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We’ll adopt a simple framework today. Our assumptions:

A model (M) is a family of hypotheses.

A hypothesis (H) is a curve plus an associated error term ε.
For simplicity, we’ll assume a commonN (0,1) Gaussian ε.
To fix ideas, we will focus today on this family F of four
(parametric) models with univariate, polynomial hypotheses.

(LIN) y = ax + b+ ε.
(PAR) y = cx2 + dx + e+ ε.
(CUB) y = fx3 + gx2 + hx + i+ ε.
(QRT) y = jx4 + kx3 + lx2 +mx + n+ ε.

Note: these are nested models: LIN ⊂ PAR ⊂ CUB ⊂ QRT.
E.g., LIN = PAR with c = 0; PAR = CUB with f = 0, etc.

We remain neutral on the origin/status of ε. Perhaps ε is
due to observational error, perhaps it’s more metaphysical.

We can visualize hypotheses, as polynomials with
super-imposedN (0,1) ε-distributions. Examples, below.
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We will assume that there is a (single) true hypothesis (t),
which generates all of the data sets that we will discuss.

The smallest model containing t is the true model. [This
makes the alternative models mutually exclusive ([6], [4]).]

A data set (E) is a set of 〈x,y〉 points, generated by t.

Example #1. The true hypothesis is the following:

(t1) y = x4 − 4x3 + x2 + x + ε.
Here, the only true model is (QRT). Suppose we observe this
40-point data set (E1) with x ∈ [0,4], generated by t1:

(E1)
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The likelihood of a hypothesis H — relative to data set E —
is the probability of E, conditional on the truth of H.

Likelihood of H, relative to E Ö Pr(E |H).
Here’s what the dataset E1 and the hypothesis t1 look like
(white region is such that t1 has a non-negligible likelihood).

Next, we’ll look at the (standard) method for the selection of
a hypothesis — within a given model — Maximum Likelihood.
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The maximum likelihood (ML) approach to hypothesis
selection yields the maximum likelihood hypothesis H —
relative to the actual data set E — within a given modelM.

As Gauss knew [10], it is easy to find the ML ĤM ∈M
(assuming Gaussian ε), since Pr(E |H) is proportional to the
sum of squared deviations (SOS) of H from the actual data E.

In our Example #1, the ML-trends for the 4 models look like:
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In general, ML-hypotheses from higher-degree (more
complex) models have greater likelihoods, relative to any E.

If a data set E has n data points, then there exists a (unique)
n− 1–degree polynomial that will interpolate E. E.g., for E1:
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But, this is a crazy hypothesis! [E.g., we wouldn’t want to
use an interpolating hypothesis for purposes of prediction.]

This is because such complex trends tend to over-fit — they
perfectly fit the actual data, but they tend to do very poorly
(i.e., have low likelihood) on novel data sets. [Show animation.]
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The curve-fitting problem (CFP) has two sub-problems

The model selection problem (MSP).

This involves selecting a model M , from a family of models.

+ Here, ML will not suit. If we choose the “maximum
likelihood model”, this implies selecting the most complex
model. And, this will (inevitably) lead to over-fitting.

The hypothesis selection (within M) problem (HSP).

After selecting a model M , we also need to select a
hypothesis H ∈ M , since H’s are what make contact with E’s.

The (HSP) is typically “solved” via ML. [We won’t discuss
(HSP) today, but one could question ML even here.]

We will focus the (MSP) today. Here’s the plan:

First, we will try to clarify what aims one might have in
trying to “solve” the (MSP). This will lead to two “(MSP)”s.

We will discuss two kinds of approaches to (MSP) — Naïve
Bayesian approaches (NB) and Information-Theoretic (IT)
approaches — with respect to two popular aims for (MSP).
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Because the (MSP) is part of the (CFP), we must first get
clearer on what we’re going to count as a “solution” to (CFP).

This depends on our aims when we’re “curve-fitting”.

Here are two possible aims one could have w.r.t. (CFP):

Truth. The aim is to select the true model/hypothesis [8].

Predictive Accuracy. The aim is to select the most
predictively accurate model/hypothesis [5].

There are other aims one could have here. E.g., one could
aim to select the most explanatory model/hypothesis, or the
most beautiful, etc., etc. We’ll bracket these other aims here.

Note: there is an important logical relationship between
these two aims. Truth is the strictly more ambitious aim.

There are various reasons why one might not want to take
truth to be the aim here. [E.g., if the truth is not included
among the alternative hypotheses, then it’s impossible.]
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We seek model selection procedures that take as input:

(1) An actual (small-ish) data set E.
“Small-ish”, because ML is fine, asymptotically, as n→∞.

(2) A family of models F .

and outputs:

(3) a selected model M ∈ F ,

which will then be input to an ML procedure that selects:

(4) the ĤM ∈ M that has maximum likelihood relative to E.

Note: it may be either M or ĤM (or both) that is (ultimately)
assessed — relative to our aim regarding the (CFP).

This gives us a framework for evaluating model selection
procedures. But, unless we know the true hypothesis, we will
not be in a position to know which procedures are better
than which — with respect to whichever aim we have.

We’ll use our toy Example #1 to illustrate “ideal” evaluation.
[We’ll discuss non-ideal evaluation – briefly – later on.]
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Truth-Bayesian (TB) model selection procedures are usually
described as furnishing us with a means to the “truth–aim”.

The basic idea behind (TB) is to maximize the posterior
probability that the selected model M is the true model [11].

That is, (TB) tries to achieve the truth aim via selecting the
model M with maximum posterior probability: Pr(M | E).
Bayes’s Theorem. The posterior probability of M depends
on the likelihood of M and the “prior” probability of M .

Pr(M | E) = Pr(E |M) · Pr(M)
Pr(E |M) · Pr(M)+

∑

M′,M∈F
Pr(E |M′) · Pr(M′)

There are three (main) problems with (NB) approaches:

(a) Where does the “prior” of a model Pr(M) come from?

(b) How do we calculate the “likelihood of a model” Pr(E |M)?
(c) Must (NB) be truth-conducive? Must “maximum posterior

probability of truth” be (objectively) correlated with truth?
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At this point, it helps to distinguish two cases.

Good Case (GC). The true model is in F . If M ∈ F , then
achieving the truth aim is possible. And, regarding (a)–(c):

(a) Of course, we don’t know whether we’re in (GC). So, we
needn’t assign probability 1 to the disjunction of the models
in F . [Also, we could assign higher priors to simpler models
([6], [4]). But, I won’t do that, since I don’t want the priors to
do the work. So, I will go uniform over F , for simplicity.]

(b) Since models contain (uncountably) many hypotheses,
“likelihoods of models” are going to have to be some sort of
“averages” of the likelihoods of the underlying hypotheses.

Pr(E |M) = average({Pr(E |H) |H ∈ M})

It’s not clear which “average” to use. Historically, one sees
attempts to “go uniform” over M ’s parameters ([6],[7],[11]).
This raises difficulties, since parameters are on [−∞,∞]. I
will discuss an alternative, “quasi-empirical” averaging.

(c) Why should maximizing “Pr(M | E)” be (objectively)
truth-conducive? Whether it is will depend on the “priors” in
(a), the ”averaging” in (b), and their connection to M, etc.
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Bad Case (BC). The true model M is not contained in F . If M ∉ F ,
then achieving the truth aim is impossible. In this case, it is odd
to describe the aim as being “the selection of the true model”.

A Bayesian could add a “catch-all model” ∼F , which asserts that
the true model is not contained in F . This won’t really help.

Now, they will need to (a) assign a “prior” [Pr(∼F)] to ∼F and
also (b) calculate a “likelihood” [Pr(E | ∼F)] for ∼F .

It’s not at all clear where these probabilities are going to come
from (or what grounds them as “guides to truth”).

Moreover, step (4) of the (CFP) will no longer be achievable, since
there seems to be no principled way to calculate “the maximum
likelihood hypothesis”, given ∼F , relative to the actual data E.

One can proceed as if M ∈ F , and apply “Good Case” methods
always. But, then problem (c) becomes even more pressing.

For the sake of simplifying the discussion, I’ll just hope we are in
(GC). And, I will use Example #1 to illustrate one flavor of (TB).
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Here’s a “quasi-empirical” Bayesian approach to our Example #1.

First, go uniform on F : Pr(Mi) = c, for each model Mi ∈ F .

Then, we need to calculate “likelihoods” for the Mi, relative to the
actual data set E1. Here’s a “quasi-empirical averaging” method:

For each model M , the error distribution ε induces a multivariate
probability distribution P over the parameter values of the
ML-hypotheses ĤM ∈ M . This distribution P is itself Gaussian.

We can use E1 to calculate an estimate (P̂) of P. This involves
averaging the sample mean (and variance) of the ĤM parameters
over the 40 “leave one out” data sets that can be generated from
the full data set E1 (this is a bootstrapping approach [9], [3]).

+ Think of our P̂ as estimating the “average” (ML) hypothesis ¯̂HM
(from M), over all the hypothetical data sets E generated by t1.

Once we have P̂, we can use it to provide the “weights” in our
calculation of the “average likelihood” for each model M .

Then, plug-in these “average likelihoods” as the Pr(E1 |M)-terms
in our Bayes’s Theorem calculation of the posteriors Pr(M | E1).
Finally, select the model with the maximal value of Pr(M | E1).
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Information-Theoretic (IT) approaches to model selection take
predictive accuracy (as opposed to truth) as their aim [5].

Predictive accuracy can be thought of as some sort of
“distance/divergence from the true hypothesis”.

So, on (IT) approaches, the aim of (CFP) is to select a hypothesis
that minimizes divergence from the true hypothesis.

There are many different information-theoretic measures of
“divergence” or “distance” from the true hypothesis. And, each
of these could be used to ground an (IT) approach to (MSP).

One commonly used measure is called the Kullback-Leibler (KL)
divergence. The KL-divergence is intimately connected with
likelihood, and so it is a natural choice in the present setting [1].

Various information-theoretic criteria for model selection have
been proposed [2]. They all involve minimizing some estimate of
(some sort of) divergence from the true hypothesis.
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Even if the true hypothesis t is not contained in the family of
models F , each model M ∈ F will nonetheless contain a
hypothesis that is “closest to the truth” among the H ∈ M .

Specifically, each model M will contain a hypothesis H?M that is
closest in KL-divergence to to the true hypothesis. (IT)-based
approaches aim to select the overall closest hypothesis in F .

In closing, I’ll discuss an intimate connection between the
“quasi-empirical” (NB)-approach above and (IT)-approaches.

The parameter values of H?M are just the mean parameter values,
under the ε-induced distribution P that we discussed above.

In other words, if one averages the parameter values of the
ML-hypotheses ĤM over many data sets E generated by t, these
averages will converge to the values of the parameters of H?M .

Thus, our “quasi-empirical” approach above borrows elements from
both the classical Bayesian and Information-Theoretic approaches.
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