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Abstract. Michael Strevens [2001] has proposed an interesting and novel
Bayesian analysis of the Quine-Duhem (Q–D) problem (i.e., the problem
of auxiliary hypotheses). Strevens’s analysis involves the use of a simpli-
fying idealization concerning the original Q–D problem. We will show
that this idealization is far stronger than it might appear. Indeed, we argue
that Strevens’s idealizationoversimplifies the Q–D problem, and we pro-
pose a diagnosis of the source(s) of the oversimplification.
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1 Some Background on Quine–Duhem

The Quine–Duhem (Q–D) problem (i.e., the problem of auxiliary hypotheses) is
traditionally seen as a problem for naive Hypothetico-Deductive (H-D) accounts of
confirmation, according to which a piece of evidenceOconfirms a hypothesisH (roughly)
just in caseH entailsO. Duhem was perhaps the first to clearly point out that no hy-
pothesisby itself entails any interesting observation. Only hypothesesconjoined with
auxiliary hypotheses/assumptionscan entail interesting observations. So, in general,
what we have is thatT = H & A entailsO, while H alone does not. Thus, ifE is
observed andE contradictsO, then the most we can say is thatE refutesT. We cannot
say which ofH or A (or any other “parts” ofT) is individually disconfirmed byE. As
John Earman [1992, page 95] asks:

. . . if O is found to hold, to which parts ofT can the praise for the successful
prediction be attributed? If¬O is found to hold, on which parts ofT can the blame
for the unsuccessful prediction be laid?

Michael Strevens [2001] offers a Bayesian analysis of Q–D which is intended to pro-
vide a way to apportion blame betweenH andA, whenE is observed.1 We will interpret

1Most discussions of Q–D (Bayesian or otherwise) restrict their attention to cases ofdeductive evidence
(in which H & A entails O). Strevens discusses both the traditional deductive Q–D problem, and the more
general case in whichE (merely) disconfirms, but does not refute,T. For an alternative non-deductive
(and non-Bayesian) probabilistic treatment of Q–D, see Sober [2004]. For other Bayesian approaches that
operate under the traditional presupposition of deductive evidence, see Dorling [1979] and Howson and
Urbach [1993]. We will restrict our attention to problems we see in Strevens’s treatment of the original
(deductive) Q–D problem. We think that similar problems will arise for Strevens in the more general setting,
but that is beyond the scope of this paper.



this as providing a way to (at least, qualitatively) comparec(H,E) andc(A,E), where
c(x, y) is a Bayesian measure of the degree to whichy confirms (or supports)x. That
is to say, we will examine the consequences of Strevens’s approach with respect to the
conditions under whichc(H,E) ≥ c(A,E) in cases whereH & A entails¬E.

2 Strevens’s Simplifying Idealization

The central element of Strevens’s proposal is to simplify the original Q–D problem,
by making use of the following idealization:

(I) E is equivalent to¬(H & A)

(I) asserts, not just thatE entails thatH andA aren’t both true (as in the original Q–D
problem), but also thatE saysno more than this. Strevens (p. 524) urges us to focus on
the disconfirmation thatE provides regardingH (vs A) “in virtue of and only in virtue
of falsifying” H& A. He goes on to argue that (I) is not so strong as tooversimplify the
problem from the perspective of Bayesian confirmation theory. We disagree. Below,
we (i) describe some consequences of (I) that we think cast doubt on the legitimacy
of Strevens’s approach to Q–D, and (ii ) offer a diagnosis of a possible source of the
oversimplification implicit in Strevens’s approach.

Before getting into the details of the formal consequences of (I) in the context of
Strevens’s account, we begin with a cautionary remark. Bayesian readers should be
rather suspicious when something like (I) is applied in this kind of context. Basically,
the legitimacy of using (I) depends on whether logically weakening (or strengthening)
the evidence in Q–D cases can have drastic confirmation-theoretic effects. There are
many examples in the literature that illustrate the significant effects that can be caused
by the logical weakening of evidence. In general, Bayesian confirmation is quite sen-
sitive to such weakenings. That this is the case (in a general, abstract sense) has been
known for some time (see Carnap [1950,§57]). And, that there are important real
examples of this phenomenon in statistical inference has also been known for quite
a while. For instance, I.J. Good [1960] discusses the effect of evidential weakenings
in connection with Hempel’s ravens paradox (under the rubric of ‘stoogian’ evidence
reports which ignore certain features of the data). As we will see below, it is this very
phenomenon that underlies the problems with Strevens’s use of (I) in this context.

3 Indications that (I) Oversimplifies Q–D

For the most part, Strevens speaks about theposterior probabilitiesof H andA (on
evidenceE) in his discussion of the relative degrees of confirmationE provides for
H vs A. However, Strevens sometimes (e.g., p. 526) uses the Bayesianratio measure
of the degree to whichy incrementallyconfirmsx: r(x, y) = Pr(x | y)

Pr(x) . This measure of
confirmation (or something ordinally equivalent to it) has been defended by various
Bayesians (e.g., Peter Milne [1996]). While we think this measure and the posterior
probability measure of degree of confirmation are both inadequate (see Eells and Fi-
telson [2002] and Fitelson [2002] for several arguments againstr), we will not (for
now) criticize Strevens on these grounds. What’s most important here is how Strevens
uses his idealization (I) to simplify the expressionsc(H,E) andc(A,E) (for whichever
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Bayesian measure of confirmationc you prefer). As it turns out, (I) is much more
powerful in this respect than Strevens’s discussion seems to suggest. Strevens argues
that (I) does not oversimplify the comparison ofc(H,E) and c(A,E). In particular,
Strevens suggests that — even if we assume (I) — the comparative relationship be-
tweenc(H,E) andc(A,E) will depend not only on the prior probabilities ofH andA, but
also on various conditional probabilities such as Pr(A |H) and Pr(H |A) (see Strevens’s
plots and discussion on pages 526–527). The proof of the following theorem shows
that this is not the case, foranyof the Bayesian measures of confirmation that we have
seen in recent use,including the posterior probability measure, and all contemporary
incremental measures, includingr.2

Theorem 1. Assuming(I), c(H,E) ≥ c(A,E) if and only ifPr(H) ≥ Pr(A) (whetherc
is the posterior probability measure, or any incremental measure such as r).

That is, enforcing (I) reduces the comparison ofc(H,E) andc(A,E) to a simple com-
parison of the priors Pr(H) and Pr(A), which renders the evidenceE irrelevant(a pos-
teriori) to this comparison.3 It seems clear to us that, in the original Q–D problem,
the mere relationship between the priors ofH andA should notby itself determine the
relative support thatE provides forH vs A. We take Quine and Duhem to be asking the
following question: In cases whereH & A entails¬E, can the evidenceE differentially
confirm H vs A— a posteriori— and, if so,how? This isnot a question about the
relativea priori plausibilities ofH vs A, but rather a question about thea posteriori
confirmational power ofE to discriminate betweenH andA whenH & A entails¬E.
What Theorem 1 shows is that Strevens’s assumption (I) makes itimpossibleto use
Bayesianism to provide an affirmative answer to this question (or to provide an expla-
nation of how an affirmative answer is possible).PaceStrevens, we think an affirmative
answer to the Q–D questionis possible within a Bayesian framework, and we take this
ability of Bayesianism (to do what deductive accounts of confirmation cannot seem to
do) to be a virtue. Here is a simple example that makes our worry about (I) vivid.

Consider a lottery involving 11 tickets. LetH be the claim that either the winning
ticket will be among tickets #1–#5 or it will be ticket #11. LetA be the claim that
the winning ticket will be among tickets #4–#9, and letE be the claim that either the
winning ticket is among tickets #1–#3 or it is among tickets #6–#9. It seems to us
intuitively clear thatE favorsA over H in this example, sincec(A,E) > c(H,E), for
any Bayesian measure of confirmationc, including the posterior probability measure
and all incremental measures. Moreover, this is a Q–D case, in whichH & A entails
¬E, Pr(A) = Pr(H), E confirmsA4 (in the incremental sense), andE disconfirmsH.5

2See the A for proofs of all theorems.
3Other, more sophisticated probabilistic analyses of Q–D do not have this consequence. See Dorling

[1979], Howson and Urbach [1993], and Sober [2004] for examples of alternative approaches to Q–D that
are immune to our criticisms of Strevens.

4If we assume (I), thenE cannot confirm either H or A (individually) in an incremental sense, since (I)
also entails that Pr(H |E) ≤ Pr(H) and Pr(A |E) ≤ Pr(A). Strevens [2001, p. 526] seems to be aware of, but
unmoved by, this consequence of (I). Our example indicates that this is another oversimplification of Q–D.

5We omit the simple calculations which verify these claims about our simple Q–D example. Further
simple calculations reveal that our example has some other useful features as well. For instance, in our
example,H andA arenot probabilistically independent. Therefore, Dorling’s [1979] assumption thatH and
A are probabilistically independent isnot necessaryfor an affirmative Bayesian answer to the Q–D question.
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So, H andA haveequal a priori probability,but E confirmsA more strongly thanE
confirmsH. We take it that this example suffices to show that Bayesianism is capable
of answering the Q–D question in the affirmative, and explaining how an affirmative
answer is possible. Unfortunately, because it assumes (I), Strevens’s account cannot
do so. The problem here is that if we lookonly at the part ofE that isequivalent to
¬(H & A), we cannot explain whyE favorsA over H in this example (or others like
it), since to do so would require an appeal toA’s having greatera priori plausibility
thanH. But, A doesn’t havegreatera priori plausibility thanH here, so no explanation
based on Strevens’s (I) is forthcoming.

Our example suggests that (I) oversimplifies the original Q–D problem. But, the
more general point is that to lookonlyat the part ofE thatfalsifies H& A (as Strevens
recommends) is to ignore precisely that part ofE that would allow a Bayesian to answer
the challenge of Quine and Duhem. In general, probabilistic approaches to confirma-
tion work best when they take account of the totality of the evidence, and not some
censored version of it. What Strevens’s paper makes clear is that taking into account
the full content ofE [i.e., not ignoring the part ofE that goes beyond¬(H & A)] is
essential to resolving the Q–D problem within a probabilistic framework.

4 Strevens’s Argument for the Legitimacy of(I)

Our discussion so far suggests that (I) is too strong a ‘simplifying idealization’ to
yield a useful general Bayesian rendition and analysis of the original Q–D problem.
But, these considerations do not furnish a diagnosis of the source of the problem in the
development and justification of the account. Strevens presents an argument, which is
supposed to show that (I) is not an undue oversimplification of the Q–D problem. First,
Strevens returns to the original Q–D problem, in whichE � ¬(H& A), but¬(H& A) 2 E
(i.e., in which (I) is relaxed). Then, he aims (i) to identify a conditionC under which
the “partial posterior” Pr(H | ¬(H & A)) is approximately equal tothe “full posterior”
Pr(H |E), and then (ii ) to argue that this conditionC obtains in the “interesting” Q–D
cases. Here’s a concise exposition of Strevens’s strategy for justifying idealization (I).

1. Assume (as in the original Q–D problem)only thatE � ¬(H & A).

2. ∴ Pr(H | ¬(H & A)) = Pr(H |E) iff Pr(E |H & ¬A) = Pr(E | ¬(H & A)).

3. ∴ Pr(H | ¬(H & A)) ≈ Pr(H |E) if Pr(E |H & ¬A) ≈ Pr(E | ¬(H & A)).

4. Pr(E |H & ¬A) ≈ Pr(E | ¬(H & A)) in all “interesting” Q–D cases.

5. ∴ Pr(H | ¬(H & A)) ≈ Pr(H |E) in all “interesting” Q–D cases.

6. ∴ It is legitimate to make use of (I) in a Bayesian account of Q–D.

The basic idea here is to establish that Pr(H | ¬(H & A)) ≈ Pr(H |E) holds in all “inter-
esting” Q–D cases, and as a result, that there is no real harm in the idealization thatE is
no stronger than¬(H & A), since this won’t radically (or unfairly) affect our judgments
concerning the posterior probability ofH (and, presumably, by symmetry, the same
should hold forA), at least, not in the “interesting” or “important” Q–D cases (e.g.,
cases in which Strevens’s so-called “Newstein Effects” are absent).
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We think there are various ways this argument goes wrong. Specifically, we think
that premises (3), (4), and (5) of the above argument are all false, and that the∴’s which
precede (3), (5), and (6) are fallacious. We will not discuss the problems with premise
(4) presently (these problems, which involve Strevens’s discussion of what he calls
“Newstein Effects”, are rather subtle and would require more space to flesh out). Our
focus will be on steps (3) and (6), which are fallacious. As for the rest of the argument,
premises (1) and (2) are beyond reproach. (2) is a theorem (given assumption (1)), and
(1) is a basic assumption of Q–D. The following theorem exposes what we take to be
one of two key missteps in the above argument [in the step from (2) to (3)]:

Theorem 2. Assuming E� ¬(H& A), it is possible forPr(E |H&¬A) andPr(E | ¬(H&
A)) to bearbitrarily close, while at the same time Pr(H | ¬(H & A)) andPr(H |E) are
arbitrarily far apart [despite the fact that “Pr(H | ¬(H & A)) = Pr(H |E) iff Pr(E |H &
¬A) = Pr(E | ¬(H & A))” does follow from E� ¬(H & A), as Strevens shows].

What this shows is that despite the fact that (2) is a theorem (assuming (1)), (3) does not
follow. In fact, even in Q–D cases, the likelihoods Pr(E |H & ¬A) and Pr(E | ¬(H & A))
can beas close as one likes, while at the same timethe “partial” and “full” posteriors
Pr(H | ¬(H & A)) and Pr(H |E) areas far apart as one likes. So, the claim that the
“partial” and “full” posteriors can be assumed to be “close” in the “interesting” Q–D
cases, because the likelihoods in question are “close” in such cases is false (no matter
how liberally we interpret “≈”).

The second misstep in the above argument is the step from (5) to (6). Premise
(5) is relevant to the confirmational comparisonc(H,E) ≥ c(A,E) if one assumes that
the posterior probability is an adequate Bayesian measure of degree of confirmation.
But, contemporary Bayesians think of confirmation in terms of degree of probabilistic
relevance, not in terms of degree of conditional probability. As such, contemporary
Bayesians use relevance measures of confirmation that disagree radically with the pos-
terior probability when it comes to comparative claims likec(H,E) ≥ c(A,E). Various
relevance measures have been proposed and defended in the literature on confirmation
theory (see Fitelson [1999] for a brief survey). Some of these measures will sanction
the step from (5) to (6) in Q–D cases, and some will not. The measure we favor is the
likelihood ratio measurel(H,E) = Pr(E |H)

Pr(E | ¬H) . See Fitelson [2001] for various reasons to
favor this measure over other relevance measures. As it turns out, even if (5) is true (in
a Q–D case), it does not follow thatl(H,¬(H & A)) ≈ l(H,E).6 We think this makes the
step from (5) to (6) fallacious (at least, in the absence of reasons not to use relevance
measures of confirmation, likel or r) from the point of view of contemporary Bayesian
confirmation theory. To wit:

Theorem 3. Assuming E� ¬(H & A), it is possible forPr(H | ¬(H & A)) andPr(H |E)
to bearbitrarily close, whileat the same timel(H,¬(H & A)) and l(H,E) are arbitrarily
far apart (where l(H,E) = Pr(E |H)

Pr(E | ¬H) is the likelihood ratio measure of the degree to
which E incrementally confirms H).

We think that further analysis will reveal other problems with Strevens’s strategy
for justifying his use of (I) (e.g., concerning his premise (4)). But, those worries would
require a separate paper to articulate properly. So, we now conclude our discussion.

6This step is fallacious for many other relevance measures of confirmation, includingr (proof omitted).
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Appendix: Proof of Theorems

Theorem 1. Assuming(I), c(H,E) ≥ c(A,E) ⇔ Pr(H) ≥ Pr(A) (whetherc is the
posterior probability measure, or an incremental measure such as r).

Proof. We will prove this theorem with a combination of algebraic and axiomatic tech-
nique. All we need is a 2-event probability space, containing the eventsH andA. Then,
we have four elementary probabilities in the space, each of which is on [0,1], and the
sum of which is 1. These four elementary probabilities are as follows:

Pr(H & ¬A) = a Pr(H & A) = b

Pr(¬H & A) = c Pr(¬H & ¬A) = d

Now, the proof for the ratio measurer proceeds as follows.7

Pr(H) ≥ Pr(A)⇔ Pr(H & ¬A) + Pr(H & A) ≥ Pr(H & A) + Pr(¬H & A)

⇔ a+ b ≥ b+ c

⇔ a ≥ c

⇔ ab+ ac≥ ac+ bc

⇔ a(b+ c) ≥ (a+ b)c

⇔
a

(a+ b)(a+ c+ d)
≥

c
(a+ c+ d)(b+ c)

⇔
Pr(H | ¬(H & A))

Pr(H)
≥

Pr(A | ¬(H & A))
Pr(A)

⇔ r(H,¬(H & A)) ≥ r(A,¬(H & A))

7We assume without comment throughout the A that the salient conditional probabilities are de-
fined. This amounts to assuming that the salient elementary events in the probability models discussed have
non-zero probabilities, where needed, to ensure that we are not dividing by zero anywhere. Also, along
the same lines (and strictly speaking), the⇒ direction of Theorem 1 requires the additional assumption that
Pr(H& A) = b , 0. But, in the context of Q–D, this isalwaysassumed, since otherwise the theoryT = H& A
would be unconfirmable (and undisconfirmable) byanything, including its logical consequences.
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Therefore, by (I), Pr(H) ≥ Pr(A)⇔ r(H,E) ≥ r(A,E). We omit the (similar) proofs for
the other Bayesian measures of confirmation currently being used and defended,e.g.,
the posterior probability measurep(x, y) = Pr(x | y), the difference measured(x, y) =
Pr(x | y) − Pr(x), the likelihood ratio measurel(x, y) = Pr(y | x)

Pr(y | ¬x) , and the normalized dif-
ference measures(x, y) = Pr(x | y) − Pr(x | ¬y). See Fitelson [1999] for a contemporary
survey of (incremental) Bayesian measures of confirmation. ❑

Theorem 2. Assuming E� ¬(H& A), it is possible forPr(E |H&¬A) andPr(E | ¬(H&
A)) to bearbitrarily close, while at the same time Pr(H | ¬(H & A)) andPr(H |E) are
arbitrarily far apart [despite the fact that “Pr(H | ¬(H & A)) = Pr(H |E) iff Pr(E |H &
¬A) = Pr(E | ¬(H & A))” does follow from E� ¬(H & A), as Strevens shows].

Proof. We prove this theorem by describing an algorithm for generating probability
models in which (i) E � ¬(H & A), (ii ) |Pr(E |H & ¬A) − Pr(E | ¬(H & A))| ≤ ε for
arbitraryε ∈ (0, 1

2), and (iii ) |Pr(H | ¬(H & A)) − Pr(H |E)| = 1 − ε. There are many
ways to do this. Any one of these would be sufficient to establish the theorem. Here
is the first such algorithm we found.8 We need an algorithm for generating a 3-event
probability model, containing the eventsH, A, andE, such that (i)–(iii ) above are all
satisfied. Such models will have eight elementary probabilities, each of which is on
[0,1], and the sum of which is 1. Our algorithm is as follows.9

Step 1. Pick anε ∈ (0, 1
2), which is as small as you like.

Step 2. Assign the following numbers to the eight elementary probabilities in the space:

Pr(H & ¬E & ¬A) = −2ε3 + ε4 + ε
1+ε Pr(H & E & ¬A) = ε

3+ε4−ε5

1+ε

Pr(¬H & E & ¬A) = −
(
ε5 (−1+ε+ε2)

1+ε

)
Pr(H & ¬E & A) = ε2

Pr(H & E & A) = 0 Pr(¬H & E & A) = ε6

Pr(¬H & ¬E & A) = −
(
ε
(
−1+ ε + ε5

))
Pr(¬H & ¬E & ¬A) = −ε + ε3 − ε4 + ε6 + 1

1+ε

This procedure will always generate a probability model in which (i)–(iii ) obtain.10 ❑

Theorem 3. Assuming E� ¬(H & A), it is possible forPr(H | ¬(H & A)) andPr(H |E)
to bearbitrarily close, whileat the same timel(H,¬(H & A)) and l(H,E) are arbitrarily

8We do not claim that the models generated by this algorithm will correspond to “interesting” Q–D cases.
However, our goal here is simply to establish theformal fallaciousness of Strevens’s reasoning. We view this
algorithm as a way to shift the burden of proof back onto Strevens. It is now up to him to explain why the
“interesting” Q–D cases arenot susceptible to the formal fallacy illustrated by our algorithm.

9We assume, for simplicity, that the probability models in question areregular. We could weaken this
assumption, and specify thatin addition toPr(H & E & A) = 0, one mustalsomake sure thatE � ¬(H & A).
This is a minor technical detail that arises from the distinction between probability zero and logical falsity.

10This claim is easily verified by algebraic computation (details omitted). More generally, to get Theorem
2 all we need is to have Pr(H & ¬E & ¬A) ≈ 1, Pr(E) ≈ 0, and Pr(H & E & A) = 0. On request, the authors
will supply aMathematica5.0 notebook which verifies the (mathematical) claims made in this A.
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far apart (where l(H,E) = Pr(E |H)
Pr(E | ¬H) is the likelihood ratio measure of the degree to

which E incrementally confirms H).

Proof. We prove this theorem by describing an algorithm for generating probability
models in which (iv) E � ¬(H & A), (v) |Pr(H | ¬(H & A))−Pr(H |E)| = ε for arbitrary
ε ∈ (0, 1

4), and (vi) l(H,E) = ε · l(H,¬(H & A)). The algorithm is as follows:

Step 1. Pick anε ∈ (0, 1
4), which is as small as you like.

Step 2. Assign the following numbers to the eight elementary probabilities in the space:

Pr(H & ¬E & ¬A) =
−1+
√

1+ε (−4+2ε+ε3)−ε
(
−1+
√

1+ε (−4+2ε+ε3)+ε
(
(−1+ε) ε+

√
1+ε (−4+2ε+ε3)

))
2(−1+ε)

Pr(H & E & ¬A) =
−

(
ε
(
1+(−2+ε) ε−

√
1+ε (−4+2ε+ε3)

))
2(−1+ε)

Pr(¬H & E & ¬A) =
−

(
ε
(
1+(−2+ε) ε+

√
1+ε (−4+2ε+ε3)

))
2(−1+ε)

Pr(H & ¬E & A) = ε2

Pr(H & E & A) = 0

Pr(¬H & E & A) = ε2

Pr(¬H & ¬E & A) = ε − 2ε2

Pr(¬H&¬E&¬A) =
−

(
1+
√

1+ε (−4+2ε+ε3)−ε
(
5+
√

1+ε (−4+2ε+ε3)+ε
(
−6+ε+ε2+

√
1+ε (−4+2ε+ε3)

)))
2(−1+ε)

This procedure will always generate a probability model in which (iv)–(vi) obtain.11

That is sufficient to establish the theorem, and to complete the A. ❑

References

Carnap, R. (1950).Logical Foundations of Probability. Chicago: University of Chicago Press.

Dorling, J. (1979). Bayesian personalism, the methodology of scientific research programmes,
and Duhem’s problem.Studies in History and Philosophy of Science 10(3), 177–187.

Earman, J. (1992).Bayes or Bust: A Critical Examination of Bayesian Confirmation Theory.
Cambridge: MIT Press.

11It is interesting to note that Dorling [1979, p. 178] makes a similar mistake, when he claims that, as long
as we have a “sufficiently good approximation of” Pr(H), we will automatically have a “sufficiently good
approximation of”c(H,E), provided that we know Pr(E |H) and Pr(E) with perfect precision. This is false if
c is taken to be the likelihood-ratio measure (it’s false for some other choices of measure as well). This sort
of “approximation fallacy” has appeared in various forms in the literature (we know of several other recent
examples). But, to our knowledge, it has received almost no attention. In general, one must be very careful
about using such “approximate” reasoning in non-linear spaces such as Kolmogorov probability models.

8



Eells, E. and B. Fitelson (2002). Symmetries and asymmetries in evidential support.Philosoph-
ical Studies 107(2), 129–142.

Fitelson, B. (1999). The plurality of Bayesian measures of confirmation and the problem of
measure sensitivity.Philosophy of Science 66, S362–S378.

Fitelson, B. (2001). Studies in Bayesian Confirmation Theory. Ph. D. thesis, University of
Wisconsin–Madison (Philosophy).

Fitelson, B. (2002). Putting the irrelevance back into the problem of irrelevant conjunction.
Philosophy of Science 69(4), 611–622.

Good, I. (1960). The paradox of confirmation.The British Journal for the Philosophy of
Science 11(42), 145–149.

Howson, C. and P. Urbach (1993).Scientific Reasoning: The Bayesian Approach. La Salle:
Open Court.

Milne, P. (1996). log[p(h/eb)/p(h/b)] is the one true measure of confirmation.Philosophy of
Science 63, 21–26.

Sober, E. (2004). Likelihood, model selection, and the Duhem-Quine problem. To appear in the
Journal of Philosophy.

Strevens, M. (2001). The Bayesian treatment of auxiliary hypotheses.British Journal for the
Philosophy of Science 52(3), 515–537.

9


