

	- I -+ D-0	(p) be the crede	mas C assi	ama ta sa a	t t and lat	
Setup ⊙•	SA & P	SAMC, C & PCI	ASAMC	U & IA	IA & Summary	Refs 0

- Let $\Pr_i^{\circ}(p)$ be the credence S_i assigns to p at t_0 , and let $\Pr_i^1(p)$ be the credence S_i assigns to p at t_1 , where $t_1 > t_0$.
- We will assume that S_1 and S_2 learn *exactly* (important caveat for *any* update rule!) the following between t_0 and t_1 :

[
$$D(P)$$
] For each $p \in P$, $Pr_1^0(p) \neq Pr_2^0(p)$.

[Note: we *do* mean to assume here that D(P) includes the *numerical* values of the $Pr_i^0(p)$, but that information is only relevant to our PUR's to the extent that it informs about the disagreement **qua** disagreement. If the $Pr_i^0(p)$ are also relevant (in the context) to the determination of $Pr_i^1(p)$ for other reasons, our PUR's will ignore these other relevancies.]

- A PUR will just be a rule, which, for each $p \in P$, prescribes how the credences of S_1 and S_2 should be updated, so as to properly respond to credal disagreements D(P).
- For simplicity, we'll assume that S_1 and S_2 share a sentential language \mathcal{L} with just two atomic sentences A and B.

Setup ●○	SA & P	SAMC, C & PCI	ASAMC 000	U & IA ○	IA & Summary	Refs 0
		- C	•	•	gents S_1 and S_2 ropositions P .	<u>}</u>
	• We'll ca	all such p 's in .	P peer-propo	ositions (1	for S_1 and S_2).	
	peer-pr		od (but, we woosition ⇒ 「p	ill presup	pose that er-proposition).	
	pairs of credenc	f Bayesian ager ces, upon learn	nts. These PU ing (<i>exactly!</i>	JRs are <i>ru</i>) the info	s (PURs) for subles for updating $[D(P)]$ propositions $[D(P)]$	ıg
	and S_2	learn $D(P)$, th	ey should ad	opt conse) is that, when ensus credence n credence on	s
	constra	begin with the lints from the lation [5], we wi	literature on	Bayesian	O .	

Jehle & Fitelson

SA & P

What is the 'Equal Weight View'?

• Our first PUR is **straight averaging** ("split the difference"):

(SA)
$$\Pr_{SA}^{1}(p) = \frac{\Pr_{1}^{0}(p) + \Pr_{2}^{0}(p)}{2}$$

SAMC, C & PCI

• This naïve, *exact* "split the difference" PUR (SA) may sound appealing, but it is *under-specified*, as it stands. Example:

ASAMC

A	В	$\Pr_1^0(\cdot)$	$\Pr_2^0(\cdot)$	$\Pr_{SA}^1(\cdot)$
Т	Т	0.1	0.55	0.325
Т	1	0.2	0.25	0.225
Т	Т	0.3	0.15	??
T	1	0.4	0.05	??

• Here, A & B and $A \& \sim B$, are peer-props (bold), but $\sim A \& B$ and $\sim A \& \sim B$ are not. So, (SA) prescribes new credences for A & B and $A \& \sim B$, but not for $\sim A \& B$ and $\sim A \& \sim B$.

Neither S_1 nor S_2 can keep their old credences in both $\sim A \& B$ and $\sim A \& \sim B$ — on pain of synchronic incoherence!

Probabilism (P). $Pr_1^1(\cdot)$ and $Pr_2^1(\cdot)$ should be *probabilities*.

- (SA) must be revised, so as to tell agents what to do when (P) + (SA) forces changes to credences on non-peer p's.
- **Informal Idea**: revise (SA) to (SAMC), which recommends that (in such cases) each agent makes **minimal** (forced) **changes** to their credences on non-peer propositions.
 - (SAMC) Upon learning (exactly) D(P), S_1 and S_2 should (i) obey (SA) for peer-propositions P, and (ii) if (P) should force additional revisions, then each agent should revise their credences by moving to a closest probability function compatible with both (SA) and (P).
- In our example above, (SAMC) entails these *unique* $Pr_i^1(\cdot)$'s (assuming a *Euclidean distance metric* [3] on credence *f*'s):

\boldsymbol{A}	B	$\Pr_1^0(\cdot)$	$\Pr_2^0(\cdot)$	$\Pr_1^1(\cdot)$	$\Pr_2^1(\cdot)$
Т	Т	0.1	0.55	0.325	0.325
Т		0.2	0.25	0.225	0.225
	Т	0.3	0.15	0.175	0.275
	1	0.4	0.05	0.275	0.175

Jehle & Fitelson

What is the 'Equal Weight View'?

SAMC, C & PCI

SAMC, C & PCI ASAMC

• Suppose A, B, and A & B are peer-propositions for S_1 and S_2 (at both t_0 and t_1), and that B remains a peer-proposition (at t_0) on the supposition that A is true. Then, our example entails a *unique* (SAMC)-distribution for both agents at t_1 :

A	$\mid B \mid$	$\Pr_1^0(\cdot)$	$\Pr_2^0(\cdot)$	$\Pr_i^1(\cdot)$
Т	Т	0.1	0.55	0.325
Т	1	0.2	0.25	0.225
	Т	0.3	0.15	0.225
	1	0.4	0.05	0.225

• First, let's calculate the $Pr_i^{0+A}(B)$ values for the two agents:

$$\Pr_{1}^{0+A}(B) = \Pr_{1}^{0}(B \mid A) = \frac{\Pr_{1}^{0}(A \& B)}{\Pr_{1}^{0}(A)} = \frac{0.1}{0.3} = 0.3333$$

$$\Pr_2^{0^{+A}}(B) = \Pr_2^0(B \mid A) = \frac{\Pr_2^0(A \& B)}{\Pr_2^0(A)} = \frac{0.55}{0.8} = 0.6875$$

• (SAMC) ensures that the updates prescribed by (SA) will obey probabilism (P). What about conditionalization?

- We would like our PUR to commute with conditionalization.
- Let $Pr_i^{0+p}(q) = Pr_i^0(q \mid p)$ be the degree of belief an agent i should assign to q, upon learning (exactly) p, after t = 0.
- And, let $Pr_i^0(\cdot)$ be what our (PUR) prescribes for the agent i's credence function, upon learning (exactly) D(P), after t = 0.

Conditionalization (C). Suppose p, q, and p & q are peer-propositions for S_1 and S_2 (at both t_0 and t_1), and also that q remains a peer-proposition for S_1 and S_2 (at t_0) on the supposition that p is true. Then, we should have:

$$\overline{\Pr_i^{0+p}}(q) = \overline{\Pr_i^0}(q \mid p)$$

- $\overline{\Pr_{i}^{0+p}}(q)$ conditionalizes on p first and then peer-updates.
- $\overline{\Pr_{i}^{0}}(q \mid p)$ peer-updates first, and then conditionalizes on p.

The order in which we conditionalize/PU shouldn't matter.

Jehle & Fitelson

What is the 'Equal Weight View'?

• Second, apply (SAMC) to these (peer) $Pr_i^{0+A}(B)$ values:

$$\overline{\Pr_i^{0+A}}(B) = \frac{0.3333 + 0.6875}{2} = .5105$$

• Finally, let's calculate the value of $\overline{\Pr_{i}^{0}}(B \mid A)$. This can be done uniquely here, since — in this example — (SAMC) entails a unique (SAMC)-distribution for both agents, at t_1 :

$$\overline{\Pr_{i}^{0}}(B \mid A) = \frac{\Pr_{i}^{0}(B \& A)}{\overline{\Pr_{i}^{0}}(A)} = \frac{\Pr_{i}^{1}(B \& A)}{\Pr_{i}^{1}(A)} = \frac{0.325}{0.55} = 0.5909$$

- This is a counterexample to (C) for any PUR that exactly "splits the difference" on P — including (SA) and (SAMC).
- Moreover, this is also an (SAMC)-counterexample to:

Preservation of Conditional (In)dependencies (PCI): $Pr_1^1(\cdot)$ and $Pr_2^1(\cdot)$ should neither reverse initially agreed-upon assessments of conditional (in)dependence. nor force new disagreements about relations of conditional (in)dependence, among the set of peer-propositions *P*.

Setup 00	SA & P	SAMC, C & PCI	ASAMC 000	U & IA o	IA & Summary	Refs ○
•	To see w	hy this is an (S $Pr_1^0(B) = 0.4$ $Pr_2^0(B) = 0.7$ $Pr_i^1(B) = 0.9$	$ > \Pr_1^0(B \mid A) $ $ > \Pr_2^0(B \mid A) $	A(A) = 0.333 A(A) = 0.590	9, but	e:
•	But, at t_1 come to In the litt usually to (PCI), on We won't Rather, which is and man Recall ou	and S_2 agree to S_1 and S_2 bo agree that A are as basic of the other hand take a stand ove'd like to expect of satty other possibut talk at the bound of the other possibut talk at the other possibut talk	hat A and A th reverse and B are peresian considerata d, is far more these coolore a natural isfying (P) le sets of ceginning o	B are negal their assess ositively co- ensus, (P) for any adore contro- ontroversional aral weaker and (C), assessorstraints	ettively correlateds sements, and correlated. and (C) are dequate PUR [9]. es here. ening of (SAMC) as well as (PCI) as besides.	
Jehle & Fitel	son	v	Vhat is the 'Equal	Weight View'?		9

Setup	SA & P	SAMC, C & PCI	ASAMC	U & IA	IA & Summary	Refs
			000			

- As stated, (ASAMC) is *ambiguous* between two readings:
 - 1. $\Pr_1^1(p)$ must equal $\Pr_2^1(p)$. Here: (A) exact credal agreement is reached on each peer-proposition. But, on this reading, the consensus value $\Pr_c^1(p)$ will be closer to one of the initial credences $\Pr_i^0(p)$ than it is to the other. This violates a condition we call "equal credence Δ 's" (EC Δ). One might maintain that (EC Δ) is central to any "equal weight" view.
 - 2. $\Pr_1^1(p)$ and $\Pr_2^1(p)$ *may remain unequal*. Here, exact consensus need *not* be reached on all peer-propositions [that is, (A) may be violated]. But, this reading can be further precisified, so as to ensure that each updated credence $\Pr_i^1(p)$ is *equally far* from the halfway point between the initial credences $\Pr_i^0(p)$ [(EC Δ)]. So, this reading may be closer, in spirit, to the "equal weight" idea.
- We won't take a stand here on which of these precisifications of (ASAMC) is preferable, as an (EWR).
- Rather, we will instead discuss some interesting formal properties that are common to both readings of (ASAMC).

Setup 00	SA & P	SAMC, C & PCI	ASAMC ●○○	U & IA	IA & Summary	Refs o
	And cha (P) mir whi fur be a	proximate SAMO $\Pr_{i}^{1}(p)$ where $\Pr_{i}^{1}(p)$ is d, where the updages to non-peet and (C), then the himize the distantle maintaining (I ther constraints added to the contial and "minimal"	≈ $\Pr_2^1(p)$ ≈ s strictly beto ate is done or credences to other channed of $\Pr_1^1(\cdot)$ P) and (C). For C (e.g., PCI) is straint satisfactors	$\frac{\Pr_1^0(p) + \Pr_1^0(p)}{2}$ ween $\Pr_1^0(p)$ so as to sa are forced ges should $\Pr_1^1(\cdot)$ fro inally, if the is desired,	$r_2^0(p)$, and $Pr_2^0(p)$. tisfy (P) and (C). in order to ensube made so as $m Pr_1^0(\cdot)$, $Pr_2^0(\cdot)$ e satisfaction of then these should be the solution of the these should be the solution of the s	If ire to , f
	Note: xWe assuNote: w	cess respects the $pprox y \triangleq x - y $ time a single ϵ for e require that F so as to rule-out	$<\epsilon$. Other or all $p \in R^1(p)$ be s	definition P. This cou trictly betw	s could be use ald be relaxed. ween $Pr_1^0(p)$ an	d

one of the agent's credence in *p* as the "consensus" value.

What is the 'Equal Weight View'?

			000	U & IA 0	IA & Summary O	0
	On either Theo That that of quest Sometime order to y E.g., in ou exist (ASA all require In the MA all technic forced by We will no	reading of (A rem. (ASAMC) is, we can alway obey (ASAMC) is, non-trivially rield (ASAMC) ar last examply AMC) updates a threshold THEMATICA in cal results), we (ASAMC) in out take a standard	SAMC), we is compatible to see a wall as (Parage a varage) will arge a varage above (Tarage) walue of example to ensure to ensure to ensure a compatible on here on here and there on here a compatible to ensure a compatible to ens	have the falle with (P), sensus cred (P), (C), and (Induce of ϵ will alues of ϵ attisfying (P), (C), and (P),	Following: (C), and (PCI). Idence functions PCI). [The only be required.] are required in P), (C) & (PCI). Idide 7), there de (PCI), but the Idl $p \in P$. er [4] (which have which $\epsilon > \frac{1}{10}$ is) & (PCI).	o ey as
•		ld require diff nere is merely	•		on context, <i>etc</i> ape of EWRs.	ː.).

11

Jehle & Fitelson

0	0	00000	000	•	o Summary	0
	• It is wor	th noting that a	<i>all</i> of the P	UR's we di	scuss satisfy th	ie
	followin	g constraint, w	hich is <i>stri</i>	ctly weake	r than (A):	
	Una	\mathbf{nimity} (U): \Pr_1^1	\cdot) and $\text{Pr}_2^1(\cdot$) should no	ot force new	
	poi	nt-wise disagreer	ments abou	t credence	values concernir	ıg
	nee	r-propositions of	n which S_1	and S_2 alrea	ady agree (at t_0).	

- (U) is perhaps the most basic of all desiderata for PUR's.
- Another constraint that people have often discussed in the historical literature on judgment aggregation [7] is:

Irrelevance of Alternatives (IA): $Pr_1^1(p)$ and $Pr_2^1(p)$ should each be *functions* of $Pr_1^0(p)$ and $Pr_2^0(p)$. That is, for each peer-proposition p, $Pr_1^1(p) = f_1[Pr_1^0(p), Pr_2^0(p)]$, and $Pr_2^1(p) = f_2[Pr_1^0(p), Pr_2^0(p)]$, for some *functions* f_1 and f_2 .

- While (IA) may make some sense in a full belief/inference context (as in traditional judgment aggregation [7]), it makes much less sense in a probabilistic/Bayesian context.
- *E.g.*, we conjecture that any remotely plausible EWR/PUR which satisfies (**IA**) must fail to satisfy either (**P**) or (**C**) [2].

Jehle & Fitelson What is the 'Equal Weight View'? 13

Setup 00	SA & P SAMC, C & PCI ASAMC U & IA IA & Summary Ref 0 00000 000 0 0 0 •	fs				
[1]	Christensen, D. (2007) "Epistemology of Disagreement: The Good News", <i>Philosophical Review</i> 119: 187-217.					
[2]	Dalkey, N. (1972). An impossibility theorem for group probability functions. P-4862, The Rand Corporation (http://www.rc.rand.org/pubs/papers/P4862/).					
[3]	Diaconis, P. and Zabell, S. (1982) "Updating Subjective Probability", <i>Journal of the American Statistical Association</i> 77: 822-830.					
[4]	Jehle, D. and Fitelson, B. (2009) "What is the 'Equal Weight View'?", manuscript (http://fitelson.org/ew_episteme.pdf). The MATHEMATICA notebook for this paper is at (http://fitelson.org/ew.nb).					
[5]	Lehrer, K. and Wagner, C. (1981) Rational Consensus in Science and Society: A Philosophical and Mathematical Study. Dordrecht-Boston: Reidel.					
[6]	(1983) "Probability Amalgamation and the Independence Issue: A Reply to Laddaga", <i>Synthese</i> 55: 339-346.					
[7]	List, C. and Puppe, C. (2009) "Judgement aggregation: a survey," in Anand, P., Pattaniak, P. and Puppe, C. (eds.) Oxford handbook of rational and social choice.					
[8]	Loewer, B. and Laddaga R. (1985) "Destroying the Consensus", Synthese 62: 79-95.					
[9]	Shogenji, T. (2007) "A Conundrum in Bayesian Epistemology of Disagreement", presented at FEW 2007 (http://www.fitelson.org/few/few_07/shogenji.pdf).					
Jehle & Fitel	on What is the 'Equal Weight View'? 1	5				

•	Note that of all the conditions usually discussed in the
	literature (see below), (ASAMC) fails to satisfy only (IA).
_	This is because "approximate splittings" can be achieved

• This is because "approximate splittings" can be achieved in multiple ways, for the same pair of initial credence values.

• As such, there will (in general) be no *function*(s) of said credence values that yields the (ASAMC)-updated values.

• One could try to state (ASAMC) as function of the initial credences $plus \epsilon$. But, since ϵ may itself vary with context, this could still (strictly speaking) lead to violations of (IA).

	Can Rule (Always) Satisfy Condition?						
Rule	(P)	(C)	(U)	(A)	$(EC\Delta)$	(IA)	(PCI)
(SA)	No*	No	YES	YES	YES	YES	No
(SAMC)	YES	No	YES	YES	YES	YES	No
(ASAMC ₁)	YES	YES	YES	YES	No	No	YES
(ASAMC ₂)	YES	YES	YES	No	YES	No	YES

By "going approximate", one can avoid all of the probative triviality results in the Bayesian literature on consensus.

Jehle & Fitelson What is the 'Equal Weight View'?

IA & Summary