Q \ Q \succ_S P$
[3] T. Fine, <i>Theories of Probability</i> , Academic Press, 1973.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
[4] P. Fishburn, The Axioms of Subjective Probability, Statistical Science, 1986.	w_2 T F
[5] J. Joyce, Accuracy and Coherence: Prospects for an Alethic Epistemology of Partial Belief, in F. Huber and C. Schmidt-Petri (eds.), Degrees of Belief, 2009.	$\begin{array}{c c c c c c c c c }\hline w_3 & \mathbf{F} & \mathbf{T} & \mathbf{C} & \mathbf{A} \\ \hline w_4 & \mathbf{F} & \mathbf{F} & \mathbf{B} & \mathbf{B} \\ \hline \end{array}$
[6], A Nonpragmatic Vindication of Probabilism, Philosophy of Science, 1998.	• Indeed, as this table shows, <i>any scoring scheme that satisfies</i>
[7] J.M. Keynes, A Treatise on Probability, MacMillan, 1921.	<i>our desiderata</i> [<i>viz.</i> , (†) \Rightarrow <i>A</i> < <i>C</i>] entails Monotonicity.
[8] N. Kolodny, How Does Coherence Matter?, Proc. of the Aristotelian Society, 2007.	 To see that de Finetti's additivity axiom (3) does <i>not</i> have a dominance justification, one must look at <i>all</i> the possible
[9] C. Kraft, J. Pratt and A. Seidenberg, <i>Intuitive Probability on Finite Sets, The Annals of Mathematical Statistics</i> , 1959.	ways of "fixing" a violation of (3), and show that <i>none</i> of these lead to a comparison set that dominates the original.
[10] P. Maher, Joyce's Argument for Probabilism, Philosophy of Science, 2002.	• There aren't that many cases to check. [I won't show them.]
[11] D. Scott, Measurement Structures and Linear Inequalities, Journal of Mathematical Psychology, 1964.	• On the next slides, I'll discuss the Scott Axiom
Branden Fitelson Accuracy & Coherence II 15	Branden Fitelson Accuracy & Coherence II 16
Re-CapComparative IIQuantitativeReferencesExtrasoooooooooooooo●o	Re-CapComparative IIQuantitativeReferencesExtras000000000000000●
• Before stating the Scott Axiom, we'll need one definition:	• I think the best way to grasp the content of (SA) is <i>via</i> the
Definition . For each state description 5 and each <i>sequence</i>	following illuminating theorem of Fishburn [4, Ch. 4].
(<i>n</i> -tuple) of propositions $\mathbf{Z} = \langle z_1, \dots, z_n \rangle \in \prod_n \mathcal{B}$, let $\mathfrak{c}(\mathfrak{s}, \mathbf{Z})$	Theorem (Fishburn). (SA) is true <i>if and only if</i> there exists a mass function m on \mathcal{B} such that for all propositions n and

be the number of elements of **Z** that are entailed by **s**.

- OK, here's the (dreaded) Scott Axiom:
 - (SA) Let $\mathbf{X}, \mathbf{Y} \in \prod_n \mathcal{B}$ be (arbitrary) sequences of propositions, each having length n > 0. Let $\langle x_1, \ldots, x_n \rangle$ denote the members of \mathbf{X} , and $\langle y_1, \ldots, y_n \rangle$ denote the members of \mathbf{Y} . *If* the following two conditions are satisfied
 - i. For every state description \mathfrak{s} , $\mathfrak{c}(\mathfrak{s}, X) = \mathfrak{c}(\mathfrak{s}, Y)$.
 - ii. For all $i \in (1, n]$, $x_i \succ_S y_i$.

then, the following must also be the case

- iii. $y_1 \succ_S x_1$.
- Not only is (SA) *unintuitive*, it is also *quite strong*. It entails *both* de Finetti's "additivity" (3) *and* (full) transitivity of \succ_S .

17

(*)

mass function m on \mathcal{B} such that, for all propositions p and

 $p \succ_S q$ if and only if $\sum_{\mathfrak{s}_p \vDash p} \mathfrak{m}(\mathfrak{s}_p) > \sum_{\mathfrak{s}_q \vDash q} \mathfrak{m}(\mathfrak{s}_q)$.

q in \mathcal{B} , the following *real-valued representation* holds:

And, given de Finetti's axiom (2), there will always be a

• Not only does this imply de Finetti's additivity axiom (3), but

it also implies axiom (1) as well ($>_{\mathbb{R}}$ is a strict total order).

probability mass function m satisfying (*).

• Fishburn's Theorem reveals that (SA) alone ensures a

real-valued representation (\mathcal{R}_{\succ_S}) of the \succ_S -ordering.

• Thus, once we have (SA) on board, the only axiom of de

Finetti that can do *any* work is his axiom (2), which just

ensures that \mathcal{R}_{\succ_S} is a *probabilistic* representation of \succ_S .