Overview of Finite Propositional Boolean Algebras I

- Consider a logical language \mathcal{L} containing n atomic sentences. These may be sentence letters (X, Y, Z, etc.), or they may be atomic sentences of monadic or relational predicate calculus (Fa, Gb, Rab, Hcd, etc.).
- The Boolean Algebra $\mathcal{B}_{\mathcal{L}}$ set-up by such a language will be such that: - $\mathcal{B}_{\mathcal{L}}$ will have 2^{n} states (corresponding to the state descriptions of \mathcal{L})
- $\mathcal{B}_{\mathcal{L}}$ will contain $2^{2^{n}}$ propositions, in total.
* This is because each proposition p in $\mathcal{B}_{\mathcal{L}}$ is equivalent to a disjunction of state descriptions. Thus, each subset of the set of state descriptions of \mathcal{L} corresponds to a proposition of $\mathcal{B}_{\mathcal{L}}$.
* Note: there are $2^{2^{n}}$ subsets of a set of size 2^{n}.
. The empty set \varnothing of state descriptions corresponds to "the empty disjunction", which corresponds to the logical falsehood: \perp. Singelton sets of state descriptions correspond to "disjunctions with one member". [All other subsets are "normal" disjunctions.]

Overview of Finite Propositional Boolean Algebras II

- Example. Let \mathcal{L} have three atomic sentences: X, Y, and Z. Then, $\mathcal{B}_{\mathcal{L}}$ is:

X	Y	Z	States
T	T	T	s_{1}
T	T	F	s_{2}
T	F	T	s_{3}
T	F	F	s_{4}
F	T	T	s_{5}
F	T	F	s_{6}
F	F	T	s_{7}
F	F	F	s_{8}

- Examples of reduction to disjunctions of state descriptions of \mathcal{L} :
- ' $X \& \sim X$ ' is equivalent to the empty disjunction: \perp.
- ' $X \&(\sim Y \& Z)$ ' is equivalent to the singleton disjunction: s_{3}.
- ' $X \equiv(Y \vee Z)$ ' is equivalent to: $s_{1} \vee s_{2} \vee s_{3} \vee s_{8}$.
- In general: $p \neq \vDash \bigvee\left\{s_{i} \mid s_{i} \vDash p\right\}$. And, if $\left\{s_{i} \mid s_{i} \vDash p\right\}=\varnothing$, then $p \neq \vDash \perp$.

The Probability Calculus: An Algebraic Approach I

- Once we grasp the concept of a finite Boolean algebra of propositions, understanding the probability calculus algebraically is very easy.
- The central concept is a finite probability model. A finite probability model \mathcal{M} is a finite Boolean algebra of propositions \mathcal{B}, together with a function $\operatorname{Pr}(\cdot)$ which maps elements of \mathcal{B} to the unit interval $[0,1] \in \mathbb{R}$.
- This function $\operatorname{Pr}(\cdot)$ must be a probability function. It turns out that a probability function $\operatorname{Pr}(\cdot)$ on \mathcal{B} is just a function that assigns a real number on $[0,1]$ to each state s_{i} of \mathcal{B}, such that $\sum_{i} \operatorname{Pr}\left(s_{i}\right)=1$.
- Once we have $\operatorname{Pr}(\cdot)$'s basic assignments to the states of \mathcal{B} (s.d.'s of \mathcal{L}), we define $\operatorname{Pr}(p)$ for any statement \mathcal{L} of the language of \mathcal{B}, as follows:

$$
\operatorname{Pr}(p)=\sum_{s_{i} \vDash p} \operatorname{Pr}\left(s_{i}\right) \quad[\text { note: if } p \neq \vDash \perp \text {, then } \operatorname{Pr}(p)=0]
$$

- In other words, $\operatorname{Pr}(p)$ is the sum of the probabilities of the state descriptions in p 's (equivalent) disjunction of state descriptions.

The Probability Calculus: An Algebraic Approach II

- Here's an example of a finite probability model \mathcal{M}, whose algebra \mathcal{B} is characterized by a language \mathcal{L} with two atomic letters " X " and " Y ":

X	Y	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	s_{1}	$\frac{1}{6}$
T	F	s_{2}	$\frac{1}{4}$
F	T	s_{3}	$\frac{1}{8}$
F	F	s_{4}	$\frac{11}{24}$

- On the left, a stochastic truth-table (STT) representation of \mathcal{M}; on the right, a stochastic Venn Diagram (SVD) representation, in which area is proportional to probability. This is a regular model: $\operatorname{Pr}\left(s_{i}\right)>0$, for all i.
- \mathcal{M} determines a numerical probability for each p in \mathcal{L}. Examples?
- We can also use STTs to furnish an algebraic method for proving general facts about all probability models - the algebraic method.

The Probability Calculus: An Algebraic Approach III

- Let $a_{i}=\operatorname{Pr}\left(s_{i}\right)$ be the probability [under the probability assignment $\operatorname{Pr}(\cdot)]$ of state s_{i} in \mathcal{B} - i.e., the area of region s_{i} in our SVD.
- Once we have real variables $\left(a_{i}\right)$ for each of the basic probabilities, we can not only calculate probabilities relative to specific numerical models - we can say general things, using only simple high-school algebra.
- That is, we can translate any expression ${ }{ }^{\operatorname{Pr}}(p)^{\top}$ into a sum of some of the a_{i}, and thus we can reduce probabilistic claims about the p 's in $\mathcal{B} / \mathcal{L}$ into simple, high-school-algebraic claims about the real variables a_{i}.
- This allows us to be able to prove general claims about probability functions, by proving their corresponding algebraic theorems.
- Method: translate the probability claim into a claim involving sums of the a_{i}, and determine whether the corresponding claim is a theorem of algebra (assuming only that the a_{i} are on $[0,1]$ and that they sum to 1).

The Probability Calculus: An Algebraic Approach V

- Conditional Probability. $\operatorname{Pr}(p \mid q) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(p \& q)}{\operatorname{Pr}(q)}$, provided that $\operatorname{Pr}(q)>0$.
- Intuitively, $\operatorname{Pr}(p \mid q)$ is supposed to be the probability of p given that q is true. So, conditionalizing on q is like "supposing q to be true".
- Using Venn diagrams, we can explain: "Supposing Y to be true" is like "treating the Y-circle as if it is the bounding box of the Venn Diagram".
- This is like "moving to a new $\operatorname{Pr}^{*}(\cdot)$ such that $\operatorname{Pr}^{*}(Y)=1$." Picture:

The Probability Calculus: An Algebraic Approach IV

- Here are two simple/obvious examples involving two atomic sentences:

$$
\begin{aligned}
& \text { Theorem. } \operatorname{Pr}(X \vee Y)=\operatorname{Pr}(X)+\operatorname{Pr}(Y)-\operatorname{Pr}(X \& Y) \text {. } \\
& \text { Proof. } \operatorname{Pr}(X \vee Y)=a_{1}+a_{2}+a_{3}=\left(a_{1}+a_{2}\right)+\left(a_{1}+a_{3}\right)-a_{1} . \\
& \text { Theorem. } \operatorname{Pr}(X)=\operatorname{Pr}(X \& Y)+\operatorname{Pr}(X \& \sim Y) . \\
& \text { Proof. } a_{1}+a_{2}=a_{1}+a_{2} .
\end{aligned}
$$

- Here are two general facts that are also obvious from the set-up:

Theorem. If $p \neq \vDash$, then $\operatorname{Pr}(p)=\operatorname{Pr}(q)$.
Proof. Obvious, since the same regions always have the same areas, and the algebraic translation is the same for logically equivalent p / q.
Theorem. If $p \vDash q$, then $\operatorname{Pr}(p) \leq \operatorname{Pr}(q)$.
Proof. Since $p \vDash q$, the set of state descriptions entailing p is a subset of the set of state descriptions entailing q. Thus, the set of a_{i} in the summation for $\operatorname{Pr}(p)$ will be a subset of the a_{i} in the summation for $\operatorname{Pr}(q)$. Thus, since all the $a_{i} \geq 0, \operatorname{Pr}(p) \leq \operatorname{Pr}(q)$.

Branden Fitelson

The Probability Calculus: An Algebraic Approach VI

- There may be other ways of defining conditional probability, which may also seem to capture the "supposing q to be true" intuition.
- But, any such definition must make $\operatorname{Pr}(\cdot \mid q)$ itself a probability function, for all propositions q. This proves to be quite a strong constraint.
- Algebraically, we can see just how strong this constraint is. Recall:

$$
\operatorname{Pr}(X \vee Y)=\operatorname{Pr}(X)+\operatorname{Pr}(Y)-\operatorname{Pr}(X \& Y)
$$

- Therefore, if $\operatorname{Pr}(\cdot \mid q)$ is to be a probability function for all q, then we must also have the following equality (in general), for all Z :

$$
\operatorname{Pr}(X \vee Y \mid Z)=\operatorname{Pr}(X \mid Z)+\operatorname{Pr}(Y \mid Z)-\operatorname{Pr}(X \& Y \mid Z)
$$

- Using our algebraic method, we can prove this. We just need to remind ourselves of what the 3-atomic sentence algebra looks like, and how the algebraic translation of this equation would go. Let's do that ...

X	Y	Z	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	T	s_{1}	a_{1}
T	T	F	s_{2}	a_{2}
T	F	T	s_{3}	a_{3}
T	F	F	s_{4}	a_{4}
F	T	T	s_{5}	a_{5}
F	T	F	s_{6}	a_{6}
F	F	T	s_{7}	a_{7}
F	F	F	s_{8}	a_{8}

- By our definition of conditional probability, we have:

$$
\begin{aligned}
& \operatorname{Pr}(X \vee Y \mid Z)=\frac{\operatorname{Pr}((X \vee Y) \& Z)}{\operatorname{Pr}(Z)}=\frac{\operatorname{Pr}((X \& Z) \vee(Y \& Z))}{\operatorname{Pr}(Z)}=\frac{a_{1}+a_{3}+a_{5}}{a_{1}+a_{3}+a_{5}+a_{7}} \\
& \text { and } \\
& \begin{aligned}
\operatorname{Pr}(X \mid Z)+\operatorname{Pr}(Y \mid Z)-\operatorname{Pr}(X \& Y \mid Z) & =\frac{\operatorname{Pr}(X \& Z)}{\operatorname{Pr}(Z)}+\frac{\operatorname{Pr}(Y \& Z)}{\operatorname{Pr}(Z)}-\frac{\operatorname{Pr}(X \& Y \& Z)}{\operatorname{Pr}(Z)} \\
& =\frac{\operatorname{Pr}(X \& Z)+\operatorname{Pr}(Y \& Z)-\operatorname{Pr}(X \& Y \& Z)}{\operatorname{Pr}(Z)} \\
& =\frac{\left(a_{1}+a_{3}\right)+\left(a_{1}+a_{5}\right)-a_{1}}{a_{1}+a_{3}+a_{5}+a_{7}}=\frac{a_{1}+a_{3}+a_{5}}{a_{1}+a_{3}+a_{5}+a_{7}}
\end{aligned}
\end{aligned}
$$

The Probability Calculus: An Algebraic Approach VIII

- Here's a neat theorem of the probability calculus, proved algebraically.

Theorem. $\operatorname{Pr}(X \supset Y) \geq \operatorname{Pr}(Y \mid X)$. [Provided that $\operatorname{Pr}(X)>0$, of course.] Proof. $\operatorname{Pr}(X \supset Y)=\operatorname{Pr}(\sim X \vee Y)=\operatorname{Pr}\left(s_{1} \vee s_{3} \vee s_{4}\right)=a_{1}+a_{3}+a_{4}$. $\operatorname{Pr}(Y \mid X)=\frac{\operatorname{Pr}(Y \& X)}{\operatorname{Pr}(X)}=\frac{\operatorname{Pr}\left(s_{1}\right)}{\operatorname{Pr}\left(s_{1} \vee s_{2}\right)}=\frac{a_{1}}{a_{1}+a_{2}}$.
So, we need to prove that $a_{1}+a_{3}+a_{4} \geq \frac{a_{1}}{a_{1}+a_{2}}$.

- First, note that $a_{4}=1-\left(a_{1}+a_{2}+a_{3}\right)$, since the a_{i} 's must sum to 1 .
- Thus, we need to show that $a_{1}+a_{3}+1-a_{1}-a_{2}-a_{3} \geq \frac{a_{1}}{a_{1}+a_{2}}$.
- By simple algebra, this reduces to showing that $1-a_{2} \geq \frac{a_{1}}{a_{1}+a_{2}}$.
- If $a_{1}+a_{2}>0$ and $a_{i} \in[0,1]$, this must hold, since then we must have: $a_{2} \geq a_{2} \cdot\left(a_{1}+a_{2}\right)$, and then the boxed formulas are equivalent. \quad व

The Probability Calculus: An Algebraic Approach VII

- We can use our algebraic method to demonstrate that our definition of $\operatorname{Pr}(\cdot \mid q)$ yields a probability function, for all q, in the following way.
- Intuitively, think about what an "unconditional" and a "conditional" stochastic truth-table must look like, for any pair of sentences p and q.

p	q	$\operatorname{Pr}\left(s_{i}\right)$
T	T	a_{1}
T	F	a_{2}
F	T	a_{3}
F	F	a_{4}

$\cdot \mid q$

p	q	$\operatorname{Pr}\left(s_{i} \mid q\right)$
T	T	$\operatorname{Pr}\left(s_{1} \mid q\right) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}\left(s_{1} \& q\right)}{\operatorname{Pr}(q)}=\frac{a_{1}}{a_{1}+a_{3}}$
T	F	$\operatorname{Pr}\left(s_{2} \mid q\right) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}\left(s_{2} \& q\right)}{\operatorname{Pr}(q)}=0$
F	T	$\operatorname{Pr}\left(s_{3} \mid q\right) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}\left(s_{3} \& q\right)}{\operatorname{Pr}(q)}=\frac{a_{3}}{a_{1}+a_{3}}$
F	F	$\operatorname{Pr}\left(s_{4} \mid q\right) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}\left(s_{4} \& q\right)}{\operatorname{Pr}(q)}=0$

- Note: the new basic probabilities assigned to the state descriptions, under our "conditionalized" $\operatorname{Pr}(\cdot \mid q)$ satisfy the requirements for being a probability function, since $\frac{a_{1}}{a_{1}+a_{3}}+\frac{a_{3}}{a_{1}+a_{3}}=1$, and $\frac{a_{1}}{a_{1}+a_{3}}, \frac{a_{3}}{a_{1}+a_{3}} \in[0,1]$.

Branden Fitelson

The Probability Calculus: An Algebraic Approach IX

- Here are some further fundamental theorems of probability calculus, involving 2 or 3 atomic sentences and CP. Easy, given defn. of CP.
- The Law of Total Probability (LTP):

$$
\operatorname{Pr}(X \mid Y)=\operatorname{Pr}(X \mid Y \& Z) \cdot \operatorname{Pr}(Z \mid Y)+\operatorname{Pr}(X \mid Y \& \sim Z) \cdot \operatorname{Pr}(\sim Z \mid Y)
$$

- Note: $\operatorname{Pr}(X \mid T)=\operatorname{Pr}(X)$. Why? So, the LTP has a special case

$$
\begin{aligned}
\operatorname{Pr}(X \mid \mathrm{T})=\operatorname{Pr}(X) & =\operatorname{Pr}(X \mid \mathrm{T} \& Z) \cdot \operatorname{Pr}(Z \mid \mathrm{T})+\operatorname{Pr}(X \mid \mathrm{T} \& \sim Z) \cdot \operatorname{Pr}(\sim Z \mid \mathrm{T}) \\
& =\operatorname{Pr}(X \mid Z) \cdot \operatorname{Pr}(Z)+\operatorname{Pr}(X \mid \sim Z) \cdot \operatorname{Pr}(\sim Z)
\end{aligned}
$$

- Two forms of Bayes's Theorem. The second one follows, using (LTP):

$$
\begin{aligned}
\operatorname{Pr}(X \mid Y) & =\frac{\operatorname{Pr}(Y \mid X) \cdot \operatorname{Pr}(X)}{\operatorname{Pr}(Y)} \\
& =\frac{\operatorname{Pr}(Y \mid X) \cdot \operatorname{Pr}(X)}{\operatorname{Pr}(Y \mid Z) \cdot \operatorname{Pr}(Z)+\operatorname{Pr}(Y \mid \sim Z) \cdot \operatorname{Pr}(\sim Z)}
\end{aligned}
$$

- One more interesting theorem (due to Popper \& Miller), algebraically.
- Let $d(X, Y) \stackrel{\text { def }}{=} \operatorname{Pr}(X \mid Y)-\operatorname{Pr}(X)$. Then, we have the following theorem:

Theorem (PM). $d(X, Y)=d(X \vee Y, Y)+d(X \vee \sim Y, Y)$.
Proof (algebraic, using STT from X / Y language, above).

$$
\begin{aligned}
& d(X, Y) \stackrel{\text { def }}{=} \operatorname{Pr}(X \mid Y)-\operatorname{Pr}(X)=\frac{a_{1}}{a_{1}+a_{3}}-\left(a_{1}+a_{2}\right) \\
& d(X \vee Y, Y) \stackrel{\text { def }}{=} \operatorname{Pr}(X \vee Y \mid Y)-\operatorname{Pr}(X \vee Y)=1-a_{1}-a_{2}-a_{3} \\
& d(X \vee \sim Y, Y) \stackrel{\text { def }}{=} \operatorname{Pr}(X \vee \sim Y \mid Y)-\operatorname{Pr}(X \vee \sim Y)=\frac{a_{1}}{a_{1}+a_{3}}-\left(a_{1}+a_{2}+a_{4}\right) \\
& \therefore d(X \vee Y, Y)+d(X \vee \sim Y, Y)=1-a_{1}-a_{2}-a_{3}+\frac{a_{1}}{a_{1}+a_{3}}-a_{1}-a_{2}-a_{4} \\
& =\frac{a_{1}}{a_{1}+a_{3}}+1-a_{1}-a_{2}-a_{3}-a_{1}-a_{2}-\left(1-\left(a_{1}+a_{2}+a_{3}\right)\right) \\
& =\frac{a_{1}}{a_{1}+a_{3}}-\left(a_{1}+a_{2}\right) .
\end{aligned}
$$

The Probability Calculus: An Algebraic Approach XII

- There are decision procedures for Boolean propositional logic, based on truth-tables. These methods are exponential in the number of atomic sentences (n), because truth-tables grow exponentially in $n\left(2^{n}\right)$.
- It would be nice if there were a decision procedure for probability calculus, too. In algebraic terms, this would require a decision procedure for the salient fragment of high-school (real) algebra.
- As it turns out, high-school (real) algebra (HSA) is a decidable theory. This was shown by Tarski in the 1920's. But, it's only been very recently that computationally feasible procedures have been developed.
- In my "A Decision Procedure for Probability Calculus with Applications", I describe a user-friendly decision procedure (called PrSAT) for probability calculus, based on recent HSA procedures.
- My implementation is written in Mathematica (a general-purpose mathematics computer programming framework). It is freely downloadable from my website, at: http://fitelson.org/PrSAT/.

The Probability Calculus: An Algebraic Approach XI

- The algebraic approach for refuting general claims involves two steps: 1. Translate the claim from probability notation into algebraic terms.

2. Find a (numerical) probability model on which the translation is false.

- Show that $\operatorname{Pr}(X \mid Y \& Z)=\operatorname{Pr}(X \mid Y \vee Z)$ can be false. Here's a model \mathcal{M} :

X	Y	Z	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	T	s_{1}	$a_{1}=1 / 6$
T	T	F	s_{2}	$a_{2}=1 / 6$
T	F	T	s_{3}	$a_{3}=1 / 4$
T	F	F	s_{4}	$a_{4}=1 / 16$
F	T	T	s_{5}	$a_{5}=1 / 6$
F	T	F	s_{6}	$a_{6}=1 / 12$
F	F	T	s_{7}	$a_{7}=1 / 24$
F	F	F	s_{8}	$a_{8}=1 / 16$

(1) Algebraic Translation: $\frac{a_{1}}{a_{1}+a_{5}}=\frac{a_{1}+a_{2}+a_{3}}{a_{1}+a_{2}+a_{3}+a_{5}+a_{6}+a_{7}}$.
(2) This claim is false on \mathcal{M}, since $1 / 2 \neq 2 / 3$. I used PrSAT to find \mathcal{M}.

Rutgers Philosophy
PrSAT Tutorial (MCMP@LMU)
06/16/11
Branden Fitelson

The Probability Calculus: An Algebraic Approach XIII

- I encourage the use of PrSAT as a tool for finding counter-models and for establishing theorems of probability calculus. It is not a requirement of the course, but it is a useful tool that is worth learning.
- PrSAT doesn't give readable proofs of theorems. But, it will find concrete numerical counter-models for claims that are not theorems.
- PrSAT will also allow you to calculate probabilities that are determined by a given probability assignment. And, it will allow you to do algebraic and numerical "scratch work" without making errors.
- I have created a Mathematica notebook which contains some examples from algebraic probability calculus that we see in this lecture.
- Let's have a look at this first notebook (examples_lmu . nb). I will now go through the examples in this notebook, and demonstrate some of the features of PrSAT. I encourage you to play around with it.

Probabilistic Independence

Definition. p and q are probabilistically independent, given r $(p \Perp q \mid r)$ iff $\operatorname{Pr}(p \& q \mid r)=\operatorname{Pr}(p \mid r) \cdot \operatorname{Pr}(q \mid r)$. [Note: We will use ${ }^{\ulcorner } p \Perp q^{\top}$ as an abbreviation for ${ }^{\ulcorner } p \Perp q \mid T^{\top}$.]

- If $\operatorname{Pr}(p)>0$ and $\operatorname{Pr}(q)>0$, then $p \Perp q$ is equivalent to all of the following:
$* \operatorname{Pr}(p \mid q)=\operatorname{Pr}(p)$ [Why? Because this is just: $\frac{\operatorname{Pr}(p \& q)}{\operatorname{Pr}(q)}=\operatorname{Pr}(p)$]
* $\operatorname{Pr}(q \mid p)=\operatorname{Pr}(q)$ [ditto.]
* $\operatorname{Pr}(p \mid q)=\operatorname{Pr}(p \mid \sim q)$ [Not as obvious. See next slide.]
$* \operatorname{Pr}(q \mid p)=\operatorname{Pr}(q \mid \sim p)$ [ditto.]
- Closely related fact about independence. If $p \Perp q$, then we also must have: $p \Perp \sim q, q \Perp \sim p$, and $\sim p \Perp \sim q$. See next slide for algebraic set-up.
- A set of propositions $\mathbf{P}=\left\{p_{1}, \ldots p_{n}\right\}$ is mutually independent if all subsets $\left\{p_{i}, \ldots, p_{j}\right\} \subseteq \mathbf{P}$ are s.t. $\operatorname{Pr}\left(p_{i} \& \cdots \& p_{j}\right)=\operatorname{Pr}\left(p_{i}\right) \cdots \operatorname{Pr}\left(p_{j}\right)$. For sets with 2 propositions, pairwise independence is equivalent to mutual independence. But, not for 3 or more propositions. Example given below.

Rutgers Philosophy
PrSAT Tutorial (MCMP@LMU)
06/16/11

Branden Fitelson
19

- To wit: is it the case that if $\mathbf{P}=\left\{p_{1}, \ldots, p_{n}\right\}$ is a mutually independent set, then any β-functions of any two disjoint subsets of \mathbf{P} are independent?
- So far, we've seen a some proofs of true general claims about independence, correlation, etc. Now, for some counterexamples!
- As always, these are numerical probability models in which some claim fails. We have seen two false claims about \Perp already. Let's prove them.
- Theorem. Pairwise independence of a collection of three propositions $\{X, Y, Z\}$ does not entail mutual independence of the collection. That is to say, there exist probability models in which (1) $\operatorname{Pr}(X \& Y)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Y)$, (2) $\operatorname{Pr}(X \& Z)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Z)$, (3) $\operatorname{Pr}(Y \& Z)=\operatorname{Pr}(Y) \cdot \operatorname{Pr}(Z)$, but (4) $\operatorname{Pr}(X \& Y \& Z) \neq \operatorname{Pr}(X) \cdot \operatorname{Pr}(Y) \cdot \operatorname{Pr}(Z)$. Proof. Here's a counterexample.
- Suppose a box contains 4 tickets labelled with the following numbers:

$$
112,121,211,222
$$

Let us choose one ticket at random (i.e., each ticket has an equal probability of being chosen), and consider the following propositions:

p	q	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	s_{1}	a_{1}
T	F	s_{2}	a_{2}
F	T	s_{3}	a_{3}
F	F	s_{4}	$a_{4}=1-\left(a_{1}+a_{2}+a_{3}\right)$

$$
\begin{aligned}
\cdot \operatorname{Pr}(p \mid q)=\operatorname{Pr}(p \mid \sim q) & \Leftrightarrow \frac{a_{1}}{a_{1}+a_{3}}=\frac{a_{2}}{a_{2}+a_{4}}=\frac{a_{2}}{1-\left(a_{1}+a_{3}\right)} \\
& \Leftrightarrow a_{1} \cdot\left(1-\left(a_{1}+a_{3}\right)\right)=a_{2} \cdot\left(a_{1}+a_{3}\right) \\
& \Leftrightarrow a_{1}=a_{2} \cdot\left(a_{1}+a_{3}\right)+a_{1} \cdot\left(a_{1}+a_{3}\right)=\left(a_{2}+a_{1}\right) \cdot\left(a_{1}+a_{3}\right) \\
& \Leftrightarrow \operatorname{Pr}(p \& q)=\operatorname{Pr}(p) \cdot \operatorname{Pr}(q)
\end{aligned}
$$

- If p and q are independent, then so are p and $\sim q$. Prove this algebraically.
- More generally, if $\{p, q, r\}$ are mutually independent, then p is independent of any Boolean function β of q and r, e.g., $p \Perp q \vee r$.
- How might one prove this more general theorem? And, is there an even more general theorem to be proved here?

Rutgers Philosophy
PrSAT Tutorial (MCMP@LMU)
06/16/11
Branden Fitelson
$X=$ " 1 " occurs at the first place of the chosen ticket.
$Y=$ "1" occurs at the second place of the chosen ticket.
$Z=$ " 1 " occurs at the third place of the chosen ticket.
Since the ticket \#'s are 112, 121, 211, 222, we have these probabilities:

$$
\operatorname{Pr}(X)=\frac{1}{2}, \operatorname{Pr}(Y)=\frac{1}{2}, \operatorname{Pr}(Z)=\frac{1}{2}
$$

Moreover, each of the three conjunctions determines a unique ticket \#:
$X \& Y=$ the ticket is labeled \#112
$X \& Z=$ the ticket is labeled \#121
$Y \& Z=$ the ticket is labeled \#211
Therefore, since each ticket is equally probable to be chosen, we have:

$$
\operatorname{Pr}(X \& Y)=\operatorname{Pr}(X \& Z)=\operatorname{Pr}(Y \& Z)=\frac{1}{4}
$$

So, the three events X, Y, Z are pairwise independent (why?). But,
$X \& Y \& Z \nexists \vDash \perp$, since X, Y, and Z are jointly inconsistent.
Hence,
$\operatorname{Pr}(X \& Y \& Z)=\operatorname{Pr}(\mathrm{F})=1-\operatorname{Pr}(\mathrm{T})=0 \neq \operatorname{Pr}(X) \cdot \operatorname{Pr}(Y) \cdot \operatorname{Pr}(Z)=\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$

- This information determines a unique probability function. Can you specify it? Algebra (7 equations, 7 unknowns - see STT below).

$$
\begin{gathered}
\operatorname{Pr}(X)=a_{4}+a_{2}+a_{3}+a_{1}=\frac{1}{2}, \operatorname{Pr}(Y)=a_{2}+a_{6}+a_{1}+a_{5}=\frac{1}{2} \\
\operatorname{Pr}(Z)=a_{3}+a_{1}+a_{5}+a_{7}=\frac{1}{2}, \operatorname{Pr}(X \& Y \& Z)=a_{1}=0
\end{gathered}
$$

$\operatorname{Pr}(X \& Y)=a_{2}+a_{1}=\frac{1}{4}, \operatorname{Pr}(X \& Z)=a_{3}+a_{1}=\frac{1}{4}, \operatorname{Pr}(Y \& Z)=a_{1}+a_{5}=\frac{1}{4}$

- Here's the STT. [This (and other models) can be found with PrSAT.]

X	Y	Z	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	T	s_{1}	$\operatorname{Pr}\left(s_{1}\right)=a_{1}=0$
T	T	F	s_{2}	$\operatorname{Pr}\left(s_{2}\right)=a_{2}=1 / 4$
T	F	T	s_{3}	$\operatorname{Pr}\left(s_{3}\right)=a_{3}=1 / 4$
T	F	F	s_{4}	$\operatorname{Pr}\left(s_{4}\right)=a_{4}=0$
F	T	T	s_{5}	$\operatorname{Pr}\left(s_{5}\right)=a_{5}=1 / 4$
F	T	F	s_{6}	$\operatorname{Pr}\left(s_{6}\right)=a_{6}=0$
F	F	T	s_{7}	$\operatorname{Pr}\left(s_{7}\right)=a_{7}=0$
F	F	F	s_{8}	$\operatorname{Pr}\left(s_{8}\right)=a_{8}=1 / 4$

- Theorem. \Perp is not transitive. Example in which $\operatorname{Pr}(X \& Y)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Y)$, $\operatorname{Pr}(Y \& Z)=\operatorname{Pr}(Y) \cdot \operatorname{Pr}(Z)$, but $\operatorname{Pr}(X \& Z) \neq \operatorname{Pr}(X) \cdot \operatorname{Pr}(Z)[X \neq Y \neq Z]:$

Measures of Confirmation I

- As I mentioned in my previous lectures this week, we can define a notion of "support" or "confirmation" as probabilistic relevance.

Definition. E confirms H iff $\operatorname{Pr}(H \mid E)>\operatorname{Pr}(H)$. E disconfirms H iff $\operatorname{Pr}(H \mid E)<\operatorname{Pr}(H) . E$ is neutral/irrelevant to H iff $\operatorname{Pr}(H \mid E)=\operatorname{Pr}(H)$.

- Given this qualitative definition of "confirms", it is natural to think about quantitative measures of degree of confirmation.
- This involves adopting some function c of $\operatorname{Pr}(H \mid E)$ and $\operatorname{Pr}(H)$.
- We will use the notation $\mathfrak{c}(H, E)$ to denote the degree to which E confirms H, according to some function \mathfrak{c} of $\operatorname{Pr}(H \mid E)$ and $\operatorname{Pr}(H)$.
- We'll adopt the following convention about the range of $\mathfrak{c}(H, E)$:
$(\mathcal{R}) \quad \mathfrak{c}(H, E) \in \begin{cases}(0,1] & \text { if } \operatorname{Pr}(H \mid E)>\operatorname{Pr}(H), \\ \{0\} & \text { if } \operatorname{Pr}(H \mid E)=\operatorname{Pr}(H), \\ {[-1,0)} & \text { if } \operatorname{Pr}(H \mid E)<\operatorname{Pr}(H) .\end{cases}$

X	Y	Z	States	$\operatorname{Pr}\left(s_{i}\right)$
T	T	T	s_{1}	$\operatorname{Pr}\left(s_{1}\right)=a_{1}=3 / 32$
T	T	F	s_{2}	$\operatorname{Pr}\left(s_{2}\right)=a_{2}=9 / 32$
T	F	T	s_{3}	$\operatorname{Pr}\left(s_{3}\right)=a_{3}=3 / 32$
T	F	F	s_{4}	$\operatorname{Pr}\left(s_{4}\right)=a_{4}=9 / 32$
F	T	T	s_{5}	$\operatorname{Pr}\left(s_{5}\right)=a_{5}=2 / 32$
F	T	F	s_{6}	$\operatorname{Pr}\left(s_{6}\right)=a_{6}=2 / 32$
F	F	T	s_{7}	$\operatorname{Pr}\left(s_{7}\right)=a_{7}=2 / 32$
F	F	F	s_{8}	$\operatorname{Pr}\left(s_{8}\right)=a_{8}=2 / 32$

$\operatorname{Pr}(X \& Y)=a_{2}+a_{1}=\frac{3}{8}=\frac{3}{4} \cdot \frac{1}{2}$

$$
=\left(a_{4}+a_{2}+a_{3}+a_{1}\right) \cdot\left(a_{2}+a_{1}+a_{6}+a_{5}\right)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Y)
$$

$\operatorname{Pr}(Y \& Z)=a_{1}+a_{5}=\frac{5}{32}=\frac{1}{2} \cdot \frac{5}{16}$

$$
=\left(a_{2}+a_{1}+a_{6}+a_{5}\right) \cdot\left(a_{3}+a_{1}+a_{5}+a_{7}\right)=\operatorname{Pr}(Y) \cdot \operatorname{Pr}(Z)
$$

$\operatorname{Pr}(X \& Z)=a_{3}+a_{1}=\frac{3}{16} \neq \frac{3}{4} \cdot \frac{5}{16}$
$=\left(a_{4}+a_{2}+a_{3}+a_{1}\right) \cdot\left(a_{3}+a_{1}+a_{5}+a_{7}\right)=\operatorname{Pr}(X) \cdot \operatorname{Pr}(Z)$

Rutgers Philosophy
PrSAT Tutorial (MCMP@LMU)
06/16/11
Branden Fitelson

Measures of Confirmation II

- A large number of measures of confirmation have been proposed in the literature (in statistics, cognitive science, philosophy, etc.). Here are the four most popular measures (up to ordinal equivalence - see below):
- $d(H, E) \stackrel{\text { def }}{=} \operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)$
$-r(H, E) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(H \mid E)-\operatorname{Pr}(H)}{\operatorname{Pr}(H \mid E)+\operatorname{Pr}(H)} \doteq \frac{\operatorname{Pr}(H \mid E)}{\operatorname{Pr}(H)}$
$-l(H, E) \stackrel{\text { def }}{=} \frac{\operatorname{Pr}(E \mid H)-\operatorname{Pr}(E \mid \sim H)}{\operatorname{Pr}(E \mid H)+\operatorname{Pr}(E \mid \sim H)} \doteq \frac{\operatorname{Pr}(H \mid E) \cdot(1-\operatorname{Pr}(H))}{(1-\operatorname{Pr}(H \mid E)) \cdot \operatorname{Pr}(H)}$
$-s(H, E) \stackrel{\text { def }}{=} \operatorname{Pr}(H \mid E)-\operatorname{Pr}(H \mid \sim E)$
- If two measures \mathfrak{c}_{1} and \mathfrak{c}_{2} agree on all comparisons, then we say that \mathfrak{c}_{1} and \mathfrak{c}_{2} are ordinally equivalent $\left(\mathfrak{c}_{1} \doteq \mathfrak{c}_{2}\right)$. More precisely, we define:
$\mathfrak{c}_{1} \doteq \mathfrak{c}_{2} \xlongequal{\text { def }} \mathfrak{c}_{1}\left(H_{1}, E_{1}\right) \geq \mathfrak{c}_{1}\left(H_{2}, E_{2}\right)$ iff and only if $\mathfrak{c}_{2}\left(H_{1}, E_{1}\right) \geq \mathfrak{c}_{2}\left(H_{2}, E_{2}\right)$
- Exercises: (i) prove that $\{d, r, l, s\}$ all satisfy (\mathcal{R}), and (ii) prove the two "三" claims about r and l, above. Hint. Use $\frac{x-y}{x+y}=\tanh \left[\frac{1}{2} \log \left(\frac{x}{y}\right)\right]$.

Measures of Confirmation III

- Fact. No two of $\{d, r, l, s\}$ are ordinally equivalent. [Use PrSAT!]
- This ordinal disagreement between the most popular measures is what I have called "the plurality of Bayesian measures of confirmation".
- This was the topic of my dissertation [link on my mathcamp webpage].
- Here are eight important properties of measures of confirmation:
(1) If $E \neq H_{1}$ and $E \not \neq H_{2}$, then $\mathfrak{c}\left(H_{1}, E\right) \geq \mathfrak{c}\left(H_{2}, E\right)$.
(2) If $\operatorname{Pr}\left(E \mid H_{1}\right)>\operatorname{Pr}\left(E \mid H_{2}\right)$, then $\mathfrak{c}\left(H_{1}, E\right)>\mathfrak{c}\left(H_{2}, E\right)$.
(3) If $\operatorname{Pr}\left(H \mid E_{1}\right)>\operatorname{Pr}\left(H \mid E_{2}\right)$, then $\mathfrak{c}\left(H, E_{1}\right)>\mathfrak{c}\left(H, E_{2}\right)$.
(4) $\mathfrak{c}(H, E)=\mathfrak{c}(E, H)$.
(5) $\mathfrak{c}(H, E)=-\mathfrak{c}(H, \sim E)$.
(6) $\mathfrak{c}(H, E)=-\mathfrak{c}(\sim H, E)$.
(7) If $H \vDash E$, then $\mathfrak{c}(H, E)>\mathfrak{c}(H \& X, E)$, for any X.
(8) If $\operatorname{Pr}\left(E \mid H_{1}\right)>\operatorname{Pr}\left(E \mid H_{2}\right) \& \operatorname{Pr}\left(E \mid \sim H_{1}\right) \leq \operatorname{Pr}\left(E \mid \sim H_{2}\right)$, then $\mathfrak{c}\left(H_{1}, E\right)>\mathfrak{c}\left(H_{2}, E\right)$.

								Measures of Confirmation IV							
	Does c-Measure have property?														
c-Measures	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)							
$d(H, E)$	No	No	Yes	No	No	Yes	Yes	Yes							
$r(H, E)$	No	Yes	Yes	Yes	No	No	No	Yes							
$l(H, E)$	Yes	No	Yes	No	No	Yes	Yes	Yes							
$s(H, E)$	No	No	No	No	Yes	Yes	Yes	Yes							

- One can settle these (and many other) questions using PrSAT.
- Property (8) is the property that underlies the robust theorem about the conjunction fallacy that I discussed at the end of yesterday's lecture. [It's one of very few robust properties one finds in the literature.]
- Exercise. (iii) Define a relatively simple (\mathcal{R})-measure that violates (8).
- Hint. Try $\operatorname{Pr}(H \mid E)^{n}-\operatorname{Pr}(H)^{n}$ for (any) $n>1$. See:
http://fitelson.org/crupi.pdf

