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Abstract. With the inclusion of an e�ective methodology, this article answers in

detail a question that, for a quarter of a century, remained open despite intense

study by various researchers. Is the formula XCB = e(x;e(e(e(x;y); e(z;y)); z)) a

single axiom for the classical equivalential calculus when the rules of inference consist

of detachment (modus ponens) and substitution? Where the function e represents

equivalence, this calculus can be axiomatized quite naturally with the formulas

e(x;x), e(e(x; y); e(y; x)), and e(e(x; y); e(e(y; z); e(x; z))), which correspond to re-


exivity, symmetry, and transitivity, respectively. (We note that e(x;x) is dependent

on the other two axioms.) Heretofore, thirteen shortest single axioms for classical

equivalence of length eleven had been discovered, and XCB was the only remaining

formula of that length whose status was undetermined. To show that XCB is indeed

such a single axiom, we focus on the rule of condensed detachment, a rule that

captures detachment together with an appropriately general, but restricted, form of

substitution. The proof we present in this paper consists of twenty-�ve applications

of condensed detachment, completing with the deduction of transitivity followed by

a deduction of symmetry. We also discuss some factors that may explain in part

why XCB resisted relinquishing its treasure for so long. Our approach relied on

diverse strategies applied by the automated reasoning program OTTER. Thus ends

the search for shortest single axioms for the equivalential calculus.
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1. History, Signi�cance, and Terminology

With the use of an e�ective methodology, we answer the �nal open

question concerning possible shortest single axioms for the classical

equivalential calculus. Speci�cally, when detachment (that is, modus

ponens) and substitution are the inference rules in use, is the formula

e(x; e(e(e(x; y); e(z; y)); z)) (XCB)

a single axiom for that calculus, or is it too weak? This question, posed

by J. Peterson [9], remained open for a quarter of a century, eluding the

e�orts of various researchers. Here we tell the full story of the discovery

of the main result reported in our companion article \XCB, The Last

of the Shortest Single Axioms for the Classical Equivalential Calculus"

[16], where we also treat a simpler open question posed by K. Hodgson

[2]: Is XCB a single axiom for classical equivalential calculus in the

presence of substitution, detachment, and reverse detachment?

For a formula to be a single axiom for a formal system, all theorems

of that system must be deducible from the formula. We make this

perhaps obvious observation because, rather than relying on the com-

bination of detachment and substitution, we study XCB here in the

presence of but one inference rule, condensed detachment (discussed

more fully shortly), a rule that captures detachment coupled with a

constrained form of substitution. To answer Peterson's question, we

study the speci�c question of whether one can rely solely on condensed

detachment to deduce from the formulaXCB some known basis (axiom

system) for the equivalential calculus. If that could be proved impossi-

ble, then XCB would be too weak to serve as a single axiom (see, for

example, [5]). If, on the other hand, such a deduction can be found,

then XCB must itself also be such a basis, and the question open for

two and one-half decades is answered in the a�rmative.

We do in fact answer Peterson's question a�rmatively by presenting

a proof (in Section 3) obtained with invaluable assistance from W. Mc-

Cune's automated reasoning program OTTER [7]. Reliance on such a

program naturally suggests an attack featuring condensed detachment

rather than detachment coupled with substitution. The former rule is

(as will be shown) easily implemented in OTTER through the use of

hyperresolution, whereas the latter pair of rules is far less attractive

because of the lack of e�ective strategies for choosing from among

the myriad instances obtainable with substitution. In addition, proofs

based on condensed detachment are often more elegant. Indeed, when

one is faced with reading a formula (obtained, say, by substitution)

thousands of symbols long, one �nds the task daunting. The proof
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Vanquishing the XCB Question 3

we give in Section 3 would, if presented in terms of detachment and

substitution, include two such formulas.

The discovery of this proof, deducing from XCB a known 2-basis

consisting of formulas that correspond to symmetry and transitivity,

marks a victory both for logic and for automated reasoning [14]. Thus

ends the search for shortest single axioms for the equivalential calculus.

Indeed, exactly fourteen such axioms exist, and no others can be found.

The use of methodology and strategy (discussed in Section 2) shows

that automated reasoning played a vital role. Before we detail the

techniques crucial to our success, we brie
y review the equivalential

calculus and discuss the relevant contributions made by earlier logicians

to the study of shortest single axioms for this �eld.

1.1. The Equivalential Calculus

Formulas of the classical equivalential calculus are constructed from

sentential variables and the two-place function symbol e (for \equiv-

alence"). The theorems of this logic are precisely the formulas

in which each variable occurs an even number of times|e(x; x),

e(e(x; y),e(y; x)), e(e(y; y), e(y; y)), and the like. Those theorems in

which each variable present occurs exactly twice are said to have the

2-property. An interesting and useful fact is that every theorem of the

calculus either has the 2-property or is a substitution instance of a

theorem with the 2-property. For example, e(e(y; y); e(y; y)) does not

have the 2-property, but this formula is an instance of e(x; x), which

does. Also known [1] (compare [4]) is the fact that, when condensed

detachment is successfully applied to two formulas each of which has

the 2-property, the formula that results from that application always

has the 2-property.

As one might guess from its name, the equivalential calculus can

be axiomatized (see, for example, [13]) with formulas corresponding to

re
exivity, symmetry, and transitivity, expressed here as clauses.

P(e(x,x)).

P(e(e(x,y),e(e(y,z),e(x,z)))).

P(e(e(x,y),e(y,x))).

Unexpectedly, perhaps, re
exivity is provably dependent on the 2-basis

consisting of symmetry and transitivity.

In the early years, before C. A. Meredith entered the game, equiv-

alential calculus was studied exclusively in terms of two rules of

inference, detachment and substitution. Detachment permits the de-

duction of t from the two hypotheses (premisses) e(s; t) and s. Thanks

to Meredith [8], however, it has become standard practice to study
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the equivalential calculus instead in terms of the sole inference rule

condensed detachment. Brie
y (see [5] for a detailed presentation), this

rule takes as premisses two formulas e(s; t) and r (assumed to share no

variables in common) and, when s and r are uni�able, permits the

deduction of the formula obtained by applying to t the most general

substitution unifying s and r. Condensed detachment can be easily im-

plemented in OTTER with the use of hyperresolution and the following

clause as its nucleus, where \ j " denotes logical or and \ - " logical

not.

-P(e(x,y)) | -P(x) | P(y).

From the viewpoint of substitution and detachment, when attempt-

ing to apply condensed detachment, one �rst seeks a most general

substitution of terms for variables that (if such exists) yields, when

applied to r and s, a common term. One next applies that substitution

(a most general uni�er) to both r and e(s; t) to obtain two (so-to-

speak) new hypotheses. Finally, to the new pair of hypotheses, one

applies detachment. Clearly, any formula obtainable from an axiom

set by condensed detachment alone can be obtained from that set by

detachment together with substitution. Conversely, it can be shown [5]

that every formula obtainable with detachment and substitution is an

instance of at least one formula obtainable with condensed detachment

alone.

1.2. History

In 1933, J.  Lukasiewicz found the �rst three eleven-symbol formulas

that could each serve as a single axiom for the equivalential calculus [6].

Expressed as clauses, they are the following. (For ease of reference, we

adopt the useful naming convention for formulas of this length devised

later by Kalman and presented in the appendixes to [9] and [2].)

P(e(e(x,y),e(e(z,y),e(x,z)))). % YCL

P(e(e(x,y),e(e(x,z),e(z,y)))). % YQF

P(e(e(x,y),e(e(z,x),e(y,z)))). % YQJ

In the same paper,  Lukasiewicz shows that no shorter formula can serve

as a single axiom.

Meredith later discovered the following seven additional shortest

single axioms [8].

P(e(e(e(x,y),z),e(y,e(z,x)))). % UM

P(e(x,e(e(y,e(x,z)),e(z,y)))). % XGF

P(e(e(x,e(y,z)),e(z,e(x,y)))). % WN
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P(e(e(x,y),e(z,e(e(y,z),x)))). % YRM

P(e(e(x,y),e(z,e(e(z,y),x)))). % YRO

P(e(e(e(x,e(y,z)),z),e(y,x))). % PYO

P(e(e(e(x,e(y,z)),y),e(z,x))). % PYM

In the mid-1970s, J. Kalman and his student Peterson undertook a

computer-assisted investigation of all 630 eleven-symbol equivalential

theses (distinct up to alphabetical variance). Kalman found another

shortest single axiom among these [3], the eleventh. (We note that

Kalman himself graciously regards this eleventh axiom as simply

correcting a misprint in [8].)

P(e(x,e(e(y,e(z,x)),e(z,y)))). % XGK

Peterson showed that 612 of the eleven-symbol theses were too weak [9],

and posed as open questions the status of the remaining seven formulas

of length eleven.

P(e(x,e(y,e(e(e(z,y),x),z)))). % XJL

P(e(x,e(y,e(e(x,e(z,y)),z)))). % XKE

P(e(x,e(e(e(e(y,z),x),z),y))). % XAK

P(e(e(e(e(x,e(y,z)),z),y),x)). % BXO

P(e(x,e(e(y,z),e(e(x,z),y)))). % XHK

P(e(x,e(e(y,z),e(e(z,x),y)))). % XHN

P(e(x,e(e(e(x,y),e(z,y)),z))). % XCB

Kalman's place in the history of equivalential calculus, and certainly

in the history of this paper, is by no means limited to the preceding

observations. He was apparently the �rst to introduce automated rea-

soning and the equivalential calculus to each other, writing his own

theorem-proving program to study possible shortest single axioms early

on and using it to discover his proof for the eleventh shortest single

axiom. Later, having learned of the Argonne e�ort focusing on the au-

tomation of reasoning, he visited Argonne (in the late 1970s, if memory

serves). He brought a �ne gift, the open questions concerning the status

of those seven unclassi�ed formulas of length eleven.

Not long after Kalman's visit, the Argonne group began an intense

study of the seven unclassi�ed formulas, conquering six of them. It was

proved that the �rst four of those formulas (XJL, XKE, XAK, and

BXO) are too weak [12]. Of the remaining three formulas, S. Winker

proved (as reported in [12]) that XHN and XHK are in fact new

shortest single axioms, the twelfth and thirteenth.

P(e(x,e(e(y,z),e(e(z,x),y)))). % XHN

P(e(x,e(e(y,z),e(e(x,z),y)))). % XHK
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For the �rst of the two, Winker's proof has length 159 (applications of

condensed detachment), for the second, length 83. (We now have far

shorter proofs, of lengths 19 and 21, respectively.)

One formula remained unclassi�ed, as it had since 1977:XCB. With

the goal of proving that this recalcitrant formula is in fact a single

axiom, we sought to show that one could deduce from it either the

3-basis cited earlier or one of the thirteen previously known shortest

single axioms. (Indeed, because of the dependence of re
exivity, the

independent 2-basis would have served well as a target; but, as a matter

of historical fact, the 3-basis was one of the targets.)

Precisely how the mystery was solved to reveal XCB as the four-

teenth and �nal shortest single axiom is the focus of Section 2. There

we detail the methodology and strategy we used to obtain the original

71-step proof. In Section 3, we discuss proof re�nement and how we

eventually obtained from the 71-step proof a far shorter proof, one of

length 25. There we present that 25-step proof, the shortest we know

of. The proof has been independently veri�ed with two other programs.

In Section 4, we consider why XCB remained unclassi�ed for so many

years and present additional observations on some unusual aspects of

XCB. Section 5 provides a summary.

2. An E�ective Methodology

Here we present the highlights of our successful attack on the XCB

question. In fact, a set of proofs showing that XCB is a single axiom

for the equivalential calculus was discovered, many of them complet-

ing with the deduction of one of the previously known shortest single

axioms. The shortest proof we found (given in Section 3) uses 25 appli-

cations of condensed detachment to reach, rather than a single axiom,

the independent 2-basis consisting of e(e(x; y); e(e(y; z); e(x; z))) and

e(e(x; y); e(y; x)). Additional details concerning our approach, includ-

ing some input �les, summaries of output �les, and useful commentary,

are available on the Web page www.mcs.anl.gov/�wos/XCB/. Perhaps

one might have preferred to be shown a fully automated approach, but

in fact no e�ective algorithm for answering such deep questions has yet

been found.

In essence, the original attack involved three phases: the deduction

of re
exivity, the deduction of transitivity presuming the availability of

symmetry, and the deduction of symmetry itself. Of these three goals,

the third proved by far the most di�cult to reach. Historically, the

�rst and second goals were reached more than one year ago. The recent

e�ort was devoted to an attempt (successful in the end) to obtain a
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proof of symmetry from the formula XCB alone. The interim took the

form of a long pause that witnessed essentially no research devoted to

this intriguing formula. Throughout, we were continually aware that

re
exivity is easily proved to be dependent on symmetry together

with transitivity. Nevertheless, the 3-basis was originally one of our

targets for proof completion. Also included as targets were the thirteen

previously known shortest single axioms for the equivalential calculus.

The attack relied on a number of strategies and features o�ered by

OTTER. Among these, the �rst chosen was lemma adjunction, which

involves adjoining to XCB, in successive runs, the �nal steps of various

intermediate targets proved in earlier runs or even the entire proofs

of such targets. The so-called lemmas that are adjoined are placed

in the initial set of support, and the program is instructed to focus

on each to initiate applications of the inference rule or rules in use

before focusing on a newly deduced and retained conclusion. These

lemmas, rather than necessarily appearing as steps in the �nal sought-

after proof, are intended to direct the program toward important steps

that will appear in the �nal proof. (The set of support strategy, forward

subsumption, and usually back subsumption are almost always featured

in our research with OTTER.) For example, the inclusion initially of

the eleven steps of our original proof of re
exivity as lemmas was not

coupled with the expectation that any or all of those steps would appear

in the �nal proof, if such were found. In fact, as it turned out, its most

complex step (of length 47, not counting the predicate symbol) does not

appear in the proof we o�er in Section 3, nor does it play much of a role

throughout. In contrast, the proof in Section 3 relies on two 47-symbol

formulas, both of which occurred in a 52-step proof of e(x; e(y; e(x; y))),

completed in a breadth-�rst search, a proof obtained in approximately

78 CPU-hours. The two formulas are, respectively, the 38th and 41st

deduced steps of the 52-step proof.

In the search for a proof of symmetry from XCB, we chose as inter-

mediate targets all �fteen of the 7-symbol theorems of the equivalential

calculus with the 2-property. (Hereafter, we shall suppress the phrase

\with the 2-property".) This choice was motivated in part by the fact

that symmetry is such a theorem and in part because short formulas

are, in our experience, often easier to prove than longer ones. Of course,

if all �fteen were proved, then symmetry (being such a 7-symbol the-

orem) would be proved, and the centerpiece of our work would be in

hand.
For directing the program's reasoning, R. Vero�'s hints strategy

[11] played the prominent role. To use that strategy, the researcher

chooses one or more formulas or equations that the program treats

as more important than other such items for initiating inference rule
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application. In particular, when the program is ready to choose a new

clause on which to focus, it prefers (if available) one that matches a

hint. We selected the option of choosing a matching clause or one that

subsumes a hint. We note that hints are used only to guide the pro-

gram's reasoning; they are not used as hypotheses in the application of

inference rules. Rather, each is viewed as an attractive symbol pattern

to be matched, if possible.

The hints that were used grew in number, each corresponding to a

proof step of a target lemma proved in an earlier run. That is, as the

size of the initial set of support grew from run to run and experiment

to experiment, so did the size of the list of hints. To each hint, the

researcher can assign a value; the smaller the value, the higher the pri-

ority for being chosen as the focus of attention. By way of illustration,

an included hint that corresponds to a formula of length 47 (measured

in symbols) can in e�ect be treated as having length 1. Indeed, various

47-symbol formulas occur in proofs of intermediate targets; among such

formulas are the two found in our 25-step proof. When the program is

instructed to rely on complexity preference rather than on breadth �rst,

the highest priority (for directing its reasoning) is given to formulas

of least complexity. The program computes complexity based on the

assigned values to included resonators and hints, otherwise based on

symbol count.

A second direction strategy was also employed, McCune's ratio strat-

egy [14]. That strategy blends the choosing of focal clauses based on

complexity (which, as indicated, can be in
uenced by included hints)

and �rst-come �rst-serve. If, for example, the value assigned to the

pick given ratio is 2, then the program chooses two clauses by com-

plexity, one by �rst-come �rst-serve, two, one, and so on. Inclusion

of the ratio strategy with a low assigned value to the pick given ratio

permits the program to regularly focus on conclusions retained early,

some of which may be very long and would otherwise be delayed in the

context of inference rule initiation, perhaps forever.

To restrict the reasoning, the max weight parameter o�ered by OT-

TER proves most useful. New conclusions whose complexity (that is,

their weight, as determined by assigned values to resonators or hints

or by symbol count) exceeds the value assigned to max weight are

discarded. A small assigned value can restrict the program's reasoning

so severely that all proofs are blocked, while too large an assigned value

can drown the program in newly deduced and retained information.

One additional restriction strategy was employed, at least in the

early stages. The strategy is a version of term avoidance (sometimes

referred to as a subtautology strategy). In early runs, we instructed the

program to discard immediately any newly deduced conclusion that
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Vanquishing the XCB Question 9

contains as a proper subformula a formula of the form e(t; t) for some

term t. This action was taken because we feared that, otherwise, the

space of conclusions to be explored would grow far too rapidly and

prevent the program from reaching the goal of a proof of symmetry. The

danger of its inclusion (which was in fact eventually experienced) is that

key information on the path to a needed conclusion may be discarded,

preventing the program from completing an assignment. Later in the

study, on the path that produced a proof of symmetry and more, the

use of term avoidance was abandoned.

Finally, at the outermost level of directing the program's reasoning,

we considered the choice between instructing the program to conduct

its search by complexity preference (within the context of the ratio

strategy) and by breadth �rst (that is, level saturation, in which the

ratio strategy has no function). Although both choices may require

consideration of a space of conclusions that can grow exponentially, far

more e�ective methodologies exist for coping with this possible growth

with the �rst choice than with the second. Nevertheless, the use of

breadth �rst (level saturation) eventually did provide key results for

both the lemma-adjunction phase and for the growing hints list. We

simultaneously and, as it turned out, pro�tably employed both of these

global strategies.

Consistent with the plan of targeting the fourteen cited bases, the

program commenced its attack. In the spirit of lemma adjunction, we

began (as noted) by relying on the year-old 11-step proof of re
ex-

ivity from XCB, using its steps both as lemmas and as hints. (The

single 47-symbol formula found among these eleven steps motivated

us to instruct the program throughout our attack to retain formulas

of this complexity. The inclusion of the cited eleven lemmas enabled

the program to probe far deeper levels than it would have been able

to otherwise, providing us with additional proof steps to be used in

later runs both as hints and as lemmas.) We instructed the program

to treat any formula that was identical to one of the eleven steps or

that subsumed one of them as being of length 1. Clearly, we were

instructing the program to direct its reasoning with much preference

for newly deduced clauses that matched or subsumed a hint. (The hints

strategy is generally preferred over the resonance strategy for studies

in equivalential calculus because too many conclusions match a given

resonator.)

OTTER's arsenal encourages attacks that rest on multiple ap-

proaches applied in separate but simultaneous runs. We chose a

two-pronged attack. The sole di�erence between the two approaches

that were chosen involved the means used to direct the program at the

outermost level of its reasoning. For one approach, we chose breadth-
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�rst search. For the other, we chose McCune's ratio strategy, with an

assigned value of 2 to the pick given ratio. In both approaches, the

value of 48 was assigned to the max weight. In both, we also included

nineteen hints corresponding to the steps of a proof we had in hand that

the single axiom XHN implies the single axiom UM . This action was

taken because we had abundant evidence of the di�culty of attempting

to answer the open question concerning the axiomatic status of XCB

and because settling the question for XHN had initially proved so

di�cult.

Both approaches began by employing the version of the term-

avoidance strategy mentioned earlier. Although the program could have

been instructed to rely on the weighting strategy, instead we used de-

modulation to rewrite unwanted new conclusions to junk. As noted, we

were motivated by experience gleaned from much experimentation that

teaches one that the space of deducible conclusions is sharply reduced

with this strategy.

We placed in the passive list the negations of the intermediate tar-

gets, namely, the full set of �fteen 7-symbol theorems. Also included

were the negations of the known thirteen shortest single axioms, as

well as the negation of transitivity. Members of the passive list are

used mainly to signal proof completion (by unit con
ict) and for sub-

sumption. In general, we also use the passive list to monitor progress,

viewing the proof of any of its members as a good sign even if we do

not intend to use the result. In this study, of course, the intention was

to add as lemmas in a later run the deduced steps of all proofs of those

intermediate 7-symbol targets.

In the input usable list (whose members never initiate inference rule

application), we placed the clause that captures (with hyperresolution)

condensed detachment.

-P(e(x,y)) | -P(x) | P(y).

As noted, the key 7-symbol formula is symmetry, because our prior

studies had shown that, if we had in hand a proof of symmetry deduced

from XCB alone, we could complete a proof that XCB is indeed a

shortest single axiom. We of course had no way of knowing whether

the �nal proof, if obtained, would include any other proved 7-symbol

formulas or their proof steps. Their adjunction was intended merely to

aid the search in general, such adjunction of lemmas having proved to

be a powerful methodology in many contexts in the past.

Another of the 7-symbol formulas, expressed in clausal form as

P(e(e(e(x,y),x),y)), had been proved with some di�culty in an earlier

experiment with a di�erent program. We strongly suspect that the

discovery of that proof played the key role in our decision to include all
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Vanquishing the XCB Question 11

7-symbol theorems with the two-property as intermediate targets for

eventual use in lemma adjunction. The experiment in question would

prove almost immediately to be valuable in evaluating the two-pronged

approach, since it had not bene�ted from reliance on the strategies

presented earlier. Indeed, we were encouraged to continue pursuing

both approaches because each obtained a proof of that clause. The

approach relying on the ratio strategy completed its proof in less than

one CPU-minute; the breadth-�rst approach required approximately

eleven CPU-minutes. (In addition to any possible contributions from

the 11-step proof of re
exivity, the length of the �rst proof is 13

and of the second is 17. Since we were not seeking shorter proofs at

that point, we note that a shorter proof may exist with XCB as the

sole hypothesis.) Our success in proving the apparently di�cult clause

P(e(e(e(x,y),x),y)) o�ered a promise that would indeed be ful�lled.

The approach based on the use of the ratio strategy yielded no

additional proofs and was temporarily discontinued. The breadth-�rst

approach, however, was permitted to continue its search (which, as

will be seen shortly, was most fortunate). While waiting for more

proofs from the breadth-�rst search|if such could be found|the ratio-

strategy approach was resumed, but with the addition (as lemmas) of

the thirteen deduced steps of the proof just cited; our objective was to

seek proofs of additional targets. This e�ort failed.

An analysis suggested that, just perhaps, the use of the term-

avoidance strategy might be blocking progress. Therefore, we ceased

using it but otherwise continued as in the preceding case. The use of

term avoidance was indeed the problem, at least temporarily. Without

it, four additional theorems of the �fteen were proved, making a total

of six proved (because one of the �fteen is an instance of re
exivity),

with nine yet to prove. Of course, symmetry was still the only one of

them crucial to the attack, the proofs of the others being of interest

primarily for lemma adjunction and for supplying additional hints.

At this point, the decision to allow the breadth-�rst branch to

continue brought riches. Speci�cally, the �rst of the following two for-

mulas was proved in approximately 45 CPU-hours and the second in

approximately 78 CPU-hours.

P(e(e(x,e(y,x)),y)).

P(e(x,e(y,e(x,y)))).

Completion of proofs for these two formulas signaled progress. Of far

greater importance, the steps in those proofs turned out to play a

crucial role. The join of the two proofs (of respective lengths 33 and

52) provided 71 additional formulas to use as lemmas for the next run.
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In that run, �nally, a proof of symmetry was completed. An 18-step

proof was found in approximately 45 CPU-minutes, a proof relying

on nine of the proof-step lemmas that had been adjoined during the

attack. Deciding at this point not to rely on much earlier derivations,

we next sought a proof of transitivity (where the target was the familiar

3-basis) or a proof of one of the known thirteen shortest single axioms.

Of course, our intention was to have OTTER prove directly from XCB

alone a known basis without reliance on any lemmas.

We chose another two-pronged approach. On one branch, we relied

on the far, far earlier set of hints that corresponded to a proof of tran-

sitivity from symmetry. On the other branch, we ignored such earlier

discoveries. The second branch o�ered more appeal in that it corre-

sponded more closely to a type of attack we enjoy. For that approach,

we relied on the hints used in the preceding run together with thirty

hints corresponding to the join of the new proofs obtained in that run,

among which was symmetry. The only hypothesis that was used was

XCB; the pick given ratio was assigned the value 2; the max weight

was assigned the value 64, in case longer formulas might be useful; no

term avoidance was employed. McCune's program succeeded in �nding

(in approximately 7 CPU-seconds) a 61-step proof of symmetry and

(in approximately 15 CPU-minutes) a 71-step proof of transitivity. As

expected, the latter does in fact depend on symmetry, its 66th step.

Our attack had vanquished XCB.

As for the �rst of the two approaches, it also succeeded and �nished

even earlier. In approximately 4 CPU-seconds, a 66-step proof of tran-

sitivity was found, and in roughly 1 additional CPU-second symmetry

was proved in 64 applications of condensed detachment. The former,

contrary to expectation, clearly does not depend on the latter. In other

words, aided by hints corresponding to results from more than one year

earlier showing that the use of symmetry can lead to a proof of transitiv-

ity, a proof of the latter independent of symmetry was found. Whereas

the approach that relied upon hints proving transitivity from symmetry

proved �ve of the previously known shortest single axioms, the other

approach proved in approximately 45 CPU-minutes all thirteen.

Neither approach produced a complete proof of the 3-basis as a

single proof, although each member of that basis was proved in each

approach. The type of proof we preferred would �nd a contradiction

with the denial of the conjunction of the three members, thus providing

a proof with no duplicate steps. Our failure to �nd such a proof is

explained by our failure to include a clause corresponding to the denial

of the conjunction of the members of the 3-basis. We simply reached

the proof of the three members sooner than we had expected. Based

on our preferred approach, the type of proof we have in mind would
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be at least length 72 because re
exivity had not been proved in the

71-step proof, though symmetry had been proved. (Had the denial of

the 3-basis been included in the input, say, in the second approach, an

experiment shows that indeed a 72-step proof would have been found.)

Therefore, with the goal of producing a proof of the 3-basis as a

single proof rather than as three separate proofs (and with no duplicate

steps), and with the additional goal of beginning a re�nement study

focusing on proof length, we turned to yet another run. We simply took

the input �le for the second of the two approaches just described, added

the denial of the 3-basis to the usable list, and added the command

set(ancestor subsume). (For those who are curious, the inclusion of this

command ordinarily has a dramatic e�ect on CPU time, slowing the

program sharply in many cases.) That command instructs OTTER

to compare derivation lengths with the same conclusion and prefer the

shorter; it automatically seeks shorter proofs. (We emphasize, however,

that shorter subproofs do not necessarily a shorter total proof make.)

In fact, �ve proofs of the desired type were found of (in order)

length 49, 46, 48, 47, and 42. The �rst was completed in approximately

24 CPU-seconds and the �fth in approximately 15 CPU-minutes. Re-

markable to us and even startling, in approximately 14 CPU-hours the

previously known thirteen shortest single axioms were each proved in

less than 50 applications of condensed detachment.

3. Proof and Re�nement

Had  Lukasiewicz, Meredith, or Prior, for example, been presented with

the set of proofs that included the 71-step proof of transitivity, or

better yet, the 42-step proof of the join that was found with ances-

tor subsumption, he would (we conjecture with virtual certainty) have

embarked on a search for an abridgment, a shorter proof. The discovery

of shorter and simpler proofs was clearly also of interest to Hilbert and

was the subject of his recently discovered twenty-fourth problem [10].

Long before learning of the Hilbert problem, much research by members

of the Argonne group had been devoted to developing methodology for

OTTER to apply in the context of proof re�nement.

Naturally, therefore, next in order was the pursuit of a proof of

length strictly less than 42 showing that XCB is in fact a single ax-

iom for the equivalential calculus. Although no constraint was placed

on the target|for example, any member of the thirteen previously

known shortest single axioms would have been more than acceptable|

we mainly continued to focus, perhaps for reasons of momentum, on the

3-basis. Our approach was again iterative. Each new and shorter proof
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found was, in general, used as a new target with its steps included

as hints. Throughout our attack, we continued to rely on ancestor

subsumption. In addition, we employed a technique called demodulation

blocking to block the use of the steps of a given proof one at a time,

with the objective of �nding an abridgment. This technique has proved

e�ective in many contexts, whether the focus is on formulas or on

equations, and in the presence of various inference rules.

When we reached a point at which neither ancestor subsumption

nor demodulation blocking yielded an abridgment, we turned to the

cramming strategy [15]. The object of (one incarnation of) the cram-

ming strategy is to cram, or force, so many steps of a chosen subproof

into new subproofs of the remaining members of a conjunction that

the length of the new proof of the whole is strictly less than that which

prompted the e�ort. Intuitively, the object is to have the program focus

on a subproof and have its steps do double duty, triple duty, or more.

For the target of the 3-basis, cramming was successfully used in two

cases: to cram on the subproof of transitivity and later (with a shorter

proof of the 3-basis in hand) to cram on the subproof of symmetry.

During the re�nement phase, OTTER eventually discovered a 26-

step proof of the independent 2-basis. OTTER also discovered a 27-step

proof of the previously known single axiom Y QF and one of that length

for the previously known single axiom WN . With some thought, we

were then able to shorten each of the three proofs by one step. We next

observed that, with an appropriate use of condensed detachment, the

25-step proof of the 2-basis could be extended to a 26-step proof of the

3-basis (including re
exivity).

We now present our 25-step proof of transitivity and then symmetry

from XCB. To aid one in reading OTTER's proofs, we included the

command set(order history), a command that instructs the program

to list the hypotheses (by number) of a deduced step in the order

i; j; k, where i is the clause for condensed detachment, j the clause

corresponding to the major premiss, and k the clause corresponding to

the minor premiss.
A 25-Step Proof from XCB

The command was "otter". The processID is 24362.

-----> EMPTY CLAUSE at 0.15 sec ---->

134 [hyper,52,132,128] $ANSWER(all_s_t_indep).

Length of proof is 25. Level of proof is 19.

---------------- PROOF ----------------
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51 [] -P(e(x,y)) | -P(x) | P(y).

52 [] -P(e(e(a,b),e(b,a))) | -P(e(e(a,b),e(e(b,c),e(a,c)))) |

ANSWER(all_s_t_indep).

53 [] P(e(x,e(e(e(x,y),e(z,y)),z))).

105 [hyper,51,53,53] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),

u),e(v,u)),v)).

106 [hyper,51,105,53] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),

u),v),e(u,v))).

107 [hyper,51,53,106] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),

z)),u),v),e(u,v)),w),e(v6,w)),v6)).

108 [hyper,51,106,53] P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),

u)),x),v),e(w,v)),w))).

109 [hyper,51,107,53] P(e(e(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),

z)),u),v),e(u,v)),w),v6),e(w,v6))).

110 [hyper,51,106,108] P(e(x,e(e(e(e(e(y,e(e(e(y,z),e(u,z)),

u)),e(e(v,e(e(e(v,w),e(v6,w)),v6)),x)),v7),e(v8,v7)),v8))).

111 [hyper,51,53,108] P(e(e(e(e(x,e(e(e(e(e(y,e(e(e(y,z),

e(u,z)),u)),x),v),e(w,v)),w)),v6),e(v7,v6)),v7)).

112 [hyper,51,105,110] P(e(e(e(e(x,e(e(e(x,y),e(z,y)),z)),

e(e(u,e(e(e(u,v),e(w,v)),w)),e(e(v6,e(e(e(v6,v7),

e(v8,v7)),v8)),v9))),v10),e(v9,v10))).

113 [hyper,51,109,111] P(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),

e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),

e(v9,v8)),v9))),x)).

114 [hyper,51,107,112] P(e(e(e(e(e(x,e(e(e(x,y),e(z,y)),

z)),e(u,e(e(e(u,v),e(w,v)),w))),v6),v7),e(v6,v7))).

115 [hyper,51,53,113] P(e(e(e(e(e(x,e(y,e(e(e(e(e(z,

e(e(e(z,u),e(v,u)),v)),e(e(w,e(e(e(w,v6),e(v7,v6)),

v7)),y)),v8),e(v9,v8)),v9))),x),v10),e(v11,v10)),v11)).

116 [hyper,51,114,106] P(e(x,e(e(y,e(e(e(y,z),e(u,z)),

u)),x))).

117 [hyper,51,53,116] P(e(e(e(e(x,e(e(y,e(e(e(y,z),

e(u,z)),u)),x)),v),e(w,v)),w)).

118 [hyper,51,112,117] P(e(e(e(e(e(x,

e(e(y,e(e(e(y,z),e(u,z)),u)),x)),v),w),e(v,w)),

e(v6,e(e(e(v6,v7),e(v8,v7)),v8)))).

119 [hyper,51,112,118] P(e(e(e(e(e(e(x,e(e(y,e(e(e(y,z),

e(u,z)),u)),x)),e(v,e(e(e(v,w),e(v6,w)),v6))),v7),

v8),e(v7,v8)),e(v9,e(e(e(v9,v10),e(v11,v10)),v11)))).

120 [hyper,51,115,119] P(e(e(e(x,e(y,e(e(e(y,z),

e(u,z)),u))),v),e(x,v))).

122 [hyper,51,120,105] P(e(e(e(x,e(e(e(x,y),e(z,y)),
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z)),e(e(e(u,v),e(w,v)),w)),u)).

123 [hyper,51,106,122] P(e(e(e(e(x,y),e(z,y)),z),x)).

124 [hyper,51,53,123] P(e(e(e(e(e(e(e(x,y),e(z,y)),

z),x),u),e(v,u)),v)).

125 [hyper,51,124,123] P(e(e(e(x,y),x),y)).

127 [hyper,51,124,108] P(e(e(e(e(x,e(e(e(x,y),

e(z,y)),z)),e(e(e(e(e(u,v),e(w,v)),w),u),

v6)),v7),e(v6,v7))).

128 [hyper,51,127,123] P(e(e(x,y),e(e(y,z),e(x,z)))).

130 [hyper,51,128,125] P(e(e(x,y),e(e(e(z,x),z),y))).

131 [hyper,51,128,130] P(e(e(e(e(e(x,y),x),z),u),

e(e(y,z),u))).

132 [hyper,51,131,123] P(e(e(x,y),e(y,x))).

Open Question. Does there exist a proof of length 24 or less show-

ing that XCB is a single axiom, where the target is any of the other

thirteen shortest single axioms for the equivalential calculus or is the

2-basis consisting of symmetry and transitivity?

With this proof in hand|but twenty-�ve steps in length|one might

naturally wonder why it took so long to answer the XCB question. One

answer rests in part with the fact that the iterative approach given in

Section 2 was only recently formulated. Perhaps a better answer rests

with the behavior and, more important, the apparent behavior ofXCB,

which is the focus of next section.

4. Close Inspection of XCB

Insight, understanding, and ideas can sometimes be gained by asking

why a question remained open for many years. In this section, we

consider various factors that may explain why intense e�ort and study

failed to reveal the true status of XCB. We also discuss some of the

behavior and power of XCB, possibly providing insight that will aid

in answering additional questions concerning axiomatizations of other

formal systems.

4.1. The Resistance of the XCB Question

Our study of XCB suggests several possible factors that may have

contributed to its resistance to classi�cation. One such factor concerns

a property that one might easily guess (though incorrectly, as it turns

out) is shared by all of the theorems deducible from XCB. Indeed,

the theorems that are readily deducible from XCB using our usual
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strategies contain|as do the �rst seventeen steps of the proof presented

in Section 3|at least one alphabetical variant ofXCB as a subformula.

Therefore, it is not surprising that those researchers credited with the

dispatching of XJL and its three equally weak cousins asserted that

XCB was also too weak, that all theorems deducible from it must

contain a variant of XCB. (That claim, made in [12], was corrected in

[14].) In fact, as some of our later experiments using breadth-�rst search

show, all of the 1,494 theorems obtainable from XCB through the �rst

�ve levels contain such an alphabetic variant. Moreover, with the single

exception of the formula e(e(x; y),e(x; y))|which of course refutes the

conjecture|so do the additional 319,493 theorems obtainable at level

six.
Had the conjecture held, the theorem e(x; x) would have been out of

reach (not deducible) with XCB as hypothesis and condensed detach-

ment as the sole rule of inference. Instead, a simple experiment relying

on a breadth-�rst search and consideration of formulas of complexity

less than or equal to 35 (not counting the predicate symbol) shows that

re
exivity is in fact provable from XCB with but eleven applications of

condensed detachment, a proof obviously di�erent from the one found

more than a year ago (which contained a 47-symbol formula). Further,

a limit on complexity of 31 even su�ces, producing a 17-step proof.

This simple formula eluded capture, however, in part because (some

of) the authors and their colleagues overlooked for far too long the

possible value of such a search and in part because of their conjecture

that re
exivity was not provable. Among the truths about research

are: The knowledge that a result holds seems to make its proof easier

to complete; the belief that it does not disposes one to follow the wrong

path if that belief is mistaken.

The discovery of a proof of re
exivity was encouraging. But, even af-

ter this discovery, XCB continued to resist classi�cation. Other factors

were contributing to its resistance. For an example of one such factor,

recall that condensed detachment proceeds by unifying the antecedent

(leftmost major argument) of the major premiss with the minor pre-

miss. Common to the majority of proofs we have discovered is the

application of condensed detachment to the following two formulas

(expressed as clauses) of complexity 47, with the �rst as major and

the second as minor premiss.

P(e(e(e(e(e(x,e(y,e(e(e(e(e(z,e(e(e(z,u),e(v,u)),v)),

e(e(w,e(e(e(w,v6),e(v7,v6)),v7)),y)),v8),e(v9,v8)),

v9))),x),v10),e(v11,v10)),v11)). % 72

P(e(e(e(e(e(e(x,e(e(y,e(e(e(y,z),e(u,z)),u)),x)),

e(v,e(e(e(v,w),e(v6,w)),v6))),v7),v8),e(v7,v8)),
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e(v9,e(e(e(v9,v10),e(v11,v10)),v11)))). % 76

One can easily imagine how daunting would be the prospect of

applying by hand condensed detachment to this pair of formulas. As

measured in symbol count, the most general common instance of the

antecedent of clause 72 and of all of clause 76 has complexity 2919.

The �rst completed (42-step) proof of the 3-basis contained these

two formulas and one other of the same complexity (47). We know

of no proof that is free of 47-symbol formulas, although we do have

in hand a proof with but one 47-symbol formula, di�erent from the

two just displayed. By comparison, a proof for XHN|the last of the

previously known single axioms to be found|can be completed with

complexity limited to 35.

4.2. The Behavior of XCB

The behavior of the formula XCB is dramatically di�erent from that

of the other shortest single axioms in a number of ways. For one dif-

ference, with XCB as the sole hypothesis, the range of the lengths of

the proofs of the remaining thirteen axioms is rather small, from 26 to

30 steps. Our experiences with other areas of logic, with other areas

of mathematics, and (most important) with the other shortest single

axioms had never before revealed such clustering of proof lengths. The

fourteen single axioms can thus be arranged so that XCB is at the

center of a ring with the other thirteen shortest single axioms roughly

equidistant from it. In contrast, the shortest path lengths we have found

from the single axiom UM to the other shortest single axioms vary

sharply. In particular, XGF follows in a single application of condensed

detachment, while, at the other end of the spectrum, XCB requires

twenty-three.

To test whether this is the case for other shortest single axioms,

we focused on XHN . We used as hints the 20 steps of our proof that

UM can be deduced from XHN . Simultaneously, with XCB as the

hypothesis, we used as hints the 26 steps of our proof of the 3-basis.

Each experiment ran for more than twenty-three CPU-hours on a 400

MHz computer. When XCB was the sole hypothesis, the proofs of the

other thirteen shortest single axioms ranged in length (as noted) from

26 to 30. In contrast, when XHN was the sole hypothesis, the proof

lengths of the other thirteen single axioms ranged from 19 to 37. In

the two experiments under discussion, ancestor subsumption was used

with the goal of �nding \short" proofs. We remark that the length of

a proof in no way suggests how deep is the theorem that is proved nor

how hard it is to �nd a proof. Perhaps a better indication of di�culty
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is o�ered by the number of years a question remains open: less than

four years su�ced for dispatching XHN , twenty-�ve years for XCB.

For XCB, the proofs we have found so far require twelve distinct

variables, whereas nine su�ce for seeking proofs relying on XHN .

Whether a proof for XCB exists relying on strictly fewer than twelve

distinct variables is not yet known. In contrast, we strongly conjecture

that for XHN the lower bound is nine.

We conclude this section by noting that we have also discovered

two intriguing 27-step proofs relying solely on XCB (and, of course,

condensed detachment), the �rst completing with Y QF and the second

with WN , each a shortest single axiom for equivalential calculus. The

two proofs agree on their �rst twenty-six steps. Moreover, the last step

of each of the two proofs is obtained by applying condensed detachment

to the same pair of formulas, which indeed implies that the role of

major and minor premiss is exchanged. This striking phenomenon was

certainly new to us.

5. Summary

In logic and in mathematics, once axioms have been found for an area

of interest, a natural question concerns the existence of a single axiom.

If such is found, one might then seek to �nd a \short" single axiom. If

success again occurs, next comes the question of the existence of one

or more shortest single axioms.

With the main result of this article in hand, the set of answers to

those questions about equivalential calculus is complete. There indeed

do exist single axioms for that calculus. The shortest have length eleven

(measured in symbols), and exactly fourteen such axioms exist. Thus

the search for shortest single axioms for the equivalential calculus is at

an end.

Perhaps the story of these formulas unfolded in an appropriate way:

XCB, the fourteenth and last of the shortest single axioms to be found,

is unique among the fourteen in various ways and appears to have been

the most di�cult to study.
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