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Abstract

We give a sound and complete propositional S5 tableau system of a
particularly simple sort, having an easy completeness proof. It sheds light
on why the satisfiability problem for S5 is less complex than that for most
other propositional modal logics. We believe the system remains complete
when quantifier rules are added. If so, it would allow us to get partway
to an interpolation theorem for first-order S5, a theorem that is known to
fail in general.

1 Introduction

The propositional modal logic S5 is peculiar in several respects. Most notably,
propositional validity for it is NP complete, whereas for other standard proposi-
tional modal logics such as T or S4 it is P-space. But also, once quantifiers are
added, other peculiarities show up: the interpolation theorem fails for first-order
S5, but holds for first-order T and S4. Since it is generally possible to extract a
proof of the interpolation theorem from a cut-free tableau or Gentzen calculus
proof procedure, one cannot expect such a procedure to exist for first-order S5,
and perhaps, by extension, not for the propositional part either. (There is a
nice first-order S5 tableau system, using prefixes, but the cost of introducing
the additional machinery of prefixes is that the tableau system is useless for
proving interpolation.)

In this little paper we give a remarkably simple tableau system for propo-
sitional S5, and present its straightforward soundness and completeness proof.
The rules help make it clear why we would expect propositional S5 to be com-
putationally less complex than, say S4. In addition, they shed some light on
interpolation, at least in the propositional setting. We leave open whether the
first-order version of the S5 tableau system is complete. If it is, the status of
interpolation is considerably clarified.

∗Written in honor of Professor Rohit Parikh’s sixtieth birthday.
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2 Other Logics

“Nice” tableau systems are known for several modal logics. In this section we
briefly sketch several, partly for comparison with the S5 system, and partly be-
cause it makes its presentation easier. The systems we give are for propositional
K, K4, T , and S4. [1] can be consulted for a more detailed treatment.

A tableau is a tree, generally displayed with its root at the top. A tableau
proof of a formula X begins with a tree containing just a root node, labeled
¬X. Then the tableau is “grown” using certain branch extension rules to be
given below. A tableau branch is closed if it contains a syntactic contradiction,
both Z and ¬Z for some formula Z. If each branch is closed, the tableau itself
is said to be closed. A closed tableau that is created by starting with ¬X (a
closed tableau for ¬X) is a tableau proof of X.

In order to state the branch extension rules most simply we use the uniform
notation device of Smullyan, extended to the modal setting. For this purpose
formulas, other than atoms and double negations, are classified into four cat-
egories: conjunctive or α formulas, disjunctive or β formulas, necessaries or ν
formulas, and possibles or π formulas. For the α category two components are
defined for each formula, denoted α1 and α2, and similarly for the β category.
For the ν category only a single component is defined, denoted ν0, and similarly
for the π category. We begin with the classical connectives. Note that we have
included iff, ≡, somewhat artificially perhaps. Likewise we have omitted several
of the less standard connectives such as joint denial. These, of course, could be
added easily. The categories and components are presented in Table 1.

Conjunctive Disjunctive
α α1 α2 β β1 β2

X ∧ Y X Y ¬(X ∧ Y ) ¬X ¬Y
¬(X ∨ Y ) ¬X ¬Y X ∨ Y X Y

¬(X ⊃ Y ) X ¬Y X ⊃ Y ¬X Y

X ≡ Y X ⊃ Y Y ⊃ X ¬(X ≡ Y ) ¬(X ⊃ Y ) ¬(Y ⊃ X)

Table 1: α- and β-Formulas and Components

Now, the branch extension rules for the propositional connectives are easily
given, in Table 2.

¬¬X
X

α

α1

α2

β

β1 β2

Table 2: Propositional Connective Rules

The intention here is, by now, well-known. If an α formula occurs on a
tableau branch, that branch can be lengthened with two consecutive nodes,
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one labeled α1, the other labeled α2. The double negation case is similar, but
simpler. If a β formula occurs on a branch, the end of the branch is split, with
the left child labeled β1 and the right child labeled β2.

Next are the modal cases. We take both 2 and 3 as primitive. The cate-
gories and components are given in Table 3.

Necessary Possible
ν ν0 π π0

2X X 3X X

¬3X ¬X ¬2X ¬X

Table 3: ν- and π-Formulas and Components

For the modal logics T and S4, but not for K or K4, we have the branch
extension rule given in Table 4.

ν

ν0

Table 4: T and S4 Rule

Before stating the rest of the modal branch extension rules, we need one
more piece of notation. For a set S of formulas, a corresponding (logic-dependent)
set S] is defined in Table 5.

Logic S]

K, T {ν0 | ν ∈ S}
K4, S4 {ν0, ν | ν ∈ S}

Table 5: S] Definition

Now we can give the remaining tableau rules. But these are of a differ-
ent nature from the others. Previous branch extension rules actually extended
branches. No information was lost. The next, and final, family of rules is
what is sometimes called destructive—information disappears. The way they
are used is this: if the set of formulas on a tableau branch matches the pattern
shown above the line in the rule, that entire branch is replaced with the set
shown below the line. (More correctly, in order not to loose the structure of
the tree that has been created, we mark the formulas on the affected branch as
“deleted,” and lengthen the branch by adding the replacement formulas to the
end.) The rules are in Table 6. They are logic-dependent, since the definition
of S] is.

This completes the definition of the tableau systems for propositional K, T ,
K4, and S4.
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S, π

S], π0

Table 6: Destructive Rule

Example 2.1 Here is a proof, in the K system, of 2X ⊃ (¬3¬X ∨ ¬3Y ).
Formulas are numbered for reference purposes.

1. ¬ [2X ⊃ (¬3¬X ∨ ¬3Y )]
2. 2X
3. ¬(¬3¬X ∨ ¬3Y )
4. ¬¬3¬X
5. ¬¬3Y
6. 3¬X
7. 3Y

Item 1 is the negation of the formula to be proved; 2 and 3 are from 1 by α;
4 and 5 are from 3 also by α; 6 and 7 are from 4 and 5 by double negation
elimination.

At this point the Destructive Rule can be fired in two different ways. If we
take π to be 3¬X and S to be the set consisting of the remaining formulas on
the branch, the rule has us replace the branch with the two formulas X (the
only member of S]) and ¬X (which is π0), and we have closure. If we take π
to be 3Y instead, the branch gets replaced with the formulas X and Y , and
we do not have closure.

3 The S5 System

The tableau system for S5 follows the pattern above, but with certain modi-
fications. We keep the rule stated in Table 4, and we have a rule of the form
of that in Table 6, but with a new definition of S]. We give two versions for
this since either gives us a sound and complete system for propositional S5. In
order to state the two versions, we need some terminology.

Definition 3.1 A formula is modalized if every atomic subformula in it is
within the scope of a modal operator. A formula is trivially modalized if it
is a ν or a π formula.

Now the new definitions of S] for S5 are given in Table 7.
We now have the S5 Branch Extension Rules fully specified (in two versions).

There is one additional pecularity to the tableau system however. In order to
prove the formula X, we do not construct a tableau for ¬X, but for ¬2X!
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S] = {X ∈ S | X is modalized}
S] = {X ∈ S | X is trivially modalized}

Table 7: S] Definitions for S5

Example 3.2 Here is a proof of X ⊃ 23X in the S5 system, using either
version of the S] definition. The tableau begins as follows.

1. ¬2(X ⊃ 23X)
2. ¬(X ⊃ 23X)
3. X
4. ¬23X

Item 1 is the negated necessitation of the formula to be proved; 2 is from 1 by
the Destructive Rule (take π to be ¬2(X ⊃ 23X) and S to be {π}); 3 and 4
are from 2 by α.

Now use the Destructive Rule again, taking π to be formula 4 and S to be
the entire set of formulas on the branch. In this case, S] consists of formulas 1
and 4, and the tableau continues as follows.

1. ¬2(X ⊃ 23X)
4. ¬23X
5. ¬3X
6. ¬(X ⊃ 23X)
7. X
8. ¬23X
9. ¬X

Items 1, 4 and 5 are from the Destructive Rule application; 6 is from 1, again
by the Destructive Rule; 7 and 8 are from 6 by α; 9 is from 5 by the rule in
Table 4.

4 Soundness

There are two versions of semantics for S5, one in which accessibility is an
equivalence relation, and one in which there is no accessibility relation at all. It
is easy to move between the two versions—in effect a model of the second kind
is one equivalence class from a model of the first kind. To keep things simple,
we confine things to a semantics in which there is no accessibility relation at
all. To be precise, here is the notion of S5 model we use.

Definition 4.1 An S5 model is a structure 〈G,°〉, where G is a non-empty
set (of possible worlds), and ° is a relation between members of G and atomic
formulas.

Given an S5 model, the relation ° is extended to arbitrary formulas in the
following standard way. (We take a small but sufficient number of connectives
and modal operators as representative.) For Γ ∈ G:
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Γ ° (X ∧ Y ) ⇔ Γ ° X and Γ ° Y
Γ ° ¬X ⇔ not Γ ° X
Γ ° 2X ⇔ for all ∆ ∈ G,∆ ° X

A formula X is valid in a model 〈G,°〉 if Γ ° X for all Γ ∈ G. And X is
simply valid if X is valid in all S5 models.

Now, soundness follows the standard pattern for tableaus. Call a set S of
formulas satisfiable if there is some S5 model 〈G,°〉, and some Γ ∈ G, such that
Γ ° X for all X ∈ S. Call a tableau branch satisfiable if the set of formulas
on it is satisfiable. And call a tableau satisfiable if some branch is satisfiable.
Satisfiability is a loop invariant for tableaus in the following sense.

Proposition 4.2 If T is a satisfiable tableau, and T ′ is the result of applying
a tableau rule on some branch of T , then T ′ is also a satisfiable tableau.

We leave the standard proof of this to you. It is applied in the usual way,
with one small twist: a formula X is valid in all S5 models if and only if 2X
is valid in all S5 models. This is easy to show. Now, suppose X were provable
but not valid. Since X is not valid, neither is 2X, and so {¬2X} must be
satisfiable. Then the tableau proof of X starts off with a satisfiable tableau,
since it starts off with ¬2X and {¬2X} is satisfiable. But then only satisfiable
tableaus can arise. Since we are assuming X is provable, we must be able to
produce a closed tableau, and this is impossible since we would have a tableau
that is both closed and satisfiable.

5 Completeness

As usual, completeness is less routine, and hence more interesting. Although
completeness for tableau systems is often proved using a kind of “systematic”
construction procedure, with a counter-example extracted from a failed tableau,
we instead use a maximal consistent, Lindenbaum, style argument, which sim-
plifies things considerably.

Definition 5.1 We say a set S of formulas is consistent if no tableau beginning
with a finite subset of S closes. If F is a set of formulas, a subset S of F is
maximally consistent with respect to F if S is consistent, and no subset of F
that properly extends S is consistent.

Now the following holds with the usual proof, which we omit.

Lemma 5.2 (Lindenbaum) If S is a consistent subset of F , S extends to a
set that is maximal consistent with respect to F .

Even if F is the set of all formulas, we cannot show the “usual” properties
of maximal consistent sets that are associated with an axiomatic treatment,
though we do have half of them, in the sense that what are usually equivalences
become implications. (Once again we work with a minimal set of connectives
and modal operators.)
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Proposition 5.3 If S is maximal consistent with respect to the set of all for-
mulas, it is downward saturated, by which we mean the following:

1. Not both X and ¬X are in S.

2. If X ∧ Y is in S, so are both X and Y .

3. If ¬(X ∧ Y ) is in S, so is one of ¬X or ¬Y .

4. If 2X is in S, so is X.

The proof of this is straightforward, and once again we omit it. We also
have the following, an analog of which is probably familiar in the context of
axiom systems.

Proposition 5.4 Suppose S is consistent and ¬2X ∈ S. Then S] ∪ {¬X} is
also consistent (using either version S5 of S]).

Proof If S] ∪ {¬X} were not consistent, there would be a closed tableau T
starting with some finite subset of it. But then there would also be a closed
tableau for a finite subset of S. Just make the first rule application the destruc-
tive modal rule, used on ¬2X, which is in S, and then copy the steps of T .

Now for the completeness proof itself. We present the argument under the
assumption that S] is the set of modalized formulas in S—the argument is
essentially the same if it is the set of trivially modalized formulas.

Assume C is a consistent set of modalized formulas. First, extend C to a
set, C∗, that is maximally consistent with respect to the set of all modalized
formulas. And, let G be the collection of all sets of formulas that extend C∗

and are maximally consistent with respect to the set of all formulas. Not
surprisingly, G will be the collection of possible worlds of a model.

First, a simple observation. If Γ ∈ G, Γ] = C∗. In one direction, C∗ ⊆ Γ
because Γ extends C∗. Since all members of C∗ are modalized, it follows that
C∗ ⊆ Γ]. In the other direction, if C∗ were a proper subset of Γ], then, Γ]

would be a consistent, modalized, proper extension of C∗, which contradicts
the maximality of C∗.

Now, for Γ ∈ G, and atomic A, set Γ ° A iff A ∈ Γ. We thus have an S5
model 〈G,°〉. We now need the following item, which should be familiar from
axiomatic treatments. But note, in an axiomatic setting we have an equivalence
in place of the implication below.

Theorem 5.5 (Truth Lemma) For every formula X, and every Γ ∈ G, if
X ∈ Γ then Γ ° X.

Proof By induction on formula degree. The positive atomic case is by defini-
tion.

Suppose ¬A ∈ G, where A is atomic. By Proposition 5.3 A 6∈ Γ, and so by
definition Γ 6° A, and hence Γ ° ¬A.
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The other propositional cases are also treated using Proposition 5.3.
Suppose 2X ∈ Γ, and the result is known for X. Let ∆ be an arbitrary

member of G. Then ∆] = Γ], as we observed above. But 2X is modalized,
and so is in Γ], hence in ∆] ⊆ ∆. Now, X ∈ ∆, by Proposition 5.3 again. By
the induction hypothesis, ∆ ° X. Since ∆ ∈ G was arbitrary, it follows that
Γ ° 2X.

Finally, suppose ¬2X ∈ Γ, and the result is known for ¬X. By Proposi-
tion 5.4, Γ] ∪ {¬X} is consistent. Extend it to a maximal consistent subset of
the set of all formulas, call it ∆. Since Γ] = C∗, it follows that ∆ ∈ G. Since
¬X ∈ ∆, by the induction hypothesis ∆ ° ¬X. But then Γ ° ¬2X.

Now, suppose X is not provable. This means there is no closed tableau
beginning with ¬2X, hence the set {¬2X} is consistent; it is also modalized.
Call it C, and use it to construct a model 〈G,°〉 as above. In this model ¬2X
is a member of every world, hence 2X is false at every world. Then there must
be some world at which X is false, and so X is not valid.

6 Concluding comments

Propositional S5 has a simpler satisfiability problem than propositional S4 (NP
versus P-space). The tableau systems given above provide clear intuitions for
why this is the case. (A formal proof can be based on this, but we do not do
so.)

Suppose we are constructing an S4 tableau, and we have a branch whose
set of formulas S contains two π-formulas, say 3X and 3Y . If we apply the
destructive modal rule to the first, the branch is replaced by S] ∪{X}, and the
formula 3Y is eliminated—recall, this uses the S4 definition of S]. Likewise if
we apply the rule on 3Y we get S] ∪ {Y } and 3X disappears. If we chose the
“wrong” formula to work with, we may not produce a closed branch, though
one might have been obtainable had we chosen differently. In short, in any
systematic tableau construction procedure for S4, backtracking is essential.

The situation for S5 is quite different. Under the same circumstances as
above, where a branch consists of a set S of formulas containing 3X and 3Y ,
no matter which of these two we work with, the other remains—using either of
the S5 definitions of S]. Backtracking is no longer necessary for completeness.
More formally, for S5 there are more cases of rule permutability than for S4.
Consequently one expects things to be simpler computationally.

We gave two tableau versions for S5, using two definitions of S]. Both
have their advantages. Defining S] to consist of the ν and π formulas of S
means that to construct S] we do not need to go beyond top-level connectives.
A deeper analysis is unnecessary, and so if implemented, certain processing
steps are simplified. On the other hand, defining S] to consist of all modalized
members of S can yield shorter tableau proofs, though the task of deciding on
the membership of S] becomes correspondingly more complex.

Finally something a little more speculative. The tableau system given above
is for propositional S5. There is reason to believe it remains complete if quanti-
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fier rules are added, and constant-domain first-order S5 models are used. One
of the pecularities of first-order S5 is that, unlike the situation with many other
modal logics, an interpolation theorem is no longer provable. If we do, in fact,
have first-order completeness, the situation would be somewhat clarified. It
would be possible to extract a proof of the interpolation theorem for first-order
S5 for implications that are modalized. This would get us halfway there, which
is probably as close as is possible.
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