
What is the “Equal Weight View”?

David Jehle and Branden Fitelson∗

July 30, 2009

1 Introduction

Suppose two agents, S1 and S2, are epistemic peers regarding a propo-
sition p: that is, suppose S1 and S2 are equally competent, equally
impartial, and equally able to evaluate and assess the relevant evidence
regarding p (we will call such propositions p peer-propositions for S1

and S2). After carefully reflecting on the salient evidence for p, sup-
pose S1 and S2 discover that they disagree about p. For instance, S1

might believe the defendant is guilty, while S2 believes the defendant
is innocent. Or S1 might believe that free will and determinism are in-
compatible, while S2 believes that the two views are compatible. More
generally, S1 and S2 might assign different credences to p. Examples
of peer disagreement (in each of these senses) are common in everyday
life, in philosophy, and in many other disciplines.

Question: How should we, if it all, revise our beliefs (regarding
p) upon discovering that we disagree with someone we take to be our
epistemic peer (regarding p)? Recently several authors have taken this
question up, and proposed a number of different views. One currently
popular and prominent view is the so-called equal weight view (EWV)
of peer disagreement.1

∗We thank the participants of the Sixth Annual Episteme Conference (especially
Tomas Bogardus, Fabrizio Cariani, David Christensen, Stew Cohen, and Rich Feld-
man) for useful feedback on an earlier version of this paper.

1Proponents of EWV (in various informal flavors) include Feldman (2006, forth-
coming), Elga (2007), and Christensen (2007).
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In this paper, we will investigate various possible precisifications
of the (somewhat vague) notions of “equal weight” that are floating
around this literature. We will show that various proposals which
immediately suggest themselves are untenable. In the end, we will
propose some tenable (but not necessarily desirable) interpretations of
“equal weight”. Throughout our discussion, we will assume a (broadly)
Bayesian framework. Our aim here is not to defend any particular
Bayesian precisification of EWV, but rather to raise awareness about
some of the difficulties inherent in formulating such precisifications.

2 Some Intuitions Behind “Equal Weight”

Before we get into our investigation of EWV, it will be useful to see
what motivates the view in the first place. Consider the following case
of peer disagreement from Christensen (2007, p. 193).

Suppose that five of us go out to dinner. It’s time to pay the
check, so the question we’re interested in is how much we each
owe. We can all see the bill total clearly, we all agree to give a 20
percent tip, and we further agree to split the whole cost evenly,
not worrying over who asked for imported water, or skipped
desert, or drank more of the wine. I do the math in my head and
become highly confident that our shares are $43 each. Mean-
while, my friend does the math in her head and becomes highly
confident that our shares are $45 each. How should I react, upon
learning of her belief?

According to Christensen (ibid.), the answer is as follows:

If we set up the case in this way, it seems quite clear that I
should lower my confidence that my share is $43, and raise my
confidence that its $45. In fact, I think (though this is perhaps
less obvious) that I should now accord these two hypotheses
roughly equal credence.

This passage contains a rather clear statement of the EWV, according
to which S1 and S2 should assign “roughly equal credence” to p upon
learning that they assign different credences to p. We’ll consider various
precisifications of this (and other) ideas about EWV, below.

Despite the intuitive appeal of the view, proponents of the view
have so far failed to give a precise diachronic rule for “peer updating”,
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a rule that would state explicitly what S1 is to do if she discovers her
credal value in p is different from her peer’s credal value in p.

To make things more precise, let Pr0
i (p) be the credence Si assigns

to p at t0, and let Pr1
i (p) be the credence Si assigns to p at t1, where

t1 > t0, and, between t0 and t1, S1 and S2 learn that Pr0
1(p) 6= Pr0

2(p).
2

What we seek is a rule (or, at least, a more precise characterization) of
what Pr1

1(p) and Pr1
2(p) should be, in light of S1 and S2 learning about

their disagreement regarding p at t0.
Below, we will consider a few different precisifications of an “equal

weight rule” EWR for peer updating. Before we discuss the various
precisifications, we will lay down some intuitive constraints on EWR
that have been discussed in the literature on probability aggregation.

Probabilism (P): Pr1
1(·) and Pr1

2(·) should be probability functions.

Conditionalization (C): Pr1
1(·) and Pr1

2(·) should respect condition-
alization, as a constraint on the relationship between Pr1

1(·) and
Pr0

1(·), and Pr1
2(·) and Pr0

2(·). [This will be clarified below.]

Unanimity (U): Pr1
1(·) and Pr1

2(·) should not force new point-wise dis-
agreements about credence values concerning peer-propositions
on which S1 and S2 already agree (at t0).

Agreement (A): Pr1
1(p) = Pr1

2(p) for all peer propositions p, i.e., S1

and S2 should be in agreement on all peer propositions p (at t1).

Irrelevance of Alternatives (IA): Pr1
1(p) and Pr1

2(p) should each be
functions of Pr0

1(p) and Pr0
2(p), for each peer-proposition p. That

is, for each peer-proposition p, Pr1
1(p) = f1[Pr0

1(p),Pr0
2(p)], and

Pr1
2(p) = f2[Pr0

1(p),Pr0
2(p)], for some functions f1 and f2.

2In general, peers will learn more about “the circumstances of their disagree-
ment” (Elga 2007) than merely Pr01(p) 6= Pr02(p). We will assume that they also
learn the numerical values of Pr01(p) and Pr02(p). That information will also be
required for the sorts of update-rules we’ll be considering. We’ll remain neutral on
what else they might learn about their disagreement. But, we do think that the
EWV idea makes the most sense when the information they learn is restricted to
the nature of their credal disagreement qua credal disagreement. For instance, they
may also learn things about intrinsic properties of the credences they assign to p
at t0 (e.g., that they are both “high”), which should (intuitively) not be taken into
account by an update rule for responding to disagreement per se. This is a subtle
philosophical issue, which we won’t be able to delve into further here.
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Preservation of Conditional Independencies/Dependencies (PCI):
Pr1

1(·) and Pr1
2(·) should neither reverse initially agreed-upon as-

sessments of conditional independence/dependence [according to
Pr0

1(·) and Pr0
2(·)], nor force new disagreements about relations of

conditional probabilistic independence/dependence (alredy agreed
upon at t0), among the set of peer-propositions for S1 and S2.

As mentioned, these conditions aren’t new with us. Analogues of
these conditions have been discussed extensively in the literature on
Bayesian judgement aggregation, and a number of “impossibility re-
sults” on various combinations of these conditions have been known
since the 60’s.3 While the aggregation problem is different than the
peer-updating problem, we will see below that they share some com-
mon features. First, let’s take a closer look at the above conditions.

(P) and (C) are fundamental Bayesian principles. We won’t argue
for these here, since they are basic theoretical presuppositions of the
very framework we are adopting.4

We think (U) should be uncontroversial, from the point of view of
defenders of EWV. The whole idea behind EWV is that we should “min-
imize” or “reduce” disagreements with peers (on peer-propositions). If
we do so by adopting an EWR which is (sometimes) forced to gener-
ate new disagreements (on peer-propositions) that weren’t there before,
then this would undermine the very sprit of EWV.

So, we’ll think of these first three conditions [(P), (C), and (U)] as
basic desiderata for any adequate Bayesian EWV-rule. The next three
conditions, on the other hand, will prove to be more controversial (and
less sacrosanct) from a Bayesian point of view.

Constraint (A), which is strictly logically stronger than constraint
(U), also seems quite sensible, from an EWV point of view. Ideally,
an EWV-er wants to both preserve existing agreements and eliminate
existing disagreements on all peer-propositions. However, as we will see
toward the end of the paper, it is not clear (on reflection) whether this
stronger constraint (A) should be imposed on a Bayesian EWV-er.

3For an excellent survey of these results, see (Genest and Zidek 1986).
4See Greaves and Wallace (2006), Joyce (1998), and Jeffrey (2004). Note: we

will only need to assume here that the agents are synchronically and diachronically
coherent over very simple languages containing just two atomic sentences. As such,
the variety of “ideal Bayesian rationality” we will need here is quite minimal.

4



Constraint (IA) is a standard assumption made in the context of
Bayesian strategies for probability aggregation (i.e., deciding on a con-
sensus probability assignment for a group of Bayesian agents). Whether
it should be imposed as a constraint EWV-update rules is far less clear.
While (IA) may sound plausible, it conflicts with EWV — in the pres-
ence of another constraint that has been discussed in the literature
on probability aggregation — namely, the preservation of conditional
independencies/dependencies (PCI) (Wagner 1984).

Constraint (PCI) has been more controversial than the other con-
straints in the literature on Bayesian aggregation.5 Here are some
considerations in support of (PCI), from a peer-updating persepctive.
First, from an epistemic point of view, assessments of (in)dependence
can reflect evidential relationships induced by an agent’s credence func-
tion (viz., Bayesian confirmation theory; see also Jeffrey (1987)). In
such contexts, we think it would be undesirable for EWR to undermine
agreed-upon assessments of these important relations. Second, dis-
missing (PCI) can have undesirable consequences for Bayesian decision
theory. Standard Bayesian decision-theoretic resolutions to Newcomb’s
problem involve some appeal to the fact that, while in the presence or
absence of the $1M in the opaque box is unconditionally probabilisti-
cally dependent on what the agent decides to do, it is probabilistically
independent of what the agent does, conditional on the appropriate ca-
sual hypothesis. As a result, in the absence of (PCI), it would be pos-
sible for an agent to start out as a two-boxer, but end up a one-boxer,
simply because she disagreed with an epistemic peer on some of the ini-
tial probability assignments in a salient representation of Newcomb’s
problem — even if there was no disagreement about causal structure
either before or after learning about the credal disagreement. This also
strikes us an unacceptable consequence of denying (PCI).

In the aggregation context, (PCI) and (IA) jointly entail that one
of the “peers” is actually a dictator, in the sense that their credence
function is the only acceptable “consensus probability function” (Wag-
ner 1984). An analogous problem will plague EWV in some cases (one
of which will be discussed below). Of course, this is clearly in con-
flict with the spirit of EWV. As a result, an EWV-theorist cannot (in

5See Loewer and Laddaga (1985) and Wagner (1985) for the debate about (PCI).
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general) accept both (IA) and (PCI).6 Ultimately, we will present an
EWV-update rule that can always satisfy (PCI), but which does not
satisfy (IA). From a probabilistic point of view, we think this makes
sense, since (IA) assumes a kind of “locality” that probabilists shouldn’t
accept. As we’ll soon see, probability distributions have a kind of “non-
local” or “holistic” character which makes (IA) untenable for a Bayesian
EWV-theorist.

We now turn to various Bayesian proposals for precisifying the in-
tuitive characterizations of “equal weight”.

3 Precisifications of “Equal Weight”

3.1 Straight Averaging (a.k.a., “Splitting the Dif-
ference”)

One natural way to render equal weight’s peer updating rule would be
to apply what we call two-person straight averaging. On this approach,
when S1 and S2 discover they disagree regarding a peer-proposition p,
they should both adopt a new credence for p that is the straight average
of their initial credences for p.7 More precisely:

Straight Averaging (SA): If S1 and S2 find themselves in disagree-
ment regarding a peer-proposition p at t0, then:

Pr1
1(p) = Pr1

2(p) =
Pr0

1(p) + Pr0
2(p)

2

From the perspective of equal weight, (SA) has some intuitively
desirable properties. Intuitively, (SA) coheres nicely with some informal
remarks in recent literature. For instance, Kelly (forthcoming, p. 12)
has us suppose that

at time t0, immediately before encountering one another, my
credence for H stands at .8 while your credence stands at .2.

6A closely related “dictatorship” impossibility result follows from (IA) alone, if
it is required to hold not only for the unconditional probabilities Pr11(p) and Pr12(p),
but also for (all) conditional probabilities Pr11(p | ·) and Pr12(p | ·) (Dalkey 1972).

7Lehrer & Wagner (1981, 1983) and Shogenji (2008) discuss averaging proposals
for aggregation. Kelly (2007) calls this proposal “splitting the difference”.
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At time t1, you and I meet and compare notes. How, if at all,
should we revise our respective opinions? According to The
Equal Weight View, you and I should split the difference be-
tween our original opinions and each give credence .5 to H.

As stated, however, (SA) is, at best, incomplete; and, at worst, syn-
chronically incoherent. This is because (SA) doesn’t say what we should
do in cases where changes to non-peer propositions are forced (on pain
of synchronic incoherence) by averaging the agents’ credences on the
peer propositions in the space. To see the problem vividly, consider
the following simple toy case (Table 1) involving agents S1 and S2 who
entertain just two “atomic” propositions: p and q.8

p q Pr0
1(·) Pr0

2(·) Pr1
SA(·)

T T 0.1 0.55 0.325
T F 0.2 0.25 0.225
F T 0.3 0.15 ??
F F 0.4 0.05 ??

Table 1: A simple two-atomic-proposition (SA)-example.

Let’s assume that there are exactly two peer-propositions in this case:
p & q and p & ∼q.9 If S1 and S2 both follow (SA), then all we know

8For the purposes of this paper, we will only discuss very simple toy models in
which there are just two “atomic” (logically independent) propositions in the agents’
doxastic spaces. Some of our results can be lifted to larger spaces, but the technical
details (constraint satisfaction, etc.) are exponentially complex. Our purpose here
is just to give some sense of the difficulties inherent in clarifying EWV. For this
purpose, it is best to give the simplest possible problematic examples. We leave it
up to (Bayesian) EWV-ers to think about more complex/realistic models.

9This immediately raises questions about “the logic of peer-proposition-hood”.
For instance, does it follow from the fact that pp & qq is a peer-proposition that
p and q are also peer-propositions? For the present example to make sense, the
answer to this question must be “no”. We think this is the right answer. Here’s an
intuitive counter-example to “conjunction-elimination for peer-propoistion-hood”,
which we owe to David Christensen. You and I could be peers with respect to
identifying flying mammals, and also with respect to identifying flying animmals
in general. But the only mammals I’m really interested in are bats. I don’t really
know if people or whales or platypuses are mammals, while you really know your
mammals. So if A is “that’s a flying animal” and B is “that’s a mammal” we could
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for sure about distributions resulting from (SA) is what we’ve writ-
ten under the heading Pr1

SA(·) in Table 1. Because neither ∼p & q
nor ∼p & ∼q are peer-propositions for S1 and S2, (SA) — as stated
— implies nothing about what should happen to their credence values
at t1 for S1 or S2. Moreover, we cannot just leave the credences of
∼p& q or ∼p&∼q unchanged from t0 to t1. If we were to do that, then
both S1 and S2 would end-up with credence functions that violate (P).
This is because a probability assignment must assign probabilities to
the four state descriptions in such a way that they sum to exactly 1,
and here neither agent’s credence function will satisfy this constraint
— unless changes are made to the credences of the non-peer ∼p & q
and ∼p & ∼q. So, in order to satisfy both (SA) and (P), both S1

and S2 must make changes to the credences they assign to non-peer-
propositions. But, precisely what changes should they make? Perhaps
this question need not be answered by an EWV-rule per se. But, this
example shows that a conservative rendition of (SA) — which instructs
us to change only peer-proposition credences — is synchronically in-
coherent. For this reason, we will include within our EWV-rules some
(quasi -conservative) advice for changing non-peer credences, when such
changes are mandated, on pain of synchronic incoherence. Specifically,
we propose adding a “minimal change” clause to (SA), as follows.10

be peers on the conjunction A & B, but not on B. Indeed, this looks like a case
in which we’re peers on the conjunction A & B and on A, but not on B (which,
plausibly, is also what the structure of our first example here is like). As far as we
know, none of the defenders of EWV have discussed this “logic of peer-proposition-
hood” issue. Perhaps when they do, some interesting “logic” will be discovered
(and this may render some of our present examples otiose). Again, we leave this for
the (Bayesian) defenders of EWV to work out. We will assume no general “logical
laws” for peer-proposition-hood. We suspect that there are very few general “logical
laws” of this kind. Perhaps a Bayesian should say that the “peer-proposition-hood”
of one proposition (q) is determined by the “peer-proposition-hood” of another (p)
if the probability of q is a function of the probability of p. That “law” (which sounds
good to us, but which we won’t defend here) is consistent with all of our examples.

10None of the impossibility (or possibility) theorems in this paper depend essen-
tially on what we say about such (P)-forced changes to non-peer credences. That is,
nothing we say here trades essentially on the specific choice of a “minimal change”
forced-non-peer-changes addendum to (SA). We choose this merely for simplicity
and concreteness (i.e., so that we have an SA-type rule that gives precise numer-
ical advice in all examples, etc.). Other rules/heuristics could be adopted for the
forced non-peer changes, and similar results would obtain. As with the “logic of
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Straight Averaging + Minimal Change (SAMC): If S1 and S2

find themselves disagreeing about a peer-proposition p at t0, then

Pr1
1(p) = Pr1

2(p) =
Pr0

1(p) + Pr0
2(p)

2

And, if other changes must be made to Pr0
1(·) and/or Pr0

2(·) in
order to ensure satisfaction of (P), then the other changes should
be made so as to minimize the distance11 of Pr1

1(·) and/or Pr1
2(·)

from the initial distribution(s) Pr0
1(·) and/or Pr0

2(·).

In Table 2 we compute the (SAMC) distributions for our example:

p q Pr0
1(·) Pr0

2(·) Pr1
1(·) Pr1

2(·)
T T 0.1 0.55 0.325 0.325
T F 0.2 0.25 0.225 0.225
F T 0.3 0.15 0.175 0.275
F F 0.4 0.05 0.275 0.175

Table 2: A simple two-atomic-proposition (SAMC)-example.

With this additional caveat, of course, (SAMC) is guaranteed to sat-
isfy (P), and in a “quasi-conservative” fashion. However, (SAMC) is
not guaranteed to satisfy (C). To see this, we need to clarify the mean-

ing of (C) in the current context. We will use the notation Pr0+r

i (·)
to denote the credence function Si would have, were they to learn (ex-
actly) proposition r at (or just after) time t0. And, we will use the

notation Prt
i(p) to denote the credence Si assigns to p as a result of the

application of an equal weight updating rule EWR (to their credence

peer-proposition-hood” (see fn. 9), we leave these “forced-non-peer-change heuris-
tics/rules” (which have also not been discussed in the literature, as far as we know)
to be worked-out with more generality (and care) by the defenders of EWV-rules.

11We will assume a Euclidean distance metric, i.e.,
√

(p1 − q1)2 + (p2 − q2)2 .
Other metrics could be used (and similar results would obtain). But, since we’re
adding this “minimal change” addendum to (SA) merely for simplicity and con-
creteness in our presentation (see fn. 10 above), we won’t fuss too much over this
choice. See Diaconis & Zabell (1982) for a fascinating discussion of the connection
between “minimal change” (in the present sense) and Bayesian updating.

9



in p at time t). For instance, in this context, Prt
i(p) will denote the

credence Si assigns to p as a result of the application of the SAMC
updating rule (to their credence in p at time t). Now, we’re ready to
clarify (C):

Conditionalization (C): Suppose p, q, and p&q are peer-propositions
for S1 and S2 (at t0 and t1), and also that q remains a peer-
proposition for S1 and S2 (at t0) on the supposition that p is true.
Then, conditionalization imposes the following two constraints:

Pr0+p

i (q) = Pr0
i (q | p) =

Pr0
i (p& q)

Pr0
i (p)

and

Pr0+p

i (q) = Pr0
i (q | p) =

Pr1
i (q & p)

Pr1
i (p)

The first constraint in (C) is just the definition of (classical) Bayesian
conditionalization itself. The second constraint in (C) is a commutativ-
ity requirement. What the second constraint says is that it shouldn’t
matter whether we (a) learn p first, and then do a peer-update or (b) do
a peer-update first, and then learn p. That is, the second constraint in
(C) requires that the peer-update commutes with conditionalization.12

Given this clarification of (C) in this setting, we can now see that the
example depicted in Table 1 will already yield a counterexample to
(C). We only need to add the assumption that p and q are also peer-
propositions for S1 and S2 (and that q remains a peer-proposition for
S1 and S2 at t0, on the supposition that p is true). Once we add this
assumption, (SAMC) forces S1 and S2 to share the same distribution
Pr1

i (·) at t1, which is depicted in the final column of Table 3:

12Some Bayesian defenders of EWV require that (ideally) the result of an EWV-
update should be equivalent to a (classical) conditionalization, which conditionalizes
“on whatever you (i.e., both of the agents in a symmetric peer case) have learned
about the circumstances of the disagreement” (Elga 2007). If that’s right, then
both constraints of (C) will follow from the definition of (classical) Bayesian con-
ditionalization, since pairs of (classical) conditionalizations must commute. But,
even if we don’t think of EWV-rules as equivalent to some conditionalization, we
think (C) should remain a desideratum for EWV-updates. We don’t have the space
to defend this claim here. But, in general, we are sympathetic to commutativity as
a requirement for Bayesian updating. See (Wagner 2002) for discussion.
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p q Pr0
1(·) Pr0

2(·) Pr1
i (·)

T T 0.1 0.55 0.325
T F 0.2 0.25 0.225
F T 0.3 0.15 0.225
F F 0.4 0.05 0.225

Table 3: The (SAMC)-example with p and q also peer-propositions.

As a result, by the first (C)-constraint, we have:

Pr0+p

1 (q) = Pr0
1(q | p) =

Pr0
1(p& q)

Pr0
1(p)

=
0.1

0.3
= 0.3333

Pr0+p

2 (q) = Pr0
2(q | p) =

Pr0
2(p& q)

Pr0
2(p)

=
0.55

0.8
= 0.6875

And, applying (SAMC) to these (disagreed-upon, peer) Pr0+p

i (q)’s yields:

Pr0+p

1 (q) = Pr0+p

2 (q) = Pr0+p

i (q) =
0.3333 + 0.6875

2
= .5105

But, this does not match what we get when we compute Pr0
i (q | p)

directly, by applying the second (C)-constraint, as follows:

Pr0
i (q | p) =

Pr0
i (q & p)

Pr0
i (p)

=
Pr1

i (q & p)

Pr1
i (p)

=
0.325

0.55
= 0.5909 6= .5105

Therefore, the example depicted in Table 3 is a counterexample to (C)
for the (SAMC) updating rule. Moreover, the (PCI) constraint is also
violated in this example, since:

Pr0
1(q) = 0.4 > Pr0

1(q | p) = 0.3333, and

Pr0
2(q) = 0.7 > Pr0

2(q | p) = 0.5909, but

Pr1
i (q) = 0.55 < Pr1

i (q | p) = 0.5909.

Thus, (SAMC) also forces a reversal on the initially agreed-upon as-
sessment of S1 and S2 that p and q are negatively dependent. After
the (SAMC) peer-update, they both change their mind about this, and
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come to agree that p and q are positively dependent. Since p and q are
both peer-propositions in the present example, this is also a counterex-
ample to (PCI) for the (SAMC) updating rule.13

Two final notes on (SAMC). First, (SAMC) satisfies (U). Indeed,
since S1 and S2 will always end-up having the same credences on all
peer-propositions, (SAMC) satisfies the stronger constraint (A). Sec-
ond, (SAMC) satisfies (IA), since for each peer-proposition p, the value
of the new credence for p is a function (namely, the straight averaging
function) of the values of the old credences for p assigned by S1 and S2.

To sum up: because neither of the Straight Averaging rules can
always satisfy both (P) and (C), neither yields a satisfactory updating
rule from a Bayesian perspective. Nonetheless, perhaps there is some
way to get “close” to straight averaging, while still respecting these
fundamental constraints (and perhaps other constraints as well). We
will consider several “approximate” versions of (SA) in the next section.

3.2 “Approximate” Straight Averaging

In the last section, we saw that (SAMC) can lead to unsatisfactory
updates. Perhaps straight averaging is not the best way to understand
“equal weight” after all. Interestingly, Christensen says that when faced
with a disagreeing peer, “I should come close to ‘splitting the difference’
between my friend’s initial belief and my own” (2007: p. 203; emphasis
ours). Inspired by this “approximate splitting” intuition, we will now
consider three “approximate” renditions of (SAMC), in increasing order
of logical strength. Here is the weakest of the three.

Approximate Straight Averaging + Minimal Change1 (ASAMC1):
If S1 and S2 find themselves disagreeing about a peer-proposition
p at t0, then they should each update on p so that:

Pr1
i (p) ≈ Pr0

1(p) + Pr0
2(p)

2
,

where Pr1
i (p) is strictly between Pr0

1(p) and Pr0
2(p).

14

13Examples like this have also been discussed in the literature on Bayesian aggre-
gation. See Shogenji (2007) for an in-depth discussion of (C) — and its interactions
with conditions (P), (IA), and (PCI) — in the context of Bayesian aggregation.

14We impose this strict between-ness requirement so as to rule-out dictatorial

12



And, where the update is done in a way that satisfies (P) and (C).
If additional changes must be made (on non-peer propositions) to
Pr0

1(·) and/or Pr0
2(·) in order to ensure satisfaction of (P) and (C),

then the other changes should be made so as to minimize the
distance of Pr1

1(·) and/or Pr1
2(·) from the initial distribution(s)

Pr0
1(·), Pr0

2(·), while maintaining satisfaction of (P) and (C).

Rule (ASAMC1) is the weakest of the three “approximate” (SAMC)
rules we will consider, because it only requires that each peer end-up
“close to the average” on each peer-proposition. This does not require
that the peers end-up close to each other, since approximate equality
is not a Euclidean relation (that is, the fact that two numbers a and b
are both close to the third number c does not imply that a and b are
close to each other, or, more formally, a ≈ c & b ≈ c ; a ≈ b). We
will consider two strengthenings of (ASAMC1) below. For now, let’s
see how (ASAMC1) fares on the examples we’ve been discussing.

As it turns out, non-trivial constraints on possible values of ε will
be forced by (ASAMC1). Consider the example depicted in Table 3.
It turns out that the only way to satisfy (ASAMC1) in this case is if
ε > 1/16. So, for instance, if we had a threshold of ε = 0.05, we would
not be able to satisfy (ASAMC1) in the example depicted in Table 3.15

In this example, we can also satisfy (PCI), so long as ε > 1/16.
So, adding (PCI) as an additional constraint to the problem does not
make things any worse here. In general (i.e., in all 2-atomic-proposition

updates, which revert to one of the two peer’s initial assignments. We will assume
that a ≈ b iff |a− b| < ε, for some “small” ε > 0. For simplicity, we’ll assume that
the same ε is adopted for each peer-proposition, and we won’t take a stand on what
“small” means (or whether any of these things are context-sensitive, etc.). As with
our “minimal change” caveat (fn. 10), these assumptions about “≈” and “ε” could
be relaxed/changed. Again, we leave such generalizations to the defenders of EWV.

15Moreover, there exist similar examples in which ε is forced to be even greater.
We have been able to find examples like these in which ε is forced to be larger than
0.1. We omit all technical details here, but a companion Mathematica notebook
for this paper is available for download at 〈http://fitelson.org/ew.nb〉 (a PDF
version of the notebook is at 〈http://fitelson.org/ew.nb.pdf〉), which verifies
all the mathematical claims made in this paper. There, we present a decision
procedure for the class of 2-atomic-proposition models discussed here. That decision
procedure is derived from a general decision procedure for the probability calculus
(called PrSAT), which is described in (Fitelson 2008).
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models16), this will be the case. That is, we can always add (PCI) as
an additional constraint to (ASAMC1) without imposing additional
constraints on possible values of ε.17

Interestingly, (IA) will not be satisfied by (ASAMC1), or any “ap-
proximate splitting” rule, for that matter. This is because “approxi-
mate splittings” can be achieved in multiple ways, for the same pair
of initial credence values. As such, there can be no function(s) of said
credence values that yields the (ASAMC1)-updated values.18

Finally, (ASAMC1) is perhaps too weak in any event, since it al-
lows peers to end-up with credences that are not close to each other on
peer-propositions. And, the spirit of EWV seems to require that peers
end-up with credences (on peer-propositions) that are close to each
other, in addition to being close to the straight average of (i.e., the
midpoint between) the initial credence values. That suggests strength-
ening (ASAMC1) to require that peers also end-up close to each other.

This leads to (ASAMC2), which adds to (ASAMC1) the requirement
that Pr1

1(p) ≈ Pr1
2(p). Because of the nature of “≈”, however, there

remains an important ambiguity in the statement of (ASAMC2). Here
are two salient ways in which peers might satisfy (ASAMC2).

1. Pr1
1(p) = Pr1

2(p) = Pr1
c(p). On this reading, which we will label

(ASAMC2.1), agreement (A) is ensured on each peer-proposition.
But, because we cannot (always) exactly “split the difference”
between the two initial credences (on pain of incoherence — as
was shown in the sections above), the consensus value Pr1

c(p) will
(sometimes) have to be closer to one of the initial credences than
it is to the other. As a result, one of the peers will have to make
a larger change (or a larger ∆) to their initial credence than the

16These sorts of claims become very difficult to verify when more complex spaces
are involved [especially, the constraints imposed by (PCI)]. Again, we leave such
generalizations of the present models and results to the defenders of EWV.

17We could further generalize our (ASAMC)-rules, by allowing additional con-
straints C to be added into the updating and minimal-change steps. Our Mathemat-
ica code (se fn. 15) could easily be changed to allow for arbitrary sets of constraints
C (as long as the C’s are jointly consistent with (P), (C), and (PCI), of course).

18This is significant, because (IA) is implicated in most (if not all) of the “impos-
sibility theorems” in the aggregation literature [see Genest and Zidek (1986)]. By
relaxing (IA), “approximate-splitting” EWV-approaches can avoid these impossi-
bility results. As we explain below, they yield some interesting possibility results.
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other peer does. So, while this reading has agents reaching exact
consensus on all peer-propositions, it does so in a way that may
seem untrue to the “equal weight” slogan, since the two peers will
have unequal “credence-∆s”. This entails a violation of what we
will call “equal credence-∆s” or (EC∆), for short.

2. Pr1
1(p) ≈ Pr1

2(p), but Pr1
1(p) and Pr1

2(p) may remain unequal. On
this reading, which we will label (ASAMC2.2), exact consensus
need not be reached on all peer-propositions. That is, (A) is
not ensured. But, we will further precisify (ASAMC2.2), so as
to ensure that each updated credence Pr1

i (p) is equally far from
the midpoint between the initial credences Pr0

i (p). In this way,
(ASAMC2.2) will always satisfy “equal credence-∆s” (EC∆).

We will not take a stand here on which precisification of (ASAMC2)
is a “better” EWV-update rule. We think this will depend on the rela-
tive importance of (A) vs (EC∆). If one insists on (A) being enforced,
then one must give up (EC∆). On the other hand, if one is willing to
live without (A), then one can enforce (EC∆). The important point
for our purposes is that an EWV-er cannot have both (A) and (EC∆).
So, defenders of EWV must choose which of these two constraints is
more important, from an EWV point of view.

Be that as it may, (ASAMC1) and both precisifications of (ASAMC2)
have formal properties that are very similar. The same constraints
on ε are forced on all three (ASAMC)’s by (P) and (C). That is, (in
the 2-atomic-p case) we don’t get stronger constraints on ε imposed
by the (ASAMC2)’s, even though they are (logically) stronger than
(ASAMC1). Also, (PCI) can always be satisfied by any of the three
(ASAMC)-rules, and its satisfaction won’t (generally) require a larger
ε than that already required by the satisfaction of the synchronic and
diachronic Bayesian coherence constraints (P) and (C).

The bottom line here is that — so long as ε is sufficiently large —
all three (ASAMC)’s can always be successfully applied (and with very
similar formal constraints on ε). The only question will be whether
(ASAMC)-solutions can be found that are within some ε-tolerance.
As we saw above, even the fundamental Bayesian coherence require-
ments (P) and (C) will sometimes force ε to be non-trivially large in
(ASAMC)-updates. And, by adding additional constraints [above and

15



beyond (PCI)] to an (ASAMC)-update, one can force ε to be even larger
(see fn. 17). We leave it to the defenders of EWV to decide which addi-
tional constraints might make sense, and how large ε should be allowed
to get, in various contexts. The purpose of this note is merely to raise
awareness about some of the difficulties in formulating a precise EWV-
update rule that is compatible with basic Bayesian tenets. We conclude
with a table summarizing some of the results we have discussed.

Can Rule (Always) Satisfy Condition?
Rule (P) (C) (U) (A) (EC∆) (IA) (PCI)

(SA) No19 No Yes Yes Yes Yes No
(SAMC) Yes No Yes Yes Yes Yes No

(ASAMC2.1) Yes Yes Yes Yes No No Yes
(ASAMC2.2) Yes Yes Yes No Yes No Yes

Table 4: Summary of properties of our EWV-update rules.

References

Christensen, D. 2007. “Epistemology of Disagreement: The Good News”,
Philosophical Review 119: 187-217.

Dalkey, N. 1972. An impossibility theorem for group probability functions.
P–4862, The Rand Corporation, Santa Monica, CA.

Diaconis, P. and Zabell, S. 1982. “Updating Subjective Probability”, Jour-
nal of the American Statistical Association 77: 822-830.

Elga, A. 2007. “Reflection and Disagreement”, Nous 41: 478-502.

Feldman, R. 2006. “Epistemological Puzzles About Disagreement”, in Epis-
temology Futures, ed. S. Hetherington. Oxford: Oxford University Press.
pp. 216-236.

. forthcoming. “Reasonable Religious Disagreement”, in Philoso-
phers Without God: Meditations on Atheism and the Secular Life, ed. L.
Antony. Oxford: Oxford University Press.
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