Nicod Hempel HD Probabilistic Accounts References oo oo ooooooooooooooooooooooooooooooo	Nicod Hempel HD Probabilistic Accounts References
A Historical Introduction to Confirmation Theory Branden Fitelson Department of Philosophy Group in Logic and the Methodology of Science & Institute for Cognitive and Brain Sciences University of California-Berkeley branden@fitelson.org http://fitelson.org/	 Here's what Nicod [23] <i>said</i> about instantial confirmation: Consider the formula or the law: A entails B. How can a particular proposition, or more briefly, a fact, affect its probability? If this fact consists of the presence of B in a case of A, it is favourable to the law on the contrary, if it consists of the absence of B in a case of A, it is unfavourable to this law. By "is (un)favorable to", Nicod meant "raises (lowers) the inductive probability of". Here, Nicod has in mind <i>Keynesian</i> inductive probability (more on <i>that</i> later). While Nicod is not very clear on the logical details (stay tuned for Hempel!), some things are clear in what he says: Instantial confirmation is a relation between singular and general propositions/statements ("facts" and "laws").
	 ±Confirmation consists in ±probabilistic relevance. Positive instances confirm; negative instances disconfirm.
Branden Fitelson A Historical Introduction to Confirmation Theory fitelson.org Nicod Hempel HD Probabilistic Accounts References • • • • •	Branden Fitelson A Historical Introduction to Confirmation Theory fitelson.org Nicod Hempel HD Probabilistic Accounts References 00 0 0 000000000000000000000000000000000000
 When Hempel [16] logically reconstructs Nicod's inchoate remarks about instantial confirmation, some things get lost. For instance, <i>probability</i> completely falls out of Hempel's reconstruction of Nicod. And, he reconstructs Nicod as describing a relation between <i>objects</i> and propositions. Hempel's initial, formal reconstruction of "Nicod's Criterion" for instantial confirmation is as follows: (NC₀) An object <i>a</i> confirms a universal generalization of the form ^r(∀y)(φy ⊃ ψy)¹ iff <i>a</i> exemplifies both φ and ψ. Rendering "A entails B" as ^r(∀y)(φy ⊃ ψy)¹ is charitable. But, the rest of (NC₀) just <i>can't</i> be what Nicod had in mind (<i>e.g.</i>, probability is <i>non</i>-monotonic — more on that below). Also, (NC₀) is clearly absurd, as Hempel makes very clear. According to (NC₀), if "<i>Ra</i> & <i>Ba</i>" is true, then <i>a</i> will confirm "(∀y)(<i>Ry</i> ⊃ <i>By</i>)", but <i>nothing</i> can confirm the <i>logically equivalent</i> claim "(∀y)[(<i>Ry</i> & ~<i>By</i>) ⊃ (<i>Ry</i> & ~<i>Ry</i>)]"! I'll say a lot more about "Nicod's Criterion" tomorrow. 	<list-item> Hempel proceeded to formulate a precise, logical theory of confirmation as a relation between sentences in first-order languages. He was inspired by Nicod's <i>instantial idea</i>. Hempel begins by making precise the informal Nicodian idea of a "conforming instance". He starts with the notion of <i>the E-development of a hypothesis</i> H: dev_E(H). dev_E(H) is constructed from the instances of H with respect to the individual constants appearing in <i>E. E.g.</i>: Let <i>E</i> = <i>Ra</i> & <i>Ba</i>, and <i>H</i> = (∀<i>y</i>)(<i>Ry</i> ⊃ <i>By</i>). The set of <i>E</i>-instances of <i>H</i> is the singleton {<i>Ra</i> ⊃ <i>Ba</i>}. And, dev_E(H) is the <i>conjunction</i> of <i>H's E</i> instances, which is just <i>Ra</i> ⊃ <i>Ba</i>. Generally, dev_E(H) will be the conjunction (disjunction) of the <i>E</i>-instances of <i>H</i> if <i>H</i> is a universal (existential) claim. And, if <i>H</i> is neither a ∀ nor a ∃ sentence, then dev_E(H) = <i>H</i>. Hempel's basic idea: <i>E</i> (directly) confirms <i>H</i> if <i>E</i> ⊢ dev_E(<i>H</i>). On this account, <i>Ra</i> & <i>Ba</i> confirms (∀<i>y</i>)(<i>Ry</i> ⊃ <i>By</i>). But, so does ~<i>Ra</i> & ~<i>Ba</i> (more tomorrow!). Indeed, the only claim that <i>di</i>sconfirms <i>H</i> is <i>Ra</i> & ~<i>Ba</i>. Very Nicodian (<i>sans</i> Pr!) </list-item>

0 0 00000000000	Nicod Hempel HD Probabilistic Accounts Refe
 Hempel's confirmation relation has various properties. Most notably, his conception satisfies the <i>equivalence condition</i>: (EQC) If <i>E</i> confirms <i>H</i> and <i>H</i> ⊣⊢ <i>H'</i>, then <i>E</i> confirms <i>H'</i>. Recall, Hempel's reconstruction of Nicod (NC₀) did not satisfy the (analogous) equivalence condition (absurd?). Hempel's relation also has the following properties: (EC) If <i>E</i> ⊢ <i>H</i>, then <i>E</i> confirms <i>H</i>. (SCC) If <i>E</i> confirms <i>H</i> and <i>H</i> ⊢ <i>H'</i>, then <i>E</i> confirms <i>H'</i>. (M) If <i>E</i> confirms <i>H</i> and <i>H</i> ⊢ <i>H'</i>, then <i>E</i> confirms <i>H</i>. (CC) If <i>E</i> confirms both <i>H</i> and <i>H'</i>, then <i>H</i> and <i>H'</i> are consistent. (M) plays a key role in the ravens paradox (more on that tomorrow). We'll talk more about these properties below. Hempel's theory <i>lacks</i> certain other properties, such as: (CCC) If <i>E</i> confirms <i>H</i> and <i>H'</i> ⊢ <i>H</i>, then <i>E</i> confirms <i>H'</i>. Before we get to <i>probabilistic</i> accounts of confirmation, we'll look briefly at "Hypothetico-Deductive" (HD) confirmation. 	 The (naïve) idea behind (HD) seems to be that science works by <i>deducing predictions</i> (<i>E</i>) from hypotheses (<i>H</i>). Thus, in a case where <i>H</i> ⊢ <i>E</i>, if we observe that <i>E</i> obtains, then this ("correct prediction") <i>confirms H</i>, and if we observe that <i>E</i> fails to obtain, then this <i>dis</i>confirms <i>H</i>. <i>I.e.</i>, if <i>H</i> ⊢ <i>E</i>, then <i>E</i> HD-confirms <i>H</i> [~<i>E</i> HD-disconfirms <i>H</i>]. (HD)-confirmation <i>satisfies</i> (CCC), but <i>violates</i> (EC), (SCC), (M), and (CC). Very <i>non</i>-Hempelian! [They agree on (EQC).] (HD)-confirmation has other problems of its own: Duhem-Quine. <i>Auxiliary assumptions</i> (<i>A</i>) are always needed for the <i>deduction</i> of predictions (<i>E</i>). How do we <i>apportion</i> praise/blame betwen <i>H</i> and <i>A</i>, when <i>E</i>/~<i>E</i> is observed? Irrelevant Conjunction. If <i>E</i> HD-confirms <i>H</i>, then <i>E</i> also HD-confirms <i>H</i> & <i>X</i>, even if <i>X</i> is utterly irrelevant to <i>H</i>, <i>E</i>. [Hempel's theory has a similar "problem", since if <i>E</i> Hempel-confirms <i>H</i>, then so does <i>E</i> & <i>X</i>, for <i>any X</i> (M!).] OK, enough about deductive-logical approaches to confirmation. Let's look at some <i>probabilistic</i> accounts
n Fitelson A Historical Introduction to Confirmation Theory fitelson.org	Branden Fitelson A Historical Introduction to Confirmation Theory fitelson
Hempel HD Probabilistic Accounts References	Nicod Hempel HD Probabilistic Accounts Ref ○○ ○○ ○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○
 Nicod's early intuition was that confirmation had to do with <i>probability-raising</i>. And, contemporary Bayesians have come back around to this view. What happened in between? In the first edition of LFP, Carnap [3] undertakes a precise probabilistic explication of the concept of confirmation. Carnap was interested not only in the qualitative confirmation relation. He also wanted explications of comparative and quantitative confirmation concepts. Qualitative. <i>E</i> inductively supports <i>H</i>. Comparative. <i>E</i> supports <i>H more strongly than E'</i> supports <i>H'</i>. Quantitative. <i>E</i> inductively supports <i>H to degree r</i>. Carnap begins by clarifying the <i>explicandum</i> (the confirmation concept) in various ways, including: Qualitative. (*) <i>E</i> gives some (positive) evidence for <i>H</i>. 	 In the 1st ed. of LFP, Carnap characterizes "the degree to which <i>E</i> confirms <i>H</i>" as c(<i>H</i>, <i>E</i>) = Pr(<i>H</i> <i>E</i>), which leads to: Quantitative. Pr(<i>H</i> <i>E</i>) = <i>r</i>. Comparative. Pr(<i>H</i> <i>E</i>) > Pr(<i>H'</i> <i>E'</i>). Qualitative. Pr(<i>H</i> <i>E</i>) > <i>t</i> (for some "threshold value" <i>t</i>). Doesn't sound like (*). More on this dissonance below. Like Hempel, Carnap wanted a <i>logical</i> explication of confirmation (as a relation between sentences in FOLs). For Carnap, this meant that the probability functions used in confirmation theory must <i>themselves</i> be "logical". This leads naturally to the Carnapian project of providing a "logical explication" of conditional probability Pr(· ·) <i>itself</i>. Note: Here, Carnap (like Nicod) was influenced by Keynes [20], who believed that there were "partial entailments" out there in logical space. I'm skeptical (as are most Bayesians).

Nicod Hempel HD Probabilistic Accounts References	Nicod Hempel HD Probabilistic Accounts References
• Later in LFP ₁ , Carnap gives counterexamples to Hempel's (SCC), which presupposes a more (\star)-like qualitative conception of confirmation. There, he presupposes: Qualitative . <i>E</i> confirms <i>H</i> iff $Pr(H E) > Pr(H \top)$.	 <i>Many</i> candidate functions f satisfy the <i>relevance</i> constraint: (<i>R</i>) f[Pr(H E), Pr(H ⊤)] ≥ 0 iff Pr(H E) ≥ Pr(H ⊤) The three historically most popular such functions f are: d(H, E) = Pr(H E) - Pr(H ⊤)
 This <i>probabilistic relevance</i> conception <i>violates</i> (SCC), whereas the previous Pr-threshold conception <i>implies</i> (SCC). The second edition of LFP [4] includes a preface which acknowledges an "<i>ambiguity</i>" in LFP₁, and concedes that the (qualitative) relevance conception is "more interesting". Firmness. The degree to which <i>E</i> confirms <i>f H</i>: 	• $r(H, E) = \log \left[\frac{\Pr(H \mid E)}{\Pr(H \mid \top)} \right]$ • $l(H, E) = \log \left[\frac{\Pr(H \mid E)(1 - \Pr(H \mid \top))}{(1 - \Pr(H \mid E))\Pr(H \mid \top)} \right] = \log \left[\frac{\Pr(E \mid H)}{\Pr(E \mid \sim H)} \right]$ • Interestingly, these measures are <i>not comparatively</i> <i>equivalent</i> . They disagree on many comparative claims.
$c_f(H, E) = \Pr(H \mid E).$ • Increase in Firmness. The degree to which <i>E</i> confirms _i <i>H</i> : $c_i(H, E) = \mathfrak{f}[\Pr(H \mid E), \Pr(H \mid \top)]$	• The most radical (and interesting) disagreement between these measures occurs in the context of <i>favoring</i> claims [9] of the form $c(H, E) \ge c(H', E)$. For instance, only <i>l</i> satisfies:
 f measures "the degree to which <i>E increases</i> the Pr of <i>H</i>." The 1st ed. of LFP was mainly about firmness, and the 2nd edition only adds the preface, which says very little about c_i. Specifically, no function f is rigorously defended there. 	If $E \vdash H$ and $E \nvDash H'$, then $c(H, E) \ge c(H', E)$. • Only r satisfies: $Pr(E \mid H) > Pr(E \mid H') \Rightarrow c(H, E) > c(H', E)$. • I'll say more about disagreement between (these and other) relevance measures below (and next week). Back to Carnap.
Branden Fitelson A Historical Introduction to Confirmation Theory fitelson.org	Branden Fitelson A Historical Introduction to Confirmation Theory fitelson.org
Nicod Hempel HD Probabilistic Accounts References	Nicod Hempel HD Probabilistic Accounts References

•	From an inductive-logical point of view, confirmation	
	measures should <i>quantitatively generalize</i> entailment:	

00000000000

- (\mathcal{D}) Provided that both *E* and *H* are *contingent* claims¹ $c_i(H, E)$ should be *maximal* if $E \vdash H$, and *minimal* if $E \vdash \sim H$. [Note: Pr($H \mid E$) satisfies *this*, but *not* \mathcal{R} .]
- Kemeny & Oppenheim [19] used this consideration (and others) to argue that the best explication of $c_i(H, E)$ is:

 $F(H,E) = \frac{\Pr(E \mid H) - \Pr(E \mid \sim H)}{\Pr(E \mid H) + \Pr(E \mid \sim H)} \doteq l(H,E)$

- *F* can be expressed as a function f of Pr(H | E) and $Pr(H | \top)$, and it satisfies \mathcal{R} , \mathcal{D} , and various other IL desiderata.
- One can use *F* to define **comparative** [F(H, E) > F(H', E')] and **qualitative** [F(H, E) > 0] confirmation_{*i*} concepts.
- I think *F* (or any comparative equivalent, like *l*) has the proper *form* for an *inductive-logical* relevance measure of degree of confirmation. Whither (relevance) inductive logic?

¹Here, I'm bracketing the "paradox of entailment" cases, which are tricky.

fitelson.org

Branden Fitelson

Nicodian "Instantial"	NO	NO? ¹	YES? ¹	YES? ¹	NO	No
Hempelian "Instantial"	YES	YES	YES ²	YES	YES	No
Hypothetico-Deductivism	YES	NO	NO	NO	No	YES
Firmness	YES	YES ³	NO	NO	YES	NO
Increase in Firmness	YES	YES ⁴	NO	NO	NO	NO

EC

CC

Does Theory have property?

Μ

SCC

CCC

The last row — three counterexamples for increase in firmness:

(CC) E = card is black, H = card is the A, H' = card is the J. E confirms both H and H', even though they are inconsistent.

EOC

(SCC) $E = \text{card is black}, H = \text{card is the } A \spadesuit$, and H' = card is an ace.

⁴Assuming that $Pr(H | K) \in (0, 1)$, and $Pr(E | K) \in (0, 1)$.

(CCC) $E = \text{card is the } A \blacklozenge, H = \text{card is an ace, and } H' = \text{card is the } A \blacklozenge$.

```
<sup>1</sup>Nicod's theory may not come down clearly on these (or it may trivially).
```

²Assuming that *E* is not self-contradictory. ³Assuming that $Pr(E | K) \neq 0$.

Theory

	Hempel • Another popular relevant s(H, E) • Six properties of merican (1) If $E \vdash H$ and $E \not\vdash$ (2) If $Pr(E \mid H) > Pr(B)$ (3) If $Pr(H \mid E) > Pr(B)$ (4) $c(H, E) = c(E, H)$ (5) $c(H, E) = -c(H, F)$ (6) $c(H, E) = -c(-H)$	r(<i>H</i> <i>H</i> s c (fo hen c(<i>H</i>), then), then	sure f E = Pr r cont $I, E \ge c(H, E)$ c(H, E)	$c(H \mid \sim c(H', I)) = c(H', I)$ $c(H', I) > c(I)$ $c(I) > c(I)$	•••• •E) t H,E) E). H',E). H,E').	, see [7		Nicod	arg • Ass arg • Ho • Ho • Of • Wh deg	ument ev sessing th ument fro Whether Whether w do we g course, w at <i>else</i> ? C gree to wh	valuation/go e "goodness om E to H r the argumen E is true. [(g generalize the re still have the carnap would nich E confir	odnes s" (<i>sou</i> equire nt is va general his to i to dete d say w rms <i>H</i>	ly) non-logical] nclude the <i>induct</i> ermine whether <i>E</i> we need to determ ." But, he would a	undness ctive on of: ive case? is true. ine "the lso say t		
	Relevance Measure $d(H, E)$ $r(H, E)$ $l(H, E)$ $s(H, E)$	D (1) NO NO YES NO	oes Me (2) No Yes No No	asure(3)YESYESYESNO	have p (4) NO YES NO NO	(5) NO NO YES	y? (6) YES NO YES YES			The give tak • For E."	e Requirer en knowle en as a bas Carnap, Problem:	nent of Tota dge situation sis for detern "take <i>E</i> as a t let <i>K</i> _C expr	l Evide , the to nining basis' cess "e	ade in accordance ence. In the applicant tal evidence availant the degree of confiration ' means "condition verything we (associated $(H E \& K_C) = Pr($	tion of II ole must rmation. nalize Pr essor)	be c on
Branden Fi Nicod 00	telson A Historical Hempel 00 Therefore, if we know	HD o		Proba 0000	bilistic Acc	000		telson.org References	Brander Nicod oo	n Fitelson • Mo	Hempel 00	HD o		Probabilistic Accounts		telson.org References

- Carnapian approach determine that E confirms $_i H$.
- This is problematic. The non-logical component of our all things considered assessment of the argument's "goodness" has *interfered* with its (Carnapian) logical component!
- This is *not* a problem for *firmness*, since it doesn't prevent the logical probability $Pr(H | E \& K_C) = Pr(H | K_C)$ from being greater than *a threshold value*. This is *just* a problem for c_i .
- Bayesians face a similar problem: "old evidence" (on which more below). General problem: *no* Pr*-assignment such that* Pr(E) = 1 *can reflect a correlation between E and H.*
- Thus, it seems, any Pr-relevance based approach to confirmation (logical or otherwise!) will have to abandon the principle of total evidence, *as Carnap understood it.*
- If RTE does *not* imply that we should *conditionalize* our evaluative probability assignment on our total evidence, then what *does* it imply? Good question! First, Bayesian c ...

- Most modern Bayesians don't believe there are "logical" probabilities. I'm inclined to agree, but I won't dwell on it.
- As a result, most modern Bayesians simply *give up on* the traditional project of confirmation theory *as a branch of IL*.
- Instead, they set their sights on explicating an explicitly *epistemic* (and subjective) notion of "inductive support": Qualitative. *E* confirms *H* for agent *X* at time *t* iff *E* and *H* are positively correlated under *X*'s credence function at *t*.
- This is *formally* similar to the inductive-logical concept c_i.
 But, it is *subjective* and *epistemic*, *not* objective and logical.
- Like Carnap, Bayesians assume that *all confirmation relations supervene on one kind of probability*. They just disagree on which kind forms the supervenience base.
- There is controversy among Bayesians about **quantitative** and **comparative** *c*_{*i*}. I'll be talking about that next week (there's some interesting new psychological research here).
- Next: four views on the "logicality of Pr" (and the Carnapian/Bayesian supervenience assumption) ...

Branden Fitelson

NicodHempelHDProbabilistic AccountsReferencesooooooooooooooooooooooooooooooooooooooo	Nicod Hempel HD Probabilistic Accounts References 00 00 00 0000000000000
 Adams/Hailperin [1, 14]. Individual probability assignments appearing in inductive logic are <i>never</i> logical. The <i>logical</i> properties (in IL) must hold for <i>all</i> probability assignments. Inductive logic does <i>not</i> undergird assessments of the strength of <i>particular</i> arguments. Rather, inductive logic characterizes "probabilistically valid" <i>forms</i> ^rφ₁,,φ_n ∴ ψ' such that ∀ Pr: Pr(φ₁) ∈ α₁,,Pr(φ_n) ∈ α_n ⊨ Pr(ψ) ∈ β Carnap/Maher [21]. Individual probability assignments that appear in confirmation functions (c_f/c_i) <i>are always</i> logical. <i>And</i>, inductive logic/confirmation theory <i>does</i> undergird assessments of the (<i>logical</i>) strength of <i>particular</i> arguments (<i>via logical</i> Pr's). Subjective Bayesian. Individual Pr assignments that appear in confirmation functions (c_f/c_i) are <i>never</i> logical. Confirmation theory <i>does</i> undergird assessments of the (<i>logical</i>) strength of <i>particular</i> arguments (<i>via subjective</i> Pr's). Alternative. Individual Pr's appearing in F_{Pr}(H, E) are <i>not always</i> logical (<i>or</i> subjective). IL/CT <i>does</i> undergird assessments of the strength of <i>particular</i> arguments <i>in contexts</i> C. Which Pr(s) are appropriate for a given assessment (generally) <i>depends on</i> C. 	 Probabilistic relevance approaches to confirmation theory have had various "successes", and problems of their own. On the "success" side, we have some interesting Pr-relevance "resolutions" of problems and paradoxes: The Duhem-Quine problem. [6, 24, 11, 25, 12] The Duhem-Quine problem. [6, 24, 11, 25, 12] The irrelevant conjunction problem. [8, 15] The ravens paradox [tomorrow!]. [10] The value of varied/diverse evidence. [26] The value of unification/coherence. [22, 2, 5] Explanations of Kahneman & Tversky "fallacies" [next week!] I'd be happy to talk about any of these problems in detail (except the two problems I'll be discussing later this trip!). Next, I'll focus on the "old evidence" problem (for Bayesian confirmation), and how Bayesians have responded to it. Example: a highly reliable pregnancy test comes out + (for Mary). Call this evidence <i>E</i>. You learn <i>E</i>, and (in this context <i>C</i>) you assign Pr(<i>E</i>) = 1. So, <i>E</i> cannot confirm_i (<i>H</i>) that Mary is pregnant (in context <i>C</i>). There are 3 Bayesian responses.
Nicod Hempel HD Probabilistic Accounts References	Nicod Hempel HD Probabilistic Accounts References oo oo o oooooooooooooooo
 Response 1. The "look at another context <i>C</i>'" response [17]: OK, in your <i>actual</i> context <i>C</i> where you <i>know E</i>, you can't apply confirmation_i. So, think about <i>another</i> (historical, counterfactual, <i>etc.</i>) context <i>C</i>' in which you <i>do not know E</i>. Then, see if your "counterpart's" credence function Pr' (or a "logical" Pr' <i>conditioned on their total evidence in C</i>') reflects a correlation between <i>E</i> and <i>H</i> in <i>C</i>', and then <i>expropriate</i>. This seems bizarre to me. Why should what one would or should believe in <i>C</i>' bear on what one should believe in <i>C</i>? Response 2. The "look at another evidence <i>E</i> supports <i>H</i> in <i>C</i>. So, think about <i>another</i> evidential proposition <i>E</i>' (<i>e.g.</i>, that "<i>H</i> predicts <i>E</i> in <i>C</i>"), and argue that <i>E</i>' supports <i>H</i> in <i>C</i>. This one just <i>changes the subject</i>. It's <i>E</i> we're talking about. Response 3. The "use non-standard Pr theory" response [18]: Move to a theory of probability that allows <i>E</i> and <i>H</i> to be "correlated" under Pr, <i>even if E</i> has probability 1 under Pr. This avoids the two problems above. But, (a) it <i>disunifies c_i</i>-theory, (b) what if the pregnancy test <i>always</i> yields + results?, and (c) what if you <i>also</i> know <i>H</i> in <i>C</i> [Pr(<i>H</i>) = 1]? 	 I don't think any of these responses will work. My two take-away lessons from the "old evidence" problem (and the analogous problem for Carnapian increase in firmness) is: The requirement of total evidence must not be interpreted as <i>requiring</i> that we (<i>always</i>) conditionalize evaluative (<i>i.e.</i>, confirmation-theoretic) probability assignments on everything we know (in the evaluative context). Not all confirmation relations (in all contexts) supervene on credences (or logical probabilities, or any other kind of Pr). Note: In <i>some</i> contexts <i>C</i>, confirmation-theoretic probability assignments <i>should</i> assign Pr(<i>E</i>) = 1. <i>E.g.</i>, if the pregnancy test in <i>known</i> to <i>always</i> yield positive results in <i>C</i>. To my mind, the RTE just means that when making an assessment of argument strength, we should do so on the basis of everything we know. Thus, the RTE is not a very "helpful" principle from a methodological point of view. But, it is naïve to hope for "helpful" principles in this sense: either for credences or confirmation-theoretic probabilities.

Nicod oo	Hempel 00	HD o	Probabilistic Accounts	References	Nicod oo	Hempel 00	HD o	Probabilistic Accounts	References
[2]	L Bovens and S. Hartn Oxford, 2003. R. Carnap, <i>Logical for</i> Press, Chicago, 1950.	nann, Bayesian ep	CSLI Publications, Stanfo <i>istemology</i> , Oxford Univer <i>ability</i> (first edition), Unive	risty Press, ersity of Chicago	[11]	paradox of the Court, to appea B. Fitelson and <i>revisited: A rep</i> (2005), no. 2, 2	ravens, Probability in S ar. (http://fitelse A. Waterman, <i>Bayesian</i> bly to Strevens, British Jo 93-302. (http://fi	esian confirmation theory h cience (E. Eells and J. Fetzer on.org/ravens.pdf) confirmation and auxiliary purnal for the Philosophy of telson.org/strevens	;, eds.), Open <i>hypotheses</i> f Science 56 s.pdf)
	Press, Chicago, 1962.		ity (second edition), Unive		[12]			e Quine-Duhem problem: A Lson.org/strevens2.	
[6] [7] [8]	Philosophy of Science J. Dorling, <i>Bayesian p</i> <i>programmes, and Du</i> . Science 10 (1979), no. B. Fitelson, <i>Studies in</i> Wisconsin-Madison, 2 , <i>Putting the irr</i> Philosophy of Science , <i>Likelihoodism</i> ,	2 72 (2005), no. 3, hersonalism, the m hem's problem, St . 3, 177–187. Bayesian confirm 2001. URL: http relevance back int e 69 (2002), no. 4, , Bayesianism, and	sets and the transmission 403-424. ethodology of scientific re- udies in the History and F ation theory, Ph.D. thesis, ://fitelson.org/th o the problem of irrelevan 611-622. (fitelson.o d relational confirmation, 1 1.org/synthese.pdf	search Philosophy of university of nesis.pdf. at conjunction, org/ic.pdf) Forthcoming in	[14] [15] [16]	Testing Scientif Minneapolis, 19 T. Hailperin, Se and technical a J. Hawthorne a probabilistic into C. Hempel, Stut C. Howson and	fic Theories (J. Earman, 983, pp. 99–132. entential probability logi applications, Lehigh Univ nd B. Fitelson, Discussic dependence, Philos. Sci. dies in the logic of confi	niscience in Bayesian confined.), University of Minneso ic: Origins, development, cu versity Press, Bethlehem, PA m: Re-solving irrelevant com 71 (2004), no. 4, 505–514. rmation, Mind 54 (1945), 1- asoning: The Bayesian appr	ta Press, rrent status, , 1996. junction with 26, 97-121.
Branden Fit Nicod 00	elson A His Hempel 00	storical Introduction t HD o	o Confirmation Theory Probabilistic Accounts 00000000000000	fitelson.org References	Branden Fite	elson	A Historical Introduction	to Confirmation Theory	fitelson.org
	Cambridge, 1999.		sion theory, Cambridge Ur						
[19]	J. Kemeny and P. Opp 19 (1952), 307–324.	enheim, <i>Degrees</i>	<i>of factual support</i> , Philosc	ophy of Science					

- [20] J. Keynes, A treatise on probability, Macmillan, London, 1921.
- [21] P. Maher, *Probability captures the logic of scientific confirmation*, Contemporary Debates in the Philosophy of Science (C. Hitchcock, ed.), Blackwell, 2004.
- [22] W. Myrvold, *A Bayesian account of the virtue of unification*, Philosophy of Science **70** (2003), no. 2, 399-423.
- [23] J. Nicod, *The Logical Problem of Induction*, (1923) in Geometry and induction, University of California Press, Berkeley, California, 1970.
- [24] M. Strevens, *The Bayesian treatment of auxiliary hypotheses*, British Journal for the Philosophy of Science **52** (2001), no. 3, 515–537.
- [25] _____, *Reply to fitelson and Waterman*, British Journal for the Philosophy of Science **56** (2005), no. 4, 913–918.
- [26] A. Wayne, *Bayesianism and diverse evidence*, Phil. Sci. **62** (1995), 111-121.