Comments on Presting's "Computability and Newcomb’s Problem"

Branden Fitelson

Department of Philosophy
San José State University
branden@fitelson.org
http://fitelson.org/

Newcomb's Problem I

- What's essential to Newcomb's problem?

1. You must choose between two particular acts: $A_{1}=$ you take just the opaque box; $A_{2}=$ you take both boxes, where the two states of nature are: $S_{1}=$ there's $\$ 1 \mathrm{M}$ in the opaque box, $S_{2}=$ there's $\$ 0$ in the opaque box.
2. Your choice of A_{i} is causally irrelevant to S_{i}, since the contents of the opaque box $\left(S_{i}\right)$ are determined before you choose A_{i}.
3. A_{2} dominates A_{1}. That is, $(\forall i)\left[u\left(S_{i} \& A_{2}\right)>u\left(S_{i} \& A_{1}\right)\right]$. Here, u is your utility function over outcomes (assume u is linear in $\$$, for simplicity).
4. The evidential expected utility of A_{1} is greater than the evidential expected utility of $A_{2}: \sum_{i} \operatorname{Pr}\left(S_{i} / A_{1}\right) \cdot u\left(A_{1} \& S_{i}\right)>\sum_{i} \operatorname{Pr}\left(S_{i} / A_{2}\right) \cdot u\left(A_{2} \& S_{i}\right) .{ }^{\text {a }}$

- Note: (2) and (3) entail that the Principle of Dominance (POD) applies and prescribes act A_{2} as the rational act. If (2) fails, then (POD) need not apply.
- So, (PMEU) and (POD) seem to come into conflict in Newcomb's problem. ${ }^{\text {a }}$ I follow Joyce in writing evidential probability as $\operatorname{Pr}(\cdot / \cdot)$ and causal probability as $\operatorname{Pr}(\cdot \cdot \cdot)$.
fitelson.org
Presented @ APA Pacific
03/28/03

Newcomb's Problem II

- Note: (1)-(4) entail that your act confirms the salient state of nature (but is causally irrelevant to it). That is, A_{i} is merely symptomatic of S_{i}.
- What is inessential to Newcomb's Problem?

1. A_{i} verifies S_{i} (i.e., perfect evidential correlation between A_{i} and S_{i}). This is not part of the original statement of NP, and it is inessential to it.
2. That there is a predictor of your choice whose reliability (and money placing habits) sets-up the evidential correlation between the A_{i} and the S_{i}. This is part of the original statement of NP, but it is inessential to it.

- What's crucial here is the causal structure of the problem. Presumably (a la Reichenbach), if (1)-(4) hold, then there is a common cause $C C$ of A_{i} and S_{i}.

Presting's Problem II

- Presting: there is no effective (general) way of determining the salient utilities $u\left(D_{i} \& P_{j}\right)$, since there is no effective way to determine if $\left\langle D_{i}, P_{j}\right\rangle$ halts.
- Questions: What are the evidential probabilities $\operatorname{Pr}\left(P_{j} / D_{i}\right)$? Are the P_{j} and the D_{i} evidentially correlated? Note: assigning equal conditional probabilities to the P_{j} would violate countable additivity. We need a Pr-model here!
- And, how can this be a Newcomb Problem? Its causal structure seems to be:

- In Presting's Problem, your choice of decision algorithm D_{i} is prior to the determination of the state S_{i}.
- Moreover, it appears that your choice of D_{i} may be causally positive for S_{i}.
- Recall that in the NP, your choice of act A_{i} is after the salient state S_{i} is determined.

Presting's Problem III

- This does seem to be an (effectively) unsolvable problem in the general case.
- But, consider the following pair of constant (hence, trivial) decision algorithms: $D_{1}=$ take only the opaque box, and $D_{2}=$ take both boxes.
- Assuming that all prediction algorithms P_{j} can determine the behavior of constant (trivial) decision algorithms like these, we will have the following:

$$
(\forall j)\left[u\left(P_{j} \& D_{1}\right)>u\left(P_{j} \& D_{2}\right)\right](\text { since } \$ 1 \mathrm{M}>\$ 1 \mathrm{~K})
$$

- In other words, D_{1} dominates D_{2}. It seems quite clear that D_{1} is to be strictly preferred to D_{2} as a decision algorithm in Presting's Problem. ${ }^{\text {a }}$
- While the two-box act is dominant over the one-box act in NP, the one-box (constant) rule is dominant over the two-box rule in Presting's Problem!
${ }^{\text {a }}$ Does (PDOM) apply here? After all, it seems that the D_{i} are not causally irrelevant to the S_{i}. This is true, but D_{1} seems causally positive for S_{1}, which makes the preference $D_{1}>D_{2}$ even more clear!
fitelson.org

