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e Consider a logical language L containing n atomic sentences. These

of monadic or relational predicate calculus (Fa, Gb, Rab, Hcd, etc.).

= The Boolean Algebra B, set-up by such a language will be such that:

- B will contain 22" propositions, in total.

[This is because each proposition p in B is equivalent to a
disjunction of state descriptions. Thus, each subset of the set of
state descriptions of L corresponds to a proposition of B, .

[Note: there are 22" subsets of a set of size 2.

disjunction”, which corresponds to the logical falsehood: [1

N

/ Overview of Finite Propositional Boolean Algebras | I \

may be sentence letters (X, Y, Z, etc.), or they may be atomic sentences

- B will have 2" states (corresponding to the state descriptions of L)

- The empty set [oflstate descriptions corresponds to “the empty

- Singelton sets of state descriptions correspond to “disjunctions
with one member”. [All other subsets are “normal” disjunctionsy
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understanding the probability calculus algebraically is very easy.

= The central concept is a finite probability model. A finite probability

= This function Pr(-) must be a probability function. It turns out that a
probability function Pr(-) on B is just a function that assigns a real
number on [0, 1] to each state s; of B, such that Zj Pr(s;) = 1.

= Once we have Pr(-)’s basic assignments to the states of B (s.d.’s of L),
we define Pr(p) for any statement L of the language of B, as follows:

1
Pr(si)
si [p

Pr(p) = [note: if p [T Ithen Pr(p) = O]

= In other words, Pr(p) is the sum of the probabilities of the state
\ descriptions in p’s (equivalent) disjunction of state descriptions.

/ The Probability Calculus: An Algebraic Approach | I \

= Once we grasp the concept of a finite Boolean algebra of propositions,

model M is a finite Boolean algebra of propositions B, together with a
function Pr(-) which maps elements of B to the unit interval [0,1] [RI

J
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K Overview of Finite Propositional Boolean Algebras Il I \

e Example. Let L have three atomic sentences: X, Y, and Z. Then, B is:

X | Y | Z | states

TIT[T s1 X
T[T|F S2 S
TIF[T S3 ‘
T[FI|F S4

FITI]T S5 qp
FITI]F S6 v
FIF]T s7

FIFT]F sg Y z

= Examples of reduction to disjunctions of state descriptions of L:
- ‘X & [Xis equivalent to the empty disjunction: L1
- ‘X & (YR Z)’ is equivalent to the singleton disjunction: ss.
- ‘X = (Y [Z) is equivalent to: s; [SJl [S3l [Sgl
K. In general: p EEEII{:siI|si [p}. And, if {sj|si [Cp} = [ 10enp EEIDiI/
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/ The Probability Calculus: An Algebraic Approach Il I \

= Here’s an example of a finite probability model M, whose algebra B is
characterized by a language L with two atomic letters “X” and “Y”:

X |'Y || States | Pr(si)
X Y
T|T s1 2
1 The area of the box
T|F S2 2 is1, since Pr(T) = 1.
F T S3 2
F|F S4 = Sy

= On the left, a stochastic truth-table (STT) representation of M; on the
right, a stochastic Venn Diagram (SVD) representation, in which area is
proportional to probability. This is a regular model: Pr(s;j) > O, for all i.

< M determines a numerical probability for each p in L. Examples?

= We can also use STTs to furnish an algebraic method for proving
\ general facts about all probability models — the algebraic method. /
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The Probability Calculus: An Algebraic Approach Il I \

Let a; = Pr(sj) be the probability [under the probability assignment
Pr(-)] of state s; in B — i.e., the area of region s; in our SVD.

Once we have real variables (a;j) for each of the basic probabilities, we
can not only calculate probabilities relative to specific numerical models
— we can say general things, using only simple high-school algebra.

That is, we can translate any expression [Pr(p) Cihto a sum of some of
the a;, and thus we can reduce probabilistic claims about the p’s in B/L
into simple, high-school-algebraic claims about the real variables a;.

This allows us to be able to prove general claims about probability
functions, by proving their corresponding algebraic theorems.

Method: translate the probability claim into a claim involving sums of
the a;, and determine whether the corresponding claim is a theorem of

algebra (assuming only that the a; are on [0, 1] and that they sum to 1y
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The Probability Calculus: An Algebraic Approach VI \

Conditional Probability. Pr(p | q) F(f(j)q), provided that Pr(q) > O.

Intuitively, Pr(p | q) is supposed to be the probability of p given that q
is true. So, conditionalizing on q is like “supposing g to be true”.

Using Venn diagrams, we can explain: “Supposing Y to be true” is like
“treating the Y -circle as if it is the bounding box of the Venn Diagram”.

This is like “moving to a new Pr (") such that Pr¢¥) = 1.” Picture:
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f The Probability Calculus: An Algebraic Approach IVI \

T
b \ YT
PrePr
Pr(X) x | Pr(X) = Pr(X|Y)
_ Pr(X&Y)
- Py y
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= Here are two simple/obvious examples involving two atomic sentences:
Theorem. Pr(X [Y) =Pr(X) +Pr(Y) —Pr(X &Y).
Proof. Pr(X [YJ) =a; +az +az = (a1 +ap) + (a1 + ag) —az.
Theorem. Pr(X) =Pr(X &Y) +Pr(X & [YJL
Proof. a; + a; = a; + as.
< Here are two general facts that are also obvious from the set-up:

Theorem. If p CIflthen Pr(p) = Pr(q).
Proof. Obvious, since the same regions always have the same areas,
and the algebraic translation is the same for logically equivalent p/q.
Theorem. If p [Cg]then Pr(p) < Pr(q).
Proof. Since p [Cqlthe set of state descriptions entailing p is a
subset of the set of state descriptions entailing q. Thus, the set of a;
in the summation for Pr(p) will be a subset of the a; in the
/

Rutgers Philosophy

summation for Pr(q). Thus, since all the a; = 0, Pr(p) < Pr(q).
06/16/11
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/ The Probability Calculus: An Algebraic Approach VI I \

= There may be other ways of defining conditional probability, which may
also seem to capture the “supposing g to be true” intuition.

= But, any such definition must make Pr(- | q) itself a probability function,
for all propositions g. This proves to be quite a strong constraint.

= Algebraically, we can see just how strong this constraint is. Recall:
Pr(X CY) =Pr(X) +Pr(Y) —Pr(X &Y).
= Therefore, if Pr(- | q) is to be a probability function for all g, then we
must also have the following equality (in general), for all Z:
Pr(X Y] Z) =Pr(X|Z) +Pr(Y |Z) —Pr(X &Y | 2).
= Using our algebraic method, we can prove this. We just need to remind
ourselves of what the 3-atomic sentence algebra looks like, and how the

/

algebraic translation of this equation would go. Let’s do that ...
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X|ly|z

T T T S1 a X
T|TI|F s2 as 53
T F T S3 as ‘

T F F Sa ay vv

F T T S as °

F | T]|F Se ag v

F F T S7 ay

F F F Sg ag Y Z

= By our definition of conditional probability, we have:

_Pr(X[X)&Z) Pr((X&z2)[CM&Z)) a+az+as
Frix 2) = Pr(Z) B Pr(Z) Cartaztas+ay
and
Pr(X | Z) + Pr(Y | Z) — Pr(X&Y | Z) = Prg:é‘)z) + Pré:é‘)z) - Pr(xpf‘(;)&z)
_ Pr(X&Z)+Pr(Y &Z) —Pr(X &Y &Z)
N Pr(2)

_(ap+az)+(ar+as)—a; _

a; +azt+as

| states | Pr(si) \

k a; +azt+as+ar

PrSAT Tutorial (MCMP@LMU)

a1+a3+a5+ay
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/ The Probability Calculus: An Algebraic Approach VIII I \

= Here’s a neat theorem of the probability calculus, proved algebraically.

Theorem. Pr(X YD = Pr(Y | X). [Provided that Pr(X) > 0, of course.]

Proof. Pr(X YD) =Pr(XILY) =Pr(s1 [Sal [S4) =a; +az +ay.
Pr(y &X)  Pr(s1) _ a1

Pr(Y | X) = = = .
(10 Pr(X) Pr(s1 [S2) a3 +az
a
So, we need to prove that |a; +az + a4 = =t
a; +ap

First, note that a4, = 1 — (a1 + a2 + a3), since the aj’s must sum to 1.

a
e Thus, we need to show thata; +az+1—a; —a —az = =
a; +az
. . . a
« By simple algebra, this reduces to showing that|1 —a, = =t
a; +ap

e If a; +a; > 0 and a; []Q, 1], this must hold, since then we must have:
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f The Probability Calculus: An Algebraic Approach VII I \

< We can use our algebraic method to demonstrate that our definition of
Pr(- | q) yields a probability function, for all g, in the following way.

= Intuitively, think about what an “unconditional” and a “conditional”
stochastic truth-table must look like, for any pair of sentences p and q.

p|q| Prisi) P1d el

1] a T | T | Pr(ssq) CEED = 2
el & ﬁ—» T|F Pr(sz|q) s =0
. 2 F | T/ Pr(ss|q) 'ﬂ%)q) = aivas
c el a FIF| Pr(salg) OS2 =

< Note: the new basic probabilities assigned to the state descriptions,
under our “conditionalized” Pr( |a) satisfy the requirements for being

K a probability function, since 51—+ %3~ =1, and 91, ;8- [0, 1/
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/ The Probability Calculus: An Algebraic Approach IXI \

= Here are some further fundamental theorems of probability calculus,
involving 2 or 3 atomic sentences and CP. Easy, given defn. of CP.

— The Law of Total Probability (LTP):

Pr(X 1Y) =Pr(X|Y &Z) -Pr(Z|Y)+Pr(X|Y & - Pr(CZ]Y)
- Note: Pr(X | D= Pr(X). Why? So, the LTP has a special case:
Pr(X| D= Pr(X) =Pr(X| C&E) - Pr(Z | D= Pr(X | C&IC) - Pr( ] O
=Pr(X|2)-Pr(Z)+Pr(X| Z)-Pr(C)
— Two forms of Bayes’s Theorem. The second one follows, using (LTP):

Pr(Y | X) - Pr(X)
Pr(Y)
Pr(Y | X) - Pr(X)

Pr(X1Y)

\ ’ a=ay - (a1 +ay) ‘ and then the boxed formulas are equivalent. E]j
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K Pr(Y |Z) - Pr(Z2) + Pr(Y | L2 - Pr(C2) J
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/ The Probability Calculus: An Algebraic Approach XI \

* One more interesting theorem (due to Popper & Miller), algebraically.

e Letd(X,Y) CPA(X |Y) —Pr(X). Then, we have the following theorem:
Theorem (PM). d(X,Y) = d(X CYJY) +d(X CILXIY).
Proof (algebraic, using STT from X/Y language, above).

ai
a; +as

d(X CYJY) CPA(X YY) —Pr(X [Y) =1—a; —a, — as

d(X CIYY) CPA(X CIY]Y)—Pr(X [IY) = — o —(a; +ay+au)

d(X,Y) CPA(X|Y) —Pr(X) = — (a1 +ay)

a; +as
a
EIX mY)+d(X EIIIY)=1—a1—a2—a3+ 1 —a;—azx—au
a; +as
=& +l—-a;—a—az—a;—a—(1— (a1 +az +az))
- _ . —dl T a2 T dz T Adl T dz — - 1 2 3
a; +as
a;
= — (al + az). O
K a; +as
Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11
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/ The Probability Calculus: An Algebraic Approach XIlli I \

= There are decision procedures for Boolean propositional logic, based on
truth-tables. These methods are exponential in the number of atomic
sentences (n), because truth-tables grow exponentially in n (2").

< It would be nice if there were a decision procedure for probability
calculus, too. In algebraic terms, this would require a decision
procedure for the salient fragment of high-school (real) algebra.

e As it turns out, high-school (real) algebra (HSA) is a decidable theory.
This was shown by Tarski in the 1920’s. But, it's only been very recently
that computationally feasible procedures have been developed.

= In my “A Decision Procedure for Probability Calculus with
Applications”, | describe a user-friendly decision procedure (called
PrSAT) for probability calculus, based on recent HSA procedures.

< My implementation is written in Mathematica (a general-purpose

mathematics computer programming framework). It is freely
\ downloadable from my website, at: http://fitelson-org/PrSAT/.j
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f The Probability Calculus: An Algebraic Approach Xl I \

= The algebraic approach for refuting general claims involves two steps:

1. Translate the claim from probability notation into algebraic terms.
2. Find a (numerical) probability model on which the translation is false.
e Show that Pr(X |Y &2Z) =Pr(X|Y [Z) can be false. Here’s a model M:
X |Y |Z]| States | Pr(si)
T[T[T s1 a; = 1/6 X

Ss
So a, =1/6 ‘

S3 az = 174
sa | as=1/16 vv

Sg as = 1/6 A

Se ag = 1/12 v

S7 ay = 1/24 Y Z
Sg ag = 1/16

. . ai a;t+ap+as
(1) Algebraic Translation: = .
a; +as a; +ap t+taz+as +ag+ar

M| -

MM
B e e B B e A B

\(2) This claim is false on M, since 1/2 # 2/3. | used PrSAT to find M. /
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/ The Probability Calculus: An Algebraic Approach Xlli I \

| encourage the use of PrSAT as a tool for finding counter-models and
for establishing theorems of probability calculus. It is not a
requirement of the course, but it is a useful tool that is worth learning.

 PrSAT doesn’t give readable proofs of theorems. But, it will find
concrete numerical counter-models for claims that are not theorems.

« PrSAT will also allow you to calculate probabilities that are
determined by a given probability assignment. And, it will allow you to
do algebraic and numerical “scratch work” without making errors.

= | have created a Mathematica notebook which contains some examples
from algebraic probability calculus that we see in this lecture.

* Let’s have a look at this first notebook (examples_ Imu.nb). I will
now go through the examples in this notebook, and demonstrate some
\ of the features of PrSAT. | encourage you to play around with it. /
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K Probabilistic Independence I \ / ‘

P|a H States ‘ Pr(si)

T T S1 ai
Definition. p and q are probabilistically independent, given r Tl E . a
PLglniCPH(p&g|r)=Pr(p|r)-Pr(gq]r). [Note: We will use 2 2
[pl 1L q[&s an abbreviation for [pl i g | (] FLT 3 az

FlF S4 as=1—(a; +ax+as)

e If Pr(p) > 0 and Pr(q) > 0, then p 1 q is equivalent to all of the following:
CPr(p | q) = Pr(p) [Why? Because this is just: "“P&D = pr(p)] CPi(p ) = Pr(p | [G) L —F2— = — 2 = =
e T Pr(@) a; +az a, +ay 1— (a1 +az)
Pr(g | p) = Pr(q) [ditto.]

Pr(p|qg) =Pr(p| L[N bvi S lide.] O
pP19) =Pr(p ot as obvious. See next slide. ) . = -
[Pr(q|p) = Pr(g| p)[ditto.] CaFay - (an+ag)+ar-(aun+ag) = (az+ai) - (ar + ag)

[Prp &q) =Pr(p) -Pr(q) O
= Closely related fact about independence. If p L g, then we also must if d ind dent. th d P this algebraicall
have: p L [gdg L [pJJand [plL [gSee next slide for algebraic set-up. P and q are independent, then so are p and Lq.lProve this algebraically.

= More generally, if {p, q, r} are mutually independent, then p is
independent of any Boolean function B ofqand r,e.g., p L q [Tl

= A set of propositions P = {p1,...pn} is mutually independent if all
subsets {pi,...,pj} [(Phres.t. Pr(pi&- - -&pj) =Pr(pi)----- Pr(pj). For
sets with 2 propositions, pairwise independence is equivalent to mutual < How might one prove this more general theorem? And, is there an even
\ independence. But, not for 3 or more propositions. Example given beIOWJ K more general theorem to be proved here?

Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11 Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11
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K- To wit: is it the case that if P = {p1,...,pn} is a mutually independent \ / X =“1” occurs at the first place of the chosen ticket. \

set, then any B-functions of any two disjoint subsets of P are independent? Y =“1” occurs at the second place of the chosen ticket.

, . Z =*“1” occurs at the third place of the chosen ticket.
« So far, we've seen a some proofs of true general claims about

independence, correlation, etc. Now, for some counterexamples! Since the ticket #'s are 112, 121, 211, 222, we have these probabilities:

=1 =1 =1
= As always, these are numerical probability models in which some claim Pré) =3, Pr(¥) = 3, Pr(2) =3

fails. We have seen two false claims about 1 already. Let’s prove them. Moreover, each of the three conjunctions determines a unique ticket #:
X &Y = the ticket is labeled #112
X & Z = the ticket is labeled #121
Y & Z = the ticket is labeled #211

= Theorem. Pairwise independence of a collection of three propositions
{X,Y,Z} does not entail mutual independence of the collection. That is to
say, there exist probability models in which (1) Pr(X & Y) = Pr(X) - Pr(Y),

(2) Pr(X &Z) = Pr(X) - Pr(2), (3) Pr(Y &Z) = Pr(Y) - Pr(Z), but (4) Therefore, since each ticket is equally probable to be chosen, we have:
, _ _ _1
Pr(X &Y &2Z) # Pr(X) - Pr(Y) - Pr(Z). Proof. Here’s a counterexample. Pr(X&Y)=Pr(X&ZzZ)=Pr(Y &Z) = 3
- Suppose a box contains 4 tickets labelled with the following numbers: So, the three events X, Y, Z are pairwise independent (why?). But,
112. 121. 211, 222 X &Y &Z [ITsInce X, Y, and Z are jointly inconsistent.

Let us choose one ticket at random (i.e., each ticket has an equal Hence,

\ probability of being chosen), and consider the following propositions: / \ Pr(X &Y &Z) =Pr(F) =1 —Pr(T) =0 # Pr(X) - Pr(Y) - Pr(Z) = (5)° = é/
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specify it? Algebra (7 equations, 7 unknowns — see STT below).
Pr(X) =as+ap+ag+a; =3, Pr(Y) =ax+as+a; +as = 3
Pr(Z)=as+a;+as+a; =3, Pr(X&Y &Z)=a; =0
Pr(X&Y)=az+a1=3,Pr(X&Z)=az+a; =5, Pr(Y&Z)=a; +as = ;

« Here’s the STT. [This (and other models) can be found with PrSAT.]

X ‘ Y ‘ Z H States ‘ Pr(si)
T|T|T S1 Pr(si)=a; =0
T|T|F S2 Pr(sp) =a, =1/4
T FI|T S3 Pr(sz) =az; =1/4
T F F S4 Pr(sy)=a4 =0

F| T | T S5 Pr(ss) =as = 1/4
F|T|F S6 Pr(ss) =as =0

F F|T S7 Pr(s7)=a; =0

F F | F Sg Pr(sg) =ag =1/4

= Theorem. 1 is not transitive. Example in which Pr(X & Y) = Pr(X) - Pr(Y),

\ Pr(Y &Z) =Pr(Y) - Pr(Z), but Pr(X &Z) # Pr(X) - Pr(Z) [X #Y # Z]: J

Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11
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/ Measures of Confirmation | ' \

e As | mentioned in my previous lectures this week, we can define a
notion of “support” or “confirmation” as probabilistic relevance.
Definition. E confirms H i CP¥(H | E) > Pr(H). E disconfirms H i 1
Pr(H|E) <Pr(H). E is neutral/irrelevant to H i CPi(H | E) = Pr(H).

= Given this qualitative definition of “confirms”, it is natural to think
about quantitative measures of degree of confirmation.

= This involves adopting some function ¢ of Pr(H | E) and Pr(H).

= We will use the notation c(H, E) to denote the degree to which E
confirms H, according to some function ¢ of Pr(H | E) and Pr(H).

= We’'ll adopt the following convention about the range of ¢(H, E):
[ 1

% 1]  if Pr(H |E) > Pr(H),

K- This information determines a unique probability function. Can you \
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/ | states | Pr(si) \

mim|H|d|Tn|Tn|H] 4| <

Z

T S1 Pr(s;) =a; =3/32
F S2 Pr(s;) =a, =9/32
T S3 Pr(sz) = a3z =3/32
F S4 Pr(ss) = a4 =9/32
T

F

T

F

3

S5 Pr(ss) = as = 2/32
Sg Pr(ss) = as = 2/32
S7 Pr(s7) =a; =2/32
Sg Pr(sg) = ag =2/32

(Tl A|4] 44| X

3 1

PriX&Y)=a+ta1=5=—-"-

( )= tar=g =05
=(ast+az+ag+ay) - (az+ay+as+as) =Pr(X)-Pr(Y)

5 1 5

Pr(Y &Z)=ay+as=-—- ==+ —

a2y =a+as= =2 16
=(az+ar+as+ag)-(az+ar+as+ay) =Pr(Y) -Pr(2Z)

3 3 5

= —+ = — —_ . —

Pr(X&Z)=az+a; 16¢4 16

(R) ¢(H,E) if Pr(H | E) = Pr(H),
\ %)1 0) if Pr(H|E) < Pr(H). j

PrSAT Tutorial (MCMP@LMU)
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=(astaz+taz+ay) - (azg+a +as+ay) =Pr(X) - Pr(2)
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/ Measures of Confirmation 11 ' \

< A large number of measures of confirmation have been proposed in the
literature (in statistics, cognitive science, philosophy, etc.). Here are the
four most popular measures (up to ordinal equivalence — see below):

d(H,E) CPA(H |E) —Pr(H)

(H|E) —Pr(H) (H|E)
r(H.E) 'J—F%E(H |E) + Pr(H) I—_B"Il;’r(H)

(EIH) —Pr(E| TH) _Pr(H |E) - (1=Pr(H))
I(H.E) Iﬁ(E |H) +Pr(E| H) 1—Pr(H|E)) - Pr(H)

s(H,E) CPi(H [E) —Pr(H | LE)I

< |f two measures ¢; and ¢, agree on all comparisons, then we say that ¢
and c; are ordinally equivalent (c; [c2l). More precisely, we define:

c1 [ Ccal(Ha,E1) =c1(H2, Ep) iCahd only if c2(H1,E1) = c2(H2, E2)
= Exercises: (i) prove that {d, r, I, s} all satisfy (R), andii) preygthe two

X—

\ “[dlaims about r and I, above. Hint. Use ¥ = tanh %Iog x /

X+y Y

Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11
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/ Measures of Confirmation 111 I \

Fact. No two of {d, r, I, s} are ordinally equivalent. [Use PrSAT!]

This ordinal disagreement between the most popular measures is what |
have called “the plurality of Bayesian measures of confirmation”.

= This was the topic of my dissertation [link on my mathcamp webpage].

Here are eight important properties of measures of confirmation:
(1) If E CHy and E [CHb, then c(H1,E) = c(H2,E).

(2) If Pr(E|H1) = Pr(E | H>), then c(H1,E) = c(H2,E).

(3) IfPr(H | E1) = Pr(H | E2), then c(H,E1) > c(H, E).

(4) c(H,E) =c(E,H).

(5) ¢(H,E) = —c(H, [E)1

(6) ¢(H,E) = —c([H]E).

(7) f H CE]then ¢(H,E) > c(H & X, E), for any X.

k (8) If Pr(E|H1) = Pr(E|H2) &Pr(E| H1) < Pr(E| [HI), then c(Hy,E) > c(Ha, E)j

Rutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16/11

Branden Fitelson 26

K Measures of Confirmation IVI

Does c-Measure have property?

’c-Measures (1) ‘ 2 ‘ ©) ‘ (4) ‘ (5) ‘ (6) ‘ (7 ‘ (8)

d(H,E) No No | Yes | NOo | No | Yes | Yes | Yes

r(H,E) No | Yes | Yes | Yes | NOo | No No | Yes

I(H,E) Yes | NOo | Yes | NO | No | Yes | Yes | Yes

s(H,E) No No No | No | Yes | Yes | Yes | Yes

= One can settle these (and many other) questions using PrSAT.

e Property (8) is the property that underlies the robust theorem about the
conjunction fallacy that | discussed at the end of yesterday’s lecture.
[It's one of very few robust properties one finds in the literature.]

= Exercise. (iii) Define a relatively simple (R)-measure that violates (8).

— Hint. Try Pr(H | E)" — Pr(H)" for (any) n > 1. See:

K http://fFitelson.org/crupi .pdf /
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