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1. The Coherence Measure C

Let E be a set of n propositions E1, ..., En. We seek a probabilistic measure C(E) of the ‘degree of
coherence’ of E. Intuitively, we want C to be a quantitative, probabilistic generalization of the
(deductive) logical coherence of E. So, in particular, we require C to satisfy the following
intuitive desideratum.
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Desideratum (1) captures the qualitative features that a probabilistic generalization of logical
coherence should satisfy — it requires C to respect the extreme deductive cases, and to be
properly sensitive to probabilistic dependence (a general notion of probabilistic dependence will
be defined precisely, and in a slightly non-standard way, below).

I propose a probabilistic measure of coherence C based on a slight modification of
Kemeny and Oppenheim’s (1952) measure of factual support F. The formulation of C is
somewhat intricate. We begin with some preliminary definitions. First, we define the two-place
function F(X,Y). F(X,Y) may be interpreted as the degree to which one proposition Y supports
another proposition X (relative to a finitely additive, regular, Kolmogorov (1956) probability
function Pr).1














−

¬+

¬−

=

falsehoodnecessary  a is  if1

contingent is  andtruth necessary  a is  if0

truthsnecessary  are  and  if1

falsehoodnecessary  anot  is  and contingent is  if
)|Pr()|Pr(

)|Pr()|Pr(

),(

Y

YX

YX

YX
XYXY

XYXY

YXF

                                                  
1For simplicity, I am assuming that the probability function Pr is regular or strictly coherent in the sense of

Shimony 1952. That is, I assume that Pr assigns probability 1 only to necessary truths, and probability 0 only to
necessary falsehoods (and, therefore, that Pr(X | Y) is extreme only if X and Y are logically dependent). We could
weaken this assumption, but it would complicate our definitions (as would a generalization to infinite sets of
propositions, and perhaps to countably additive Pr). In the context of Bayesian epistemology, assigning extreme
probability to contingent propositions is controversial (Jeffrey 1992). Our F is more complete than Kemeny and
Oppenheim’s (1952), which is defined only for contingent X and Y. We need this additional structure in F to ensure
that C satisfies (1). Even our F(X,Y) remains undefined in the case where X is a necessary falsehood but Y is not. We
don’t need to worry about this case here (however, note that this omission does make C a partial function). But, I
think we can at least say that if X is contradictory, then F(X,Y) ≤ 0 (i.e., that nothing supports a contradiction).



Next, we use F to define the probabilistic independence and positive/negative dependence of a
set of propositions E. Let Pi be the power set (sans null set) of the set E\{Ei} (unless E is a
singleton, in which case P = E). And, for each x ∈ Pi, let X be the conjunction of the elements of
x. Then, we define:
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Our definition of independence is (nearly) logically equivalent (except for certain extreme cases
in which Ei and/or X are non-contingent

2) to the standard definition of the independence of sets E
seen in probability texts (Kolmogorov 1952: §I.5). Interestingly, the concepts of positive and
negative dependence of a set E are not typically defined (at all) in standard probability textbooks
(at least, I have not seen such definitions). Like the standard definition of independence, my
definitions of positive/negative dependence require correlation (or anti-correlation) of all subsets
of propositions in E (i.e., pairwise, 3-wise, 4-wise, etc.). This means that sets with “mixed”
correlations or anti-correlations (e.g., pairwise but not 3-wise correlation or anti-correlation, etc.)
will not count as dependent sets on my definition.

Now, we’re ready to introduce the components of our quantitative measure of coherence C.
Let S = ∪{{F(Ei,X)    |   x ∈ Pi}  |   Ei ∈ E}. In general, S will have n ⋅ (2n–1–1) elements, where n >
1 is the number of elements of E (if n = 1, then S will have just one element: F(E1,E1)). For
instance, if n = 3, then S will be {F(E1,E2), F(E1,E3), F(E1,E2&E3), F(E2,E1), F(E2,E3),
F(E2,E1&E3), F(E3,E2), F(E3,E1), F(E3,E1 &E2)}, which has 3⋅(2

3–1–1) = 3⋅3 = 9 elements.
Finally, we define C as follows.3

C(E)  =df  mean(S)

That is, C is simply the mean value of S. It is easy to verify that C satisfies (1). This is because F
is a proper probabilistic generalization of deductive support (Kemeny & Oppenheim 1952,
Fitelson 2001: §3.2.3). In particular, we have:

                                                  
2The standard (Kolmogorov 1952: §I.5) definition of independence says that E is independent of itself in

cases where E is non-contingent. This is because in such cases Pr(E & E) = Pr(E) ⋅ Pr(E) = 1 or 0, if Pr(E) = 1 or 0,
respectively. I think this is unintuitive. Intuitively, all consistent propositions are (maximally) positively correlated
with (dependent on) themselves, and all contradictions are (maximally) negatively correlated with (dependent on)
themselves. This is what my definitions of independence and dependence entail, owing to my definition of F on
which F(E,E) = 1 for all consistent E, and F(E,E) = –1 for all self-contradictory E.

3Here, I take C to be the straight average of S. One could generalize our definition of C so as to assign
different weights to different types of (in)dependence (e.g., 2-wise (in)dependence vs 3-wise (in)dependence might
be weighted differently in the average, or negative dependence among certain subsets of E might be weighed more
heavily than positive dependence, etc.). One can think of our definition of C as assuming that all of the F-
components of C (in S) have the same weight.



C(E) is 
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2. C vs Shogenji’s Measure of Coherence

Interestingly, Shogenji’s ratio measure of coherence (Shogenji 1999, Akiba 2000, Shogenji 2001)
does not satisfy (1).4  In the case where the Ei are logically equivalent (hence Pr(Ei) = p, for all i),
Shogenji’s measure reduces to

Pr(E1 &L& En )
Pr(E1) ×L×Pr(En )

=
p
pn

=
1
pn−1

which is not a constant (nor is it maximal on the [0,∞) scale of Shogenji’s measure), and still
depends on the unconditional probabilities of the Ei. This is unintuitive, as this should be a case
in which the degree of coherence is maximal, and does not depend on the priors of the Ei. Here,
Shogenji’s measure of coherence inherits an undesirable feature of the ratio measure of degree of
support or confirmation (Pollard 1999, Fitelson 2001: §3.2.3).

It is also interesting to note that Shogenji’s measure is based only on the n-wise
(in)dependence of the set E. It is well known that a set E can be j-wise independent, but not i-
wise independent, for any i ≠ j (indeed, we can have disagreement for any combinations of i- and
j-wise independence as well – see (Pfeiffer 1994: §4.2) for several concrete examples). Since
Shogenji’s measure is based only on n-wise independence (dependence), in cases where a set is
n-wise independent (dependent), but not j-wise (for some j ≠ n) independent (dependent),
Shogenji’s measure does not take into account the ‘mixed’ nature of the coherence (incoherence)
of E (and its subsets), and it judges E as having the same degree of coherence (incoherence) as a
fully independent (or fully dependent) set. This seems incorrect to me. I think it’s important for a
measure of coherence to be sensitive to the (in)dependencies implicit in all subsets of E.

3. Akiba’s Criticisms of Shogenji’s Coherence Measure

Akiba’s (1999) criticisms of Shogenji’s coherence measure do not apply to our C. For instance,
Akiba complains that if E1 entails E2, then Shogenji’s measure says that the degree of coherence
of the set {E1,E2} is 1/Pr(E2), which he finds unintuitive, since it only depends on the

                                                  
4The fact that Shogenji’s measure is always positive is a merely conventional (and therefore insignificant)

violation of (1). This can be fixed simply by taking the logarithm of Shogenji’s measure. The problems with
Shogenji’s measure discussed below are not merely conventional.



unconditional probability of E2. I agree with Akiba’s intuition here; and, so does C. In such a
case, we have (if E1 and E2 are contingent
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So, C supports Akiba’s intuition that the degree of coherence in this case should depend on the
precise relationship between E1 and E2, and not merely on Pr(E2) alone (similar things happen
when C is applied to Akiba’s other examples involving more than two events).

Akiba also discusses the problem of singleton sets of propositions. He points out that
Shogenji’s measure of coherence judges the self-coherence of all propositions to be the same.
This is unintuitive, since (for instance) necessary truths should be viewed as more self-coherent
than necessary falsehoods. Our measure C captures this intuition, since:

C({E}) = F(E,E) = 
1 if E is a necessary truth
−1 if E is a necessary falsehood

 
 
 

Nonetheless, it is still true that C judges the degree of coherence to be the same (+1) for all
satisfiable singleton sets propositions. However, since there seem to be no clear countervailing
intuitions about what a probabilistic theory of degree of coherence should say in the contingent,
singleton case (Akiba 2000, Klein & Warfield 1994, Shogenji 1999), I do not view this as a
shortcoming of my proposed probabilistic measure of coherence. Here, I am in agreement with
Shogenji (1999) in understanding coherence as a relation between propositions. Intuitively, all
propositions ‘cohere with themselves’ (maximally), except for necessary falsehoods.6
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