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m Introduction !

In October 1996, Bill McCunet al at Argonne National Laboratory made national headlines (see Kolata (1996) and Peterson (1997))
with their computer proof of the long-standing Robbins conjecture. The Robbins conjecture had stumped some of the world's best
mathematicians for over 60 years. Amazingly, the Argonne team's automated theorem-proving p@iet@wk only 8 days to find

a proof of it. Unfortunately, the proof found BQPis quite complex and difficult to follow. Some of the steps oB@&proof

require highly complex and unintuitive substitution strategies. As a result, it is nearly impossible to reconstructte \cenifyputer

proof of the Robbins conjecture entirely by hand. This is where the unique symbolic capabilitegberhatica3 come in handy.

With the help oMathematicait is relatively easy to work out and explain each step of the d&pBproof in detail. In this paper, |
useMathematicato provide a detailed, step-by-step reconstruction of the highly corg@&proof of the Robbins conjecture.

m Preliminaries: Boolean Algebra—Definition and Notation

The first strictly axiomatic definitions of Boolean algebra were surveyed by E.V. Huntington £1$04)tington (1904) presents
four axiomatizations of Boolean algebra. The first Huntington axiomatization, which is closest to Boole's original systEma(iKine
Kneale 1962, page 423), and which is often taken as definitive of Boolean algebra (Stoll 1963, page 249), is as follows

Definition. A Boolean algebras a 6-tuplgB, &, ®, ¢, 0, 1), whereB is a set@ is a binary relation (usually calleshion, join, or
disjunctior) in B, ® is a binary relation i (usually calledntersection meet or conjunctior), * is a function fronB into B (usually
calledcomplementatioor negatior), 0 and1 are distinct elements & and the following five conditions are satisfied

(i) The operation® and® areassociativefor alla, b,c B
ad (bdc)=(@sdbydc and a®(bec)=@®b®c
(i) The operationg and® arecommutativefor alla, b € B
a®b=boa and a®b=b®a
(iii) Each of the operatior® and® distributesover the other: for ali, b, c e B
ad (bec)=(@aeb)® @®c) and a®baec)=@®b e (@®C)
(iv) Forallae B,
a0=a and a®1l=a
(v) For eacla € B, there exists an elemeat B such that
ada=1 and a®a=0
In the context of Boolealogic, for instance is disjunction(typically denoted by ), ® is conjunction(typically denoted by), and
¢ isnegation(typically denoted by -). Moreover, in Boolean logic, the elem@atsd1 denotecontradiction(e.g, p A = p) and

tautology(e.g, p v = p), respectively. With these terminological preliminaries out of the way, we are ready to begin our brief sketch
of the history of the Robbins conjecture.
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m A Brief History of the Robbins Conjecture

Almost thirty years after his seminal 1904 paper, Huntington (1933a and 1933b) discovered the following greatly simg@ified thre
axiom basis for Boolean algebra, which only requiresihgle binary relations.?

X®Yy=Yy X [Commutativity of®]
(Xey) ®@z=x&(yd2 [Associativity of@]
XBYOXPY = X [Huntington equation]

Shortly thereafter, Herbert Robbins conjectured that if the Huntington equation were replaced with the following equdtjan, whic
any Boolean algebra, &uivalento the Huntington equation (see #hppendixfor a one-lineMathematicaproof of this equivalence)

XOYBPXPY =X [Robbins equation]

then the resulting axiomatization wowdtso be characteristic of Boolean algebra. This isRbbbins conjectureRobbins and
Huntington could not find a proof of (or a counterexample to) the Robbins conjecture. The problem was later studied/ibtensivel
Tarski and his students (Tarskial 1971, problem 1.1).

Algebras satisfying commutativity, associativity, and the Robbins equation are kn®eblzias algebraslt is easy to show that
every Boolean algebra is a Robbins algebra (seAgpendixfor an eleganMathematicaproof of this), so the interesting question is
"Are all Robbins algebras Boolean?". In other words, can the Huntington equation be derived from commutativity, assacdhtivity,
the Robbins equation?

Until the late 1970's, very little progress was made toward resolving the Robbins conjecture. In 1979, S. Winker at Aignahe Na
Laboratory began looking for Boolean conditions that are sufficient to make any Robbins algebra Boolean. With the help of
Argonne's automated theorem-provers, many such sufficient Boolean conditions were found. For instimdaethegation

condition

X = X [Double negation]
can easily be shown to make any Robbins algebra Boolean (&eptedixfor aMathematicaproof). Unfortunately, these first
Boolean conditions found by Winker proved totbestrong in the sense that they were almost as difficult to deduce from the
Robbins axioms as the Huntington equation itself! As a result, these early Winker conditigrnid(ble negation) were not very
useful for resolving the Robbins conjecture. So, Winker set out to find logically weaker sufficient conditions. Ultimatey, W
(1992) was able to show that the surprisingly weak condition

3dc@npcCebD=C [Winker condition]

also suffices, with proofs by hand using insight from theorem-prover searches.

Since then, the problem has received continued attention from mathematicians and computer scientists, but until Octaber 1996, n
significant mathematical progress on the problem was made.
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m The Computer Proof of the Robbins Conjecture

The proof that solves the Robbins problem was found on October 10, 1996, by Bill MetGliaeArgonne, using their mechanical
theorem-proveEQP* EQPis similar in many ways to the more well known Argonne theorem-p@tter .> EQPproved that
every Robbins algebra satisfies the Winker condition, by refuting the following pair of assumptions

By =X [Robbins equation]
[Denial of the Winker condition]

Xeyod
Xey+

x

b

It follows immediately from this and Winker's work ttzdit Robbins algebras are Booledie., thatthe Robbins conjecture is true
The successful proof search took about 8 days on an RS/6000 computer and used about 30 megabytes of memory.

Unfortunately, the 16-line proof object generatedE@Pis very cryptic and complex. Moreov&QPdoes not provide any

information abouhow each line in the proof object follows from previous lines. This makes verifyirigQ@mproof object quite a
daunting task for a mere human. Below, | will illustrate iMathematicacan be used to make human verification and explanation of
the EQPproof object more tractable.

B The EQPProof Object: EQPNotation vsMathematica3 Notation

The main problem with thEQPproof object is that it uses the one-dimensional notati¢r)instead of Boole's two-dimensional
notation X" for denoting the complementation (or negation) opefat®his makes it almost impossible to keep track of the highly
complex and deeply nested syntactical patterns that occur in the computer proof of the Robbins conjecture. By allowong us to w
directly with Boole's more visually perspicuous 2-D notatMathematica3 makes it much easier for us to see what is going on in

the EQPproof.

Below, | have included the entire 16-liE€@QPproof object, first irEQPnNotation, then iMMathematica3 notation. Notice how
difficult it is to comprehend (or even parse!) the lines writteB@Pnotation, as compared kdathematica3 notation (especially, the
extremely complex line 15). And, notice how litE&Ptells us abouhoweach line can be derived from previous lines. The
bracketed lists of line numbers after each line tell us which previous lines in the proof were used in the derivatioesehtiapr
EQPtells usnothingabouthowthese derivations were performee.( which substitutions were made in which lines;). These
"hints" are very sketchy. But, as | will demonstrate below, these sketchy "hints" provide sufficient information for aisofvath
help fromMathematica to reconstruct a detailed proof.
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m The EQP Proof Object in EQP Notation’

1.

10.

11.

12.

13.

14.

15.

16.

NN(X® y)®nydn(x)) ==Yy [Assumption: the Robbins equation]
nyen(y®n(x) & n(xe y)) ==n(xey) [1]

nyenxeyenyen(x)) ==nyenx)  [1]

n(N(y@n(x) ®n(xe ys yenly®n(x)) ==y (1, 3]
nNy®2@enzenyenx)enxeydydnyonx))) ==z [1,4]
N(Yy®en(xe y® y®n(yd n(x) ®n(yd n(x))) == n(yo n(x) (1, 4]

N(N(y® N(X) ®N(XS yd yd yd n(yd n(x)) & n(y® n(x)))) == [1, 6]
nzenzenyegenyenx)enxeydysnyen(x))==n(yeéz  [1,5]

nNUSN(Y® 2) ®NUS ZSNZSN(YDH 2) (YD N(X) ®N(XD yd ydn(yd n(x))))) ==u (1, 8]

N(X@N(X® XS XS N(XN(X)) ==n(x@&nx)  [1,2,9]

N(NYy® N(XSN(X)) ®N(XD YD N(X® Xd xdnxenx))) ==y [1,10]

N(N(X® N(X)) B N(XD XD XD XS N(Xx®n(x)) ==x  [1,10]

N(XSN(XS XS XS XS N(XS N(X) S N(XSN(X)) == n(xen(x)  [1,12]

N(N(Y® N(XSN(X))) B NXD yS N(XD XD XD XD N(XD N(X)) & N(XD N(X))))) == y (1, 13]
N(X®N(XB N(XD XD XD N(XDN(X))) B N(XD XD XD XD N(XD N(X)) ® N(XD N(X))))) == [7,11]

N(X® XH XP XD N(XD N(X) & N(XD n(x)))

N(X® XP X XP N(XPB N(X)) B N(XBN(X)) ==N(XP XS XP N(XP N(X))) [4, 14, 15]
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m The EQP Proof Object in Mathematica3 Notation

1. X®eyoydX== [Assumption: the Robbins Equation]

2. YOYD XD XBYy==XDY [1]

3. YOXBOYDYDX==y DX [1]

4, YyOXPXPDYBYDYDX== [1, 3]

5. YOZOPZOYDXDXPYRYDRYDX==2 [1, 4]

6. YOXDYPYDPYDBXPYPX==Y DX [1, 4]

7. YyOXOXOYOYyDYBRYBXDYDX==Y [1,6]

8. ZOZOYPZOYPXPXBDYPYPYDX==YDZ [1, 5]

9. UBYDZOUDZDZOYDZOYDXDXDYDYDY ®X==U (1, 8]

10. XOXDXBXBXPX==XPX [1,2,9]

11, YOXPDXDXDYDPXDXBXDXDX==Y [1, 10]

12 XOXDXDXPXPBXPXPX==X [1, 10]

13. XOXPOXPXPXPXPXPXPX==XPX [1,12]

14, YOXBOXPXDYDXPXDXDXBXPXPXPX==Y [1, 13]

15. XOXDXDXDXDXDXDXDXDXDXDXDXDXDX==XDXDXDXDXDX DX ®X
(7, 11]

16. XOXDXDXDXDXDXPX==XDXDXDXDX [4, 14, 15]
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m Using Mathematicato Decipher theEQPProof Object

m Encoding The Robbins Axioms inMathematica3

m Encoding the Commutativity and Associativity of &
We can telMathematicato assumenly thaté is commutative\{iz.,, Orderless ) and associativeriz,, Flat ), as follows?

Inf1]:= Attributes [CirclePlus ] = {Orderless, Flat };

In my reconstruction of thEQPproof, | will just letMathematicaautomaticallymake use of the commutativity and associativitypof
I will not explicitly announce which steps depend on these two basic propergiesTdfis will allow us to focus our attention on the
more interesting and important logical role played by the Robbins equatiof itself.

m Encoding the Robbins Equation—Two HandyMathematicaConstructs

The two-place functioRobbinsExpand allows us to logically expand(in terms ofany y) in accordance with the Robbins

equation. In other words, for amyandy, RobbinsExpand[x,y] = X@y® x®y =x. Thus,RobbinsExpand[x,y] allows
us to create arbitrary Robbins-equivalents of any formul@he one-place functioRobbinsSimplify automatically simplifies
Mathematicaexpressions containing instances of the Robbins pattern.

In[2]:= RobbinsExpand [x_,y_ ] =X®yexey,

RobbinsSimplify [expr_ ] :=expr //.X_ ®Y _®&xX_ 8y _ X

Here is a simple example that illustrates HebbinsExpand andRobbinsSimplify allow us to expand/simplifiathematica
expressions in accordance with the Robbins equation.

In[3]:= RobbinsExpand [a, b ] @ RobbinsExpand [b, a ]

outi3}= aobeaebeaebebea

Inf4]:= % // RobbinsSimplify

outj4]= aeb

Now that we have encoded commutativity, associativity and the Robbins equaflathematica3, we are ready to tackle tB€QP
proof of the Winker Condition, line-by-line.

m Deciphering theEQP Proof of the Winker Condition Line—By-Line

m Line 1 of theEQPProof—The Robbins Equation

Line 1 of theEQPproof is just the Robbins equation, as discussed above
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In[5]:= ProofLine [1l] =X®y®yeX ==Yy

outs}= XOY®Y®X ==y

m Line 2 of theEQPProof—The first (of many) cryptic substitution strategies

Line 2 of theEQPproof is

In[6]:= ProofLine [2] =yeyoXeX®y ==XaYy

outfel= YOy BXOXBY == XY

Line 2 of the proof says that®dy=y® y® X® x® y. All we are told byEQPIis that line 2 followsgomehowfrom the Robbins
equation ie., line 1). The only way to go from the Robbins equation to line 2 is by creating a Robbins—equivaiet using

RobbinsExpand [X®Y, Y ], forsomey. The question ishichy is such thaRobbinsExpand [X®Y, Y ] yields the
desired formulay® y & X® XD y?

As with any good proof-theoretic question of this kind, the answer involves a neat trick. In this case, the relevargrridkfisult

to figure out (or eveseg without Mathematicé help. Mathematicaenabled me to experiment with many candidate formulas in a

very short period of time (a task that would be nearly impossible to undertake with pencil and paper). After trying bstitert@isu
strategies, | discovered the following crucial Robbins-equivalex&of

Inf7:= RobbinsExpand [X®Y, X &Y ]

ouf7l= XBOY Oy eXOYySXOXBY

The two-dimensionaWlathematicanotation makes it relatively easy to see that the exprefsibhinsExpand [X @Y, X @V ]
containstwo distinct instances of the Robbins pattern. By definitiongtitge expression is an instance of the Robbins pattern

(equivalent tox@'y). But, so is thesubexpressiork® y® y® X, which is equivalent tg. UsingRobbinsSimplify , we can
automaticallysimplify this sub-expression, yielding the desired result.

Infgl:=  RobbinsExpand [X®Y, X @Yy ] // RobbinsSimplify
outfsl- Yoy eX exXay

In other words, the left hand side of line 2 can be obtained by logically expandingin terms ofX @ y, in accordance with the
Robbins equation, and then simplifying the resulting expression which contains an instance of the Robbins pattern. cAt bkthis
done (and verifiedjutomaticallywith the following single line oMathematicacode.

inf9l=  ProofLine [2] == (RobbinsExpand [X®Y, X ®y ] == X®y) // RobbinsSimplify
outf9]= True
m Line 3 of theEQPProof

Line 3 of theEQPproof is
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inf10]:=  ProofLine [3] =y@®x®yeyexX ==y &xX

Ooutfl0]= Yy ®XDYBYBX ==y ®X

Seeing how line 3 follows from line 1 €., the Robbins equation) involves a trick very similar to the trick described above in

connection with our deciphering of line 2. Here, the trick is to logically exgand in terms ofy & X, in accordance with the
Robbins equation, and then simplify the resulting expression which contains an instance of the Robbins pattern. Orisecagain, th
be done (and verifiedjutomaticallywith the following single line oMathematicacode.

m11):=  ProofLine [3] == (RobbinsExpand [y @X, y @x] == y@Xx) // RobbinsSimplify

outf11]=  True

Equivalently, we can ugRobbinsSimplify alone to see that line 3 is the following substitution instance of line 1
inf12}=  ProofLine [3] == (ProofLine [1] /. {x > yex, y >y®ex}) // RobbinsSimplify

outf12]=  True

The functionLine3Expand allows us to rewrite expressions of the foyrs X in the more complex, line 3-equivalent form

yoxeyayeX Line3Expand willcome in handy in our proof of line 4, below.

in131:=  Line3Expand [y__@X__|:=yexeyeyex;

m Line 4 of theEQPProof

Line 4 of theEQPproof is

inf14:=  ProofLine [4] = YOXOXOYOY DY OX == Y

Outf14= Yy ®XSX DY BYBY ®X ==Yy

The EQPproof object says only that line 4 follows from from lines 1 and 3. With our fundiobbinsExpand
RobbinsSimplify , andLine3Expand , we can automatically verify that line 4 is equivalent to

In[15]:= ProofLine [4] == (Line3Expand [RobbinsExpand [y, X 1] ==Yy) // RobbinsSimplify

outf15]=  True

The trick here is to recognize that the left-hand side of line1X @y & y @ X) isitself an instance of the right-hand side of line 3

(i.,e.,y &X, wherey =y &%, andx = x @ y). This allows us to rewrite &y & y & X = y equivalently as

YVOXDXDYDYDXDXDY DY DX=Y, in accordance with line 3. Finally, the Robbins equation allows us to simplify

VOXDOXDYDYDXDXDY DY ®X=Yydown to the desired identiy X & x dy dy &y & X =y (we did this
automaticallyusingRobbinsSimplify ).
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m Line 5 of theEQPProof

Line 5 of theEQPproof is

In[16]:= ProofLine [5] = Y®ZozoyoXoxeoyoyaoyoX ==12

Outfl6]= VBZOZOYBXOXBYDYBY DX ==2Z

The EQPproof object says only that line 5 can be obtainedermaesubstitution strategy involving lines 1 and 4. To see the

appropriate substitutions, let=y ®X & X dy ®y &y & X. Then,ProofLine[5] becomes

in17=  ProofLine [5]" = ProofLine [5] //. {yeXexeyeyeyexa}

outfizl= Y&®Zo®ZIda ==12

From line 4, we know that=y @ X® X @y ®y &y ®X=a. Substitutinga foryin ProofLine [5]’ yields

inf18]:=  ProofLine [5]"" = ProofLine [5]" //. {y »a}

Ooutf18]- Z®a®zda ==12

And, ProofLine [5]"" is an obvious instance of lineile(, the Robbins equation).

m Line 6 of theEQPProof

Line 6 of theEQPproof is

In[19]:= ProofLine [6] =yexeyeyeyexeyexX == yeX

Outf19)= Y ®XOYDYOYDXOYBX == Y X

The EQPproof object says only that line 6 can be obtainedemesubstitution strategy involving lines 1 and 4. To see the relevant
substitutions, leb =X @y &y &y &X. Then,ProofLine[6] becomes

in20:=  ProofLine [6] = ProofLine [6] //. {x@eyeyey®X >b}

outf20)= Yy ®boy®X ==y ®X

From line 4, we know that=y & X ®xX dy®y dy ®X=b® y®X. Substitutingp & y & X for the first instance of in
ProofLine [6]’ yields

infz11:=  ProofLine [6]" =beyeXebey®x ==y &x

outezij= beoyeXeobeoyeX ==Yy &X
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And, ProofLine [6]"" is a substitution instance of line 1, as the test below confirms.

’

inf22]=  ProofLine [6]"" // RobbinsSimplify

outf22]=  True

m Line 7 of the EQPProof

Line 7 of theEQPproof is

inf23]:=  ProofLine [7] = YOXOXOYOYOYOYOKOY B ==y

out23= Yy OXOXBYOYBYDYOXBY BX ==Y

The EQPproof object says only that line 7 follows from lines 1 and 6. To see hawslgtoy dy dy eX dy &X. Then, line 7
becomes

inf24]=  ProofLine [7]” = ProofLine [7] //. {x@eyeyoyoxoyeox >c}

outf24)= y@&coyeX ==Yy

7

From line 6, we know that 8 X=y XDy By DY DX DY ®X=Yy &c. Substitutingy &t fory &X in ProofLine [7]
yields

’

inz5:=  ProofLine [7]"" = ProofLine [7]" //. {yeX»Yyect)
outesl= Y@ceyec ==y

which is an obvious instance of the Robbins equation

m Line 8 of theEQPProof

Line 8 of theEQPproof is

inf26l=  ProofLine [8] =z20Z0VPZOyOXOXOYOYOYOX == YOZ

out26]= ZOZOYDZOYOXOXOY DYDY OX == YBZ

The EQPproof says only that line 8 can be obtainedsamesubstitution strategy involving lines 1 and 5. To see the relevant

strategy, leti=y ®X®x @y @y @y &X. Then,ProofLine[8] becomes

In[27]:= ProofLine [8] = ProofLine [8] //. {yeiexeyeyeyei —>dl}

ouz7l z2®z20deyoZ ==y oZ
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From line 5, we know thaa=y ®#Z Gz y X DXPBY DYDY ®X=y Dz dz dd. Substitutingydz dz e d for the first
instance okin ProofLine [8]” yields

inf28]=  ProofLine [8] =Vo®z0z6dezedoyoZz == Yo7

outi28] YoZoZodeozeodeyozZ ==Yz

ProofLine [8]"’ is the following substitution instance of line 1.

inf29]:=  ProofLine [8]"" == (ProofLine [1] /. {y>V®Z, X »za&d})
outf29]=  True

m Line 9 of theEQPProof

Line 9 of theEQPproof is

in30:=  ProofLine [9] = UBYBZOUGZOZOYBZOYBXOXOYDYOYBX == U

Outf30]= UBYBZOUBZOZOYDZOYDOXOXBY DYDY BX == U

The EQPproof says only that line 9 follows somehow from lines 1 and 8. To see hew; IEBZ Oy DX DX DY DYDY D X.
Then,ProofLine[9] becomes

m31):=  ProofLine [9]" = ProofLine [9] //. {y®Zeyexexeyeyeoyex e}

ouf3al}j= UGYTZOUGZOZdE ==

From line 8, we know thal ®Z=z2 9z Yy PZOYPXDXDY DYDY DX=2dZ de. Substitutingg ®z de for ydz in
ProofLine [9]’ yields

inf32)= ProofLine [9]"" = ProofLine [9]" //. {y®Z > zeZ®e}

out32= UBZSZOedUBZOZOe == U

ProofLine [9]" is the following substitution instance of line 1.

Inf33]:= ProofLine [9]" == (ProofLine [1] /. {y>U X »>z®&Z®&€})
outf33}= True

m Line 10 of theEQPProof

Line 10 of theEQPproof is
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In[34]:= ProofLine [10] =X@X®X®X®X ®X == X ®X

Outf34j= XOXOXOXBXOX == X BX

The EQPproof tells us only that line 10 can be deduced from lines 1, 2, and 9. To see lfowxlgt X. Then,ProoflLine[10]
becomes

in3s]:=  ProofLine [10]" = ProofLine [10] /. {x®X - £}

outf35]= XOXOXOXOF == f

From line 2, we know that X ® X ®Ff =X dTFOXPTOX DX DX D X ® X df. To see this, perform the following pair of
substitutions orProofLine[2]

In[36]:= ProofLine [2] /. {Xx»>Xx®&X, Yy ->X&f}

outf36]= XOEOXOEOXOXOXOXOXODLE ==XOXOXDL

Substitutingx ®f O X OFEX DX O X DX DX OF for X® X ® X df in ProofLine [10]” yields

in37)= ProofLine [10]"" = ProofLine [10]" /. {X@X®XGE > x0fox0fOXOXOXGXGX O L}

out37l XoXOIoXOfOXOXOXOXOX DL == f

It may not be terribly obvious to the naked-eye, BrdofLine [10]’ is a substitution instance of line 9. To see this, perform the
following quadruple of substitutions &roofLine[9]

inf3gl= ProofLine [9]" = ProofLine [9] //. {Uu->X®X, X 55Xy >X 2z >Xx}

Outf38]= X OXOXDXOXDXOXDOXDXDOXDXDOXDOXDOXDOXDXDX == XDX

Now, if we replacex @ X with f (as assumed above) through®ubofLine [9]%, we get

in39)= ProofLine [9]"" = ProofLine [9]" //. {x®X - £}

outj39] FfOXOXOXOIOXOIOXBXOXOXOXOE == f

Then, from line 1 and the definition £f we know thaf @ X & X=X & X & x & X = x. Finally, substituting for f & X @ x in
ProofLine [9]*" yields

mjaol=  ProofLine [9]*"" = ProofLine [9]*" //. {fox®X > x}

outja0j= XX OLOXPLIOXOXOXEXOXSE == f

To complete the proof of line 10, we verify tHaofLine  [10]"" = ProofLine [9] o
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* *

inf41]:= ProofLine [10]"" == ProofLine [9]"

outf41]=  True

m Line 11 of theEQPProof

Line 11 of theEQPproof is

In[42]:= ProofLine [11] =y OXOXOX DY DX DX DX DX DX ==Y

outj42l= Yy OXBXOXBYDXOXOXDXBX ==Y

The EQPproof says only that line 11 can be derived from lines 1 and 10. To see hpw, Yeb X & x & x &X. Then,
ProofLine[11] becomes

inf43= ProofLine [11] = ProofLine [11] //. {x@xexexeX > g}

Outf43]= Yy OXOXOXBY DG

1l
1l
<

From line 10, we know that X=X @ X DX ® X ® X X=X ® g. Substitutingk g for x @ Xin ProofLine [11]” yields

inf44]=  ProofLine [11]"" = ProofLine [11]" //. {x®X -»X®g}

outf44]= Yy oOXBgOXBDY DG ==Y

ProofLine [11]"" is the following substitution instance of line 1.

In[45]:= ProofLine [11]"" == (ProofLine [1] /. {y>vy,x >xeg})
outf45]=  True

m Line 12 of theEQPProof

Line 12 of theEQPproof is

In[46]:= ProofLine [12] =X®X®XOXBXBX DX BX == X

Outf46]= X OXPOXOXDOXDOXOXDX ==X

The EQPproof says only that line 12 follows from lines 1 and 10. To see howHet & x & x & x & X. Then,ProofLine[12]
becomes

Inf47]:= ProofLine [12]" = ProofLine [12] //. {x &X X ea;(_ea_i-—)h}

outja7= XeheXx®X ==X
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From line 10, we know that X=X ® X ® X ® X ® X ®X= X @h. Substitutingx @h for x ®Xin ProofLine [12]" yields

inf4g]=  ProofLine [12]"" = ProofLine [12]" //. {x®X »x®h}

outf48] Xeohexeh ==X

This is an obvious instance of line 1.

m Line 13 of theEQPProof

Line 13 of theEQPproof is

In[49]:= ProofLine [13] =X®XOXOXBXDXBX DX DX == X ®X

Outf49]= X OXBXBXOXBXOXOX DX == X ®X

The EQPproof says only that line 13 can be deduced from lines 1 and 12. To see liowxlgtx & x & X & X @ X. Then,
ProofLine[13] becomes

In[50]:= ProofLine [13]" = ProofLine [13] //. {x OXDOXDX DX DX —)i}

Ooutf50j= X@1®X®X == X DX

From line 12, we know that= X DX O X B X B X PXBX P X=1 & X ® X. Substitutingi @ x & X for the first instance ofin
ProofLine [13]’ vyields

inf51]=  ProofLine [13]" = i®ex®X®i®X®X == X ®X

X

outf51)= 1GXGXBLIOGXBX == X

ProofLine [13]" is the following substitution instance of the Robbins equation.
inf52l=  ProofLine [13]"" == (ProofLine [1] /. {y »x®X, x >i})
out/52]=  True

m Line 14 of theEQPProof

Line 14 of theEQPproof is

In[53]:= ProofLine [14] =y OXOX DX DY DX DX DX DX DX BX DX BX ==Y

outf53]= Y OXOXOXOYDOXDOXDOXDXDOXOXOXDOX ==Y
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The EQPproof says only that line 14 can be obtaimedines 1 and 13. Tosee how, Jet X ® XX BX DX D XD X dX. Then,
ProofLine[14] becomes

inf54)=  ProofLine [14]" = ProofLine [14] //. {x®@X@X®XOX®XOX®X > J}

outfs4]= Y OXSXSXBY D) ==Y

From line 13, we know that X=X O X DX DX DX DX PBX P X X = X & j. Substitutingk & j for x & X in
ProofLine [14] yields

inssl= ProofLine [14]"" = ProofLine  [14]" //. {x®X »X®3}

Outf55]= Y OXOJOXBY ®J ==Y

And, ProofLine  [14]"" is the following substitution instance of line 1.
In[56]:= ProofLine [14]"" == (ProofLine [1] /. {y->vy,x ->xe3})
outf56]=  True

m Line 15 of theEQPProof

Line 15 of theEQPproof is

In[57]:= ProofLine [15] =X®OX DX DX DX DX DX DX DX DX DX DX DX DX DX == XOX DX DX DX DX ®X B X

Ooutf57]= X OXOXOXOXDOXDXOXDXDX DX DX DX DXDX == XOXOXOXDOXDXDX OX

The EQPproof says only that line 15 follows from lines 7 and 11. To see hoWHet X & X ® X & X XD X & X. Then,
ProofLine[15] becomes

insgl=  ProofLine [15]" = ProofLine [15] //. {x@xe@xexexexexex >k}

outl58]= XOXOkOXOXOXSXOX ==k

From line 7, we know that =X ®X O X OX DX PX DX DX DX DX =k P X &X. Substitutingk & x & X for the first
occurrence okin ProofLine [15]’ yields

9= ProofLine [15] =k ©oX®X oX 0k X ®X X ®X ©X == k

outf59) KkoXOXOXOkOX OXOXBXDX ==k

ProofLine [15]"" is the following substitution instance of line 11.
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In[60]:= ProofLine [15]"" == (ProofLine [11] //. {y »k})

outfé0]=  True

m Line 16 of theEQPProof—The last line of the proof (finally!)

Line 16 of theEQPproof is

In[61]:= ProofLine [16] =X®XOXOXOXOX DX OX == XX OX OX ®X

Outl6l]= X OXOXDOXOXDXDOXDBX == XOX DX DX DX

The EQPproof says only that line 16 can be obtained using some substitution strategy involving lines 4, 14, and 15. To see the
relevant strategy, ldt= x & x @ X & X @ X. Then,ProofLine[16] becomes

inf62}= ProofLine [16]" = ProofLine [16] //. {x@x@xe®xe®X >1}

outfe2]= X@leXxeX ==1

From line 15, we know that @1 & x ®X=Xx® X ®l ® X ®1 @ x ®X. To see this, perform the following substitution on
ProofLine[15]

inf63]:=  ProofLine [15] //. {x@xexexexX -1}

outfe3l= XoXoIloX®loXaoX == XoleoX ®X

Substitutingx ® x @1 @ x @1 & x @ X for x @1 ® x ® X in ProofLine [16]” yields

infe4=  ProofLine [16]"" = ProofLine [16]" /. {x®lexeX >xoxolexolex ®x}

outfé4]= XoX®LloXdloX®X == 1

From line 4, we know that=Xx X O XX O X B X ®X=1 @ x ®X. Substituting @ x @ X for the first instance ofin
ProofLine [16]"" yields

ns)=  ProofLine [16]" =Iexeoxexoloxolex®x ==

ouf65l= ToxeoXoxolexelexeX ==1
Finally, ProofLine [16] """ is the following substitution instance of line 14.

neel=  ProofLine [16]"" = (ProofLine [14] //. {y»>1,x exexexex »>1})

outf66]=  True
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m What have we just proved?

We have just proved thatd X X X X BX B XD X=X DX B X & X ®X. To see that thé/inker Conditiorfollows from this,

letC=x®x®X®Xx®X andD = x & x @ X. Then, it is straightforward to verify that line 16 ent&@le D = C, which implies
the Winker Condition

in67):=  ProofLine [16] //. {x@x®x®X®X »C, X ®X ®X - D}
Out[67]: c:@lj:: C

This concludes ouvlathematica-aided deciphering of tHeEQPproof of the Winker Condition. In conjunction with the results
previously reported in Winker (1992), this proof establishesath&obbins algebras are Boolean algebras.(itleat the Robbins

conjecture is correct) [

B Concluding Remarks

Although theEQPproof of the Robbins conjecture (which has now been verified both automatically and by hand by several different
researchers) firmly establishes theth of the Robbins conjecture, tE€QPproof object does little to help human beingsierstand

how to provehe Robbins conjecture. In fact, tB®Pproof object is quite difficult to follow (or even parse!). After several

frustrating and fruitless weeks of trying to work throughE@Pproof object by hand, | started experimenting Wilithematica.

Just a couple of days later, | had a compiéathematicareconstruction of the proof! The keys to my success wetddt)ematicss
two-dimensional Boolean notation for the complementation operatdiich allowed me to see many complex syntactical patterns

that were all but invisible iEQPs one-dimensional notation, and @xthematicé powerful, interactive symbolic engine, which

allowed me to experiment with many complicated substitution strategies in "real time." Maik@anaticaexclusively in both my

scratch work, and in generating the polished reconstruction that appears here.

One of the most pressing current problems facing researchers in automated theorem-proving (according to Professor Kenneth Kunen
personal communication) is the translation and reconstruction of complex, unintuitive computer proofs into forms that are more
readily understood by human beings. | think my "Robbins success story" illustratdatioevmnaticacan be used quite effectively to

help people comprehend complicated computer proofs of this kind.

B Appendix

m All Boolean algebras are Robbins algebras

I mentioned above that, in the context of Boolean algebra, the Robbins equitipcaiy equivalento the Huntington equation.

We can prove this rather easily usigthematicaas follows. In the context of Boolean algebra (specifically, in Bodtg), the
binary relations is just Boolean disjunctiod, and the unary relationis just Boolean negation -. So, we define the following list of
replacement rules to capture the assumption that we are working within Boolean logic.

In[68]:= Boolean = {X_">5-X,X_ &y __ ->XVYVy};
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Then, we usdathematicé LogicalExpand  function to construct the following one-line proof of the logical equivalence of the
Huntington equation and the Robbins equation, within the context of Boolean algebra.

In[69]:= (?6?@%?: T@Vef@?) && (xTy OXO®Y = Y OX exey) //. Boolean

// LogicalExpand

outf69]= True

Together with the results in Huntington (1933a,b), this entailsathBbolean algebras are Robbins algebras[]

m Double Negation is sufficient to make any Robbins algebra Boolean

Earlier, | claimed that thdouble negatiortonditionX = x is sufficient to make any Robbins algebra Boolean. We can demonstrate
this usingMathematica as follows.

The Robbins equation says

In[70]:= Robbins = (RobbinsExpand [Xx, y ] == X)

out[70]= X®Y®X @Y == X

And, the Huntington equation says

in71=  Huntington = (X@yeXey == x)

outf7l}= Y ®XSX®Y == X

If we assumealouble negationthen the Robbins equation is equivalent to

inf7z;=  (RobbinsExpand [X,y ] ==x) //. {Xx— »x}

ouf72= Yy ®X®X Y == X

which is obviously identical to the Huntington equatiorn]
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B Notes

1 Much of the history of the Robbins problem reported here is taken from McCune (1997) aatlaN®892). See McCune
(1997) for the full story on the recent computer proof of the Robbins conjecture. Also, check-out Bill McCune's homietgpage at
/Iwww.mcs.anl.gov/home/mccune/ar/ , and, especially, his "Robbins Algebras are Boolean" palgftpal/
www.mcs.anl.gov/home/mccune/ar/robbins/ for lots of information about the Robbins conjecture and automated
reasoning in general.

2 See Kneale and Kneale (1962, pages 404—427) for a scholarly trace of the historical development of Boolean algebra and
Boolean logic from Boole (1854) to Huntington (1933 a,b).

3 The relation® is then defined in terms @ andas follows:x ® y = X @y. Showing that Huntington's simpler (1933a,b)
axiomatization is equivalent to his more complex (1904) axiomatization is not very difficult to do by hand. Halmos (1983, page
gives this proof as an introductory exercise.

4 See McCune (1997) for all technical details, and see Kolata (1996), and Peterson (1997) for less technical news reports about
the computer proof and its significance.

5 See Argonne's automated reasoning pabétgi/www.mcs.anl.gov/home/mccune/ar/ for more abouEQP
andOtter . See, also, Wost al (1992) for a general introduction to the theory and practice of automated reasoning.

6 Apparently, Boole (1854, page 147) was the first to use the overbar notatiatenote the negation or complementation of
x in the context of formal logic and algebra. This notation was later adopted by C.S. Peirce, but not by E.V. Huntin@tajori See
(1993, 1 685) for the historical development of the overbar notation in formal logic and algebra.

" The actuaEQPoutput of this proof can be obtained from the following URtp://www.mcs.anl.gov/home/
mccune/ar/robbins/egp-theorem.proof.txt.

8 We don't telMathematicaanythingabout the attributes of the complementation operatdihis is as it should be. We are
only allowed to assume that® a unary function obeying the Robbins equation.

9 EQPalso handles commutativity and associatiuitylicitly in this way. No information is given in tfEQPproof object
about the roles that commutativity and associativity play in the proof.
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