A Concise Analysis of Popper's Qualitative Theory of Verisimilitude

BRANDEN FITELSON

April 6, 2004

1 Popper's Qualitative Definition of Verisimilitude

Popper [3] offers a qualitative definition of the relation " $p \prec q$ " = "p is (strictly) closer to the truth than (*i.e.*, strictly more verisimilar than) q", using the notions of truth (in the actual world) and classical logical consequence (\models), as follows:

Definition. $p \prec q$ if and only if the following three conditions are satisfied:

- ① For all r, if $q \vDash r$ and r is true, then $p \vDash r$. That is, p has all the true consequences that q has.
- O For all r, if $p \vDash r$ and r is false, then $q \vDash r$. That is, q has all the false consequences that p has.
- 3 Either:
 - **3.1** For some $r, p \vDash r, r$ is true, and $q \nvDash r$. That is, p has some true consequences that q lacks. or
 - 3.2 For some $r, q \vDash r, r$ is false, and $p \nvDash r$. That is, q has some false consequences that p lacks.

In section 2, I will prove a Theorem which shows that Popper's somewhat cumbersome definition of \prec reduces to a relatively simple disjunction. In section three, I will use this simplifying Theorem to provide straightforward proofs of some important and well-known Corollaries about \prec . Many useful facts about \prec can be established quite easily with the help of our Theorem.

2 An Exhaustive Account of the Consequences of Popper's Definition of \prec

Theorem. $p \prec q$ if and only if either:

- (i) $p \vDash q$, $q \nvDash p$, and p, q are both true.
- (ii) p is true, q is false, and \oplus obtains (i.e., p has all the true consequences that q has).

Proof. There are 16 cases (of which, only 12 are logically possible) to consider. Below, I will work through all 12 possible cases exhaustively. Before I do this, however, it will help to visualize the 16 cases, in a sort of "truth-table" structure. Table 1 provides both a handy summary of the results, and a perspicuous outline of the subsequent proofs.

	$p \vDash q$	$q \vDash p$	p	q	$p \prec q$
Case 1.	Т	Т	Т	Т	F
Case $2.^{\dagger}$	Т	Т	Т	F	F
Case $3.^{\dagger}$	Т	Т	F	Т	F
Case 4.*	Т	Т	F	F	F
Case 5 $[(i)]$.	Т	F	Т	Т	Т
Case $6.^{\dagger}$	Т	F	Т	F	F
Case 7.	Т	F	F	Т	F
Case 8.*	Т	F	F	F	F
Case 9.	F	Т	Т	Т	F
Case 10 [(<i>ii</i>)].	F	Т	Т	F	T iff ①
Case $11.^{\dagger}$	F	Т	F	Т	F
Case 12.*	F	Т	F	F	F
Case 13.	F	F	Т	Т	F
Case 14 [(<i>ii</i>)].	F	F	Т	F	T iff ①
Case 15.	F	F	F	Т	F
Case 16.*	F	F	F	F	F

Table 1:	Visualizing	the	16^{\dagger}	cases.
----------	-------------	-----	----------------	--------

*Both Miller [1] and Tichý [4] (famously) published proofs that $p \not\prec q$ in cases 4, 8, 12, and 16 (in which p and q are both false). The only non-trivial case of this kind is case 12 (as I show below, even this case is not very difficult to see). See Corollary 1, below, for a stronger result. [†]Cases 2, 3, 6, and 11 are logically impossible, and so are ruled out *a priori*. This leaves 12 logically possible cases to analyze. Now, we're ready for the analyses of the 12 logically possible cases.

Cases 1 and 4 $(p \models q \text{ and } q \models p)$. In these two cases, p and q are *logically equivalent*. Hence, p and q have exactly the same set of logical consequences. Therefore, condition ③ will inevitably be violated in these cases. So, $p \not\prec q$.

Case 5 $(p \models q, q \nvDash p, p, q)$. In this case, we have: ① All consequences of q (including the true ones) are consequences of p, since $p \models q$, and \models is transitive. Moreover, ② all false consequences of p are consequences of q. This is true vacuously, since p (being true) can have no false consequences. Finally, we have ③.1, since p has a true consequence (namely, p itself) that q does not have. Therefore, $p \prec q$. This is the only case [(i)] in which $p \prec q$ is guaranteed by Popper's definition alone.

Case 7 $(p \models q, q \nvDash p, \bar{p}, q)$. In this case, p has a false consequence (namely, p itself) that q does not have. Therefore, $p \not\prec q$.

Case 8 $(p \vDash q, q \nvDash p, \bar{p}, \bar{q})$. In this case, p has a false consequence (namely, p itself) that q does not have. Therefore, $p \not\prec q$.

Case 9 $(p \neq q, q \models p, p, q)$. In this case, q has a true consequence (namely, q itself) that p does not have. Therefore, $p \neq q$.

Case 10 $(p \nvDash q, q \vDash p, p, \bar{q})$. In this case, we have 3.2, since q has a false consequence (namely, q itself) that p does not have. Moreover, 3 all false consequences of p are consequences of q [vacuously, since p (being true) can have no false consequences]. However, we do not automatically have 0 here. Here's a recipe for generating possible counterexamples to 0. Since q is false and strictly logically stronger than p, q will be equivalent to p & s, for some s that is false and logically independent of p. Now, let $r = s \lor t$, where t is true, and $p \nvDash s \lor t$. This gives us a true consequence r of q that p doesn't have. Therefore, we will have $p \prec q$ in this case [(ii)] if and only if p happens to have all the true consequences that q has (i.e., iff 0 obtains).

Case 12 $(p \nvDash q, q \vDash p, \bar{p}, \bar{q})$. In this case, q has a true consequence (namely, $p \to q$, *i.e.*, $q \lor \bar{p}$) that p does not have. It is obvious that $q \vDash q \lor \bar{p}$. And, since p is false in this case, it follows that $p \to q$ is a *true* consequence of q in this case. To see that $p \nvDash p \to q$ in this case, remember that $p \nvDash q$. Thus, there is a world w in which p is true and q is false — *i.e.*, there is a world w in which p is true, and $p \to q$ is false. Therefore, $p \not\prec q$ in this case.

Case 13 $(p \nvDash q, q \nvDash p, p, q)$. In this case, q has a true consequence (namely, q itself) that p does not have. Therefore, $p \not\prec q$.

Case 14 $(p \nvDash q, q \nvDash p, p, \bar{q})$. This case is similar to case 10, above. But, in this case, we also have ③.1, since p has a true consequence (p itself) that q does not have. To obtain a possible counterexample to ① here, let $r = q \lor t$ (where t is true, and $p \nvDash q \lor t$, as in case 10). Again, this would give us a true consequence r of q that p lacks. Therefore, we will have $p \prec q$ in this case [(ii)] if and only if p happens to have all the true consequences that q has (i.e., if and only if ① obtains).

Case 15 $(p \nvDash q, q \nvDash p, \bar{p}, q)$. In this case, q has a true consequence (namely, q itself) that p does not have. Therefore, $p \not\prec q$. **Case 16** $(p \nvDash q, q \nvDash p, \bar{p}, \bar{q})$. In this case, p has a false consequence (namely, p itself) that q does not have. $\therefore p \not\prec q$.

3 Two Easy But Important Corollaries of Our Theorem

Corollary 1 (Miller–Tichý, strengthened). If p is false, then $p \not\prec q$, for any q.

Proof. See cases 4, 7, 8, 12, 15, and 16, above.

Corollary 2. \prec is a strict partial order. That is, \prec is (1) asymmetric and (2) transitive.

Proof. (1) Assume $p \prec q$ for some p, q. Then, by our Theorem, we must have either (i) or (ii). If (i), then $q \not\prec p$, since p has a true consequence (p itself) that q does not have. If (ii), then $q \not\prec p$, since q is false (Corollary 1). $\therefore p \prec q \Rightarrow q \not\prec p$.

(2) Assume $p \prec q$ and $q \prec r$, for some p, q, r. Since $q \prec r, q$ must be true (Corollary 1). Since q is true and $p \prec q$, it follows from our Theorem that p is true, $p \vDash q$, and $q \nvDash p$ [case (i)]. Now, either r is true or r is false. If r is true, then, since $q \prec r$, our Theorem implies that $q \vDash r$ and $r \nvDash q$ [case (i)]. In this case, $p \vDash r$ (by the transitivity of \vDash), and $r \nvDash p$ (since $q \vDash r$, but $q \nvDash p$). So, we have $p \prec r$, by case (i) of our our Theorem. Otherwise, if r is false, then, since $q \prec r$, our Theorem implies that q must have all the true consequences that r has [case (ii)]. In this case, p must also have all the true consequences that r has (since q does, and $p \vDash q$). So, we have $p \prec r$, by case (ii) of our Theorem. $\therefore p \prec q$ and $q \prec r \Rightarrow p \prec r$.[‡]

References

- [1] Miller, D. (1974) "Popper's Qualitative Theory of Verisimilitude", British Journal for the Philosophy of Science, 25:166–167.
- [2] Miller, D. (1994) Critical Rationalism: A Restatement and Defence, Open Court.
- [3] Popper, K. (1963) Conjectures and Refutations, New York: Harper and Row; 2d ed., 1965.
- [4] Tichý, P. (1974) "On Popper's Definitions of Verisimilitude", British Journal for the Philosophy of Science, 25:155-160.

[‡]Miller [2, page 203] characterizes \prec by saying that (i), (ii), and (2) are "all the [and the only] ways in which one theory can be more truthlike than another." We see here that Miller's characterization of \prec is redundant, since (2) follows logically from (i) and (ii).