COMMENTS ON PRESTING'S "COMPUTABILITY AND NEWCOMB'S PROBLEM"

Branden Fitelson

Department of Philosophy San José State University

branden@fitelson.org http://fitelson.org/

fitelson.org Presented @ APA Pacific 03/28/03

Newcomb's Problem I

- What's *essential* to Newcomb's problem?
 - 1. You must choose between two particular acts: A_1 = you take just the opaque box; A_2 = you take both boxes, where the two states of nature are: S_1 = there's \$1M in the opaque box, S_2 = there's \$0 in the opaque box.
 - 2. Your choice of A_i is causally irrelevant to S_i , since the contents of the opaque box (S_i) are determined before you choose A_i .
 - 3. A_2 dominates A_1 . That is, $(\forall i)[u(S_i \& A_2) > u(S_i \& A_1)]$. Here, u is your utility function over outcomes (assume u is linear in \$, for simplicity).
 - 4. The evidential expected utility of A_1 is greater than the evidential expected utility of A_2 : $\sum_{i} \Pr(S_i/A_1) \cdot u(A_1 \& S_i) > \sum_{i} \Pr(S_i/A_2) \cdot u(A_2 \& S_i)$.
- Note: (2) and (3) entail that the Principle of Dominance (POD) applies and prescribes act A_2 as the rational act. If (2) fails, then (POD) need not apply.
- So, (PMEU) and (POD) seem to come into conflict in Newcomb's problem.

^aI follow Joyce in writing *evidential* probability as $Pr(\cdot,\cdot)$ and *causal* probability as $Pr(\cdot,\cdot)$.

fitelson.org Presented @ APA Pacific 03/28/03

Branden Fitelson

Branden Fitelson

Comments on Presting's "Computability and Newcomb's Problem"

Comments on Presting's "Computability and Newcomb's Problem"

Newcomb's Problem II

- Note: (1)–(4) entail that your act *confirms* the salient state of nature (but is causally irrelevant to it). That is, A_i is merely symptomatic of S_i .
- What is *inessential* to Newcomb's Problem?
 - 1. A_i verifies S_i (i.e., perfect evidential correlation between A_i and S_i). This is *not* part of the original statement of NP, and it is inessential to it.
 - 2. That there is a predictor of your choice whose reliability (and money placing habits) sets-up the evidential correlation between the A_i and the S_i . This is part of the original statement of NP, but it is inessential to it.
- What's crucial here is the *causal structure* of the problem. Presumably (a la Reichenbach), if (1)–(4) hold, then there is a common cause CC of A_i and S_i .

Branden Fitelson

fitelson.org

Presting's Problem I

- In Presting's Problem, you must choose a decision algorithm D_i , and your "opponent" (the predictor) must choose a prediction algorithm P_i .
- The pair $\langle D_i, P_i \rangle$ then determines which act A_i is performed (if any!), and which state of nature S_i obtains, where the states and acts are as above, in NP.
 - $-\langle D_i, P_i \rangle$ does not halt. [no outcome, \$0?]
 - $-\langle D_i, P_i \rangle$ halts, P_i predicts that D_i recommends A_1 , D_i recommends A_1 . $[S_1 \& A_1]$
 - $-\langle D_i, P_i \rangle$ halts, P_i predicts that D_i recommends A_1, D_i recommends A_2 . $[S_1 \& A_2]$
 - $-\langle D_i, P_i \rangle$ halts, P_i predicts that D_i recommends A_2 , D_i recommends A_1 . $[S_2 \& A_1]$
 - $-\langle D_i, P_i \rangle$ halts, P_i predicts that D_i recommends A_2 , D_i recommends A_2 . $[S_2 \& A_2]$
- Both "players" have common knowledge of the set-up of the "game", and also common knowledge of each other's rationality, etc.
- This is a rule-consequentialist version of the problem. Instead of choosing between two acts, we are choosing between \aleph_0 decision rules (algorithms).

fitelson.org Presented @ APA Pacific 03/28/03 Presented @ APA Pacific 03/28/03

Presting's Problem II

- Presting: there is no effective (general) way of determining the salient *utilities* $u(D_i \& P_i)$, since there is no effective way to determine if $\langle D_i, P_i \rangle$ halts.
- Questions: What are the evidential *probabilities* $Pr(P_j/D_i)$? Are the P_j and the D_i evidentially *correlated*? Note: assigning *equal* conditional probabilities to the P_j would violate countable additivity. We need a Pr-*model* here!
- And, how can this be a Newcomb Problem? Its causal structure seems to be:

- In Presting's Problem, your choice of decision algorithm D_i is *prior* to the determination of the state S_i .
- Moreover, it appears that your choice of D_i may be *causally positive* for S_i .
- Recall that in the NP, your choice of act A_i is after the salient state S_i is determined.

fitelson.org Presented @ APA Pacific 03/28/03

Presting's Problem III

- This does seem to be an (effectively) unsolvable problem in the *general* case.
- But, consider the following pair of *constant* (hence, *trivial*) *decision* algorithms: D_1 = take only the opaque box, and D_2 = take both boxes.
- Assuming that all prediction algorithms P_j can determine the behavior of *constant* (trivial) decision algorithms like these, we will have the following:

$$(\forall j)[u(P_j \& D_1) > u(P_j \& D_2)] \text{ (since $1M > $1K)}$$

- In other words, D_1 dominates D_2 . It seems quite clear that D_1 is to be *strictly preferred* to D_2 as a decision algorithm in Presting's Problem.^a
- While the two-box *act* is dominant over the one-box *act* in NP, the one-box (constant) *rule* is dominant over the two-box *rule* in Presting's Problem!

fitelson.org Presented @ APA Pacific 03/28/03

^aDoes (PDOM) *apply* here? After all, it seems that the D_i are *not* causally irrelevant to the S_i . This is true, but D_1 seems *causally positive* for S_1 , which makes the preference $D_1 > D_2$ even more clear!