
Comments on Jill North’s “Symmetry and Probability”

Branden Fitelson

July 31, 2006 @ BSPC

First, I’d like to thank Shieva, Ned, Andy, and the other organizers for putting together such a terrific
conference, and for allowing me to participate in my first BSPC. Second, I want to congratulate Jill
on a terrific paper. It’s been a real pleasure thinking about this stuff and discussing it with Jill.

Jill’s paper contains several distinct threads and arguments. I will focus only on what I see as
the main theses of the paper, which involve the justification or grounding of the microcanonical
probability distribution of classical statistical mechanics (MCD). I’ll begin by telling the “canonical”
story of the MCD (as I see it). Then I will discuss Jill’s proposal. I will describe one worry that I have
regarding her proposal, and I will offer a friendly amendment which seems to allay my worry.

Consider a finite, perfectly elastic box containing n perfectly elastic particles (“billiard balls”).
Assume the particles obey Newton’s laws, and are not being acted upon by any outside forces.
Assume further that the particles all have unit mass, they all start out with finite velocities, and that
the system (which I will call S) has been evolving for a very long time (i.e., that S is at “equilibrium”
in the sense that its macroscopic properties are time-invariant). Classical mechanics allows us (in
principle) to determine the precise trajectories for each of the particles (i.e., the micro-dynamics of
S). But, if the number of particles is very large (e.g., a gas), then the best we can practically hope
for are (i) predictions about macroscopic (i.e., thermodynamic) features of S, such as temperature,
pressure, etc., and (ii) statistical predictions about the state of the system S (or an ensemble of
systems S of which S is a member — see fn. 2). Our focus today is the latter, i.e., equilibrium
statistical mechanics for isolated systems (note: it can be used to calculate the former as “averages”).

Traditionally, this branch of statistical mechanics has the following set-up. First, we write-down
the “canonical” Hamiltonian phase space description of S. The traditional Hamiltonian phase space
H for S has 6n coordinates or dimensions: three canonical spatial coordinates p1, p2, p3, and three
conjugate momentum coordinates q1, q2, q3 for each of the n particles. Thus, the state of S (at a
time) can be represented as a 6n-vector (i.e., a point in the 6n-dimensional phase space H ), which
specifies numerical values for the six “canonically conjugate coordinates” for each of the n particles
of S. [I’ll say more about these “canonically conjugate coordinates” and how they relate to Newto-
nian position and momentum coordinates, below.] Our traditional Hamiltonian description plays
two roles. First, it allows us (in principle — via Hamilton’s equations) to characterize the Newtonian
trajectories of each of the n particles (i.e., S’s micro-dynamics). Second, it allows us to give the
traditional statistical description of S. If we put a uniform probability density ρ on the (Lebesgue1)
volume elements of our Hamiltonian phase space H , then this yields the traditional statistical de-
scription of S. Formally, we have the following standard recipe: Pr(s ∈ R) ∝

∫
R ρ dpdq.2 Informally,

according to the standard theory, the probability that the state s of S (in equilibrium) is in some
region R of Hamiltonian phase space H is proportional to the volume of R. In slogan form: “Assign
equal probability to (s falling in) regions of phase space with equal volume.” Why? Jill’s proposal:

This . . . gives us two reasons for [ρ]. (1) It yields empirically successful predictions. (2) It is uniform over
the structure required by the dynamics; it is the simplest, most natural distribution, given the dynamics
. . . [it] requires no further structure over and above the structure that is “already there” for the dynamics.

1Lebesgue 6n-integration over R is the standard measure of “volume” for R’s in H . Alternatives include (1) non-
standard measure theory (see fn. 4), and/or (2) “side length” rather than “volume” (as in van Fraassen’s cube example).

2The interpretation of Pr(·) is orthogonal to my remarks today, but (at least) a footnote on this is in order. Some
[3, 281–88] say Pr(·) attaches to an ensemble S of systems having the same energy as S. On this view, s is the state of
a “representative” member of S, and Pr(·) is a “measure of our ignorance of S’s precise initial state” (in some sense)
or a physical property of the ensemble S (e.g., a limiting frequency). Others [3, 288–93] say Pr(·) attaches to the token
system S, again, either as a “measure of ignorance of S’s initial state” (in some sense) or as a physical property of S.
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There is no real controversy about (1). I will take for granted the empirical adequacy of the
Pr(·) that results from “going uniform over (Lebesgue) volume elements of the traditional phase
space H ”. But, (2) is not as straightforward, and here is where I would like to offer a friendly
amendment. As it stands, the main problem I have with (2) is that there are many (prima fa-
cie) dynamically equivalent descriptions of S, which lead to different probability functions being
generated by “going uniform over volume elements of phase space”. For instance, instead of a
Hamiltonian description H (plus Hamilton’s equations of motion), we could have used a Newtonian
(a.k.a., Lagrangian) description N (plus Newton’s/Lagrange’s equations of motion). The Newto-
nian/Lagrangian approach uses classical position and momentum coordinates 〈x, y, z, ẋ, ẏ, ż〉 for
each particle rather than the “canonically conjugate coordinates” 〈p1, p2, p3, q1, q2, q3〉 of H . The
Hamiltonian “canonically conjugate coordinates” are related to the Newtonian position and momen-
tum coordinates by a non-measure-preserving (Legendre) transformation. As a result, a uniform
distribution ρ over (Lebesgue) volume elements of H will transform into a non-uniform distribu-
tion ρ′ over (Lebesgue) volume elements of N . Moreover, it has recently been shown [2] that there
are alternative (prima facie dynamically/thermodynamically equivalent) Hamiltonian descriptions
H ′ of S, which are “non-canonical” (i.e., H ′ is related to H by a non-measure-preserving transfor-
mation). Thus, if we take H ′ as “the structure required by the dynamics”, then generating Pr(·)
via the standard recipe will require a non-uniform ρ′′ over H ′’s volume elements. Because of this
ambiguity, it is unclear precisely what it means to say that Pr(·) results from a uniform underlying
density over “the structure required by the dynamics”. That is, the existence of such (prima fa-
cie dynamically equivalent) “non-canonical” descriptions suggests that some additional postulate is
needed here to single out the “canonical” Hamiltonian phase space description H as “the structure”
in the desired sense. This brings us to my friendly amendment. Consider the following desideratum,
which has both dynamical and probabilistic content and which is widely accepted in the literature.3

(†) The probability density ρ should be a conserved quantity of the dynamics.
[Rationale: the macroscopic properties of S are time-invariant, and ρ determines these as “averages”.]

It turns out that H is the only description D that is compatible with all three of the following:

(a) (Lebesgue4) phase volume of D is a conserved quantity of the dynamics of D.

(b) ρ is uniform over (Lebesgue) volume elements of D. [Note: (a) & (b) =⇒ (†).]

(c) Pr(s ∈ R) ∝
∫
R ρ dΓ is empirically adequate [where dΓ is a (Lebesgue) volume element of D].

In other words — assuming (†) — the only way to get an empirically adequate Pr(·) using the
standard recipe is by going uniform over the (Lebesgue) volume elements of HHH . Thus, I think (†)
bolster’s Jill’s approach. Indeed, given (†), I sympathize with almost everything in Jill’s paper.5
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3Here, I am indebted to Steve Leeds for helpful discussions about the theoretical role of (†) in this context.
4We could go non-Lebesgue for our underlying volume measure. E.g., we could use a non-standard measure theory,

and thereby ensure conservation of phase volume [(a)] in Newtonian space N [1, p. 58]. But, l will bracket this “non-
standard measure theory” option for 3 reasons: (i) it is beyond the scope of this commentary, (ii) it is weird, and (iii)
while it can allow N to satisfy (a) & (b), I think it can’t also ensure (c), and so it doesn’t ultimately “save” N anyway.
As for H ′, it can satisfy either (a) & (b) or (a) & (c), but not all three (and I think going non-Lebesgue won’t “save” H ′).

5Modulo a couple of minor qualms about Jill’s remarks on subjective probability and indifference (which don’t bear
on her central arguments), some puzzlement over her claim that there can be non-extreme physical probabilities in
deterministic worlds, and a nagging feeling that we still need some explanation of why the H + ρ combination works.
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