



- HIV, and let *E* be a *positive* test result for HIV from a highly reliable test. Plausibly, in such cases, we could have both:
 - $Pr(H \mid E) > t$, for just about any threshold value *t*, but
 - Pr(H | E) < Pr(H), since *E* lowers the probability of *H*.
- So, if we adopt Carnap's c_f -explication, then we must say that *E* confirms *H* in such cases. But, in (*)-terms, this implies *E* provides some *positive evidential support for H*!
- I take it we don't want to say *that*. Intuitively, what we want to say here is that, while *H* is (still) *highly probable given E*, (nonetheless) *E* provides (strong!) evidence *against H*.
- Carnap [2] seems to appreciate this dissonance, when he concedes c_i is (in some settings) "more interesting" than c_f .
- Contemporary Bayesians would agree with this. They've since embraced a probabilistic relevance conception [13].

Branden Fitelson

Isaac Levi

 $c_f(H, E) = \Pr(H \mid E).$

 $c_i(H, E) = f[\Pr(H \mid E), \Pr(H)]$

Modern Bayesianism

Jim Joyce

fitelson.org

fitelson.org

The "Fallacy

 Bayesianism is based on the assumption that the degrees of belief (or credences) of rational agents are <i>probabilities</i>. Let Pr(<i>H</i>) be the degree of belief that a rational agent <i>a</i> assigns to <i>H</i> at some time <i>t</i> (call this <i>a</i>'s "prior" for <i>H</i>). Let Pr(<i>H</i> <i>E</i>) be the degree of belief that <i>a</i> would assign to <i>H</i> (just after <i>t</i>) were <i>a</i> to learn <i>E</i> at <i>t</i> (<i>a</i>'s "posterior" for <i>H</i>). Toy Example: Let <i>H</i> be the proposition that a card sampled from some deck is a ♠, and <i>E</i> assert that the card is black. Making the standard assumptions about sampling from 52-card decks, Pr(<i>H</i>) = ¹/₄ and Pr(<i>H</i> <i>E</i>) = ¹/₂. So, learning that <i>E raises the probability</i> one (rationally) assigns to <i>H</i>. Following Popper [12], Bayesians define confirmation in a way that is <i>formally</i> very similar to Carnap's <i>c_i</i>-explication. For Bayesians, <i>E</i> confirms <i>H</i> for an agent <i>a</i> at a time <i>t</i> iff Pr(<i>H</i> <i>E</i>) > Pr(<i>H</i>), where Pr captures <i>a</i>'s credences at <i>t</i>. While this is <i>formally</i> very similar to Carnap's <i>c_i</i>, it uses credences as opposed to "logical" probabilities [13], [6]. 	 When it comes to <i>quantitative</i> judgments, Bayesians use various <i>relevance measures</i> c of degree of confirmation. These are much like the candidate functions f we saw in connection with Carnapian c_i, but defined relative to subjective probabilities rather than "logical" probabilities. There are <i>many comparatively distinct</i> measures. See [5] and [17] for philosophical and psychological discussion. Once we choose a measure c(H, E) of the degree to which E confirms H, we can explicate comparative confirmation relations. <i>E.g., E</i> favors H₁ over H₂ iff c(H₁, E) > c(H₂, E). Note: Pr(H E) is a <i>bad</i> candidate for c(H, E) in this context. It implies "E favors H₁ over H₂," in some cases where E is negatively relevant to H₁ but positively relevant to H₂ [12]! In the context of comparative confirmation, there is ongoing philosophical/theoretical debate about the appropriate choice of c (<i>e.g.</i>, the Likelihoodism debate [7]). An account is <i>robust</i> if it does not depend on choice of c.
Branden Fitelson Probability, Confirmation, and the "Conjunction Fallacy" fitelson.org Overview Probability Hempel, Carnap & Popper 00000 Modern Bayesianism 000 The "Fallacy" References	Branden FiteIson Probability, Confirmation, and the "Conjunction Fallacy" fiteIson.org Overview Probability Hempel, Carnap & Popper Modern Bayesianism The "Fallacy" References
	 Tversky and Kahneman [19] discuss the following example, which was the first example of the "conjunction fallacy": (<i>E</i>) Linda is 31, single, outspoken and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice and she also participated in antinuclear demonstrations. Is it more probable, given <i>E</i>, that Linda is (<i>H</i>₁) a bank teller, or (<i>H</i>₁ and <i>H</i>₂) a bank teller <i>and</i> an active feminist? Most say "<i>H</i>₁ and <i>H</i>₂" is more probable (given <i>E</i>) than <i>H</i>₁. On its face, this violates comparative probability theory, since <i>X</i> ⊨ <i>Y</i> implies Pr(<i>X</i> <i>E</i>) ≤ Pr(<i>Y</i> <i>E</i>), and <i>H</i>₁ & <i>H</i>₂ ⊨ <i>H</i>₁. Experiments have been done to ensure subjects understand

Kahneman

Tversky

Modern Bayesianism

Probability, Confirmation, and the "Conjunction Fallacy"

fitelson.org

Branden Fitelson

" H_1 and H_2 " in the experiment as a *conjunction* $H_1 \& H_2$, and H_1 as a *conjunct* thereof (*not* as $H_1 \& \sim H_2$) [15, 16].

At the same time, the "fallacy" persists when people are queried about *betting odds* rather than *probabilities* [15, 1].
Comparative Bayesian confirmation can be helpful [11]. We're developing detailed accounts along these lines [4].

Modern Bayesianism

OverviewProbabilityHempel, Carnap & PopperModern BayesianismThe "Fallacy"References0000000000000000	OverviewProbabilityHempel, Carnap & PopperModern BayesianismThe "Fallacy"References00000000000000000000000
 It is possible to have c(H₁ & H₂, E) > c(H₁, E) even though H₁ & H₂ ⊨ H₁. And, intuitively, this is true in the Linda case. As Tversky & Kahneman themselves [19] say: "feminist bank teller is a better hypothesis about Linda than bank teller". Comparative Bayesian confirmation theory can explain why: Theorem. For all Bayesian relevance measures c, if (i) c(H₂, E H₁) > 0 and (ii) c(H₁, E) ≤ 0, then c(H₁ & H₂, E) > c(H₁, E). Here, c(H₂, E H₁) is the degree to which E confirms H₂ (according to c) given that the agent already knows H₁. A logically weaker pair suffices for c(H₁ & H₂, E) > c(H₁, E). Here is a sharper theorem (based on the (WLL) in [9]): Theorem. For all Bayesian relevance measures c, if (i) Pr(E H₁ & ~H₂) < Pr(E H₁ & H₂) and (ii*) Pr(E H₁ & ~H₂) ≤ Pr(E ~H₁), then c(H₁ & H₂, E) > c(H₁, E) 	 The first inequality (i) has already been empirically well established in several traditional (Linda-like) CF cases [14]. Our (ii)/(ii*) have not been explicitly tested. But, we suspect these will obtain (empirically) in the the traditional CF cases. We are performing experiments to test the (i)/(ii) and (i)/(ii*) accounts of the traditional CF cases [4]. Preliminary results indicate that (ii) is commonly endorsed by subjects. Interestingly, many seem to judge (i) & (ii) as more plausible than (i) & (ii*) [(ii) vs (ii*)]. Do you? Note: (i) & (ii) ⊨ (ii*)! This suggests (i) & (ii) may provide a more robust explanation than (i) & (ii*) for traditional CFs (a <i>meta</i>-CF?). But, there are other (non-traditional) sorts of CF cases in which (ii)/(ii*) seem false, and (i) alone does not seem sufficient to predict all patterns of response (next slide). Even in this broader class of CFs, however, we think that <i>some</i> confirmation-theoretic conditions will be useful for predicting and explaining observed patterns of response.
then $c(H_1 \& H_2, E) > c(H_1, E)$.Branden FitelsonProbability, Confirmation, and the "Conjunction Fallacy"fitelson.org	predicting and explaining observed patterns of response.Branden FitelsonProbability, Confirmation, and the "Conjunction Fallacy"fitelson.org
OverviewProbabilityHempel, Carnap & Popper coccoModern Bayeslatism coccoThe "Fallacy" coccoReferences•Here is a non-traditional CF example: $E = John$ is Scandanavian; $H_1 = John$ has blue eyes; $H_2 = John$ has blond hair.•In this case, (i) seems plausible, but (ii)/(ii*) do not.•Moreover, it is not at all clear whether this is (<i>normatively</i>) a case in which we <i>should</i> have $c(H_1 \& H_2, E) > c(H_1, E)$.• <i>Descriptively</i> , we suspect confirmation-theoretic relations between H_1 and H_2 themselves may be involved in the CF.•Specifically, the terms $c(H_i, H_j)$ seem to be salient. We bet they are <i>explanatorily</i> relevant. There is some preliminary evidence which supports this conjecture [18].•Psychologically, we think there are two important sets of confirmation-theoretic factors involved in CF cases: • $c(H_1, H_2), c(H_2, H_1), c(H_1, H_2 E), c(H_2, H_1 E). [NT CF]•More general confirmation-theoretic models have recentlybeen developed which seem to subsume and explain allknown instances of the "conjunction fallacy" [18].$	Overview Probability Hempel, Carnap & Popper 0000 Modern Bayesianism 000 The "Fallacy" 0000 References 00000 [1] N. Bonini, K. Tentori and D. Osherson, (2004), "A different conjunction fallacy," <i>Mind & Lang.</i> [2] R. Carnap, (1962), <i>Logical foundations of probability</i> , 2nd ed., U. Chicago Press. [3]