Branden Fitelson

Probabilistic Coherence from a Logical Point of View

Branden Fitelson University of California-Berkeley

- Overview of the Talk
 - Foundation: Probabilistic Confirmation (c) from a Logical POV
 - * c(h, e) as a "relevant" quantitative generalization of $\Box(e \supset h)$
 - * c(h, e), so understood, is not $Pr(e \supset h)$ or $Pr(h \mid e)$, etc.
 - * c(h, e) is something akin (ordinally) to the likelihood ratio
 - Defining Coherence (*C*) in terms of "Mutual c-Confirmation"
 - * $\mathscr{C}(p,q)$ as a "mutual confirmation" generalization of $\Diamond(p \& q)$
 - * $\mathscr{C}(p,q)$, so understood, is not $\Pr(p \& q)$ or $\Pr(q | p)$, etc.
 - * Suggestion: $\mathscr{C}(p,q)$ as a function of $\mathfrak{c}(p,q)$ and $\mathfrak{c}(q,p)$, etc.
 - Confirmation as primitive, and coherence defined in terms of it
 - New definition of my & measure (inspired by Moretti/Douven)
 - Some Subtleties/Objections (I'll focus on "logical" ones)

Presented @ LSE

06/28/04

3

Branden Fitelson

Probabilistic Coherence from a Logical Point of View

From Confirmation to Coherence II

- Strategy: We will construct our \mathscr{C} measure using one of the proper \mathfrak{c} measures.
- We use a slight [new!] modification of Kemeny and Oppenheim's c-measure F

$$F_{\mathcal{M}}(h,e) =_{df} \begin{cases} \frac{\Pr_{\mathcal{M}}(e \mid h) - \Pr_{\mathcal{M}}(e \mid \sim h)}{\Pr_{\mathcal{M}}(e \mid h) + \Pr_{\mathcal{M}}(e \mid \sim h)} & \text{if } e \neq h \text{ and } e \neq \sim h. \\ 1 & \text{if } e \models h, \text{ and } e \neq \bot. \\ -1 & \text{if } e \models \sim h. \end{cases}$$

- Let \mathscr{F} be the set containing the *F* values of all pairs of conjunctions of (thanks, Igor!) nonempty, disjoint subsets of the set of statements. And, \mathscr{C} is an average of \mathscr{F} . Note: F (hence \mathscr{C}) is relativized to a (regular) Pr-model \mathcal{M} !
- \mathcal{F} is non-trivial to visualize! I haven't analyzed the combinatorics of \mathcal{F} yet, but I have an algorithm for generating it. See my MATHEMATICA' notebook.
- I first proposed simply taking the straight average of \mathscr{F} , but other averages could be given (undoubtedly, some examples will suggest unequal weights).

From Confirmation to Coherence I

Confirmation (c)	Coherence (%)	
Metatheoretic Concept: $\Box(e \supset h)$	Metatheoretic Concept: $\Diamond(p \& q)$	
$\therefore e \models \sim h \Rightarrow$ maximal disconfirmation	$\therefore p \dashv \models \sim q \Rightarrow \text{maximal incoherence}$	
$\therefore e \vDash h \ [e \not\vDash \bot] \Rightarrow \text{maximal confirmation}$	$\therefore p \dashv \vDash q \not\models \bot \Rightarrow \text{maximal coherence}$	
+ Dependence is confirmation	+ Dependence is coherence	
- Dependence is disconfirmation	- Dependence is incoherence	
Independence is neutrality	Independence is neutrality	
$\Pr(e \supset h)$ won't work	$\Pr(p \& q)$ won't work	
$\Pr(h \mid e)$ won't work, <i>etc</i> .	$Pr(q \mid p)$ won't work, <i>etc</i> .	
Most relevance measures won't work	Most relevance measures won't work	
• In the confirmation case, only a smal	l class of candidate ι-measures will wor	
• And, if \mathscr{C} is defined in terms of "mu	tual c", there are also few candidates.	
fitelson.org Prese	Presented @ LSE 06/28	

Probabilistic Coherence from a Logical Point of View

Some Subtleties/Objections

- Individuation: The "information sets" (collections that \mathscr{C} measures) could be multisets/sequences of propositions, or sets of statements (tokens), etc., but not sets of propositions, unless we go anti-Stalnaker (which is controversial).
- Siebel: "if we are confronted with a pair of statements which cannot both be false together, Fitelson's function assigns it a coherence value of at most 0."
- True. But, this will be true for any Pr-relevance-based account (not just mine). If *p* and *q* can't both be *false*, then they cannot be *positively* correlated! Here, correlation goes beyond a naïve generalization of the metatheoretic $\diamond(p \& q)$.
- Moretti (and others): On your view, logically equivalent sets of statements can have different degrees of coherence. Yep. But, this also strikes me as correct. [To my mind, $\{p, q, r\}$ is more coherent than $\{p, q\}$, provided that $r \Rightarrow p$.]
- Moretti: But, on your \mathscr{C} , adding \top to a coherent set can make it *in*coherent! This was true on my old C. But, not on my new C. See my MATHEMATICA® notebook. $\mathscr{C}(\mathbf{S})$ can be $\langle \mathscr{C}(\mathbf{S} \cup \{\top\})$, but this is an artifact of *averaging*.

Branden Fitelson