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Abstract

Betting methods, of which de Finetti’s Dutch Book is by far the most well-known, are uncertainty
modelling devices which accomplish a two-fold aim. Whilst providing an (operational) interpreta-
tion of the relevant measure of uncertainty, they also provide a formal definition of coherence. The
main purpose of this paper is to put forward a betting method for belief functions on MV-algebras
of many-valued events which allows us to isolate the corresponding coherence criterion, which we
term coherence in the aggregate. Our framework generalises the classical Dutch Book method.

KEYWORDS Belief functions, necessity measures, subjective probability, many-valued events,
betting methods, de Finetti.

1. Introduction and motivation

Betting methods, of which de Finetti’s Dutch Book is by far the most well-known, are un-
certainty modelling devices which accomplish a two-fold aim. Whilst providing an (operational)
interpretation of the relevant measure of uncertainty, they also provide the formal setting to tell
apart admissible from inadmissible quantifications of uncertainty. To emphasise the logical, rather
than decision-theoretic, nature of this latter aspect, the term coherence is often used.1 The main
purpose of this paper is to put forward a betting method for belief functions (on many-valued
events) which allows us to isolate the corresponding coherence criterion, which we term coherence

1De Finetti, who pioneered betting methods of the kind which will be of interest in this paper, used both the
notion of “coherence” and that of “admissibility” depending on whether he wanted to emphasise the logical or
decision-theoretic aspect of his analysis, respectively. Compare, for instance, Chapter 3 of [5] with [6].
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in the aggregate. Since our setting builds on (and extends) de Finetti’s method, we begin by
recalling his own Dutch Book.

Consider two players, Bookmaker (B) and Gambler (G) and a finite set of events of interest
e1 . . . , ek that can only be evaluated to either true or false. De Finetti’s method is best described
as an interactive, sequential choice problem (or game), in which the selection of an action, for each
player, reveals the player’s degree of belief in the corresponding outcome. At the first stage of
the game, Bookmaker publishes a book β, i.e. a complete assignent of real numbers βi ∈ [0, 1] to
each event ei. The real number βi is also referred to as the “betting odds” for ei. Once the book
has been published, Gambler chooses stakes σ1, . . . , σn ∈ R, one for each event ei, and pays to B
the amount

∑n
i=1 σi · βi in Euros.2 This makes the monies owed by B to G depend on a classical

valuation (or possible world) V which decides all the relevant events. That is to say, upon V
deciding the events of interest, Bookmaker must pay to Gambler

∑n
i=1 σi ·V (ei) Euros. Therefore,

when all events are decided by some V , the total balance in V for B is given by the expression:

n∑
i=1

σi · βi −
n∑
i=1

σi · V (ei) =
n∑
i=1

σi · (βi − V (ei)). (1)

Clearly, if the result of the above expression (1) is positive, Bookmaker made a profit (in
Euros) in V , whereas if it is negative, she made a loss in V . Since it is reasonable to assume that
no Bookmaker would ever aim at losing money, de Finetti’s criterion of coherence arises naturally
from this setting.

De Finetti’s Coherence Criterion. If e1, . . . , en are events and β is a book on them, then β
is coherent if and only if it does not lead B to a sure loss, that is to say, to a total balance for B
which is negative in every possible world V .

De Finetti’s celebrated Dutch Book Theorem states that a book β is coherent if and only if
β coincides with the restriction to {e1, . . . , ek} of a finitely additive and normalised function P
mapping elements of the free Boolean algebra generated by the ei’s to [0, 1]. It is customary to say
that P is a probability measure extending β, or that β extends to a (finitely additive) probability
measure P .

A central feature of de Finetti’s method is that a possible world V decides completely and
unambiguously the truth-value of the events of interest, that is to say, events are for de Finetti,
modeled by the semantics of the classical propositional calculus3. A practical consequence of this
assumption is that V provides B and G with sufficient information about the (Boolean) events ei’s
to compute the value of the total balance in (1). However, it is natural to ask whether de Finetti’s
method can be extended to characterise coherent belief in those cases in which possible worlds do
not determine completely whether events of interest are true of false.

Along this line, two generalisations have been proposed by Jaffray [19] and Mundici [25], re-
spectively, to extend de Finetti’s betting framework in two different ways. Jaffray investigated

2One central condition imposed by de Finetti on the game allows Gambler to choose negative stakes, thereby
unilaterally imposing a payoff swap to Bookmaker, who is forced to accept. So if G puts a negative stake −σi on
event ei, she is entitled to receive σi · βi from B. This, and the remaining contractual conditions which underpin de
Finetti’s Dutch Book are fully analysed, in the language and notation of this paper, in [12]. There, we also emphasise
the importance of the (implicit, in de Finetti’s framework) assumption to the effect that, at the time of betting, B
and G must be unaware of the truth values of the events involved in the game.

3We refer again to [12] for a more detailed analysis of this important point.
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betting games where the information possessed by the agent at the time of resolving the uncer-
tainty may not determine completely whether the events are true or false. Mundici, on the other
hand, investigated betting games where the available information determines the truth value of all
the events of interest, but considers a more general semantics than de Finetti’s by allowing the
events of interest to be evaluated with degrees of truth between 0 and 1.

Indeed, Jaffray’s framework builds on the idea that if a given event e (represented by a sentence
of the classical propositional calculus) occurs, then every (non-contradictory event) which follows
logically from e, also occurs. Jaffray’s adaptation of de Finetti’s betting method, which he terms
a game under partially resolving uncertainty, mirrors rather closely the game recalled above. First
B publishes a book β : ei 7→ βi. Second G places stakes σ1, . . . , σk on e1, . . . , ek at the betting
odds written in β. Finally, G pays B for each ei the amount σi · βi and B gains from G the
amount σi · Ce(ei), where Ce(ei) = 1 if ei follows from e (under classical propositional logic, i.e. if
|= e→ ei), and Ce(ei) = 0 otherwise. Therefore, the total balance for B is given by

k∑
i=1

σi(βi − Ce(ei)). (2)

Jaffray calls a book β coherent under partially resolved uncertainty if it does not lead B to incur
a sure loss, i.e. if it is not the case that, for every fixed non-contradictory event e,

∑n
i=1 σi(βi −

Ce(ei)) < 0. Finally he shows that this notion of coherence characterises Dempster-Shafer belief
functions [30] (see Section 2.1) essentially in the same way probability measures are characterised
by de Finetti’s own notion of coherence:

Theorem 1.1 ([19]). A book β under partially resolved uncertainty on events of interest e1, . . . , ek ∈
2W is coherent iff it can be extended to a belief function on the Boolean algebra 2W .4

On the other hand, Mundici extends in [25] de Finetti’s coherence criterion to formulas of the
infinitely-valued  Lukasiewicz calculus. In this setting events are represented by formulas which are
evaluated by possible worlds into the real unit interval [0, 1] (as opposed to the two element set
{0, 1}) according to the semantics of  Lukasiewicz logic. As in de Finetti’s game G chooses stakes
and pays B, for each ei, σi · βi, while B receives from G, in the possible world v, σi · v(ei), that is
an amount proportional to the truth of ei. Therefore, the total balance for B is given by

k∑
i=1

σi(βi − v(ei)). (3)

The notion of a coherent book is then defined exactly as in de Finetti’s betting method: the book
β : ei 7→ βi is said to be state-coherent if it does not lead B to incur a sure loss, i.e. if it is not the
case that for every  Lukasiewicz [0, 1]-truth evaluation v,

∑n
i=1 σi(βi − v(ei)) < 0. Mundici shows

that his notion of state-coherence characterises states (see Section 2.2), i.e. normalised and finitely
additive measures on MV-algebras (the algebraic counterpart of  Lukasiewicz logic) in the same way
de Finetti’s coherence characterises finitely additive probabilities:

Theorem 1.2 ([25]). Let A be an MV-algebra, and let {e1, . . . , en} ⊆ A. A book β : ej 7→ βj is
state-coherent iff β extends to a state on A.

4Jaffray’s original setting is slightly, but immaterially, different from our rendering since he takes Gambler’s,
rather than Bookmaker’s point of view for the calculation of the total balance.
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Thus states on MV-algebras can be seen to arise as a coherent quantification of uncertainty
from a suitable extension of de Finetti’s betting method in a many-valued framework.

Given these antecedents, the aim of this paper is to put forward an extension of de Finetti’s
criterion and operational interpretation of uncertainty on many-valued events. As a consequence,
this paper explores methods for an operational quantification of the uncertainty of many-valued
events whose evaluation is obtained aggregating (possibly inconsistent) observations provided by
more or less reliable agents. The following fictitious example illustrates a decision-making problem
in which such a generalised uncertainty quantification may arise in practice.

Example 1.3. The Global Health Agency (Agency, for short) is faced with the problem of choosing
life-saving drugs against k diseases, D1, . . . , Dk, which can turn into potential epidemics. On top
of the uncertainty related to whether a certain epidemic will occur, Agency will be interested in
the extent to which Di will spread across the globe. So, the events that Agency is facing are best
seen as ei: “the outbreak of Di will be aggressive”. This can be captured by allowing each event
ei be evaluated in the real unit interval [0, 1], rather than, as usually done, in the binary set with
values 0 (i.e. not aggressive) and 1 (i.e. aggressive).

As for the evaluation of each event, the Agency is supposed to ask data about the actual
pandemics to the individual national health organisations, say a1, . . . , am. These will provide
[0, 1]-valued assessments a1(ei), . . . , am(ei) of how aggressive is each disease Di in its country.
Agency, in order to determine the evaluation for each event, and hence to determine the extent
to which disease Di turned out to be aggressive, needs to aggregate these data according to some
aggregation method agg. The aggregation methods considered in this paper will be based on
determining a reliability map η which assigns to each national health organisation ai a reliability
degree η(ai). The idea behind this is that some countries might announce the outbreak of Di but
could do so on the basis of very poor information, for instance because of inadequate sampling
of the population. Other countries might do very accurate statistical sampling instead, thereby
producing a completely reliable report. To cope with this we assume that Agency can determine
the true reliability of the data produced by each country by running say a (completely reliable)
statistical analysis on the sampling methods used by the national agencies.

By considering different aggregation methods, we provide an operational semantics for a wide
class of uncertainty measures including belief functions on MV-algebras, plausibility functions on
MV-algebras, but also belief functions on Boolean algebras and classical probability measures.

The remainder of the paper is organised as follows: In Section 2 we shall briefly recall the
preliminary notions needed for the paper, namely belief functions on Boolean algebras, states of
MV-algebras and belief functions on MV-algebras. Section 3 will be devoted to presenting our
generalised betting framework. In the same section we shall characterize uncertainty measures on
many-valued events by exploring the possible ways in which the aggregation map can be chosen.
Refinements of the set of available reliability maps will be investigated in Section 4 where we show
how particular classes of belief functions on MV-algebras can be described. In Section 5 we shall
discuss on conclusions and future work.

The paper includes two appendices: Appendix A, provides the necessary notions and results
about  Lukasiewicz logic and MV-algebras. Appendix B collects the proofs of some technical results
which, in the interest of readability, we refrained from including in the main body of the paper.
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2. Preliminaries

2.1. Belief functions on classical events

We briefly recall in this section the main definitions of Dempster-Shafer belief functions [30]
needed in the rest of the paper. Consider a finite set W of mutually exclusive (and exhaustive)
propositions of interest, and whose powerset 2W represents all such propositions. We can think
of W as a frame of discernment, with elements x ∈ W representing the lowest level of discernible
information that can be dealt with.

A map m : 2W → [0, 1] is said to be a basic belief assignment, or a mass assignment whenever

m(∅) = 0 and
∑
A∈2W

m(A) = 1.

Given such a mass assignment m on 2W , for every A ∈ 2W , the belief of A is defined as

Belm(A) =
∑
B⊆A

m(B). (4)

Notice that each mass assignment m on 2W is in fact a probability distribution on 2W that naturally
induces a probability measure Pm on 22

W
. Consequently, the belief function Belm defined from m

can be equivalently described as follows: for every A ∈ 2W ,

Belm(A) = Pm({B ∈ 2W : B ⊆ A}). (5)

Therefore, identifying the set {B ∈ 2W : B ⊆ A} with its characteristic function defined by

ιA : B ∈ 2W 7→
{

1 if B ⊆ A
0 otherwise,

(6)

it is easy to see that, for every A ∈ 2W , and for every mass assignment m : 2W → [0, 1], we have

Belm(A) = Pm(ιA). (7)

This characterization will be useful when discussing the extensions of belief functions on MV-
algebras. Similarly useful to understand our generalised betting method is the rather obvious
observation to the effect that for every A ∈ 2W , ιA can be regarded as a map evaluating the
(strict) inclusion of B into A, for every subset B of W .

Finally, recall that a subset A of W such that m(A) > 0 is said to be a focal element. Every
belief function is characterized by the value that m takes over its focal elements, and therefore, the
focal elements of a belief function Belm carry all the relevant information about Belm.

2.2. States on MV-algebras

States on MV-algebras were introduced by Mundici in [24] as averaging processes for the
infinitely-valued  Lukasiewicz logic. A state of an MV-algebra5 M = (M,⊕,¬, 0M ) is a map
s : M → [0, 1] satisfying the following:

5See Appendix A for details on MV-algebras.
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(i) s(1M ) = 1,

(ii) s(x⊕ y) = s(x) + s(y), for every x, y ∈M such that x� y = 0M ,

where 1M = ¬0M and x � y = ¬(¬x ⊕ ¬y). We denote by S(M) the subset of [0, 1]M whose
elements are the states of M .6

States play the same role on MV-algebra as probability measures do on Boolean algebras.
Indeed, the two properties (i) and (ii) characterize each state on M as a [0, 1]-valued map that is
normalised (i) and additive (ii) with respect to MV-algebraic operations. Moreover, it is easy to see
that, for every MV-algebra M and for every s ∈ S(M), the restriction of s to the Boolean skeleton
of M (the largest Boolean algebra contained in M) is a finitely additive probability measure.

The following theorem independently proved by Kroupa [20, Theorem 28] and Panti [28, Propo-
sition 1.1], provides an integral representation of states by Borel probability measures defined on
the σ-algebra B(Max(M)) of Borel subsets of Max(M), where Max(M) is the maximal spectral
space of M (see Appendix A for further details on Max(M)).7

Theorem 2.1. For every MV-algebra M , there is a one-to-one correspondence between the class
S(M) of states on M , and the regular Borel probability measures on B(Max(M)). In particular,
for every state s on M , there exists a unique regular Borel probability measure µ on B(Max(M))
such that for every a ∈M ,

s(a) =

∫
Max(M)

a dµ. (8)

Remark 2.2. It is worth noticing that, for MV-algebras of the form [0, 1]Y (Y can either be finite
or infinite), their maximal spectral space Max([0, 1]Y ) coincides, up to bijections, with Y . As a
matter of fact, for every y ∈ Y , the subset my of [0, 1]Y consisting on those functions f : Y → [0, 1]
such that f(y) = 1 is a maximal filter of [0, 1]Y . Furthermore, the map y ∈ Y 7→ my ∈Max([0, 1]Y )
is a bijection. In the remainder of this paper, we shall often use this remark.

When M is an MV-algebra of functions of the kind [0, 1]Y , where Y is countable set, the above
representation theorem boils down to claiming that for any state s on M there exists a probability
distribution p : Y → [0, 1] such that, for any f ∈ [0, 1]Y ,

s(f) =
∑
y∈Y

f(y) · p(y).

In other words, states on MV-algebras of [0, 1]-valued functions are nothing else but Zadeh’s prob-
abilities of fuzzy events [35].

As we recalled in Section 1, generalising a previous result by Paris [29], Mundici [25] shows
that states of MV-algebras can be seen to arise as a coherent quantification of uncertainty from a
suitable extension of de Finetti’s betting method. We now recall the theorem in more detail, as it
will be useful in what follows.

6For the sake of a lighter notation, when no confusion is possible we will identify an MV-algebra M with its
domaion M , and we will write 0 and 1 for 0M and 1M respectively.

7While Kroupa proved Theorem 2.1 in the case of semisimple MV-algebras, Panti showed that the hypothesis on
the semisimplicity of the MV-algebra can be relaxed, since, for every MV-algebra M , there is a canonical bijection
between the class S(M) of all the states on M , and the class S(M/Rad(M)) of all the states on its most general
semisimple quotient M/Rad(M).
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Theorem 2.3 ([25]). Let M be an MV-algebra, let {e1, . . . , en} ⊆ M , and let β : ej 7→ βj be a
book. Then the following are equivalent:

(1) β is state-coherent,

(2) β extends to a state on M .

2.3. Belief functions on MV-algebras of [0, 1]-valued functions

In the literature several attempts to extend belief functions on many-valued (i.e. fuzzy) events
can be found. The first extensions of Dempster-Shafer theory to the general framework of fuzzy
set theory was proposed by Zadeh in the context of information granularity and possibility theory
[34] in the form of an expected conditional necessity, and by Smets who proposed in [31] to extend
a classical belief function Bel on 2X to fuzzy subsets A of X as the lower expectation of the
characteristic function of A with respect to the class of probability measures lower bounded by
Bel. After Zadeh and Smets, several further generalisations were proposed, depending on the way
a measure of inclusion among fuzzy sets is used to define the belief functions of fuzzy events based
on fuzzy evidence. Indeed, given a mass assignment m for the bodies of evidence {A1, A2, . . .}, and
a measure I(A ⊆ B) of inclusion among fuzzy sets, the belief of a fuzzy set B can be defined in
general by the value: Bel(B) =

∑
i I(Ai ⊆ B) ·m(Ai). We refer the reader to [7, 18, 32, 33] for

exhaustive surveys, and to [1] for another approach through fuzzy subsethood.
The set [0, 1]W of fuzzy subsets of a set W (mappings from W into [0, 1]) can be endowed with

an MV-algebra structure by the pointwise extension of the MV-algebra operations in the standard
MV-algebra [0, 1]MV (see (2) and (4) in Example 5.1 in Appendix A). Belief functions were firstly
generalised to this MV-algebraic setting by Kroupa [21] in the following way.

Assume W be finite, and for each element a in the MV-algebra [0, 1]W , let the map ρ̂a : 2W →
[0, 1] be defined by the following stipulation: for all B ∈ 2W ,

ρ̂a(B) =

{
minw∈B a(w) if B 6= ∅,
1 if B = ∅. (9)

It is clear that ρ̂a generalises the map ιA we discussed in Section 2.1 in the following sense:
whenever A ∈ 2W , then ρ̂A = ιA. Indeed, for every A ∈ 2W , ρ̂A(B) = 1 if B ⊆ A, and ρ̂A(B) =
0, otherwise. Against this background Kroupa proposes to define belief functions on [0, 1]W by

replacing in (7) the maps ιA by the maps ρ̂a and the probabilities over 22
W

by states on [0, 1]2
W

.

Definition 2.4 (Crisp focal belief function). Let W be a finite nonempty set. Then a map

B̂el : [0, 1]W → [0, 1] is a crisp-focal belief function, if there exists a state s : [0, 1](2
W ) → [0, 1] such

that, for all a ∈ [0, 1]W

B̂el(a) = s(ρ̂a).

We call the maps B̂el crisp-focal belief functions since the focal elements are (crisp) subsets
of 2W . Indeed we have s(ρ̂a) =

∑
B∈2W ρ̂a(B) · µ(B), where µ : 2W → [0, 1] is the probability

distribution on 2W defined as µ(B) = s({B}), identifying {B} with its characteristic function
on 2W . Therefore it is clear, by construction, that those elements from [0, 1]W with a positive
probability can only be crisp subsets of W .
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Kroupa’s approach has been further generalised in [17] as follows.8 For every finite set W , and
for every element a of the MV-algebra [0, 1]W , first define the map

ρa : b ∈ [0, 1]W 7→ min{b(w)⇒ a(w) | w ∈W}.9

The map ρa generalises both the map ιA introduced in (6) and the map ρ̂a defined in (9). Indeed
it is clear that the restriction of ρa to 2W coincides with ρ̂a, and for every crisp subset A of W ,
the restriction of ρA to 2W coincides with ιA. Moreover, for every fixed b ∈ [0, 1]W the map
N b : [0, 1]W → [0, 1] defined by

N b : a ∈ [0, 1]W 7→ ρa(b) ∈ [0, 1], (10)

is a homogeneous necessity measure induced by the mapping b,10 understood as a possibility dis-
tribution (see e.g. [15]). Moreover, N b is normalised (i.e. N b(0) = 0) if and only if so is b (i.e.
maxw∈W b(w) = 1). An easy adaptation of [15, Theorem 3.3] shows that the following proposition
holds.

Proposition 2.5. (1) The class N ([0, 1]W ) of all necessity measures on [0, 1]W coincides with the
class

{ρ(·)(b) : f ∈ [0, 1]W 7→ ρf (b) | b ∈ [0, 1]W }.

(2) The class N>([0, 1]W ) of all normalised necessity measures on [0, 1]W coincides with the
class

{ρ(·)(b) : f ∈ [0, 1]W 7→ ρf (b) | b ∈ [0, 1]W , max
w∈W

b(w) = 1}.

For every finite set W let R(W ) be the MV-algebra generated by the set {ρa | a ∈ [0, 1]W }.
The following holds.

Proposition 2.6 ([14]). For every finite set W , the algebra R(W ) is a separating MV-algebra of
continuous functions. That is, each f ∈ R(W ) is a continuous map, and for each w1, w2 ∈W such
that w1 6= w2, there is an f ∈ R(W ) such that f(w1) 6= f(w2).

Now we are ready to define belief functions on MV-algebras of fuzzy sets.

Definition 2.7 ([17]). Let W be a finite set. A map Bel : [0, 1]W → [0, 1] is a belief function
provided that there exists a state s : R(W )→ [0, 1] such that, for every a ∈ [0, 1]W

Bel(a) = s(ρa)

The state s is called the state assignment of Bel.

As pointed out in [17] (see also [13, 14]), since ρ0 does not coincide in general with the zero-
constant function 0, Bel(0) cannot be ensured to equal 0. We call normalised each belief function
Bel on [0, 1]W satisfying Bel(0) = 0.

8We invite the interested reader to consult [14] for further details.
9Recall that u⇒ v = min(1, 1− u+ v), for each u, v ∈ [0, 1].

10This means that the following properties hold: i) Nb(a ∧ a′) = min{Nb(a), Nb(a′)} and Nb(r ⊕ a) = r ⊕Nb(a)
for every r ∈ [0, 1]. Here u⊕ v = min(1, u+ v) and r denotes the constant function of value r.

8



If W = {w1, . . . , wn} is a finite set, the Boolean algebra 2W is clearly also finite, and hence
any mass assignment m : 2W → [0, 1] obviously has only finitely many focal elements. Also in the
framework of finite MV-algebras, the mass assignment can be easily defined. Indeed, every finite
MV-algebra can be embedded into an MV-algebra of the form (Sm)W where Sm = {0, 1/m, . . . , (m−
1)/m, 1} and W is a finite set, and every belief function Bel on (Sm)W can be written as:

Bel(f) =
∑

a∈(Sm)W

ρa(f) · µ({a}),

where µ is a uniquely determined probability measure on 2(Sm)W (cf. [14, Remark 4.10]). Hence,
an element a ∈ (Sm)W is a focal element for Bel if and only if µ({a}) > 0. (We will turn back on
this, in Remark 4.4).

On the other hand, for a belief function defined on the MV-algebra [0, 1]W , Theorem 2.1 ensures
that, if µ : B([0, 1]W )→ [0, 1] is a regular Borel probability measure, the map Bel : [0, 1]W → [0, 1],
defined as

Bel(a) =

∫
[0,1]W

ρa dµ,

is a belief function and conversely, that every belief function on [0, 1]W arises in this way. Clearly,
the MV-algebra [0, 1]W has uncountably many elements, and hence we cannot find, in general, a
mass assignment µ defined over B([0, 1]W ) which is supported by a set which is at most count-
able.11This observation leads to the following definition.

Definition 2.8 ([14]). Let K be the set of all compact subsets of an MV-algebra of fuzzy sets
[0, 1]W . For every regular Borel probability measure µ defined on B([0, 1]W ), we call the set

spt µ =
⋂
{K|K ∈ K, µ(K) = 1}

the support of µ.

By Theorem 2.1 we can regard spt µ as the support of the state assignment s defined from µ
via (8). In particular, the following holds:

Bel(a) =

∫
[0,1]W

ρa dµ =

∫
spt µ

ρa dµ. (11)

Therefore, the set of focal elements of a belief function Bel on [0, 1]W whose state assignment
s is represented by a regular Borel probability measure µ effectively coincides with spt µ. As a
consequence we will freely speak of either the support or the set of focal elements of such belief
functions with no risk of confusion arising.

As in the classical Dempster-Shafer theory, plausibility functions on fuzzy sets can also be
defined by duality from a belief function. In other words, if Bel is a belief function on [0, 1]W

(as in Definition 2.7), its dual plausibility function Pl : [0, 1]W → [0, 1] is defined by the following
stipulation: for every a ∈ [0, 1]W ,

Pl(a) = 1−Bel(¬a) = 1− s(ρ¬a) (12)

11If it happens to be that µ has a countable support (i.e. there is a countable subset K ⊂ [0, 1]W such that
µ(K) = 1) then the belief function defined induced by µ takes the simplified form Bel(f) =

∑
a∈[0,1]W ρa(f) ·µ({a}),

for any f ∈ [0, 1]W .
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where s : R(W ) → [0, 1] is the state-assignment of Bel. Since states are self-dual (i.e. s(¬x) =
1− s(x)), the above expression reduces to Pl(a) = s(¬ρ¬a), for all a ∈ [0, 1]W . Therefore, since by
Proposition 2.5 the map ρ(·)(b) is a necessity measure (and in particular it is normalised whenever
max{b(w) : w ∈ W} = 1), ¬ρ¬(·)(b) is a (normalised) possibility measure [15, Definition 3.2].

Moreover, every (normalised) possibility measure on [0, 1]W can be obtained in this way.

3. A generalised betting framework

We now introduce a betting method which generalises both Jaffray and Mundici’s frameworks
recalled above. As anticipated and motivated in the introductory section of this paper, we generalise
Jaffray’s by considering many-valued events, and generalise Mundici’s by considering several sources
of information (each of distinct reliability) and allowing for (partly) unresolved uncertainty.

As usual, our two players will be labelled B (for Bookmaker) and G (for Gambler), and we
fix a set of (many-valued) events of interest {e1, . . . , ek}. As in the classical case, the game begins
with B publishing a book β which assigns, to each event ei, a real number βi ∈ [0, 1]. Again, in
full analogy with de Finetti’s method, B and G agree that the stakes placed by G at the second
stage of the game can either be positive or negative. In other words, for every ei, G choses real
numbers σi and pays to B the amount

∑k
i=1 βi · σi in Euros. This corresponds to the price that B

accepts to pay to bet on the ei’s.
In the spirit of the Global Health Agency example above, our framework introduces the following

main novelties with respect to de Finetti’s:

(i) a finite set of many-valued possible worlds W = {w1, . . . , wn}, to be interpreted as the set
of possible (complete) scenarios regarding the events, i.e. scenarios which determine the
truth-value (from [0, 1]) in which every event holds.[In our running example, such scenarios
determine the degree to which a certain desease turns out to be aggressive.]

(ii) a finite set Ag of informative agents {a1, . . . , am}, each one notifying which is the resulting
scenario according to its subjective point of view. [Again in our example, such agents coincide
with the individual National Health Organisations.]

(iii) agents, as information sources, may be more or less reliable. [In our running example this
depends on the fact that the measurement concerning the outbreak of a particular desease is
intrinsically statistical and therefore it is susceptible of being more or less accurate.]

To operationalize this setting, we make the following working assumptions:

• we identify events with formulas of  Lukasiewicz logic over a language built on a set of propo-
sitional variables V ;

• we identify the set of possible worlds or scenarios with a subset of evaluations for formulas,
i.e. W ⊆ [0, 1]V ;

• we identify the information provided by each agent with the choice of one possible world or
scenario from W , i.e. each agent a ∈ A chooses one wa ∈W .

• we assume an oracle O to assign a reliability degree to each agent, i.e. O determines a
reliability map η : Ag → [0, 1], where η(a) = 1 means that agent a is fully reliable, 0 <
η(a) < 1 means that a is somewhat reliable (the higher the more reliable), and η(a) = 0

10



means that a is not reliable at all. We also assume that, amongst all agents, at least one is
not completely unreliable, that is maxa∈Ag η(a) > 0. The set of these reliability maps will be
denoted Λ+(Ag).

Notice that, as far as betting in this framework is concerned, the first two assumptions above
imply that events can only be distinguished by how possible worlds evaluate them, hence they
can be represented as functions defined on [0, 1]W , namely one event e can be understood as the
function w 7→ w(e), for each w ∈W .

A triple E = (Ag,w, η), where w = {wa ∈W | a ∈ Ag} is a set of evaluations of events for each
a ∈ Ag, will be called an evaluating triple.

All the above ingredients allow us to evaluate the events involved in the betting as a weighted
aggregation of the information provided by the agents, where weights are related to reliability
degrees. More concretely, we consider an aggregation method as a two-place function agg(·, ·) such
that, for each evaluating triplet E and for each event ei, agg(E , ei) ∈ [0, 1]. We will assume that
agg(·, ·) satisfies some suitable properties that we leave unspecified for the moment. Whenever E
is fixed, we shall denote by aggE(·) the one-place map agg(E , ·).

Finally, once an evaluation triplet E and the aggregation method agg are fixed and agreed
by the bookmaker and the gambler, the specification of the betting framework is completed by
determining that the amount gambler G receives from from bookmaker B for each event ei is
proportional to the value aggE(ei), the total amount being

∑k
i=1 σi · aggE(ei). Then the total

amount for B is:

k∑
i=1

σi · (βi − aggE(ei)). (13)

Note that (13) generalises both (2) and (3). Indeed, if Ag consists of only one agent a and
η(a) = 1, then we are in Mundici’s betting framework. On the other hand, if η(a) = 1 for each
a ∈ Ag and agg(E , ei) = 1 if wa(ei) = 1 for all a ∈ Ag, and agg(E , ei) = 0 otherwise, then we
essentially recover Jaffray’s betting framework.12

Now we are ready to introduce the notion of coherence in our extended framework.

Coherence in the Aggregate Criterion. We say that a book β is coherent in the aggregate
agg, if it does not lead B to lose money independently of the evaluating triple E .

In other words, β is coherent in the aggregate (with respect to the aggregation agg), if and
only if, for every σ1, . . . , σk ∈ R, there exist an evaluating triple E , such that

k∑
i=1

σi(βi − aggE(ei)) ≥ 0. (14)

Note that the underlying idea behind our notion of coherence in the aggregate is virtually
identical to the seminal one which lead to de Finetti’s original version of the Dutch Book: in a

12Actually, strictly speaking, in Jaffray’s betting framework there is only one information source providing an
(incomplete) description of the world, while in this particular scenario of our betting framework we have a set of
informative agents, each one providing a possible complete description of the world. So, they are both equivalent
forms of representing an incomplete information, or in Jaffray’s terms, an “unresolved uncertainty” setting.
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suitably specified betting problem, Bookmaker is incoherent if she exposes herself to the logical
possibility of incurring sure loss. What our two-fold generalisation brings to the problem is a
considerably refined understanding of what “the logical possibility of sure loss” means. Yet it
is worth remarking that the formal adjustments do not require an essential modification of the
concept of coherence. This, in our view, provides a solid foundation for the investigation of belief
functions on many-valued events as measures of rational belief as opposed to a mathematically
deep albeit purely formal exercise.

Going back to our main concern, the aggregate values aggE(ei) can be obtained by several
aggregation procedures, see e.g. [9]. In this paper we shall consider three relevant cases which
we term pessimistic, optimistic and average, respectively. The terminology of pessimistic and
optimistic attitudes and the way they are modelled (namely by generalised necessity and possibility
measures) conform to the ones in use in possibilistic decision theory, see e.g. [8, 11, 10]. The average
attitude, on the other hand, arises naturally in the context of the problem under investigation.

Definition 3.1 (Aggregation). Let E = (Ag,w, η) be an evaluating triple. For every event e ∈
[0, 1]W , we define the optimistic, the pessimistic and the average aggregation maps ΠE , NE and
ME respectively, as follows:

ΠE(e) = max
a∈Ag
{η(a)� wa(e)},

NE(e) = min
a∈Ag
{η(a)⇒ wa(e)},

ME(e) =

∑
a∈Ag

η(a) · wa(e)

 / ∑
a∈Ag

η(a).

(15)

The next lemma shows that these three kinds of aggregation maps are in fact restrictions
of possibility measures, necessity necessity measures and states on the MV-algebra of functions
[0, 1]W .

Lemma 3.2. For every evaluation tripe E = (Ag,w, η) and for every class C of events in [0, 1]W

the following properties hold:

(i) ΠE is the restriction on C of a possibility measure on [0, 1]W . Conversely, for each pos-
sibility distribution π : W → [0, 1] there exists an evaluating triple E such that Ππ(e) =
maxw∈W π(w)� w(e) = ΠE(e) for each e ∈ C.

(ii) NE is the restriction on C of a necessity measure on [0, 1]W . For each possibility distribution
π : W → [0, 1] there exists an evaluating triple E such that Nπ(e) = maxw∈W π(w)� w(e) =
NE(e) for each e ∈ C.

(iii) ME is the restriction on C of a state on [0, 1]W . Conversely, for each probability distribution
p : W → [0, 1] there exists an evaluating triple E such that

∑
w∈W p(w) · w(e) = ME for each

e ∈ C.

Proof. (i) Define the possibility distribution π : W → [0, 1] as follows: π(w) = max{η(a) |
a ∈ Ag such that wa = w}. One can check then that, for every e ∈ C, ΠE(e) = Ππ(e) =
maxw∈W π(w)� w(e). Indeed, we have:

Ππ(e) = maxw∈W π(w)� w(e)
= maxw∈W max{η(a)� w(e) | a ∈ Ag,w = wa}
= max{η(a)� wa(e) | a ∈ Ag} = ΠE(e).
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To prove that for each possibility distribution π : W → [0, 1] there exists an evaluating triple
(Ag,w, η) such that Ππ(e) = ΠE(e) for each e ∈ C, it is enough to take Ag = W , η = π and
wa = a for each a ∈W .

(ii) The proof of this item directly follows from (i) and recalling that possibility and necessity
measures are dual, that is, for every π : W → [0, 1] and for every e ∈ C, Ππ(e) = 1−Nπ(1−e).

(iii) The proof is a direct consequence of the representation theorem for states (Theorem 2.1) in the
special case of finite W . In this case, in fact, all states are of the form s(a) =

∑
x∈W a(x)p(x),

where p : W → [0, 1] is a probability distribution on W, i.e.
∑

x∈W p(x) = 1. To prove that
for every probability distribution there exists an evaluation triple E = (Ag,w, η) such that
ME =

∑
w∈W p(w) ·w(e) it is sufficient to settle Ag = W , η = p and wa = w for every a ∈W .

Remark 3.3. Actually, the way of building the possibility distribution π in the proofs of items
(i) and (ii) of the above Lemma 3.2 reflects the disjunctive nature of the information aggregation
underlying the optimistic and pessimistic operators ΠE and NE respectively. In fact, one can argue
that two agents a and a′, say both with equal reliability, reporting two different words wa 6= wa′

denote a contradiction in the information they provide, since worlds represent complete descriptions
and hence if wa is supposed to hold for a, wa′ cannot hold as well for a. However, in our betting
metaphor we take the stand point that agents are providers of only possible scenarios, so in that
case, agents a and a′ are reporting that worlds wa and wa′ are both possible scenarios, and they
are possible to the extent they are considered reliable.

Actually, an equivalent alternative to the multi-agent betting framework for the case of op-
timistic and pessimistic aggregation could be considering the oracle O to provide an imprecise
description of the world in the form a nested set of subsets of possible worlds ∅ 6= W1 ⊂ W2 ⊂
. . . ⊂Wn ⊆W together with increasing confidence degrees 0 < α1 ≤ α2 ≤ . . . ≤ αn = 1. Interpret-
ing a values αi as the necessity degrees with which the oracle believes the actual world is in the set
Wi, the (epistemic) information provided by the oracle amounts to directly provide the possibility
distribution π on W defined as π(w) = min{1 − αi : 1 ≤ i ≤ n such that w 6∈ Wi}. Indeed, using
this betting scenario for the pessimistic aggregation, it becomes clearer that we are generalizing
Jaffray’s betting framework.13

It is easy to see that our assumption according to which at least one informative agent is
not completely unreliable, i.e. that reliability maps are chosen in Λ+(Ag), forces the possibility
distributions arising from the above Lemma 3.2 to belong to the class P+(W ) = {π ∈ [0, 1]W |
maxw∈W π(w) > 0}.

We now introduce the three notions of coherence which arise in our generalised betting methods
when instantiating the coherence in the aggregate considering criterion (13) with the tree-fold defi-
nition of aggregation given above. For each of them we will prove a characterisation result in terms
of three corresponding generalised uncertainty measures for MV-algebras of events: plausibility
functions, belief functions, and states.

Definition 3.4 (Coherence in the aggregate). Let {e1, . . . , ek} be events, and let β : ei 7→ βi be
the book of interest. If for every σ1, . . . , σn ∈ R, there exist an evaluating triple E such that:

13We are thankful to one reviewer for pointing us this issue.
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1.
∑k

i=1 σi(βi −NE(ei)) ≥ 0, then the book β is said to be pessimistically coherent,

2.
∑k

i=1 σi(βi −ΠE(ei)) ≥ 0, then the book β is said to be optimistically coherent,

3.
∑k

i=1 σi(βi −ME(ei)) ≥ 0, then the book β is said to be coherent in the average,

where NE ,ΠE ,ME are defined as in (15) above.

Remark 3.5. If we let the evaluating triple E vary, then the MV-algebra generated by the functions
NE is exactly R(W ) (recall Subsection 2.3).

Lemma 3.6. Let {e1, . . . , ek} be events and β : ei 7→ βi be a book. The following are equivalent

1. There exists a belief function Bel : [0, 1]W → [0, 1] such that Bel(ei) = βi, i = 1, . . . , k.

2. for all σ1, . . . , σk ∈ R, there exists an MV-homomorphism h ∈ H(R(W ), [0, 1]) such that

n∑
i=1

σi(βi − h(ρei)) ≥ 0.

Proof. A map Bel : [0, 1]W → [0, 1] is a belief function extending β iff, by definition, there exists
an state s : R(W ) → [0, 1] such that, for all i = 1, . . . , k, s(ρei) = βi iff, by Theorem 2.3, the
book β′ : ρei 7→ βi is state coherent, iff, by definition, for all σ1, . . . , σk ∈ R, there exists an
h ∈ H(R(W ), [0, 1]) such that

∑n
i=1 σi(βi − h(ρei)) ≥ 0. Hence our claim is settled.

Finally, we are now in a position to prove the main result of this paper, which provides a
three-fold characterisation of coherence arising from the betting method informally introduced in
Section 1 and made precise in this section.

Theorem 3.7 (Main Theorem). Let {e1, . . . , ek} be events and β : ei 7→ βi be a book Then the
following conditions hold:

1. β is pessimistically coherent iff there exists a belief function Bel : [0, 1]W → [0, 1] such that
Bel(ei) = βi, for i = 1, . . . , k,

2. β is optimistically coherent iff there exists a plausibility function Pl : [0, 1]W → [0, 1] such
that Pl(ei) = βi, for i = 1, . . . , k,

3. β is coherent in the average iff β is state coherent.

Proof. See Appendix B.

4. Refining coherence in the pessimistic case

The threefold criterion of coherence in the aggregate presupposes that an oracle O is choosing
a reliability map among all the possible ones, i.e. in the whole class Λ+(Ag) = {η : Ag → [0, 1] |
there exists a ∈ Ag, η(a) > 0}. However it may be desirable to capture the extra information that

bookmaker and gambler may possess on the reliability of the informative agents. So, instead of
belonging to the whole set Λ+(Ag), the reliability degrees attributed to the individual informative
agents may be chosen among specified subsets. This section investigates how suitable restrictions
to Λ+(Ag) give rise to interesting classes of belief functions.

Building again on the idea behind the Global Health Agency example of Section 1, it is quite
natural to consider betting problems in which B and G agree to bet only when the reliability of
informative agents is characterised by one of the following conditions:
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• ΛN (Ag) is the set of reliability assignments η on Ag which corresponds to the assumption
that at least one agent is completely reliable, in other words η(a) = 1 for some a ∈ Ag and
hence ηa = 1;

• ΛC(Ag) is the set of of reliability assignments η on Ag corresponding to the assumption that
at least one agent is completely reliable, as in the previous case, and further that the others
are completely unreliable, that is assignments satisfying η(a) ∈ {0, 1} for every a ∈ Ag.

• Finally, ΛD(Ag) is the set of of reliability assignments η on Ag arising from the assumption
that there exists exactly one agent which is completely reliable, and the others are completely
unreliable. This means, it consists of assignments η such that there exists a ∈ Ag with
η(a) = 1, and η(b) = 0 for all b 6= a.

The next lemma is a direct consequence of the above definitions, and therefore we omit the proof.
It shows how the restrictions of the set of possible reliability assignments to the above sets is
mirrored by similar restrictions on the induced possibility distributions.

Lemma 4.1. Let E = (Ag,w, η) be an evaluation tripe, and let π ∈ P+(W ) as arising from
Lemma 3.2, i.e. defined as π(w) = max{η(a) | a ∈ Ag such that wa = w}, for every w ∈ W . The
following hold:

1. if η ∈ ΛN (Ag) then π is normalised, that is, there is a w ∈W such that π(w) = 1

2. if η ∈ ΛC(Ag) then π is classical, that is π(w) ∈ {0, 1} for every w ∈W ,

3. if η ∈ ΛD(Ag) then π is drastic, that is there is a unique w0 ∈ W such that π(w0) = 1, and
π(w) = 0 for all w 6= w0.

Finally, it is useful to have the following notation for relevant classes of possibility distributions
on W :

- N (W ) = {π ∈P(W )+ | ∃x ∈ W,π(x) = 1}, which we call the set of normalised possibility
distributions.

- C (W ) = {π ∈ N (W ) | ∀x ∈ W,π(x) = 1 or π(x) = 0}, which we call the set of classical (or
crisp) possibility distributions, and finally

- D(W ) = {π ∈ C (W ) | ∃!x ∈ W,π(x) = 1}, which we call the class of drastic possibility
distributions.

Obviously the following inclusions hold:

D(W ) ⊆ C (W ) ⊆ N (W ) ⊆P(W )+.

We are now ready to formulate three refinements of the notion of pessimistic coherence each
arising from the three kinds of restriction imposed on the classes of reliability assignments or
possibility distributions.

Definition 4.2 (Refined pessimistic coherence). Let {e1, . . . , ek} be events, and let β : ei 7→ βi be
a pessimistically coherent book. Then β is said to be N - (resp. C-, D-) pessimistically coherent if
there exist an evaluating triple E = (Ag,w, η) with η ∈ ΛN (Ag) (resp. η ∈ ΛC(Ag), η ∈ ΛD(Ag))
such that

∑n
i=1 σi(βi −NE(ei)) ≥ 0.
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For the sake of a simpler notation, in the remainder of this section we will rely heavily on Lemma
3.2 and Lemma 4.1 which allow us to identify evaluating triples with possibility distributions.

Let S (W ) be a Borel subset of P(W )+. Note that N (W ),C (W ), and D(W ) are Borel
subsets of P(W )+ since they are compact subsets of [0, 1]W . Then we will denote by BelS any
belief function on [0, 1]W

BelS (·) =

∫
[0,1]W

ρ(·) dµS (16)

whose state assignment has an integral representation given by a µS : B([0, 1]W ) → [0, 1] such
that

spt(µS ) = S (W ).

Hence µS (J) = 0 for all J ∈ B([0, 1]W ) such that J ∩S (W ) = ∅.

Lemma 4.3. Let e1, . . . , ek be events, β : ei 7→ βi a book and let S ∈ {N ,C ,D}. Then β is
S -pessimistic coherent iff there is a BelS extending β.

Proof. See Appendix B.

Remark 4.4. Suppose the events e1, . . . , ek in the previous Lemma 4.3 are functions from a finite
set W into [0, 1]∩Q, the rational unit interval. In particular, for each ei, let di be the least common
divisor of all the denominators of ei(x) (for x ∈ W ), and let m be the least common divisor of
d1, . . . , dk. Then, the ei’s can be regarded, without loss of generality, as functions from W into the
finite MV-chain having domain Sm = {0, 1/m, . . . , (m− 1)/m, 1}. In this case, the set P(W )+ of
all non-zero possibility distributions π : W → Sm is finite, and hence so is each S (W ). Therefore,
the belief function BelS : SWm → [0, 1] can be written as follows: for all f ∈ SWm ,

BelS (f) =
∑
π∈SW

m

ρf (π) · µS ({π}).14

Therefore, since µS ({π}) = 0 if π 6∈ S (W ), it is reasonable to think at S (W ) as the set to which
the focal elements of BelS belong. Indeed, recalling Definition 2.8, it is easy to see that, in this
particular case, S (W ) ⊇ spt(µS ). Obviously, the condition of being in S (W ) is necessary but
not sufficient for π to be a focal element. In fact, it does not hold in general that µS ({π}) > 0 iff
π ∈ S (W ).

Theorem 4.5. Let e1, . . . , ek be events and let β : ei 7→ βi be a book. Then:

1. β is N -pessimistically coherent iff there exists a normalised belief function Bel : [0, 1]W →
[0, 1] which extends β.

2. β is C -pessimistically coherent iff there exists a crisp-focal belief function Bel : [0, 1]W → [0, 1]
which extends β.

3. β is D-pessimistically coherent iff there exists a state s : [0, 1]W → [0, 1] which extends β.

Proof. For any S ∈ {N ,C ,D}, from Lemma 4.3 β is S -pessimistic coherent iff the belief function
BelS (·) defined as in (16) extends β.

We now consider each case in turn:

14We invite the reader to check [14, Remark 4.10] for further details.
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1. Assume that S = N . Then, ρN
0

: P(W )+ → [0, 1] maps each π ∈P(W )+ into 0 if π 6∈ N (W ),
and every π ∈ N (W ) in

inf{π(w)⇒ 0 | w ∈W} = inf{¬π(w) | w ∈W}.

Since π ∈ N (W ) iff there is an w ∈ W such that π(w) = 1, ρN
0

is the zero constant function and

hence BelN (0) = s(ρN
0

) = 0. Hence BelN is normalised.

2. Assume S = C . Then, similarly to the above case, for every f ∈ [0, 1]W , ρC
a maps each

π ∈P(W ) into 0 if π 6∈ C (W ) and if π ∈ C (W ) into,

ρC
f (π) = inf{π(w)⇒ f(w) | w ∈W}

= inf{f(w) | π(w) = 1}
= inf{f(w) | w ∈ π}
= ρ̂f (π).

Then the claim follows from Definition 2.4.

3. If S = D then, since for every π ∈ D(W ) there exists exactly one w0 ∈W for which π(w0) = 1
and π(w) = 0 for all w 6= w0, we have:

ρD
f (π) = inf{π(w)⇒ f(w) | w ∈W} = f(w0).

Then, for all f ∈ [0, 1]W , identifying possibility distributions from D(W ) and elements from W ,
we have that ρD

f (·) = f(·) and hence BelD(f) = s(ρD
f ) = s(f).

As a direct consequence of the above Theorem 4.5 we obtain an alternative semantics for
Jaffray’s coherence under partially resolving uncertainty we discussed in Section 2.1.

Corollary 4.6. Let e1, . . . , ek be two-valued events and let β : ei 7→ βi be a book. Then β is
C (W )-coherent iff β is coherent under partially resolving uncertainty.

Proof. From Theorem 1.1, we just need to show that β is C -pessimistically coherent iff there exists
a classical belief function Bel : 2W → [0, 1] which extends β. From the above Theorem 4.5, β
is C -pessimistic coherent iff the exists a crisp-focal belief function Bel′ : [0, 1]W → [0, 1] which
extends β. Furthermore, since the events e1, . . . , ek are classical, then the map Bel : 2W → [0, 1]
obtained by restricting Bel′ to the Boolean skeleton 2W of [0, 1]W is a classical belief function
which extends β. Hence the claim is settled.

Finally let us remark that, although in this section we have focused on refinements of the
notion of pessimistic coherence the associated classes of belief functions they characterise, we could
formulate analogous refinements for the notion optimistic coherence and get their corresponding
classes of plausibility functions. However, the strong duality between the notions of pessimistic
and optimistic coherence on the one hand, and between belief and plausibility functions on the
other hand, would turn this into a rather tedious and uninformative exercise.
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5. Conclusions

We have put forward a rather general betting method which gives an interpretation and a notion
of coherence á la de Finetti for a number of measures of uncertainty which are more expressive than
subjective probability. In particular we have focussed on the many-valued extension of Dempster-
Shafer belief functions and on the theory of states. In addition, suitable particularisations of the
same method – essentially motivated by making various assumptions on the information provided
by informative agents – led to characterising interesting subclasses of belief functions as well. It
is therefore natural to ask whether our betting method is general enough to characterise other
well-known measures of uncertainty, or more ambitiously, all interesting such measures.

Our initial investigation of this grand question suggests that possibility (and necessity) mesures,
as well as imprecise probabilities, do not yield similar results. However further research is needed
to understand whether such an ambitious result can be attained at all, or –equally interestingly–
why such measures cannot be seen as arising from our betting method.

Possibility distributions, and possibility and necessity measures, can be further used to define
a notion of epistemic indeterminacy for the events involved in the betting game. Indeed, given a
possibility distribution π with an associated possibility measure Π and necessity measure N , we
can define, for every event ei, its degree of indeterminacy as

Iπ(ei) = Ππ(ei)−Nπ(ei).

Hence we say that an event ei is undetermined if Iπ(ei) = 1 (i.e. Ππ(ei) = 1 and Nπ(ei) = 0),
while ei is determined, whenever Iπ(ei) = 0 (i.e. Ππ(ei) = Nπ(ei)). Clearly the event ei is partially
undetermined, whenever 0 < Iπ(ei) < 1. Then we can construct a betting game on many-valued
events in which Bookmaker is forced to call off bets on those events ei for which Iπ(ei) = 0 whilst
paying to Gambler, on each other ej , a monetary amount weighted by Iπ(ej). In other words,
a betting game in which, given a book β : ei 7→ β(ei) ∈ [0, 1] and a possibility distribution
π ∈P(W )+, the total balance for B is calculated through

k∑
i=1

(1− Iπ(ei)) · σi · (β(ei)−Nπ(ei)).

This clearly results in a conditional game similar to the one presented in [23] which however
calculates the degree of indeterminacy in a different way. The investigation of this approach to
conditional indeterminacy will have to be postponed for future work.
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Appendix A:  Lukasiewicz logic and MV-algebras

Infinitely-valued  Lukasiewicz logic is one of the most well known and studied fuzzy logics, whose
algebraic semantics is provided by the class of the so-called MV-algebras [3, 4, 26]. For present
purposes, by many-valued events we refer to elements of particular MV-algebras of fuzzy sets.
This Appendix collects some basic facts about MV-algebras and the generalisation of the notion
of (finitely additive) probabilities to the MV-algebraic realm.

An MV-algebra is a structure M = (M,⊕,¬, 0) of type (2, 1, 0) satisfying the following equa-
tions:

(MV1) x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
(MV2) x⊕ y = y ⊕ x,

(MV3) x⊕ 0 = x,

(MV4) ¬¬x = x,

(MV5) x⊕ ¬0 = ¬0,

(MV6) ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x.

Further (definable) operations can be defined from ⊕,¬ and 0 In particular: x ⇒ y = ¬x ⊕ y,
x � y = ¬(¬x ⊕ ¬y); x ∨ y = ¬(¬x ⊕ y) ⊕ y; x ∧ y = ¬(¬x ∨ ¬y); 1 = ¬0. In any MV-algebra
M , a partial order is definable by the following stipulation: for all x, y ∈ M , x ≤ y if and only if
x⇒ y = 1.

Let M be an MV-algebra. Then a non-empty subset f of M is said to be a filter of M iff: (i)
1 ∈ f, (ii) if x, y ∈ f, then x � y ∈ f, and (iii) if x ∈ f and y ≥ x, then y ∈ f. A filter f of an
MV-algebra M is said to be proper, if f 6= M . A filter m is said to be a maximal filter (or an
ultrafilter) whenever for any proper filter f such that f ⊇ m, either f = M , or f = m. The set of
all ultrafilters of an MV-algebra M will be henceforth denoted by Max(M), or, when there is no
danger of confusion, simply by Max. For every MV-algebra M , the set Max(M) is non-empty
and it can be endowed with a compact Hausdorff topology, the so-called spectral topology: for an
arbitrary filter f of M , any set of the form Of = {m ∈Max(M) : m 6⊇ f} is open in this topology.

The intersection of all the maximal filters of an MV-algebra M is called the radical of M and
it is usually written Rad(M). An MV-algebra M is semisimple whenever Rad(M) = {1}. It is
well-known (see [4] for instance) that the congruences lattice and the filters lattice of any MV-
algebra M are mutually isomorphic, via the isomorphism which associates to every congruence15

θ the filter fθ = {x ∈M | (x, 1) ∈ θ}.

Example 5.1. The following are four relevant examples of MV-algebras:

15A congruence θ in a MV-algebra M is an equivalence relation on M respecting the operations, i.e. if (x, y) ∈ θ
then (¬x,¬y) ∈ θ, and if (x, y), (x′, y′) ∈ θ then (x⊕ x′, y ⊕ y′) ∈ θ.
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(1) Every Boolean algebra is an MV-algebra, and moreover for every MV-algebra M , the set
B(M) = {x ∈M : x⊕x = x} of its idempotent elements is the domain of the largest Boolean
subalgebra of M . The algebra having B(M) as universe is usually called the Boolean skeleton
of M .

(2) Define on the real unit interval [0, 1] the operations ⊕ and ¬ as follows: for all x, y ∈ [0, 1],

x⊕ y = min{1, x+ y}, and ¬x = 1− x.

Then the structure [0, 1]MV = ([0, 1],⊕,¬, 0) is an MV-algebra. The MV-algebra [0, 1]MV

is generic for the variety of MV-algebras (i.e. it generates the whole variety) and is usually
called the standard MV-algebra. In equivalent terms,  Lukasiewicz logic is complete with
respect to the semantics defined by the standard MV-algebra.

(3) Fix a k ∈ N, and let F (k) be the set of all the McNaughton functions (cf. [4]) from the
hypercube [0, 1]k into [0, 1]. In other words, F (k) is the set of all those functions f : [0, 1]k →
[0, 1] which are continuous, piecewise linear and such that each piece has integer coefficients.
The following pointwise operations defined on F (k),

(f ⊕ g)(x) = min{1, f(x) + g(x)}, and (¬f)(x) = 1− f(x),

make the structure F(k) = (F (k),⊕,¬, 0) into an MV-algebra, where 0 clearly denotes the
function constantly equal to 0. Actually, F(k) is the free MV-algebra over k generators.

(4) Let W be a non-empty set, and let [0, 1]W the set of all functions from W into [0, 1], endowed
with operations defined by the pointwise application of those in [0, 1]MV . The structure
[0, 1]W is clearly MV-algebra. Every MV-subalgebra of [0, 1]W is called an MV-clan (cf.
[2, 27]).

It is worth noticing that in [0, 1]MV , the standard interpretation of the lattice operations of ∧
and ∨, is respectively in terms of min and max. As a consequence of this observation we will freely
alternate between the notations ∧ and min on the one hand, and ∨ and max on the other hand.

A semisimple MV-algebra [0, 1]W is said to be separating provided that for each w1 6= w2 ∈W ,
there exists a f ∈ [0, 1]W such that f(w1) 6= f(w2). The following holds.

Theorem 5.2 ([4]). Let W be a compact Hausdorff space and M be a separating MV-subalgebra
of the algebra C(W ) of continuous functions from W to [0, 1]. Then there exists a one-one corre-
spondence between the points of W and the class H(M, [0, 1]MV ) of homomorphisms of M in the
standard MV-algebra [0, 1]MV .

Appendix B: Proofs

Proof of Theorem 3.7

Proof. 1. The book β is pessimistically coherent iff for every σ1, . . . , σk ∈ R there exists E =
(Ag, η, w) such that

∑k
i=1 σi(βi − NE(ei)) ≥ 0. By Lemma 3.2, there is a possibility distribution

π : W → [0, 1] such that NE(·) = Nπ(·) over {e1, . . . , ek}. Now, by Proposition 2.5 (1), NE(·) =
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ρ(·)(π) over {e1, . . . , ek}, and hence, β is pessimistically coherent iff for every σ1, . . . , σk ∈ R there

exists a π ∈ [0, 1]W such that
∑k

i=1 σi(βi − ρei(π)) ≥ 0. By Theorem 5.2 (see Appendix A) and

since R(W ) is an MV-subalgebra of [0, 1][0,1]
W

of continuous functions,
∑k

i=1 σi(βi − ρei(π)) ≥ 0
iff there exists an h ∈ H(R(W ), [0, 1]MV ) such that

k∑
i=1

σi(βi − h(ρei)) ≥ 0,

Finally, by Lemma 3.6, the latter holds iff β extends to a belief function Bel : [0, 1]W → [0, 1].

2. By an analogous argument and [15, Definition 3.2], β is optimistically coherent iff there exists a
state s : R(W )→ [0, 1] such that, for all i = 1, . . . , k, βi = s(1− ρ¬ei) iff there exists a plausibility
function Pl : [0, 1]W → [0, 1] extending β.

3. Assume β to be coherent in the average. Then, following the lines of the previous proofs, we
can find a state s : [0, 1]P(W )+ → [0, 1] such that, for all i = 1, . . . , k, βi = s(M (·)(ei)). Let us
call γs : [0, 1]W → [0, 1] the map such that, for all f ∈ [0, 1]W , γs(f) = s(M(·)(f)). Then it is

left to show that γs is a state. Lemma 3.2 (3) shows that M(·)(1) = 1 and, if f, g ∈ [0, 1]W and
f � g = 0, then, for every π ∈ P(W )+, Mπ(f ⊕ g) = Mπ(f) + Mπ(g) = Mπ(f) ⊕Mπ(g). Then,
M(·)(f ⊕ g) = M(·)(f) +M(·)(g). Hence, we also have that M(·)(f)�M(·)(g) = 0. Therefore,

γs(f ⊕ g) = s(M(·)(f⊕)g)

= s(M(·)(f)⊕M(·)(g))

= s(M(·)(f)) + s(M(·)(g))

= γs(f) + γs(g)

and hence γs is a state and β is state-coherent via Theorem 2.3.
Conversely, assume β to be state-coherent. Then there exists an state s on [0, 1]X such that

s(ei) = βi for each i = 1, . . . , k. Since we assume W finite, let p be its corresponding probability
distribution on W , i.e. such that s(f) =

∑
w∈W f(w)·p(w). Now let us consider E putting Ag = W ,

η = p and wa = a for each a ∈ Ag. It is readily to see that βi = s(ei) =
∑

w∈W ei(w) · p(w) =∑
a∈Ag wa(ei) · η(a) = ME(ei). Therefore we have that

∑n
i=1 σi(βi −ME(ei)) = 0, and the book is

coherent in the average.

Proof of Lemma 4.3

Proof. The book β is S -pessimistic coherent iff, by definition, for all σ1, . . . , σk ∈ R there exists
an evaluating triple (Ag, η, w) such that

∑k
i=1 σi(βi − ρei(π)) ≥ 0. By Lemmas 4.1, there is a

π ∈ S (W ) such that
∑k

i=1 σi(βi − ρei(π)) ≥ 0. Let us define, for every f ∈ [0, 1]W , the map
ρS
f : P(W )+ → [0, 1] in the following way: for all π ∈P(W )+,

ρS
f (π) =

{
ρf (π) if π ∈ S (W )
0 otherwise.

Then β is S -pessimistic coherent iff

k∑
i=1

σi(βi − ρS
ei (π)) ≥ 0. (17)

Let RS be the MV-algebra [0, 1]S (W ). The following is immediate to check.
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Claim 1. For all π ∈ S (W ), the map hπ : f ∈ RS 7→ f(π) is an MV-homomorphism of RS into
[0, 1]MV .

Proof. (of Claim 1) Clearly the map hπ mapsRS into [0, 1]MV . Moreover, hπ is an MV-homomorphism.
In fact, if f, g ∈ RS , then hπ(f⊕g) = (f⊕g)(π) = f(π)⊕g(π) = hπ(f)⊕hπ(g). Similarly hπ(0) = 0
and hπ(¬f) = 1− hπ(f).

Claim 1 and equation (17) show that β is S -pessimistic coherent iff for all σ1, . . . , σk ∈ R,
there is a homomorphism h : RS → [0, 1]MV such that

k∑
i=1

σi(βi − h(ρS
ei )) ≥ 0,

iff, from Theorem 2.3, there exists a state ŝ : RS → [0, 1] extending β. Notice that, if we denote by
µ̂ : B(S (W ))→ [0, 1] that unique regular Borel probability measure which characterizes ŝ through
Theorem 2.1, then µ̂ uniquely extends to a µS : B([0, 1]W ) → [0, 1] such that spt(µS ) = S (W )
setting, for all J ∈ B([0, 1]W ),

µS (J) = µ̂(J ∩S (W )).

Notice that, since J,S (W ) ∈ B([0, 1]W ), then J ∩ S (W ) ∈ B(S (W )) and hence µS is well
defined. Moreover, for all i = 1, . . . , k,

βi = ŝ(ρS
ei ) =

∫
S (W )

ρS
ei dµ̂ =

∫
[0,1]W

ρS
ei dµS =

∫
[0,1]W

ρei dµS = BelS (ei).

Hence our claim is settled.
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