Dempster-Shafer Functions as Metalinguistic Probability Functions Branden Fitelson Let \mathcal{L}_n be a sentential language with n atomic sentences $\{A_1, \ldots, A_n\}$. Let $S_n = \{s_1, \ldots, s_{2^n}\}$ be the set of 2^n state descriptions of \mathcal{L}_n , in the following, canonical lexicographical truth-table order: | A_1 | A_2 | | A_{n-1} | A_n | State Description | |-------|-------|---|-----------|-------|---| | Т | Т | Т | Т | Т | $s_1 = A_1 \& A_2 \& \cdots \& A_{n-1} \& A_n$ | | Т | Т | Т | Т | F | $s_1 = A_1 \& A_2 \& \cdots \& A_{n-1} \& \neg A_n$ | | Т | Т | Т | F | Т | $s_3 = A_1 \& A_2 \& \cdots \& \neg A_{n-1} \& A_n$ | | T | Т | Т | F | F | $s_4 = A_1 \& A_2 \& \cdots \& \neg A_{n-1} \& \neg A_n$ | | : | : | : | : | • | : | | F | F | F | F | F | $s_{2n} = \neg A_1 \& \neg A_2 \& \cdots \& \neg A_{n-1} \& \neg A_n$ | Also, let $\Gamma = \mathcal{P}(S_n) - \emptyset$ be the set of all non-empty subsets of state descriptions of \mathcal{L}_n . Note, $|\Gamma| = 2^n - 1$. And, let $\Sigma \in \Gamma$ be some (unspecified) element of Γ . Let \mathcal{L}_n be another sentential language with 2^n atoms $\{\mathcal{A}_1,\ldots,\mathcal{A}_{2^n}\}$. And, let $\{\mathfrak{s}_1,\ldots,\mathfrak{s}_{2^{2^n}}\}$ be the 2^{2^n} state descriptions of \mathcal{L}_n , again, in lexicographical truthtable order. Now, give the atomic sentences of \mathcal{L}_n the following metalinguistic (with respect to \mathcal{L}_n) interpretation. Interpret \mathcal{A}_i as asserting that $s_i \in \Sigma$, *i.e.*, that state description s_i of \mathcal{L}_n is in Σ (our unspecified subset of Γ). Hence, each state description \mathfrak{s}_i of \mathcal{L}_n gives a complete specification of the members of Σ . For instance, \mathfrak{s}_1 asserts that $\Sigma = \{s_1, s_2, \ldots, s_{2^n}\}$, \mathfrak{s}_2 asserts that $\Sigma = \{s_1, s_2, \ldots, s_{2^n-1}\}, \ldots, \mathfrak{s}_{2^{2^n}-1}$ asserts that $\Sigma = \{s_1, s_2, \ldots, s_{2^n}\}$, and $\mathfrak{s}_{2^{2^n}}$ asserts that $\Sigma = \emptyset$. Next, define a probability function $\Pr(\cdot)$ on \mathcal{L}_n , in terms of basic probabilities $m(\mathfrak{s}_i) = m_i$ assigned to the state descriptions of \mathcal{L}_n . Thus, for all $i, m_i \geq 0$, and $\sum_i m_i = 1$. And, imagine sampling a set Σ randomly from Γ , where the sampling process is governed by the basic probability distribution m_i . That is, for instance, the probability that $\Sigma = \{s_1\}$ is just $m_{2^{2^n}-1}$, which is the probability that $\mathfrak{s}_{2^{2^n}-1}$ is true (since $\Sigma = \{s_1\}$ is precisely what $\mathfrak{s}_{2^{2^n}-1}$ asserts!). Note: the probability that $\Sigma = \emptyset$ is zero, since (by assumption) Γ is the set of nonempty subsets of S_n . Hence, $m_{2^{2^n}} = 0$. Finally, such metalinguistic probabilistic random sampling models can be used to represent arbitrary Dempster-Shafer functions $Bel(\cdot)$ over \mathcal{L}_n . Let $\bigvee \Sigma$ be the disjunction of the elements of Σ . Then, (1) For all sentences $$p$$ of \mathcal{L}_n , $Bel(p) = \Pr(\bigvee \Sigma \vDash p)$. Where the m_i that define our metalinguistic probability function $\Pr(\cdot)$ are just the "basic probabilities" (or "mass terms") in Dempster's representation of $Bel(\cdot)$. This shows that Dempster-Shafer functions can be represented not only as sets of (object-linguistic) probability functions over \mathcal{L}_n , but also as individual (meta-linguistic) probability functions over \mathcal{L}_n . And, this representation is constructive and unique. For any language \mathcal{L}_n and any Dempster-Shafer function $Bel(\cdot)$ on \mathcal{L}_n , we can construct the corresponding "metalanguage" \mathcal{L}_n and probability function $\Pr(\cdot)$ over \mathcal{L}_n (plus Σ -sampling scheme) such that (1) holds. ¹It helps to expand the right-hand side of (1), as: $\Pr(\forall \Sigma \vDash p) = \sum_i \Pr(\forall \Sigma \vDash p \mid \mathfrak{s}_i) \cdot m_i$, where $i \in [1, 2^{2^n} - 1]$. In other words, $\Pr(\forall \Sigma \vDash p) = \sum_j m_j$, where $j \in [1, 2^{2^n} - 1]$ and $\mathfrak{s}_j \Rightarrow \forall \Sigma \vDash p$. Here, it is assumed that $\Pr(\cdot)$ assigns probability one (zero) to all metalogical truths (falsehoods).