1

2

Overview of Finite Propositional Boolean Algebras I

- Consider a logical language \mathcal{L} containing n atomic sentences. These may be sentence letters (X, Y, Z, *etc.*), or they may be atomic sentences of monadic or relational predicate calculus (*Fa*, *Gb*, *Rab*, *Hcd*, *etc.*).
- The Boolean Algebra $\mathcal{B}_{\mathcal{L}}$ set-up by such a language will be such that:
 - $\mathcal{B}_{\mathcal{L}}$ will have 2^n states (corresponding to the state descriptions of \mathcal{L})
 - $\mathcal{B}_{\mathcal{L}}$ will contain 2^{2^n} *propositions*, in total.
 - * This is because each proposition p in $\mathcal{B}_{\mathcal{L}}$ is equivalent to a disjunction of state descriptions. Thus, each subset of the set of state descriptions of \mathcal{L} corresponds to a proposition of $\mathcal{B}_{\mathcal{L}}$.
 - * Note: there are 2^{2^n} subsets of a set of size 2^n .
 - The empty set \emptyset of state descriptions corresponds to "the empty disjunction", which corresponds to *the logical falsehood*: \perp .
 - Singelton sets of state descriptions correspond to "disjunctions with one member". [All other subsets are "normal" disjunctions.]

```
Rutgers Philosophy
```

PrSAT Tutorial (MCMP@LMU)

06/16/11

3

Branden Fitelson

The Probability Calculus: An Algebraic Approach I

- Once we grasp the concept of a finite Boolean algebra of propositions, understanding the probability calculus *algebraically* is very easy.
- The central concept is a *finite probability model*. A finite probability model *M* is a finite Boolean algebra of propositions *B*, together with a function Pr(·) which maps elements of *B* to the unit interval [0,1] ∈ ℝ.
- This function $Pr(\cdot)$ must be a *probability function*. It turns out that a probability function $Pr(\cdot)$ on \mathcal{B} is just a function that assigns a real number on [0, 1] to each state s_i of \mathcal{B} , such that $\sum_i Pr(s_i) = 1$.
- Once we have Pr(·)'s *basic assignments* to the states of B (s.d.'s of L), we define Pr(p) for *any* statement L of the language of B, as follows:

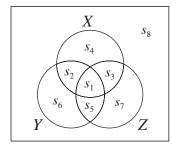
$$\Pr(p) = \sum_{s_i \models p} \Pr(s_i)$$
 [note: if $p \exists \models \bot$, then $\Pr(p) = 0$]

• In other words, Pr(*p*) is the sum of the probabilities of the state descriptions in *p*'s (equivalent) disjunction of state descriptions.

Overview of Finite Propositional Boolean Algebras II

• Example. Let \mathcal{L} have three atomic sentences: X, Y, and Z. Then, $\mathcal{B}_{\mathcal{L}}$ is:

X	Y	Ζ	States		
Т	Т	Т	<i>S</i> ₁		
Т	Т	F	<i>s</i> ₂		
Т	F	Т	<i>s</i> ₃		
Т	F	F	<i>S</i> 4		
F	Т	Т	<i>S</i> ₅		
F	Т	F	<i>s</i> ₆		
F	F	Т	<i>S</i> ₇		
F	F	F	\$8		



- Examples of reduction to disjunctions of state descriptions of \mathcal{L} :
 - '*X* & ~*X*' is equivalent to the *empty* disjunction: \perp .
 - ' $X \& (\sim Y \& Z)$ ' is equivalent to the *singleton* disjunction: s_3 .
 - ' $X \equiv (Y \lor Z)$ ' is equivalent to: $s_1 \lor s_2 \lor s_3 \lor s_8$.
- In general: $p \exists \models \bigvee \{s_i \mid s_i \models p\}$. And, if $\{s_i \mid s_i \models p\} = \emptyset$, then $p \exists \models \bot$.

Rutgers Philosophy

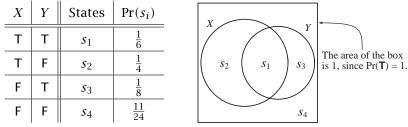
PrSAT Tutorial (MCMP@LMU)

06/16/11

Branden Fitelson

The Probability Calculus: An Algebraic Approach II

• Here's an example of a finite probability model \mathcal{M} , whose algebra \mathcal{B} is characterized by a language \mathcal{L} with two atomic letters "X" and "Y":



- On the left, a *stochastic truth-table* (STT) representation of \mathcal{M} ; on the right, a *stochastic Venn Diagram* (SVD) representation, in which *area is proportional to probability*. This is a *regular* model: $Pr(s_i) > 0$, for all *i*.
- \mathcal{M} determines a *numerical* probability for *each* p in \mathcal{L} . Examples?
- We can also use STTs to furnish an algebraic method for *proving general facts* about *all* probability models *the algebraic method*.

The Probability Calculus: An Algebraic Approach III

- Let $a_i = \Pr(s_i)$ be the probability [under the probability assignment $\Pr(\cdot)$] of state s_i in \mathcal{B} *i.e.*, the area of region s_i in our SVD.
- Once we have real variables (*a_i*) for each of the basic probabilities, we can not only calculate probabilities relative to *specific* numerical models

 we can say *general* things, using only simple high-school algebra.
- That is, we can *translate* any expression $[\Pr(p)]$ into a *sum* of some of the a_i , and thus we can *reduce probabilistic* claims about the *p*'s in \mathcal{B}/\mathcal{L} into simple, high-school-*algebraic* claims about the real variables a_i .
- This allows us to be able to prove general claims about *probability functions*, by proving their corresponding *algebraic theorems*.
- Method: translate the probability claim into a claim involving sums of the *a_i*, and determine whether the corresponding claim is a theorem of algebra (assuming only that the *a_i* are on [0, 1] and that they sum to 1).

```
Rutgers Philosophy
```

PrSAT Tutorial (MCMP@LMU)

06/16/11

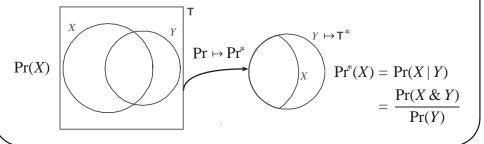
7

5

Branden Fitelson

The Probability Calculus: An Algebraic Approach V

- Conditional Probability. $Pr(p | q) \triangleq \frac{Pr(p \& q)}{Pr(q)}$, provided that Pr(q) > 0.
- Intuitively, $\Pr(p \mid q)$ is supposed to be the probability of *p given that q is true*. So, *conditionalizing* on *q* is like "supposing *q* to be true".
- Using Venn diagrams, we can explain: "Supposing *Y* to be true" is like "treating the *Y*-circle as if it is the bounding box of the Venn Diagram".
- This is like "moving to a new $Pr^*(\cdot)$ such that $Pr^*(Y) = 1$." Picture:



The Probability Calculus: An Algebraic Approach IV

• Here are two simple/obvious examples involving two atomic sentences:

Theorem. $Pr(X \lor Y) = Pr(X) + Pr(Y) - Pr(X \& Y)$. **Proof.** $Pr(X \lor Y) = a_1 + a_2 + a_3 = (a_1 + a_2) + (a_1 + a_3) - a_1$. **Theorem.** $Pr(X) = Pr(X \& Y) + Pr(X \& \sim Y)$. **Proof.** $a_1 + a_2 = a_1 + a_2$.

• Here are two general facts that are also obvious from the set-up:

Theorem. If $p \preccurlyeq \models q$, then Pr(p) = Pr(q).

Proof. Obvious, since the same regions always have the same areas, and the algebraic translation is *the same* for logically equivalent p/q. **Theorem.** If $p \models q$, then $Pr(p) \le Pr(q)$.

Proof. Since $p \models q$, the set of state descriptions entailing p is a subset of the set of state descriptions entailing q. Thus, the set of a_i in the summation for Pr(p) will be a subset of the a_i in the summation for Pr(q). Thus, since all the $a_i \ge 0$, $Pr(p) \le Pr(q)$.

PrSAT Tutorial (MCMP@LMU)

Rutgers Philosophy

06/16/11

Branden Fitelson

The Probability Calculus: An Algebraic Approach VI

- There may be other ways of defining conditional probability, which may also seem to capture the "supposing *q* to be true" intuition.
- But, any such definition must make Pr(·|*q*) itself a *probability function*, *for all propositions q*. This proves to be quite a strong constraint.
- Algebraically, we can see just how strong this constraint is. Recall:

 $\Pr(X \lor Y) = \Pr(X) + \Pr(Y) - \Pr(X \& Y).$

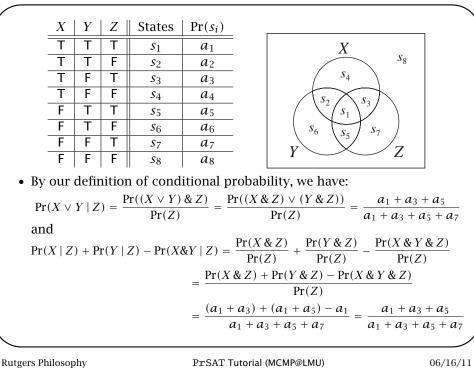
• Therefore, if Pr(· | *q*) is to be a *probability* function *for all q*, then we must also have the following equality (in general), *for all Z*:

 $\Pr(X \lor Y \mid Z) = \Pr(X \mid Z) + \Pr(Y \mid Z) - \Pr(X \& Y \mid Z).$

• Using our algebraic method, we can *prove* this. We just need to remind ourselves of what the 3-atomic sentence algebra looks like, and how the algebraic translation of this equation would go. Let's do that ...

Rutgers Philosophy

06/16/11



Branden Fitelson

The Probability Calculus: An Algebraic Approach VIII

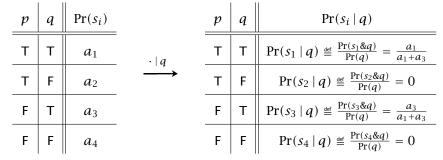
• Here's a neat theorem of the probability calculus, proved algebraically. **Theorem.** $Pr(X \supset Y) \ge Pr(Y \mid X)$. [Provided that Pr(X) > 0, of course.] **Proof.** $Pr(X \supset Y) = Pr(\sim X \lor Y) = Pr(s_1 \lor s_3 \lor s_4) = a_1 + a_3 + a_4$. $Pr(Y \mid X) = \frac{Pr(Y \& X)}{Pr(X)} = \frac{Pr(s_1)}{Pr(s_1 \lor s_2)} = \frac{a_1}{a_1 + a_2}$. So, we need to prove that $a_1 + a_3 + a_4 \ge \frac{a_1}{a_1 + a_2}$. • First, note that $a_4 = 1 - (a_1 + a_2 + a_3)$, since the a_i 's must sum to 1. • Thus, we need to show that $a_1 + a_3 + 1 - a_1 - a_2 - a_3 \ge \frac{a_1}{a_1 + a_2}$. • By simple algebra, this reduces to showing that $1 - a_2 \ge \frac{a_1}{a_1 + a_2}$. • If $a_1 + a_2 > 0$ and $a_i \in [0, 1]$, this must hold, since then we must have: $a_2 \ge a_2 \cdot (a_1 + a_2)$, and then the boxed formulas are equivalent. \Box

9

11

The Probability Calculus: An Algebraic Approach VII

- We can use our algebraic method to demonstrate that our definition of Pr(· | *q*) yields a probability function, *for all q*, in the following way.
- Intuitively, think about what an "unconditional" and a "conditional" stochastic truth-table must look like, for any pair of sentences *p* and *q*.



• Note: the new basic probabilities assigned to the state descriptions, under our "conditionalized" $Pr(\cdot | q)$ satisfy the requirements for being a *probability* function, since $\frac{a_1}{a_1+a_3} + \frac{a_3}{a_1+a_3} = 1$, and $\frac{a_1}{a_1+a_3}, \frac{a_3}{a_1+a_3} \in [0, 1]$.

PrSAT Tutorial (MCMP@LMU)

Rutgers Philosophy

06/16/11

12

Branden Fitelson

The Probability Calculus: An Algebraic Approach IX

- Here are some further fundamental theorems of probability calculus, involving 2 or 3 atomic sentences and CP. Easy, given defn. of CP.
 - The Law of Total Probability (LTP):

 $\Pr(X \mid Y) = \Pr(X \mid Y \& Z) \cdot \Pr(Z \mid Y) + \Pr(X \mid Y \& \sim Z) \cdot \Pr(\sim Z \mid Y)$

- Note: $\Pr(X \mid \top) = \Pr(X)$. Why? So, the LTP has a *special case*: $\Pr(X \mid \top) = \Pr(X) = \Pr(X \mid \top \& Z) \cdot \Pr(Z \mid \top) + \Pr(X \mid \top \& \sim Z) \cdot \Pr(\sim Z \mid \top)$ $= \Pr(X \mid Z) \cdot \Pr(Z) + \Pr(X \mid \sim Z) \cdot \Pr(\sim Z)$
- Two forms of **Bayes's Theorem**. The second one *follows*, using (LTP):

$$Pr(X | Y) = \frac{Pr(Y | X) \cdot Pr(X)}{Pr(Y)}$$
$$= \frac{Pr(Y | X) \cdot Pr(X)}{Pr(Y | Z) \cdot Pr(Z) + Pr(Y | \sim Z) \cdot Pr(\sim Z)}$$

Rutgers Philosophy

The Probability Calculus: An Algebraic Approach X

- One more interesting theorem (due to Popper & Miller), algebraically.
- Let $d(X, Y) \cong \Pr(X | Y) \Pr(X)$. Then, we have the following theorem: **Theorem** (PM). $d(X, Y) = d(X \lor Y, Y) + d(X \lor \sim Y, Y)$.

Proof (algebraic, using STT from *X*/*Y* language, above).

$$d(X,Y) \stackrel{\text{def}}{=} \Pr(X \mid Y) - \Pr(X) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2)$$

$$d(X \lor Y,Y) \stackrel{\text{def}}{=} \Pr(X \lor Y \mid Y) - \Pr(X \lor Y) = 1 - a_1 - a_2 - a_3$$

$$d(X \lor \sim Y,Y) \stackrel{\text{def}}{=} \Pr(X \lor \sim Y \mid Y) - \Pr(X \lor \sim Y) = \frac{a_1}{a_1 + a_3} - (a_1 + a_2 + a_4)$$

$$\therefore d(X \lor Y,Y) + d(X \lor \sim Y,Y) = 1 - a_1 - a_2 - a_3 + \frac{a_1}{a_1 + a_3} - a_1 - a_2 - a_4$$

$$= \frac{a_1}{a_1 + a_3} + 1 - a_1 - a_2 - a_3 - a_1 - a_2 - (1 - (a_1 + a_2 + a_3))$$

$$= \frac{a_1}{a_1 + a_3} - (a_1 + a_2). \square$$

PrSAT Tutorial (MCMP@LMU)

Rutgers Philosophy

06/16/11

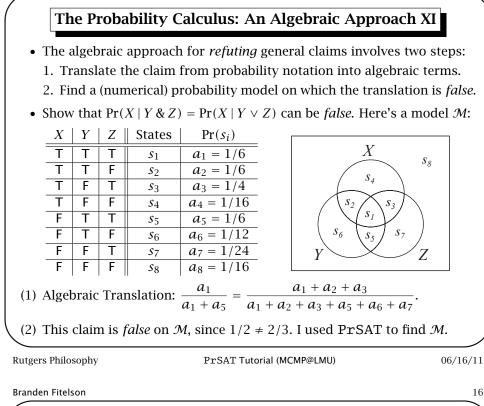
15

13

Branden Fitelson

The Probability Calculus: An Algebraic Approach XII

- There are *decision procedures* for Boolean propositional logic, based on truth-tables. These methods are *exponential* in the number of atomic sentences (n), because truth-tables grow exponentially in n (2^n).
- It would be nice if there were a decision procedure for probability calculus, too. In algebraic terms, this would require a decision procedure for the salient fragment of high-school (real) algebra.
- As it turns out, high-school (real) algebra (HSA) *is* a decidable theory. This was shown by Tarski in the 1920's. But, it's only been very recently that computationally feasible procedures have been developed.
- In my "A Decision Procedure for Probability Calculus with Applications", I describe a user-friendly decision procedure (called PrSAT) for probability calculus, based on recent HSA procedures.
- My implementation is written in *Mathematica* (a general-purpose mathematics computer programming framework). It is freely downloadable from my website, at: http://fitelson.org/PrSAT/



The Probability Calculus: An Algebraic Approach XIII

- I encourage the use of PrSAT as a tool for finding counter-models and for establishing theorems of probability calculus. It is not a requirement of the course, but it is a useful tool that is worth learning.
- **PrSAT** doesn't give readable proofs of theorems. But, it will find concrete numerical counter-models for claims that are not theorems.
- PrSAT will also allow you to calculate probabilities that are determined by a *given* probability assignment. And, it will allow you to do algebraic and numerical "scratch work" without making errors.
- I have created a *Mathematica* notebook which contains some examples from algebraic probability calculus that we see in this lecture.
- Let's have a look at this first notebook (examples_lmu.nb). I will now go through the examples in this notebook, and demonstrate some of the features of PrSAT. I encourage you to play around with it.

17

06/16/11

19

Probabilistic Independence

Definition. *p* and *q* are probabilistically independent, given *r* $(p \perp q \mid r)$ iff $\Pr(p \& q \mid r) = \Pr(p \mid r) \cdot \Pr(q \mid r)$. [Note: We will use $[p \perp q]$ as an abbreviation for $[p \perp q \mid \top]$.

- If Pr(p) > 0 and Pr(q) > 0, then $p \perp q$ is equivalent to all of the following: * $\Pr(p \mid q) = \Pr(p)$ [Why? Because this is just: $\frac{\Pr(p\&q)}{\Pr(q)} = \Pr(p)$]
 - * Pr(q | p) = Pr(q) [ditto.]
 - * $\Pr(p \mid q) = \Pr(p \mid \sim q)$ [Not as obvious. See next slide.]
 - * $Pr(q | p) = Pr(q | \sim p)$ [ditto.]
- Closely related fact about independence. If $p \perp q$, then we also must have: $p \perp \neg q, q \perp \neg p$, and $\neg p \perp \neg q$. See next slide for algebraic set-up.
- A set of propositions $\mathbf{P} = \{p_1, \dots, p_n\}$ is mutually independent if all subsets $\{p_i, \ldots, p_i\} \subseteq \mathbf{P}$ are s.t. $\Pr(p_i \& \cdots \& p_i) = \Pr(p_i) \cdots \Pr(p_i)$. For sets with 2 propositions, pairwise independence is equivalent to mutual independence. But, not for 3 or more propositions. Example given below.

Rutgers Philosophy

PrSAT Tutorial (MCMP@LMU)

Branden Fitelson

- To wit: is it the case that if $\mathbf{P} = \{p_1, \dots, p_n\}$ is a mutually independent set, then any β -functions of any two disjoint subsets of **P** are independent?
- So far, we've seen a some *proofs* of *true* general claims about independence, correlation, etc. Now, for some counterexamples!
- As always, these are numerical probability models in which some claim *fails*. We have seen two false claims about \perp already. Let's prove them.
- **Theorem**. Pairwise independence of a collection of three propositions $\{X, Y, Z\}$ does not entail mutual independence of the collection. That is to say, there exist probability models in which (1) $Pr(X \& Y) = Pr(X) \cdot Pr(Y)$, (2) $Pr(X \& Z) = Pr(X) \cdot Pr(Z)$, (3) $Pr(Y \& Z) = Pr(Y) \cdot Pr(Z)$, but (4) $Pr(X \& Y \& Z) \neq Pr(X) \cdot Pr(Y) \cdot Pr(Z)$. *Proof.* Here's a counterexample.
- Suppose a box contains 4 tickets labelled with the following numbers:

112, 121, 211, 222

Let us choose one ticket at random (*i.e.*, each ticket has an equal probability of being chosen), and consider the following propositions:

Branden Fitelson					18							
	р	q	States	$\Pr(s_i)$								
	Т	Т	<i>s</i> ₁	a_1								
	T F s_2 a_2											
	F T <i>s</i> ₃ <i>a</i> ₃											
F F s_4 $a_4 = 1 - (a_1 + a_2 + a_3)$												
$\therefore \Pr(p \mid q) = \Pr(p \mid \sim q) \Leftrightarrow \frac{a_1}{a_1 + a_3} = \frac{a_2}{a_2 + a_4} = \frac{a_2}{1 - (a_1 + a_3)}$ $\Leftrightarrow a_1 \cdot (1 - (a_1 + a_3)) = a_2 \cdot (a_1 + a_3)$												
$\Rightarrow a_1 - (1 - (a_1 + a_3)) = a_2 - (a_1 + a_3)$ $\Rightarrow a_1 = a_2 \cdot (a_1 + a_3) + a_1 \cdot (a_1 + a_3) = (a_2 + a_1) \cdot (a_1 + a_3)$ $\Rightarrow \Pr(p \& q) = \Pr(p) \cdot \Pr(q) \Box$												
• If <i>p</i> and <i>q</i> are independent, then so are <i>p</i> and $\sim q$. Prove this algebraically.												
 More generally, if {<i>p</i>, <i>q</i>, <i>r</i>} are mutually independent, then <i>p</i> is independent of <i>any</i> Boolean function β of <i>q</i> and <i>r</i>, <i>e.g.</i>, <i>p</i> ⊥ <i>q</i> ∨ <i>r</i>. How might one prove this more general theorem? And, is there an even more general theorem to be proved here? 												
Rutgers Philosophy			PrSA	AT Tutorial (MCMP@LMU)	06/16/11							
Branden Fitelson					20							
X = "1" occurs at the first place of the chosen ticket. Y = "1" occurs at the second place of the chosen ticket. Z = "1" occurs at the third place of the chosen ticket. Since the ticket #'s are 112, 121, 211, 222, we have these probabilities:												
$\Pr(X) = \frac{1}{2}, \Pr(Y) = \frac{1}{2}, \Pr(Z) = \frac{1}{2}$												
	Moreover, each of the three conjunctions determines a unique ticket #:											
	X & Y = the ticket is labeled #112											
X & Z = the ticket is labeled #121 X & Z = the ticket is labeled #211												

Y & Z = the ticket is labeled #211

Therefore, since each ticket is equally probable to be chosen, we have:

 $Pr(X \& Y) = Pr(X \& Z) = Pr(Y \& Z) = \frac{1}{4}$

So, the three events X, Y, Z are pairwise independent (*why?*). But,

X & *Y* & *Z* $\dashv \vDash \bot$, since *X*, *Y*, and *Z* are jointly inconsistent. Hence.

 $\Pr(X \& Y \& Z) = \Pr(\mathsf{F}) = 1 - \Pr(\mathsf{T}) = 0 \neq \Pr(X) \cdot \Pr(Y) \cdot \Pr(Z) = (\frac{1}{2})^3 = \frac{1}{8}$

specify it? Algebra (7 equations, 7 unknowns — see STT below). $Pr(X) = a_4 + a_2 + a_3 + a_1 = \frac{1}{2}, Pr(Y) = a_2 + a_6 + a_1 + a_5 = \frac{1}{2}$ $Pr(Z) = a_3 + a_1 + a_5 + a_7 = \frac{1}{2}, Pr(X \& Y \& Z) = a_1 = 0$ $Pr(X \& Y) = a_2 + a_1 = \frac{1}{4}, Pr(X \& Z) = a_3 + a_1 = \frac{1}{4}, Pr(Y \& Z) = a_1 + a_5 = \frac{1}{4}$ • Here's the STT. [This (and other models) can be found with PrSAT.] $\frac{X Y Z States Pr(s_1) = a_1 = 0}{T T F s_2 Pr(s_2) = a_2 = 1/4}$ $\frac{X Y Z States Pr(s_4) = a_4 = 0}{F T T s_5 Pr(s_5) = a_5 = 1/4}$ $\frac{F T F s_6 Pr(s_6) = a_6 = 0}{F F T s_7 Pr(s_7) = a_7 = 0}$ $F F F s_8 Pr(s_8) = a_8 = 1/4$	This is former the										
$Pr(X) = a_4 + a_2 + a_3 + a_1 = \frac{1}{2}, Pr(Y) = a_2 + a_6 + a_1 + a_5 = \frac{1}{2}$ $Pr(Z) = a_3 + a_1 + a_5 + a_7 = \frac{1}{2}, Pr(X \& Y \& Z) = a_1 = 0$ $Pr(X \& Y) = a_2 + a_1 = \frac{1}{4}, Pr(X \& Z) = a_3 + a_1 = \frac{1}{4}, Pr(Y \& Z) = a_1 + a_5 = \frac{1}{4}$ • Here's the STT. [This (and other models) can be found with PrSAT.] $\frac{X Y Z States Pr(s_1) = a_1 = 0}{\frac{T T F s_2}{2} Pr(s_2) = a_2 = \frac{1}{4}}$ $\frac{T F T s_3 Pr(s_3) = a_3 = \frac{1}{4}}{\frac{T F F s_4}{2} Pr(s_4) = a_4 = 0}$ $\frac{F T T s_5 Pr(s_6) = a_6 = 0}{\frac{F F T s_7 Pr(s_7) = a_7 = 0}{\frac{F F F s_8}{2} Pr(s_8) = a_8 = \frac{1}{4}}$ • Theorem. μ is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	• This information determines a <i>unique</i> probability function. Can you										
$Pr(Z) = a_{3} + a_{1} + a_{5} + a_{7} = \frac{1}{2}, Pr(X \& Y \& Z) = a_{1} = 0$ $Pr(X \& Y) = a_{2} + a_{1} = \frac{1}{4}, Pr(X \& Z) = a_{3} + a_{1} = \frac{1}{4}, Pr(Y \& Z) = a_{1} + a_{5} = 0$ • Here's the STT. [This (and other models) can be found with PrSAT.] $\frac{X Y Z States Pr(s_{i})}{T T T s_{1} Pr(s_{1}) = a_{1} = 0}$ $\frac{T T F s_{2} Pr(s_{2}) = a_{2} = 1/4}{T F T s_{3} Pr(s_{3}) = a_{3} = 1/4}$ $\frac{T F F s_{4} Pr(s_{4}) = a_{4} = 0}{F T T s_{5} Pr(s_{5}) = a_{5} = 1/4}$ $\frac{F T F s_{6} Pr(s_{6}) = a_{6} = 0}{F F T s_{8} Pr(s_{8}) = a_{8} = 1/4}$ • Theorem. μ is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	specify it? Algebra (7 equations, 7 unknowns — see STT below).										
Pr(X & Y) = $a_2 + a_1 = \frac{1}{4}$, Pr(X & Z) = $a_3 + a_1 = \frac{1}{4}$, Pr(Y & Z) = $a_1 + a_5 = 0$ • Here's the STT. [This (and other models) can be found with PrSAT.] $\frac{X Y Z States Pr(s_i)}{T T T s_1 Pr(s_1) = a_1 = 0}$ $\frac{T T F s_2 Pr(s_2) = a_2 = 1/4}{T F T s_3 Pr(s_3) = a_3 = 1/4}$ $\frac{T F F s_4 Pr(s_4) = a_4 = 0}{F T T s_5 Pr(s_5) = a_5 = 1/4}$ $\frac{F T F s_6 Pr(s_6) = a_6 = 0}{F F T s_8 Pr(s_8) = a_8 = 1/4}$ • Theorem. μ is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	$Pr(X) = a_4 + a_2 + a_3 + a_1 = \frac{1}{2}$, $Pr(Y) = a_2 + a_6 + a_1 + a_5 = \frac{1}{2}$										
• Here's the STT. [This (and other models) can be found with PrSAT.] $ \frac{X Y Z \text{States} Pr(s_i)}{\begin{array}{c c c c c c c c c }\hline T & T & T & s_1 & Pr(s_1) = a_1 = 0 \\\hline T & T & F & s_2 & Pr(s_2) = a_2 = 1/4 \\\hline T & F & T & s_3 & Pr(s_3) = a_3 = 1/4 \\\hline T & F & F & s_4 & Pr(s_4) = a_4 = 0 \\\hline F & T & T & s_5 & Pr(s_5) = a_5 = 1/4 \\\hline F & T & F & s_6 & Pr(s_6) = a_6 = 0 \\\hline F & F & T & s_7 & Pr(s_7) = a_7 = 0 \\\hline F & F & F & s_8 & Pr(s_8) = a_8 = 1/4 \end{array} $ • Theorem. \square is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	$Pr(Z) = a_3 + a_1 + a_5 + a_7 = \frac{1}{2}, Pr(X \& Y \& Z) = a_1 = 0$										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$Pr(X \& Y) = a_2 + a_1 = \frac{1}{4}, Pr(X \& Z) = a_3 + a_1 = \frac{1}{4}, Pr(Y \& Z) = a_1 + a_5 = \frac{1}{4}$										
• Theorem. \square is not transitive. Example in which $Pr(x_1) = a_1 = 0$ T T T F s_1 $Pr(s_1) = a_2 = 1/4$ T F T s_2 $Pr(s_2) = a_2 = 1/4$ T F T s_3 $Pr(s_3) = a_3 = 1/4$ T F F S_4 $Pr(s_4) = a_4 = 0$ F T T s_5 $Pr(s_5) = a_5 = 1/4$ F T F s_6 $Pr(s_6) = a_6 = 0$ F F T s_7 $Pr(s_7) = a_7 = 0$ F F F s_8 $Pr(s_8) = a_8 = 1/4$	• Here's the STT. [This (and other models) can be found with PrSAT.]										
• Theorem. \blacksquare is not transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$	$X \mid Y \mid Z \parallel$ States $Pr(s_i)$										
• Theorem. \blacksquare is not transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	T T T S ₁ P $\mathbf{r}(s_1) = a_1 = 0$										
• Theorem. \blacksquare is not transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$		Т	Т	F	<i>s</i> ₂	$\Pr(s_2) = a_2 = 1/4$	-				
• Theorem. \bot is not transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$		Т	F	Т	<i>s</i> ₃	$\Pr(s_3) = a_3 = 1/4$	-				
• Theorem. \square is not transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$											
• Theorem. \perp is <i>not</i> transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$		F	$\Pr(s_5) = a_5 = 1/4$	-							
• Theorem. \perp is <i>not</i> transitive. Example in which $\Pr(X \& Y) = \Pr(X) \cdot \Pr(X)$	FTF s_6 $\Pr(s_6) = a_6 = 0$										
• Theorem . \bot is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(X)$	F F T s_7 $\Pr(s_7) = a_7 = 0$										
		F	F	F	<i>S</i> ₈	$\Pr(s_8) = a_8 = 1/4$	-				
$\Pr(Y \& Z) = \Pr(Y) \cdot \Pr(Z)$, but $\Pr(X \& Z) \neq \Pr(X) \cdot \Pr(Z) [X \neq Y \neq Z]$:	• Theorem . \blacksquare is <i>not</i> transitive. Example in which $Pr(X \& Y) = Pr(X) \cdot Pr(Y)$,										
	$\Pr(Y \& Z) = \Pr($	$Y) \cdot P$	r(Z)	, but	$\Pr(X \& Z)$	$Z) \neq \Pr(X) \cdot \Pr(Z) \mid$	$[X \neq Y \neq Z]:$				
Lutgers Philosophy PrSAT Tutorial (MCMP@LMU) 06/16											

Branden Fitelson

Measures of Confirmation I

- As I mentioned in my previous lectures this week, we can define a notion of "support" or "confirmation" as *probabilistic relevance*.
 - **Definition**. *E confirms H* iff Pr(H | E) > Pr(H). *E dis*confirms *H* iff Pr(H | E) < Pr(H). *E* is *neutral/irrelevant* to *H* iff Pr(H | E) = Pr(H).
- Given this qualitative definition of "confirms", it is natural to think about *quantitative measures* of *degree of confirmation*.
- This involves adopting some *function* c of Pr(H | E) and Pr(H).
- We will use the notation c(H, E) to denote the degree to which *E* confirms *H*, according to some function *c* of Pr(H | E) and Pr(H).
- We'll adopt the following convention about the *range* of c(H, E):

$$(\mathcal{R}) \qquad \mathsf{c}(H,E) \in \begin{cases} (0,1] & \text{if } \Pr(H \mid E) > \Pr(H), \\ \{0\} & \text{if } \Pr(H \mid E) = \Pr(H), \\ [-1,0) & \text{if } \Pr(H \mid E) < \Pr(H). \end{cases}$$

23

21

	X	Y	Ζ	States	$\Pr(s_i)$						
	Т	Т	Т	<i>s</i> ₁	$\Pr(s_1) = a_1 = 3/32$						
	Т	Т	F	<i>s</i> ₂	$\Pr(s_2) = a_2 = 9/32$						
	Т	F	Т	<i>s</i> ₃	$\Pr(s_3) = a_3 = 3/32$						
	Т	F	F	\$4	$\Pr(s_4) = a_4 = 9/32$						
	F	Т	Т	\$5	$\Pr(s_5) = a_5 = 2/32$						
	F	Т	F	<i>s</i> ₆	$\Pr(s_6) = a_6 = 2/32$						
	F	F	Т	\$ ₇	$\Pr(s_7) = a_7 = 2/32$						
	F	F	F	<i>S</i> ₈	$\Pr(s_8) = a_8 = 2/32$						
$\Pr(X \And Y) = a_2 + a_1 = \frac{3}{8} = \frac{3}{4} \cdot \frac{1}{2}$											
$= (a_4 + a_2 + a_3 + a_1) \cdot (a_2 + a_1 + a_6 + a_5) = \Pr(X) \cdot \Pr(Y)$											
$\Pr(Y \& Z) = a_1 + a_5 = \frac{5}{32} = \frac{1}{2} \cdot \frac{5}{16}$											
$= (a_2 + a_1 + a_6 + a_5) \cdot (a_3 + a_1 + a_5 + a_7) = \Pr(Y) \cdot \Pr(Z)$											
$\Pr(X \& Z) = a_3 + a_1 = \frac{3}{16} \neq \frac{3}{4} \cdot \frac{5}{16}$											
$= (a_4 + a_2 + a_3 + a_1) \cdot (a_3 + a_1 + a_5 + a_7) = \Pr(X) \cdot \Pr(Z)$											

Rutgers Philosophy

PrSAT Tutorial (MCMP@LMU)

06/16/11

22

Branden Fitelson

Measures of Confirmation II

• A large number of measures of confirmation have been proposed in the literature (in statistics, cognitive science, philosophy, *etc.*). Here are the four most popular measures (*up to ordinal equivalence* — see below):

-
$$d(H,E) \stackrel{\text{\tiny def}}{=} \Pr(H \mid E) - \Pr(H)$$

$$- \gamma(H, E) \stackrel{\text{def}}{=} \frac{\Pr(H \mid E) - \Pr(H)}{\Pr(H \mid E) + \Pr(H)} \doteq \frac{\Pr(H \mid E)}{\Pr(H)}$$
$$- l(H, E) \stackrel{\text{def}}{=} \frac{\Pr(E \mid H) - \Pr(E \mid \sim H)}{\Pr(E \mid \sim H)} \doteq \frac{\Pr(H \mid E) \cdot (1 - \Pr(H))}{\Pr(H)}$$

$$-l(H,E) \stackrel{\text{def}}{=} \frac{1}{\Pr(E \mid H) + \Pr(E \mid \sim H)} \doteq \frac{1}{(1 - \Pr(H \mid E)) \cdot \Pr(H)}$$

- $\mathcal{S}(H, E) \stackrel{\text{\tiny def}}{=} \Pr(H \mid E) - \Pr(H \mid \sim E)$

If two measures c₁ and c₂ agree on *all comparisons*, then we say that c₁ and c₂ are *ordinally equivalent* (c₁ = c₂). More precisely, we define:

 $c_1 \doteq c_2 \leq c_1(H_1, E_1) \ge c_1(H_2, E_2)$ iff and only if $c_2(H_1, E_1) \ge c_2(H_2, E_2)$

• **Exercises:** (i) prove that $\{d, r, l, s\}$ all satisfy (\mathcal{R}) , and (ii) prove the two "=" claims about r and l, above. *Hint*. Use $\frac{x-y}{x+y} = \tanh\left[\frac{1}{2}\log\left(\frac{x}{y}\right)\right]$.

Measures of Confirmation III

- Fact. No two of {d, r, l, s} are ordinally equivalent. [Use PrSAT!]
- This ordinal disagreement between the most popular measures is what I have called "the plurality of Bayesian measures of confirmation".
- This was the topic of my dissertation [link on my mathcamp webpage].
- Here are eight important properties of measures of confirmation:
- (1) If $E \vDash H_1$ and $E \nvDash H_2$, then $\mathfrak{c}(H_1, E) \ge \mathfrak{c}(H_2, E)$.
- (2) If $Pr(E | H_1) > Pr(E | H_2)$, then $c(H_1, E) > c(H_2, E)$.
- (3) If $Pr(H | E_1) > Pr(H | E_2)$, then $c(H, E_1) > c(H, E_2)$.
- (4) $\mathfrak{c}(H, E) = \mathfrak{c}(E, H)$.
- (5) $\mathfrak{c}(H, E) = -\mathfrak{c}(H, \sim E).$
- (6) $c(H,E) = -c(\sim H,E).$
- (7) If $H \models E$, then $\mathfrak{c}(H, E) > \mathfrak{c}(H \& X, E)$, for any *X*.
- (8) If $\Pr(E \mid H_1) > \Pr(E \mid H_2)$ & $\Pr(E \mid \sim H_1) \le \Pr(E \mid \sim H_2)$, then $\mathfrak{c}(H_1, E) > \mathfrak{c}(H_2, E)$.

Rutgers Philosophy

PrSAT Tutorial (MCMP@LMU)

06/16/11

Measures of Confirmation IV

	Does ¢-Measure have property?										
¢-Measures	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
d(H,E)	No	No	YES	No	No	YES	YES	YES			
r(H,E)	No	YES	YES	YES	NO	No	No	YES			
l(H,E)	YES	No	YES	No	No	YES	YES	YES			
s(H,E)	No	No	No	No	YES	YES	YES	YES			

- One can settle these (and many other) questions using PrSAT.
- Property (8) is the property that underlies the *robust* theorem about the conjunction fallacy that I discussed at the end of yesterday's lecture. [It's one of very few robust properties one finds in the literature.]
- Exercise. (iii) Define a relatively simple (*R*)-measure that *violates* (8). *Hint*. Try Pr(*H* | *E*)ⁿ Pr(*H*)ⁿ for (any) *n* > 1. See:

http://fitelson.org/crupi.pdf

Rutgers Philosophy

Branden Fitelson

PrSAT Tutorial (MCMP@LMU)

06/16/11