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ABSTRACT
In this two-part essay, we distinguish several senses in which general relativity has 
been regarded as “locally special relativistic.” Here, in Part 1, we focus on senses 
in which a relativistic spacetime has been said to be “locally (approximately) 
Minkowskian.” After critiquing several proposals in the literature, we present a 
result capturing a substantive sense in which every relativistic spacetime is locally 
approximately Minkowskian. We then show that Minkowski spacetime is not 
distinguished in this result: every relativistic spacetime is locally approximately 
every other spacetime in the same sense. In Part 2, we will consider “locally 
specially relativistic” matter theories.
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The general theory of relativity rests entirely on the premise that each 
infinitesimal line element of the spacetime manifold physically behaves like 
the four-dimensional manifold of the special theory of relativity. Thus, there are 
infinitesimal coordinate systems (inertial systems) with the help of which the 
ds are to be defined exactly like in the special theory of relativity. The general 
theory of relativity stands or falls with this interpretation of ds. It depends on 
the latter just as much as Gauss’ infinitesimal geometry of surfaces depends on 
the premise that an infinitesimal surface element behaves metrically like a flat 
surface element …

Albert Einstein to Paul Painlevé, December 7, 1921

As translated in Lehmkuhl (2021)

(Einstein 2009, Doc. 314)

1 INTRODUCTION
The literature on the foundations of general relativity is replete with claims that, locally, 
general relativity is like special relativity. Such claims can take different forms. Sometimes 
it is said that, according to general relativity, spacetime is “locally (approximately) flat” or 
“locally Minkowskian,” where Minkowski spacetime is the flat, gravitation-free setting of 
special relativity.1 In other cases—not necessarily independent of the former ones—the 
key idea is that matter in general relativity behaves locally “as if” it is in the flat-spacetime 
setting of special relativity.

This locally flat, or locally special relativistic, character of general relativity has been 
taken to have great significance. For some authors, it is a crucial heuristic, motivating 
why one might adopt or postulate the structure and laws of general relativity as a theory 
of gravitation in the first place (Ehlers 1973; Schild 1967). In this respect it functions 
similarly to “correspondence principles” in the formulation of the old quantum theory 
(Bokulich and Bokulich 2020). For others, claims about local flatness are presented as 
deductive consequences of general relativity that establish the conditions under which 
certain general relativistic descriptions of phenomena may be locally well-approximated by 
special relativistic descriptions (Born 1962; Ehlers 1973; Reichenbach 1958; Torretti 1996); 
understood in this way, local flatness, if and when it obtains, may provide a sense in which 
general relativity reduces to, or explains the successful application of, special relativity 
(Butterfield 2011; Nickles 1973). And for still others, the locally special relativistic character 
of the theory is invoked to support a privileged role for special relativity in interpreting 
general relativity (Brown 1997; 2005; Ehlers 1973; Knox 2013; Misner et al. 1973). For 
many commentators, local flatness is intimately connected with other principles that they 
take to be foundational to or important in general relativity, such as some version of the 
equivalence principle (Ehlers 1973; Knox 2013; Brown 2005; Read et al. 2018; Schild 1967).

But despite the ubiquity of these claims, there is little clarity or agreement within the 
literature concerning what, precisely, such assertions are supposed to mean. Our goal here 

1 In what follows, a relativistic spacetime is a pair (M, gab), where M is a smooth, four-
dimensional manifold that we assume to be connected, Hausdorff, and paracompact; and gab is 
a smooth, Lorentz-signature metric on M. Relativistic spacetimes are the models, or “solutions,” 
of general relativity; they represent possible universes, according to the theory. For more on the 
conventions we adopt here, including the abstract index notation, see Wald (1984) or Malament 
(2012). (Observe, though, that these texts differ in the sign of the metric signature; that 
choice will not matter for our purposes.) In this context, Minkowski spacetime is a relativistic 
spacetime where M is diffeomorphic to ℝ4 and the metric gab is flat and geodesically complete.
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and in the sequel to this paper is to offer a new perspective on the sense, or senses, in 
which general relativity is locally like special relativity, in the service both of clarifying 
the sense in which it is true that spacetime is (approximately) locally flat and in assessing 
what significance that has for the local dynamics of matter.2 The present paper focuses 
on geometrical aspects of the question, with an emphasis on local approximate flatness; 
the sequel, which will make use of the results here, will consider several senses in which 
matter dynamics may be locally special relativistic.

We will begin, in section 2, by presenting several possible interpretations—or perhaps 
better, explications—of the assertion “spacetime is locally (approximately) flat,” all inspired 
by attempts in the literature to state the claim precisely. As we will argue, each of these is 
inadequate—either because it is false, misleading, or does not perspicuously capture the 
relevant facts. Still, we claim there is a precise sense in which every relativistic spacetime 
is locally approximately flat. In section 3, we will introduce that sense, which is common 
folklore in mathematical relativity but rarely, to our knowledge, stated precisely or proved, 
at least in its full generality.3 This will be expressed by Theorem 1. We will discuss some 
advantages of this approach, which include that it clarifies the sense in which “local 
flatness structure” fails to be unique.

In section 4, we will argue that once it is clear what local approximate flatness amounts 
to, there are reasons to be cautious about attributing too much significance to it. In 
particular, we will argue, there is nothing special about flatness in Theorem 1. In fact, every 
relativistic spacetime locally approximates every other relativistic spacetime in the same 
sense that Minkowski spacetime does. In other words, while it is true that spacetime is 
locally approximately Minkowskian, so, too, is it locally approximately (anti-)de Sitterian, 
Schwarzschildian, Kerrist, Gödelian, and so on. This will be our Theorem 5. The upshot is 
that local approximate flatness, as a feature of pseudo-Riemannian manifolds, might be 
better characterized as a universal approximation property: to first order (in derivatives), all 
metrics of a given signature locally approximate one another. It is only at second order—
that is, the order of curvature—that these metrics fail to approximate one another, even 
at a point. This fact is arguably deep, and closely connected to the fact that curvature 
can be represented as a tensor. But in our view, it is not naturally expressed as the claim 
that “spacetime is (approximately) locally flat”—even though it happens to imply that 
spacetime is locally approximately flat (among other things).

2 Given that the project here is to make sense of claims about local flatness in general 
relativity, and given that local flatness is implicated in some formulations of the equivalence 
principle, one might take the present project to be part of a long tradition of work attempting 
to precisely recover what various authors have meant by the equivalence principle or some 
other alleged principle, such as “substantive general covariance” (for which see, e.g., Lehmkuhl 
2021; Norton 1985, 1993; Pooley 2010). But we see our project differently. In particular, we do 
not seek to trace the historical development of claims about local flatness, nor to adjudicate 
historical debates from a contemporary perspective. Instead, we seek to isolate a sense in which 
spacetime is locally approximately flat in general relativity and to discuss its significance. Our 
critical remarks on other proposed explications of the claim are offered to clear the ground; we 
take the arguments given here to be of interest irrespective of whether the claims we defend 
align with those of others in the literature. We also see this project as a continuation of the 
research programs sketched in, for instance, Weatherall (2021), to isolate precise mathematical 
statements that might serve as sufficient conditions for theorems concerning when matter 
theories are adapted to a certain geometry, or, relatedly, the program begun in Fletcher (2021, 
2020) to better explicate the relationship between general and special relativity.

3 There are partial exceptions. For instance, Ehlers (1973, pp. 20, pp. 44) calls versions 
of this Theorem a “well known theorem of differential geometry,” while Poisson (2004) and 
Poisson et al. (2011) call a somewhat weaker result the “local flatness theorem” and prove it. 
But neither treatment is as general as it could be, in ways that may obscure its significance. 
Even so, the result is not original: it is a trivial consequence of work by Ó Raifeartaigh (1957), 
and it is invoked by others such as Geroch and Jang (1975) and Geroch and Weatherall (2018).
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In section 5, we will show how Theorems 1 and 5 offer additional insight into another 
claim closely related to the claim that spacetime is locally approximately Minkowskian, 
which is that relativistic spacetimes admit local approximate Poincaré symmetries 
(Fletcher 2020; Read et al. 2018). Finally, we will offer some brief concluding remarks in 
section 6. In Part 2, we will turn to the relationship between local approximate flatness and 
the behavior of matter.

2. WHAT LOCAL APPROXIMATE FLATNESS IS 
NOT
We begin by clearing the air. What should one not mean by the assertion “spacetime is 
locally flat” in general relativity?4

As a first pass, recall that a relativistic spacetime (M, gab) is flat just when its Riemann 
tensor, Ra

bcd, vanishes everywhere. Recall further that (M, gab) is locally isometric to a 
spacetime (M′, g′ab) when, for each point p ∈ M, there exists a neighborhood Up of p and 
a smooth map ψp : Up → M′ such that (ψp)*(g′ab) = gab at each point of Up.

5 This condition 
captures a sense in which “locally” the spacetime (M, gab) is equivalent to, or has the same 
structure as, (some region or other of) (M′, g′ab), even though globally the two spacetimes 
could be completely different.

These definitions suggest a natural, literal interpretation of the claim that (any) spacetime 
is locally flat or locally Minkowskian.

Literal Interpretation: Every relativistic spacetime is locally isometric to a 
flat spacetime (e.g., a region of Minkowski spacetime).

Unfortunately, interpreted in this way, the claim is simply false: not every relativistic 
spacetime is locally flat in this sense. And it would not help to restrict attention only 
to those spacetimes that are locally flat in this sense, such as by claiming that it is only 
those spacetimes that are physically reasonable (cf. Manchak 2011). Indeed: a relativistic 
spacetime is locally isometric to flat spacetime if and only if it is flat simpliciter, because 
Riemann curvature is preserved under isometry. So if a spacetime is locally isometric to 
a flat spacetime, its Riemann curvature must vanish at every spacetime point. Einstein’s 
equation, meanwhile, implies that curvature is generally non-zero in the presence 
of matter.

Is this first interpretation ever endorsed in the literature? Perhaps not in such an explicit, 
and obviously unacceptable, form. But it is arguably a mere rephrasing of another 
interpretation that has been widely endorsed. On this interpretation, spacetime is locally 
flat in the sense that one can always “transform away” arbitrary gravitational effects by 

4 An anonymous reviewer questions our use of the word “interpretation” throughout this 
section. Here is how we see what we are doing. The claim “spacetime is locally (approximately) 
flat” appears to be ambiguous, in the sense that different authors interpret it differently. Here 
we identify several such interpretations and offer precise statements (“explications”) intended 
to capture the meaning of the claim under each interpretation.

Note, too: Occasionally the term “locally flat” is used in geometric topology (e.g., Brown 1962) 
to denote a particularly “nice” or “neat” embedding of one topological manifold into another. 
Clearly that usage is not applicable to the case at hand.

5 Note that in the literature, “locally isometric” denotes several distinct relations. For 
example, in contrast with this asymmetric relation, one can also define its symmetrization: 
spacetimes (M, gab) and (M′, g′ab) are (mutually) locally isometric when each is locally isometric 
to the other.
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choosing appropriate coordinates, much as one can fictitious forces. Such interpretations 
identify gravitational effects not directly with curvature, but with the coordinate-
dependent Christoffel symbols of the metric connection. This claim was what many early 
commentators, such as Pauli (1921, 705–6), identified with the equivalence principle.6

Coordinate Chart Interpretation, first pass: In any sufficiently small region 
of any relativistic spacetime, coordinates may be chosen relative to which 
the Christoffel symbols of the Levi-Civita (i.e., unique torsion-free metric-
compatible) connection vanish.

But once again, as has been observed by many others (e.g., Eddington 1924; Friedman 
1983; Norton 1985; Synge 1960), this claim is false in general; and it is true of a spacetime 
precisely when that spacetime is flat.7 Here the basic facts are that the Christoffel symbols 
are constant in an open neighborhood if and only if the Riemann tensor vanishes in that 
neighborhood, and that the Riemann tensor is a tensor—and thus it vanishes in any 
coordinate system if and only if it is the zero tensor.

The problem with these first two readings is that they insist that spacetime is flat “in a 
neighborhood” of any point, which can hold only if it is flat everywhere. But sometimes, 
authors who appear to endorse such readings explain that the neighborhoods in question 
must be “infinitesimal” (see, e.g., Reichenbach 1958, 226). This suggests that perhaps local 
flatness should not be associated with an open set of spacetime points at all, but rather 
with the points themselves. One possible reading of this idea would be that “local flatness” 
claims concern the structure of the tangent space at each point, since this space can be 
thought of as a representation of the linearized, or first-order, structure of an infinitesimal 
neighborhood of the point. Brown (1997, 71) makes this link explicitly, writing that 
“relative to local inertial frames (defined in the infinitesimal neighborhood of any event) 
all the laws of physics take on their special relativistic form. Put another way, the tangent 
space structure in GR is everywhere ‘Lorentzian.’”8

These considerations lead to our third interpretation:

Tangent Space Interpretation: The tangent space at a point of spacetime is, 
or is equivalent to, Minkowski spacetime.

At first blush, this proposal has something going for it. The tangent space at any point 
of a spacetime manifold is a four-dimensional vector space, which means, in particular, 

6 See Norton (1985) or Lehmkuhl (2021) for a discussion of this point, and for a contrast 
with Einstein’s own views. In a word, Einstein only claimed equivalence for a homogeneous 
gravitational field, that is, constant Christoffel symbols (Janssen 2012). One can show that 
the Christoffel symbols are constant in a neighborhood if and only if the metric is flat there, 
so Einstein’s view is not an example of the following first pass of the Coordinate Chart 
Interpretation.

7 The fact that this claim was refuted by Eddington in the 1920s did little to stop others from 
repeating it from time to time. Even Misner et al. (1973, 285) seem to endorse this claim, for 
instance when they assert that “one can always construct local inertial frames at a given event 

0 ; and as viewed in such frames, free particles must move along straight lines, at least locally—
which means  


  must vanish, at least locally.” Here, the  


  are the Christoffel symbols for the 

coordinate system generated by the mentioned frame. Similarly, some pages later they write: “In 
every local region there exists a local frame (‘freely falling frame’) in which all geodesics appear 
straight (all   0)

  ” (Misner et al. 1973, 297). Now, Misner, Thorne, and Wheeler cannot truly 
mean to endorse this claim—and elsewhere in their book, they are more careful. Nonetheless, 
there is some value in emphasizing that this is false, given how frequently it has been repeated!

8 See also Friedman (1983, 183–4), who similarly draws a connection between Minkowski 
spacetime and the tangent space at each point of a relativistic spacetime.
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that it carries the structure of the smooth manifold ℝ4, just as Minkowski spacetime does. 
Moreover, the spacetime metric induces a Lorentz-signature metric on the tangent space, 
and so there is a sense in which the tangent space metrical structure is also arguably the 
same as that of Minkowski spacetime.

Nonetheless, there are important differences between the tangent space of a relativistic 
spacetime and Minkowski spacetime. In the first place, the tangent space is a vector 
space, while Minkowski spacetime has the structure of an affine space. The difference is 
significant, as the lack of a preferred point in the latter—the zero element in the former—
precludes the classification of individual points as being spacelike, timelike, or null (as 
opposed to classifying pairs of points as “spacelike [etc.] related”). The difference also bears 
on the physical interpretations of the spaces. The points of Minkowski spacetime represents 
spatiotemporal events, while a tangent space represents instantaneous directions of curves 
at one of those events.

An advocate for this interpretation might reply that “local flatness” means that 
infinitesimal neighborhoods of each point—that is, the tangent space—should be thought 
of as equivalent to Minkowski spacetime with a distinguished point, since, after all, we 
are representing a neighborhood of a particular point. Alternatively, one might argue that 
vector space structure is more structure than affine space structure, and so if any point can 
be associated with a vector space, then ipso facto it can be associated with an affine space. 
Fine. But even if we set aside the structural differences between Minkowski spacetime and 
the tangent space at a point of a relativistic spacetime, if the tangent space interpretation is 
all that is meant by “local flatness,” it is strikingly weak. This is because Riemann curvature 
is a tensor field, and so it determines a tensor acting on the tangent space at each point. 
Thus, even from the perspective of the tangent space at a point, one can “see” the curvature 
of spacetime near that point by considering the curvature tensor there.

More generally, curvature is a measure of the failure of parallel transport of vectors and 
tensors around (infinitesimally small!) closed curves to return a vector or tensor to its 
original value; in that sense, it is a characterization of the relationship between the tangent 
spaces at nearby points, as determined relative to some connection. Observing that the 
tangent space at each point has the structure of a vector space with a Minkowskian inner 
product, though, says nothing at all about parallel transport in small neighborhoods of the 
point. And so the claim that the tangent space is “flat” loses any relation to the meaning 
of curvature on a manifold in the first place. At best, on this interpretation the claim 
that spacetime is locally flat amounts to the observation that points of spacetime can be 
associated with other spaces that are, in some sense, flat—without capturing any sense in 
which that flatness reflects or approximates the local curvature structure of the manifold.

Torretti (1996, 240) proposes a different take on the tangent space interpretation. He writes, 
“The Minkowski inner product on each tangent space induces—through the exponential 
mapping—a local approximate Minkowski geometry on a small neighborhood of each 
worldpoint.” Fix a spacetime (M, gab). The exponential map, at a point p ∈ M, is a map 
from a neighborhood Op of the 0 vector in the tangent space TpM to some open set Up ⊆ M 
containing p; the map is defined relative to a derivative operator on M by taking each vector 
ξ a ∈ Op to the point γ(1), where γ is the unique geodesic through p with tangent ξ a at p. 
(Here Op ⊂ TpM is chosen so that the exponential map is injective, which is always possible.) 
The exponential map generates a diffeomorphism between Op (conceived as a manifold) 
and Up, and it generates coordinates on that latter set with certain nice properties. In 
particular: they are normal coordinates at p, which means that the Christoffel symbols of 
the Levi-Civita derivative operator in those coordinates vanish at p, or in other words, the 
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Levi-Civita derivative operator and the coordinate derivative operator agree there. They are 
also Lorentz coordinates, which means that the metric in those coordinates has the same 
coordinate representation at p as the Minkowski metric in standard coordinates—that is, 
as the matrix diag (1, –1, –1, –1). Thus, there is a certain sense in which these coordinates 
are adapted to the metric and derivative operator at p—and since they are coordinates, 
and coordinate derivative operators are always flat, they can be thought of as generating a 
“local Minkowskian” structure on Up that agrees with the background spacetime structure 
at p and approximates it elsewhere on Up.

The fact that this local Minkowski geometry is only approximate importantly distinguishes 
Torretti’s claims from the literal interpretation discussed above. As Torretti himself 
emphasizes, the existence of normal coordinates generated in this way in no sense implies 
that the spacetime is flat, even at p. As he acknowledges, “The mere fact that the tangent 
space has a Minkowskian … inner product—as it obviously does everywhere, by definition, 
on the manifolds under consideration—says nothing whatsoever about the value of the 
Riemann tensor and the manifold’s departure from flatness at that point” (Torretti 1996, 
314n13).

Torretti’s invocation of Lorentz normal coordinates brings us to another common 
interpretation of the local flatness claim. On this interpretation, it is the existence of certain 
normal coordinates at each point or along certain curves, such as timelike geodesics, that is 
supposed to capture the sense in what spacetime is locally flat.

Coordinate Chart Interpretation, second pass: At any point of any 
relativistic spacetime (or along certain curves), local coordinates may be chosen 
so that, at that point (or along that curve), (a) the components of the metric 
agree with the Minkowski metric in standard coordinates and (b) all Christoffel 
symbols vanish.

This is true. And as we will discuss in the next section, it is very close to our own preferred 
interpretation. But even so, we think this way of stating things obscures what is going on, 
for several reasons.

First, it is not clear what coordinates have to do with the basic claim of local flatness. 
On the one hand, any coordinate system gives rise to a flat derivative operator, and 
coordinates can always be used to define flat metrics. If local flatness is nothing more than 
the observation that there exist coordinates in neighborhoods of any points, then, just as 
with the tangent space interpretation, the present interpretation seems too weak to be of 
interest. In particular, it seems to say nothing about the local curvature at a point or nearby. 
Now, it is true that on this interpretation one invokes special coordinates—viz., Lorentz 
normal ones—but the significance of those coordinates requires further commentary. 
What does the “form” of the metric in some coordinate system tell us about the metric or 
its (covariant) derivatives, all of which are coordinate independent structures? What does 
it tell us about local curvature?

Likewise, what significance should be attributed to the fact that Christoffel symbols can 
be made to vanish at a point or along a curve? After all, given any derivative operator, 
including any flat derivative operator, one can also always find coordinates for which 
Christoffel symbols for that derivative operator do not vanish at any point. So the existence 
of coordinate systems in which Christoffel symbols do (or do not) vanish does not 
obviously reveal any coordinate-independent facts about the derivative operator. (As we 
will see, there are such facts lurking in the background here; our point is that, without 
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further discussion, the interpretation as stated does not seem like a perspicuous way of 
expressing them.)

A second set of issues concerns whether the interpretation is intended as an assertion of the 
existence of coordinates with certain properties (such as being normal), or if it is supposed 
to come with a further claim about the significance of particular coordinate systems—say, 
ones constructed from the exponential map, à la Torretti—in which case, it is not clear just 
which properties are supposed to be the ones that realize the claim about local flatness. 
That is: is the relevant fact supposed to be the existence of normal coordinates (or Lorentz 
normal coordinates)—or special classes of Lorentz normal coordinates generated via 
specific construction procedures? This ambiguity also leads to confusion about whether 
it is Lorentz normal coordinates defined in a neighborhood of a point, ones defined in 
neighborhoods of certain curves, such as timelike geodesics, or perhaps a more general 
class of normal coordinates that are supposed to be the relevant ones. If it is not clear what 
features of these coordinates are supposed to be salient, it is hopeless to try to establish the 
general existence or uniqueness conditions for such coordinates.

To make matters worse, some authors move quickly from the observation (or argument) 
that certain coordinates exist to comments about their physical significance. For instance, 
some authors suggest that local flatness obtains because one can find a class of coordinates 
known as Fermi normal coordinates along timelike geodesics, which are constructed by 
parallel transporting along the geodesic an orthonormal frame whose timelike vector 
is tangent to the geodesic, and then extending it to a neighborhood of the curve by a 
construction analogous to that described for the exponential map; then they immediately 
go on to argue that Fermi normal coordinates are analogous to “inertial frames” in special 
relativity.9 The result is that it is unclear whether local flatness is meant to be a claim 
about the existence of certain coordinate systems, which in turn expresses something 
about the local geometry of relativistic spacetimes, or if it is supposed to include a further 
interpretive claim about idealized measurement apparatuses of natural motion, which, of 
course, would go far beyond any facts about curvature, local or otherwise.

Still, as we said above, we think this final interpretation does express something with 
meaningful content about the structure of relativistic spacetimes—something that is 
well-expressed by the claim “spacetime is locally approximately flat.” In the next section, 
we will restate and generalize this interpretation in a way that makes that content more 
perspicuous.

3. IN WHAT SENSE IS SPACETIME LOCALLY 
FLAT?
We have now presented four interpretations of the claim “spacetime is locally flat in 
general relativity.” Two of these were unacceptable because they were simply false claims 
about relativistic spacetimes; the third was unacceptable because it had so little content 
that it seemed it could not do any foundational work at all. The final one, related to the 

9 See, for instance, Schild (1967, 20–23), Friedman (1983, 199–200), or Knox (2013, §2). 
Poisson (2004, 11–12) offers a nice example of the ambiguity: he states a “local flatness 
theorem” that asserts the existence of Lorentz normal coordinates; he then proceeds to indicate 
that the particular coordinates he constructs to prove the theorem indicate something about 
what freely falling observers will “see.” But Lorentz normal coordinates are not unique, and 
so it is unclear whether local flatness is an assertion about the existence of such coordinates 
in the first place, or one about the further interpretive significance of a special class of such 
coordinates, arrived at through Poisson’s construction.
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existence of normal coordinates on certain neighborhoods, does capture a sense in which 
spacetime is locally approximately flat—but we argued that common expressions of this 
interpretation in the literature are unsatisfactory. We will now proceed to rephrase and 
generalize the final interpretation of the previous section.10

We begin by stating and proving a theorem.11

Theorem 1 (Local Flatness). Given any spacetime (M, gab), any embedded curve γ : I → M 
therein, and any point p ∈ γ[I], there exists, on some neighborhood O containing p, a flat 
metric ḡab such that on γ[I] Ç O, (a) gab = ḡab and (b) = , where  and  are the Levi-Civita 
derivative operators associated with gab and ḡab, respectively.

Here an “embedded curve” is a curve whose image is a one-dimensional embedded 
submanifold.

Proof. Given any torsion-free derivative operator ̂ on a smooth manifold M, there exists, 
in sufficiently small neighborhoods of sufficiently small segments of an arbitrary (non-self-
intersecting) curve γ, flat derivative operators that agree with ̂ on the intersection of the 
neighborhood and segment of γ (Iliev 2006, Thm. II.3.2). Let  be the Levi-Civita derivative 
operator compatible with gab. For any point p ∈ γ[I], choose some such flat derivative 
operator  defined on a suitably small neighborhood O meeting γ[I] and agreeing with 
 on γ[I] Ç O. (That γ[I] is embedded implies that O can be chosen so it intersects only 
the desired segment of γ.) Pick, at p, an orthonormal frame {0, ,3}{ }i a

iu   , with 0 au  timelike, 
and extend it, by parallel transport using , to all of O. Define 30 0

=1
= i i

a b a bab i
g u u u u−¯  

on O. Then ḡab is flat by construction and  is its Levi-Civita derivative operator. Since 
= = =c c c

c ab c ab c abgγ g γ g γ∇ ∇ ∇¯ ¯0  on γ[I] Ç O, where γa is tangent to γ, ( ) =c
c ab abγ g g∇ −¯ 0 on 

γ[I] Ç O, i.e., gab – ḡab is constant on γ[I] Ç O (with respect to ). Since ab abgg − =¯ 0 at p, it 
follows that ḡab agrees with gab everywhere on γ[I] Ç O.  

There are several technical remarks to make before proceeding. First, note that the theorem 
does not require γ to be a geodesic or even timelike. Indeed, it can be generalized from 
embedded curves to embedded submanifolds with vanishing intrinsic curvature (Iliev 
2006, Thm. II.5.1, II.5.2; Ó Raifeartaigh 1957). This shows that the interpretation of γ as the 
worldline of an observer is not essential to the result: all that is needed is an intrinsically 
flat embedded submanifold, of which points and embedded curves are always examples. Of 
course, the fact that such metrics exist for general curves specializes to the case of timelike 
geodesics. Second, as we have set things up, the flat metrics exist only along segments of 
the image of a curve; in certain special cases, they can be extended to the entire curve.12 But 
for present purposes, we prefer to emphasize the more general, and also more local, claim, 
since after all it is local approximate flatness that is at issue. And finally, we note that our 
statement assumes embedded curves, and works in neighborhood of points of the image of 

10 As will be clear presently, the relationship between the sense of “local approximate 
flatness” captured by Theorem 1 and that expressed by the second coordinate chart 
interpretation above is very similar to that between “intrinsic” or coordinate-free 
characterizations of geometrical structures and ones that invoke classes of coordinate systems 
adapted to those structures (Wallace 2019). To some extent, any preference between them is a 
matter of taste, and for many purposes, it is very useful to have both characterizations available. 
But as we discuss below, reframing things as we do in this section permits one to capture the 
sense in which local flatness structure, though it always exists, is not unique—something that 
has been unclear in other discussions.

11 We do not claim that this theorem is notably original—it follows trivially from work by 
Ó Raifeartaigh (1957). (See also Iliev 2006.) But we have not seen it stated in this form before, 
nor have we seen it discussed in the context of claims about local flatness in the philosophical 
literature. So we think there is some value in stating and proving it here.

12 Iliev (2006, §II.3.1) has a nice discussion of this point.



10Fletcher and Weatherall 
Philosophy of  Physics 
DOI: 10.31389/pop.6

the curve; one could relax the assumption that the curve is embedded, but then one would 
have to work with neighborhoods (in M) of images of neighborhoods of parameter values 
(in I), which seems less natural to us.

As we have indicated before, there is a certain sense in which Theorem 1 expresses the 
same facts as a (strengthened) version of the second coordinate chart interpretation above. 
In particular, anything that follows from the existence of normal coordinates also follows 
from the existence of the flat derivative operators considered here, and vice versa. This is 
because normal coordinates always give rise to a flat derivative operator that will agree 
with the spacetime Levi-Civita derivative operator wherever Christoffel symbols vanish; 
and parallel transporting the spacetime metric off of the curve using this coordinate 
derivative operator will give rise to a flat metric that agrees with the spacetime metric on 
the curve. Conversely, given a flat metric with the properties described in the theorem, 
one can always find an isometry from the region where the metric is defined to a region 
of Minkowski spacetime, and then use that isometry to pull back standard Minkowski 
coordinates; coordinates constructed in this way will automatically be normal.

Even so, we suggest that the most natural interpretation of the claim that spacetime is 
locally approximately flat is given by Theorem 1. Why? First, we have stated this result 
as a claim about the existence of certain structures on regions of spacetime—namely, 
a flat metric and derivative operator that coincide, along curve segments, with the 
spacetime metric and its derivative operator. Moreover, this flat metric approximates the 
background metric near p, in a sense we can make precise.13 Fix a spacetime (M, gab)  
and any open set U ⊆ M with compact closure.14 Choose any smooth Riemannian metric 
hab on U. Physically, any such metric can be determined by a smooth, orthonormal frame 
field {0, ,3}{ }i a

iu    on U, as 3

=0

i i
a bi

u u  is a smooth Riemmanian metric. (It could instead be 
determined by a coordinate chart on U in an analogous way; which one chooses is not 
essential for what follows.) We may then define, relative to hab, a norm on covariant 
tensors 

1 na af  at a point by:15

1 1

1 1

1/2| | = | | .n n

n n

a ba b
h a a b bf h h f f  

(This norm is the Frobenius norm on the tensors expressed in terms of their components 
relative to the frame field.) Using this family of norms, we can define a family of distance 
functions on tensors as:

max
{0, , }( , ; , ) = sup| ( ) ( ) | ,j

U j k h
U

d f f h k f f   

where ( ) j  abbreviates “act with j derivatives,”  is the Levi-Civita derivative operator 
determined by hab, and ( f – f ′) abbreviates  1 1n na a a af f  . What this distance function 
does is return the greatest distance, relative to hab, between f and f ′ or any of their first 
k derivatives, ranging over all points in U. And the distance between f and f ′ (or their 

13 We adapt the following definitions from Fletcher (2020), who treats the special case of 
approximate local spacetime symmetries, and the interpretation of the structures invoked from 
Fletcher (2018, 20) and Fletcher (2019, §4).

14 Nothing in the definition demands specializing to the case of U being relatively compact, 
but this restriction is most relevant for what follows. Implicit in this choice is understanding 
that for the present investigation, approximation at single spacetime points is insufficient 
but approximation across the entire spacetime is unnecessary. What is important seems 
to be approximation on extended but bounded regions. That is why we examine relatively 
compact regions, similarity across which can be captured with the compact-open topologies on 
spacetimes (Fletcher, 2016).

15 This definition can be extended to arbitrary tensors, but for present purposes only 
covariant ones are of interest, and so we limit attention to those to simplify notation.
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derivatives, respectively) is simply the Euclidean magnitude of the differences in their 
components expressed with respect to the frame field {0, ,3}{ }i a

iu   .

The case of greatest interest here will be when we use distance functions defined in this way 
to measure distances between different Lorentzian metrics on U. Indeed, let gab, ḡab, and O 
be as in the statement of Theorem 1. Then it immediately follows from the smoothness of 
gab and ḡab that for any hab on O and any ϵ > 0, there exists a neighborhood U ⊆ O such that 
dU (g, ḡ; h, 1) < ϵ. Thus we see that not only do the two metrics coincide at p, but they also 
approximate one another, to first order, arbitrarily well in sufficiently small neighborhoods 
of p. Setting things up this way makes clear the sense in which there is a flat spacetime 
structure that approximates an arbitrary metric and derivative operator near a point or 
(arbitrary) curve (as opposed to admitting a representation, such as diag(1, –1, –1, –1), in 
which it has a particular syntactic form), which we take to be an assertion of “approximate 
flatness” with more clearly defined implications. In other words, Theorem 1 captures the 
sense in which every relativistic spacetime can be approximated locally by a flat spacetime.

As we saw above, claims about local flatness are sometimes expressed as the assertion that 
(every) spacetime is locally (approximately) Minkowskian. This idea can be captured in 
the present context using Theorem 1 and the notion of “approximate isometry” introduced 
by Flecher (2020). With this distance function in hand, consider spacetimes (M, gab) and 
(M′, g′ab) with open subsets U ⊆ M and U′ ⊆ M′, respectively, both of compact closure, and 
suppose that there is a diffeomorphism χ : U′ → U. Then given any Riemannian metric 
hab on U and any integer k ≥ 0, we say that χ is a (h, k, ϵ)-isometry between (U′, g′ab) and 
(U, gab) whenever dU(g, χ* (g′); h, k) < ϵ.16 This comports with the fact that χ is an isometry 
simpliciter between (U′, g′ab) and (U, gab) when dU(g, χ*(g′); h, k) = 0 for all h and k. Such 
(h, k, ϵ)-isometries can be thought of as “approximate isometries”, since they capture the 
idea that the two metrics agree only to a degree of approximation (ϵ) with respect to some 
reference structure (hab) and only up to some fixed order of differentiation (k).

Theorem 1 then has the following corollary.

Corollary 2. Given any spacetime (M, gab), embedded curve γ : I → M, point p ∈ γ[I], compact 
neighborhood U of p, Riemannian metric h on U, real ϵ > 0, and point p′ in Minkowski 
spacetime (ℝ4, ηab), there exist neighborhoods O ∋ p and O′ ∋ p′, an embedded curve γ′ : I′ → 
ℝ4 with p′ ∈ γ′ [I′], and an (h, 1, ϵ)-isometry χ: O′ → O between (O, gab) and (O′, ηab) satisfying 
χ ◦ γ′ = γ on I′ and χ*(gab) = ηab on γ′[I′].

Proof. By Theorem 1, there is a neighborhood O ∋ p on which exists a flat metric ḡab such 
that on γ[I] Ç O, gab = ḡab and = , where  and  are the Levi-Civita derivative operators 
associated with gab and ḡab, respectively. Furthermore, O can be chosen to be relatively 
compact and sufficiently small to be in U, diffeomorphic to ℝ4, and satisfy dO(g, ḡ; h, 1) < ϵ.  
This last property follows from the facts that hab is smooth and O is a relatively compact 
neighborhood of γ[I] Ç O. Therefore there is an isometric embedding ψ of (O, ḡab) into 
(ℝ4, ηab) which, without loss of generality, can be chosen so that ψ(p) = p′. Then define 

1[ [ ] ]I γ γ I O−′ = Ç , |Iγ ψ γ ′′ =  , O′ = ψ[O], and 1
|Oψ
χ . By definition, p′ ∈ γ′[I′], χ ◦ γ′ = γ on I′, 

and χ*(g) = χ*(ḡ) = η on γ′[I′], hence dO(g, χ*(η); h, 1) < ϵ. 

This corollary captures the sense in which every spacetime is “locally approximately 
Minkowski,” to first order, in neighborhoods of any embedded curve. One can also state a 
sense in which this local approximation holds only to order 1. In fact, we have the following:

16 Here and in what follows, if (M, gab) is a spacetime and U is an open subset of M, we will 
use “(U, gab)” to denote the spacetime with manifold U and metric gab restricted to U. We will 
not explicitly indicate that gab is restricted in this way.
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Remark 3. Cor. 2 holds as stated, but with k > 1, only if the Riemann tensor associated with 
gab vanishes everywhere.

Thus we see that even approximate local flatness to order 2 or greater can hold only for 
spacetimes that are flat simpliciter. This result follows from the tensorial character of 
curvature as the deviation of the second covariant derivative of the metric from zero. Any 
metric with non-zero curvature at a point p will fail to fall within ϵ of a flat metric in any 
neighborhood of that point, to order 2 or greater, for any fixed hab and sufficiently small ϵ.

Yet another advantage of the present approach to local approximate flatness is that it 
clarifies the uniqueness properties of this approximating structure. As we noted above, in 
general there are many normal coordinates associated with any point or curve; one might 
wonder whether some of them are privileged, or even how they are related. Theorem 1 
provides insight into this situation. First, given a flat metric with the properties described 
in the Theorem, there will be be many different normal coordinates adapted to that metric, 
corresponding to different choices of standard Minkowski coordinates. So we see clearly 
that if the flat metric is the structure we care about, then it cannot be a particular choice of 
normal coordinates that is privileged; at best, it is an equivalence class of such coordinates 
that are all adapted to the same flat metric.

On the other hand, we also have the following.

Corollary 4. In general, for any sufficiently small neighborhood of any point on the image of 
an embedded curve in a spacetime, there are (infinitely) many flat metrics with the properties 
described in Theorem 1.17

Proof. Fix a spacetime (M, gab) and curve γ : I → M. Choose any point p ∈ γ[I] and let O be some 
neighborhood of p on which there exists a flat metric ḡab that agrees with gab, to first order, on 
γ[I] Ç O. Let ϕ : O → O be any diffeomorphism on O such that ϕ takes each point in γ[I] Ç O 
to itself, ϕ* acts as the identity on the tangent space of each point on γ[I] Ç O, and ϕ  is not the 
identity outside γ[I] Ç O. Then we claim ϕ*(ḡab) will also be flat and agree with gab to first order 
on γ[I] Ç O. For flatness, observe that the pullback of a metric always preserves its Riemann 
tensor. For agreement, note that there exists a smooth field a

bcC  on O such that for any vector 
field *,( ( ) ) b b na

a a anC  ξ ξ ξ= . Now choose any vector fields ξ a, ηa on O. Then we have, 
for any point p ∈ γ[I] Ç O, * * *( ( ) ) ( ) ( )b a n a b a b a b

an a a a aC ∇ − ∇ ∇ − ∇η η ϕ ϕ η ϕ ηξ ξ ξ ξ= = = 0, 
where the second equality follows from the definition of the pullback on derivative operators 
and the third equality follows from the fact that ϕ* acts as the identity on the tangent space 
at each point of γ[I] Ç O by construction. Since ηa and ξ a were arbitrary, it follows that 

a
bcC  0 on γ[I] Ç O. Finally, we note that since ϕ is not the identity outside γ[I], in general 

ϕ*(gab) ≠ gab on O. 

Thus, the failure of uniqueness of normal coordinates corresponds not just to the fact 
that there are many coordinate systems adapted to a given flat metric, but also that there 
are many distinct flat metrics that approximate a given (curved) metric along a curve. It 
follows that while every spacetime is locally approximately flat, none is canonically so, 

17 Another construction is available that may help drive the point home. We will describe 
it for geodesics, as it’s simplest to state in that context; similar constructions are available for 
general curves. Let γ : I → M be a geodesic in a spacetime (M, gab) with Levi-Civita derivative ,  
and let  be a flat derivative operator on a neighborhood O of (some point of) γ[I] agreeing with 
 on γ[I]. Then      ( , )a

b cγ= , where γa is the unit tangent to γ parallel transported to all 
of O with  and α is any scalar field such that (a) α = 0 on γ[I] Ç O; (b) a  0  on O Ç γ[I]; and  
(c) b a b a      =  for some smooth scalar field κ on O, will be both flat and agree with  on 
γ but not agree with it everywhere. See also Iliev (2006, II.3) for a complete discussion of the 
freedom here. (A previous version of this footnote contained a typo. We are grateful to James 
Read, Nic Teh, and Niels Linnemann for drawing it to our attention.)
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as there are many flat metrics locally approximating any given metric at any given point. 
This failure of uniqueness is obscured, in our view, by approaches that focus on particular 
construction procedures, or on the existence of certain coordinates, because not all such 
flat metrics (or normal coordinates) arise from a single construction procedure.

Thus we see that the sense of local flatness captured by Theorem 1 offers some immediate 
advantages, mostly of clarity and elegance, over the second coordinate chart interpretation, 
above. How significant are these advantages? On the one hand, the claims we have made 
thus far could be rephrased using Lorentz normal coordinates, and they would still 
follow. In that sense we have added nothing. Nonetheless, we suggest that thinking in 
terms of flat approximating metrics leads to a fruitfully different perspective on a number 
of foundational questions, both about spacetime geometry and matter dynamics. The 
remainder of this paper, and its sequel, are devoted to exploring aspects of that perspective. 
Ultimately, the value of this way of thinking will turn on how fruitful it is in these 
applications (and others).

In the next two sections, we will draw out some further consequences of Theorem 1 and 
Corollary 2.

4. IS FLATNESS SPECIAL?
In section 3, we presented two ways of expressing the sense in which any relativistic 
spacetime is locally approximately flat. We also argued that these statements expressed 
the strongest sense of local approximate flatness available—at least insofar as one cannot 
achieve approximation to order greater than 1. Now we turn to the question of how to 
best understand the significance of these results. In particular, we wish to investigate the 
role of flatness in claims about local flatness. When one claims that spacetime is locally 
(approximately) flat, or Minkowskian, should we understand such claims as implying that 
Minkowski spacetime is distinguished in this regard? Is Minkowski spacetime, or regions 
thereof, the only spacetime that locally approximates all others?

As a first remark, there is a sense in which Minkowski spacetime is distinguished from 
other spacetimes, in a way that makes the fact that every spacetime is locally approximately 
flat especially salient. This is because flat spacetime is often a much more convenient setting 
for performing calculations and other analyses, and often useful constructions—such 
as Fourier decompositions, vector and tensor integration, and so on—are only generally 
defined in that context.18 It is useful to be able to immediately extend such constructions to 
approximate versions near a point or curve. For this reason, Theorem 1 and Corollary 2 are 
of considerable pragmatic value.

But one might still ask whether there is a deeper sense in which flat spacetime is 
distinguished in Theorem 1. And the answer is “no.” This result is more naturally expressed 
using the resources of Corollary 2. While Minkowski spacetime features in the statement 
of that result in the above section, it can in fact be replaced with an arbitrary spacetime:

Theorem 5. Given any spacetime (M, gab), embedded curve γ : I → M, point p ∈ γ[I], compact 
neighborhood U of p, Riemannian metric hab on U, real ϵ > 0, spacetime (M′, g′ab), and point 
p′ ∈ M′, there exist neighborhoods O ∋ p and O′ ∋ p′, an embedded curve γ′ : I′ → M′ with 

18 There are special cases that admit of generalizations to curved spacetimes, such as 
integration involving differential forms and partial Fourier decompositions in spacetimes 
admitting certain symmetries (e.g., stationarity), but these are not the general cases to which we 
refer here.
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p′ ∈ γ′[I′], and an (h, 1, ϵ)-isometry χ : O′ → O between (O, gab) and (O′, g′ab) satisfying χ ◦ γ′ = γ  
on I′ and χ*(gab) = g′ab on γ′[I′]. 

Proof. Pick any point p  of Minkowski spacetime. By Corollary 2, there exist neighborhoods 
Ô p  and O p , an embedded curve 4ˆˆ :γ I →  with ˆˆ[ ]p γ I∈ , and an (h|Ô,1, ϵ/2)-isometry 

ˆˆ :χ O O→  between ˆ|
ˆ( , )OO g  and |( , )OO   satisfying ˆ ˆ  χ γ γ =  on Î  and *ˆ ( )χ g η=  on ˆˆ[ ]γ I . Now, 

there is a linear isomorphism 4: p pψ T T M   that preserves the classification of vectors 
into timelike, null, and spacelike. In addition, the exponential map  4 4exp :p pT   is a 
diffeomorphism, and so is the exponential map exp :p pT M M     onto its image. Thus 
we may define, for a sufficiently small interval domain containing 1ˆ ˆ( )γ p− , the curve 

1 ˆexp expp pγ ψ γ−
′′   = , and by definition p′ ∈ γ′[I′].

Next, note that for any sufficiently small compact neighborhood of p, 
   
 1 1 *ˆ= (exp exp ) ( )ab p p abh ψ χ h  is a Riemannian metric on a compact neighborhood of 

p′. So, by corollary 2, there exist neighborhoods Ô p  and O p , an embedded curve 
4ˆˆ :γ I    with ˆˆ [ ]p γ I  , and an  ���( ,1, /2)abh ϵ -isometry ˆˆ :χ O O    between ˆ|

ˆ( , )OO g 
  and 

|( , )OO  
  satisfying ˆ ˆχ γ   γ  on Î  and *ˆ ( )ab abχ g   =  on ˆˆ [ ]γ I  . In particular, ˆγ  and γ̂  

coincide where they are both defined since χ̂  can be chosen to coincide with 1exp expp pψ −
′   

where they are both defined.

Now define ˆ ˆI I IÇ = , ˆ= [ ]O χ O OÇ   , 1
|

ˆ ˆ= Oχ χ 
 , and O = χ[O′]. On I′, 

1ˆ ˆ ˆ ˆ ˆ ˆ( ) ( )χ γ χ χ χ γ χ γ γ       = = = . On γ′[I′], * *ˆ ˆ( ) = ( )ab abχ g g χ , so at the same points, 
1 ** ˆ ˆ( ) = ( ) ( ) =ab ab abχ g χ χ g g   . Moreover,

Ç   ˆ   
* * * *

*ˆ ˆ ˆ ˆ ˆ/2 ( , ( ); ,1) = ( ( ), ; ( ),1) ( ( ), ; ( ),1)O O OOd g χ h d χ g χ h d χ g χ hϵ

and

Ç Ç

 

 


 

      

     
ˆ

  

* *
*
* * * *

ˆ ˆ ˆ/2 ( , ( ); ,1) = ( ( ), ; ( ),1)
ˆ ˆ ˆ ˆ( ( ), ; ( ),1) = ( ( ), ; ( ),1).  

OO

O O O O

d g χ h d χ g χ h

d χ g χ h d χ g χ h

ϵ

So by the triangle inequality, Ç      
* * *

*ˆ ˆ ˆ( ( ), ( ); ( ),1) = ( , ( ); ,1)O O Od χ g χ g χ h d g χ g hϵ , i.e., χ is 
an (h,1, ϵ)-isometry. 

If we call any spacetime fulfilling the role of Minkowski spacetime in Corollary 2 a 
universal locally approximating spacetime, then Theorem 5 shows that every spacetime 
is a universal locally approximating spacetime. For example, one could equally well take 
(anti-)de Sitter spacetime or Schwarzschild spacetime to play this role.19 So, it may be 
misleading to assert that “free-falling observers see no effect of gravity in their immediate 
vicinity” (Poisson 2004, 11); one might just as well say “free-falling observers see the local 
effects of a large cosmological constant” or “free-falling observers see the local effects of 
being inside a rotating black hole.” This is because, along any curve and, approximately, 
in a neighborhood of any segment of the curve, the geometrical features of all spacetimes 
are indistinguishable to first order. This seems to be a general feature of metric theories of 
gravity, for none of these results require Einstein’s field equation.

All this said, the fact that other spacetimes are universal locally approximating does not 
imply that Minkowski spacetime is not—and so one might ask whether there are other 
reasons to think that Minkowski spacetime has a distinguished role to play (beyond its 
pragmatic advantages already noted). One possible answer would return to an issue we 

19 See Wise (2010) for an application of this idea using Cartan geometry to describe 
MacDowell-Mansouri gravity.
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raised previously, in section 2: in some discussions of local (approximate) flatness, authors 
present particular constructions of normal coordinates, or flat approximating metrics, 
motivated by physical considerations. For instance, as we noted above, Fermi normal 
coordinates along a timelike geodesic may be thought of as the coordinates that a certain 
kind of idealized inertial observer might assign to spacetime—the vectors of the associated 
frame might represent something like an ideal clock and rigid measuring rods. The fact 
that these coordinates may be interpreted as standard Minkowski coordinates adapted to a 
particular flat metric that approximates the spacetime metric along the observer’s worldline 
might be taken to give Minkowski spacetime a special status as a universal approximating 
spacetime. In other words, the argument would go, it is not just that spacetime is locally 
approximately flat; it is that certain observers, under certain idealized circumstances and 
using certain prescribed procedures, would naturally construct a particular approximating 
metric, which happens to be Minkowskian—and not, say, (anti-)de Sitter. Authors who 
invoke local (approximate) flatness to explain the success of special relativity may well 
have something like this argument in mind.

Perhaps this is true—though we emphasize that it is not clear how this argument really 
yields a special sense in which spacetime is locally approximately flat. Moreover, this 
interpretation of the Fermi normal coordinate construction is not conceptually innocent, 
as perfectly rigid objects exist only under very special circumstances in general relativity, 
circumstances not fulfilled in most cases of interest (e.g., involving acceleration or geodesic 
deviation). But even if we set that issue aside, it remains the case that this sort of argument 
purchases a special status for Minkowski spacetime at the cost of assuming a special 
status for a particular coordinate construction procedure. There are two aspects to this 
assumption. First is the restriction to timelike geodesics; once this is relaxed, the resulting 
coordinates may not be Lorentz coordinates, as the Rindler coordinates generated by 
Fermi transport of a frame for a uniformly accelerating observer in Minkowski spacetime 
attest. The second aspect is that while the Fermi normal coordinate construction is 
mathematically convenient, there is nothing physically unique about it. Other coordinate 
construction procedures can be specified to generate local coordinates natural to any 
other spacetime. Which one chooses, if any, depends on the pragmatics of representing or 
predicting quantities of interest.

5. LOCAL APPROXIMATE POINCARÉ SYMMETRY
There is another variant on the claim that spacetime is locally approximately Minkowskian 
that one sometimes sees in the literature, according to which spacetime is said to exhibit, 
locally and approximately, the symmetries of Minkowski spacetime: that is, that spacetime 
is locally approximately Poincaré invariant. In this penultimate section, we turn to discuss 
this claim in light of Theorems 1 and 5.

In fact, several different notions of “local approximate Poincaré invariance” are to be found 
in the literature; here, we focus on one recently introduced by Fletcher (2020).20 Fletcher 
defines (h, k, ϵ)-approximate isometries (or symmetries) as we do here; he then considers 
smooth vector fields ξ a near a point p whose one-parameter families of diffeomorphisms, 

20 Read et al. (2018) have also introduced notions of “local Poincaré invariance,” but 
Fletcher (2020) argues that the definition they give of local Poincaré invariance of a spacetime 
is unsatisfactory. (See also Weatherall 2021.) The alternative definition that Fletcher proposes 
is intended to address somewhat different issues from those that concern Read et al., and it is 
not clear that it can play the role in their arguments that their own definition does. But a full 
assessment of that question would take us too far afield, and so we postpone any discussion of 
the relationship between their arguments and the results here to future work.
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for sufficiently small parameter values, generate (h, k, ϵ)-approximate symmetries on 
sufficiently small neighborhoods of p. On his definition, a spacetime (M, gab) has local 
approximate Poincaré symmetry to order k, relative to a Riemannian metric hab, near a 
point p if: there exist ten smooth vector fields on a neighborhood of p whose Lie derivatives 
with respect to one another satisfy the Poincaré algebra commutation relations; and for 
any ϵ > 0, the one parameter families of diffeomorphisms generated by those vector fields 
generate (h, k, ϵ)-approximate symmetries on sufficiently small neighborhoods of p. He 
then shows that every spacetime has local approximate Poincaré symmetry, to any order 
and relative to any metric hab, near every point.

In fact, though Fletcher does not emphasize this, on his definitions the following holds: 
any smooth vector field ξ a defined near any point p in any relativistic spacetime generates 
(h, k, ϵ)-approximate symmetries, for all k and hab. This follows simply from the smoothness 
of all of the structures under consideration.21 So the key move in his argument that every 
spacetime has local approximate Poincaré symmetry is to show that one can always find 
smooth vector fields, near any point, that satisfy the commutation relations of the Poincaré 
algebra. He does so by an argument invoking the exponential map. But the results above 
offer a different perspective on how these smooth vector fields arise as local representations 
of the Poincaré algebra. In particular, given any spacetime (M, gab) and point p ∈ M, let 
ḡab be a flat metric on a neighborhood O of p that approximates gab to first order, in the 
sense of Theorem 1. Then this metric will have (local) Killing vector fields defined on O, 
which, since the metric is flat, will satisfy the Poincaré commutation relations. These local 
Killing vector fields will generate local approximate Poincaré symmetries of (M, gab) near 
p. This alternative construction is helpful, because it clarifies, again, that although every 
spacetime admits local approximate Poincaré symmetries, it does not do so uniquely. If one 
chose a different flat approximating metric near p, the local representation of the Poincaré 
algebra resulting from the present construction would be different.

In fact, a similar moral holds if one adopts a slightly stronger notion of when a smooth 
vector field generates an “approximate local symmetry” than Fletcher explicitly endorses. 
Let us say that a smooth vector field ξ a on a relativistic spacetime (M, gab) generates an 
approximate local symmetry* near a point p ∈ M if =abg 0ξ  at p. This definition captures 
the idea that not only is the difference between gab and the flow of gab along ξ a bounded in 
sufficiently small neighborhoods, but that the derivative of gab along ξ a also vanishes at p. 
Call such a vector field ξ a an approximate local Killing vector field.22 With this definition 
in hand, we can say that a spacetime admits local approximate Poincaré symmetries* if, 
on some neighborhood O ∋ p, there exist ten approximate local Killing vector fields that 
(exactly) satisfy the commutation relations of the Poincaré algebra.

The argument sketched above establishes that every spacetime admits local approximate 
Poincaré symmetries*. This is because, given any point p ∈ M and any flat metric ḡab 
approximating gab in the sense of Theorem 1 at p, if ξ a is a Killing vector field for ḡab at p, then

( ) ( )= = 2 = 2 =ab a b a b abgg ∇ ∇ ξ ξ¯ ξ ξ0

at p, where  and  are the Levi-Civita derivative operators associated with ḡab and gab, 
respectively, and we have made use of the fact that, at p, = . Thus the exact Poincaré 
symmetries of the approximating metric ḡab gives rise to approximate Poincaré symmetries* 

21 Indeed, a tensor field is smooth at a point p if  and only if every smooth vector field 
generates (h, k, ϵ)-approximate symmetries, for all k and hab, near p.

22 This definition of an approximate local Killing vector field is apparently the same as one 
implicitly adopted by Sus (2020, 18–19).
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of the original metric, gab. Once again, the approximate local Poincaré symmetries* of a 
generic metric gab will fail to be unique, in the sense that they will be realized relative to 
different representations of the Poincaré algebra near p, corresponding to the different flat 
metrics that approximate gab to first order near p.

One can push this line of thought even further by making use of Theorem 5. In particular, 
we have just seen that there is a relationship between the local (exact) symmetries of a 
flat metric that approximates a given metric gab near a point p and the local approximate 
Poincaré symmetries of gab. But in light of Theorem 5, identical arguments show that 
the symmetries of any relativistic spacetime can be implemented as local approximate 
symmetries near any point of any spacetime at all.23 In other words, while every spacetime 
admits local approximate Poincaré symmetries near any point, so, too, does every spacetime 
admit local approximate (anti-)de Sitter symmetries, local approximate Schwarzschild 
symmetries, and local approximate Kerr symmetries.

Taken together, these observations clarify just how weak the property of “approximate local 
invariance under some spacetime symmetry group” is. We take this point to amplify remarks 
made by Fletcher (2020) in his original discussion of approximate local Poincaré symmetries, 
where he argues that the existence of such symmetries has no logical relationship to any 
“local symmetries” (or other substantive properties) of matter equations. We also wish to 
emphasize an important distinction that is especially important when reasoning about 
approximate local symmetries: “approximate local invariance under symmetry group G” 
is importantly different from “approximate local invariance under only symmetry group 
G in a single, specific representation.” Every spacetime has local approximate Poincaré 
invariance in the first sense, but not the second; this means that any argument that relies 
on local approximate Poincaré invariance as a premise will presumably still go through if 
one substituted any of the myriad other local approximate symmetry groups of spacetime.24

6. INTERLUDE
In this part, we have considered several possible interpretations of the claim that relativistic 
spacetimes are “locally approximately Minkowskian” or “locally approximately flat.” We 
argued that two possible interpretations were simply false and that a third was too weak 
to have substance. On the fourth interpretation we offered—the second of two coordinate 
chart interpretations—the claim is true, but its significance was difficult to fully assess. 
We then stated and proved Theorem 1, which captures a precise sense in which every 
relativistic spacetime is locally approximately flat. This final interpretation says that every 
spacetime is locally approximately flat in the sense that near any point of any spacetime 
(or near sufficiently small segments of a curve), there exists a flat metric that coincides 
with the spacetime metric to first order at that point (or on that curve) and approximates it 
arbitrarily well, relative to a particular family of norms, near that point (or curve).

This final interpretation is closely related to the second coordinate chart interpretation just 
mentioned. But recasting things as we did, in terms of the existence of an approximating flat 
metric, allowed us to clarify certain features of local flatness that do not appear to have been 

23 It is perhaps worth noting that not all local approximate symmetries or symmetries* arise in 
this way. For instance, every relativistic spacetime also has local approximate Euclidean symmetries*, 
even though no Riemannian metric can approximate a Lorentzian one in the sense of Theorem 1. 
To see this, note that in normal coordinates near any point of any spacetime (M, gab), one can always 
construct a flat Riemannian metric whose Levi-Civita derivative operator is the coordinate derivative 
operator, and thus the Killing vector fields of that flat Riemannian manifold will be local approximate 
Killing vector fields of the spacetime metric, gab.

24 Compare with Sus (2020, §5.2).
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widely recognized before. In particular, we showed, in section 3, that the approximating 
flat metric is not unique. In other words, while it is true that every spacetime is locally 
approximately flat, it is not canonically so—which means that one cannot unambiguously 
invoke “the” approximate Minkowski structure associated with a point or curve. Particular 
physical constructions or idealized observational contexts might suggest particular choices 
of approximating flat metric, but these are privileged only relative to those further choices.

We also showed that although there is a sense in which every spacetime is locally 
approximately Minkowskian, Minkowski spacetime is not the unique universal 
approximating spacetime, and that, in fact, every spacetime locally approximates every 
other spacetime. We used this result to cast doubt on the idea that the local approximate 
Minkowski character of spacetime carried great foundational (as opposed to pragmatic) 
significance. The upshot of all of this is that while one can isolate a precise and accurate 
statement to the effect that spacetime is locally approximately Minkowskian, this 
statement is misleadingly specific given that local approximation is pervasive. Perhaps a 
better way of characterizing the situation is that, to first order, all spacetimes with the same 
metric signature have a universal character, in the sense that they all locally approximate 
one another.25 It is only at second order and higher that differences in structure between 
different spacetimes can be seen in arbitrarily small neighborhoods of a point or curve. 
That spacetimes cannot approximate one another arbitrarily well to second order is, of 
course, closely related to the fact that curvature is a tensor.

Finally, we used these results to show that although every spacetime admits local 
approximate Poincaré symmetries near any point, in the sense introduced by Fletcher 
(2020) and in another, slightly stronger sense that we introduced here, there are in general 
infinitely many ways in which they do so, and so, again, one cannot unambiguously speak 
of “the” local approximate Poincaré symmetries of a spacetime. Indeed, not only does 
every spacetime admit local approximate Poincaré symmetries in many distinct senses (i.e., 
under different representations), every spacetime also locally approximately exhibits many 
other symmetries.

In the next part, we will further develop and apply these ideas in the context of a related set 
of claims, to the effect that general relativity is “locally special relativistic” because matter 
in general relativity behaves, locally, as if it were in flat spacetime.

ACKNOWLEDGEMENTS
We are grateful to David Malament and an anonymous reviewer for helpful comments on 
a previous draft, to Thomas Barrett and JB Manchak for discussions of related material, and 
to Niels Linneman, James Read, and Nic Teh for drawing our attention to an important typo 
in a previous draft. SCF thanks audiences in Tübingen (3rd International Interdisciplinary 
Summer  School), London (Sigma Club), Munich (MCMP), Vienna (Center for Quantum 
Science and Technology), Bucharest (Philosophy Dept.), Salzburg (Philosophy Dept.), and 
Dubrovnik (42nd Annual Philosophy of Science Conference) for helpful feedback on an 
ancestral version entitled, “On the Local Flatness of Spacetime.”

25 Beyond general relativity, this seems to be a general feature of metric theories of gravity, 
relativistic or not: the possibilities they allow are not distinguishable by their purely local 
features.



19Fletcher and Weatherall 
Philosophy of  Physics 
DOI: 10.31389/pop.6

FUNDING INFORMATION
SCF acknowledges the support of a Marie Curie fellowship (FP7-MC-IIF-628533) during 
the early development of this project. JOW: This material is partially based upon work 
produced for the project “New Directions in Philosophy of Cosmology,” funded by the John 
Templeton Foundation under grant number 61048, and partly upon work supported by the 
National Science Foundation under Grant No. 1331126.

COMPETING INTERESTS
The authors have no competing interests to declare.

AUTHOR AFFILIATIONS
Samuel C. Fletcher  orcid.org/0000-0002-9061-8976 
Department of Philosophy, University of Minnesota, Twin Cities, USA

James Owen Weatherall  orcid.org/0000-0003-1461-7821 
Department of Logic and Philosophy of Science, University of California, Irvine, USA

REFERENCES
Bokulich, Alisa, and Peter Bokulich. 2020. “Bohr’s Correspondence Principle.” In: 

The Stanford Encyclopedia of Philosophy. Fall 2020 ed., edited by Edward N. Zalta. 
Metaphysics Research Lab, Stanford University. https://plato.stanford.edu/archives/
fall2020/entries/bohr-correspondence/

Born, Max. 1962. Einstein’s Theory of Relativity. Revised and enlarged ed. New York: 
Dover.

Brown, Harvey R. 1997. “On the Role of Special Relativity in General Relativity.” 
International Studies in the Philosophy of Science 11: 67–81. DOI: https://doi.
org/10.1080/02698599708573551

Brown, Harvey R. 2005. Physical Relativity: Space-Time Structure from a 
Dynamical Perspective. Oxford: Oxford University Press. DOI: https://doi.
org/10.1093/0199275831.001.0001

Brown, Morton. 1962. “Locally Flat Imbeddings of Topological Manifolds.” Annals of 
Mathematics 75: 331–341. DOI: https://doi.org/10.2307/1970177

Butterfield, Jeremy. 2011. “Emergence, Reduction and Supervenience: A Varied 
Landscape.” Foundations of Physics 41: 920–959. DOI: https://doi.org/10.1007/
s10701-011-9549-0

Eddington, Arthur Stanley. 1924. The Mathematical Theory of Relativity, 2nd ed. 
Cambridge: Cambridge University Press.

Ehlers, Jürgen. 1973. “Survey of General Relativity Theory.” In: Relativity, Astrophysics 
and Cosmology, edited by Werner Israel, 1–125. Dordrecht: D. Reidel. DOI: https://
doi.org/10.1007/978-94-010-2639-0_1

Einstein, Albert. 2009. The Collected Papers of Albert Einstein, The Berlin Years: 
Correspondence, January–December 1921. Volume 12. Princeton: Princeton 
University Press.

Fletcher, Samuel C. 2016. “Similarity, Topology, and Physical Significance in Relativity 
Theory.” The British Journal for the Philosophy of Science 67: 365–389. DOI: https://
doi.org/10.1093/bjps/axu044

Fletcher, Samuel C. 2018. “Similarity Structure on Scientific Theories.” In: Topological 
Philosophy, edited by B. Skowron. De Gruyter. Volume Forthcoming.

https://orcid.org/0000-0002-9061-8976
https://orcid.org/0000-0002-9061-8976
https://orcid.org/0000-0003-1461-7821
https://orcid.org/0000-0003-1461-7821
https://plato.stanford.edu/archives/fall2020/entries/bohr-correspondence/
https://plato.stanford.edu/archives/fall2020/entries/bohr-correspondence/
https://doi.org/10.1080/02698599708573551
https://doi.org/10.1080/02698599708573551
https://doi.org/10.1093/0199275831.001.0001
https://doi.org/10.1093/0199275831.001.0001
https://doi.org/10.2307/1970177
https://doi.org/10.1007/s10701-011-9549-0
https://doi.org/10.1007/s10701-011-9549-0
https://doi.org/10.1007/978-94-010-2639-0_1
https://doi.org/10.1007/978-94-010-2639-0_1
https://doi.org/10.1093/bjps/axu044
https://doi.org/10.1093/bjps/axu044


20Fletcher and Weatherall 
Philosophy of  Physics 
DOI: 10.31389/pop.6

Fletcher, Samuel C. 2019. “On the Reduction of General Relativity to Newtonian 
Gravitation.” Studies in History and Philosophy of Modern Physics 68: 1–15. DOI: 
https://doi.org/10.1016/j.shpsb.2019.04.005

Fletcher, Samuel C. 2020. “Approximate Local Poincaré Spacetime Symmetry in 
General Relativity.” In: Thinking About Space and Time: 100 Years of Applying and 
Interpreting General Relativity, edited by Claus Beisbart, Tilman Sauer, and Christian 
Wüthrich, 247–267. Cham: Springer International Publishing. DOI: https://doi.
org/10.1007/978-3-030-47782-0_12

Fletcher, Samuel C. 2021. “An Invitation to Approximate Symmetry, with Three 
Applications to Intertheoretic Relations.” Synthese 198: 4811–4831. DOI: https://doi.
org/10.1007/s11229-019-02371-x

Friedman, Michael. 1983. Foundations of Space-Time Theories. Princeton: Princeton 
University Press.

Geroch, Robert, and Pong Soo Jang. 1975. “Motion of a Body in General Relativity.” 
Journal of Mathematical Physics 16: 65–67. DOI: https://doi.org/10.1063/1.522416

Geroch, Robert, and James Owen Weatherall. 2018. “The Motion of Small Bodies in 
Space-Time.” Communications in Mathematical Physics 364: 607–634. DOI: https://
doi.org/10.1007/s00220-018-3268-8

Iliev, Bozhidar Z. 2006. Handbook of Normal Frames and Coordinates. Basel: 
Birkhäuser. DOI: https://doi.org/10.1007/978-3-7643-7619-2

Janssen, Michel. 2012. “The Twins and the Bucket: How Einstein Made Gravity Rather 
than Motion Relative in General Relativity.” Studies in History and Philosophy of 
Modern Physics 43: 159–175. DOI: https://doi.org/10.1016/j.shpsb.2012.01.003

Knox, Eleanor. 2013. “Effective Spacetime Geometry.” Studies in History and Philosophy 
of Modern Physics 44: 346–356. DOI: https://doi.org/10.1016/j.shpsb.2013.04.002

Lehmkuhl, Dennis. 2021. “The Equivalence Principle(s).” In: The Routledge Companion 
to Philosophy of Physics, edited by Eleanor Knox, and Alastair Wilson, 125–144. New 
York: Routledge. DOI: https://doi.org/10.4324/9781315623818-14

Malament, David B. 2012. Topics in the Foundations of General Relativity and Newtonian 
Gravitation Theory. Chicago: University of Chicago Press. DOI: https://doi.
org/10.7208/chicago/9780226502472.001.0001

Manchak, John Byron. 2011. “What Is a Physically Reasonable Space-Time?” 
Philosophy of Science 78: 410–420. DOI: https://doi.org/10.1086/660301

Misner, Charles W., Kip S. Thorne, and John Archibald Wheeler. 1973. Gravitation. 
New York: W. H. Freeman.

Nickles, Thomas. 1973. “Two Concepts of Intertheoretic Reduction.” The Journal of 
Philosophy 70: 181–201. DOI: https://doi.org/10.2307/2024906

Norton, John. 1985. “What Was Einstein’s Principle of Equivalence?” Studies in 
History and Philosophy of Science 16: 203–246. DOI: https://doi.org/10.1016/0039-
3681(85)90002-0

Norton, John D. 1993. “General Covariance and the Foundations of General Relativity: 
Eight Decades of Dispute.” Reports on Progress in Physics 56: 791–858. DOI: https://
doi.org/10.1088/0034-4885/56/7/001

Ó Raifeartaigh, Lochlainn. 1957. “Fermi Coordinates.” Proceedings of the Royal Irish 
Academy, Section A: Mathematical and Physical Sciences 59: 15–24.

Pauli, Wolfgang. 1921. “Relativitätstheorie.” In: Encyclopädie der mathematischen 
Wissenschaften, volume 5.2, edited by Arnold Sommerfeld, 539–775. Leibzig: B. G. 
Teubner. 

Poisson, Eric. 2004. A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics. 
Cambridge: Cambridge University Press.

Poisson, Eric, Adam Pound, and Ian Vega. 2011. “The Motion of Point Particles in 
Curved Spacetime.” Living Reviews in Relativity 14: 7. DOI: https://doi.org/10.12942/
lrr-2011-7

https://doi.org/10.1016/j.shpsb.2019.04.005
https://doi.org/10.1007/978-3-030-47782-0_12
https://doi.org/10.1007/978-3-030-47782-0_12
https://doi.org/10.1007/s11229-019-02371-x
https://doi.org/10.1007/s11229-019-02371-x
https://doi.org/10.1063/1.522416
https://doi.org/10.1007/s00220-018-3268-8
https://doi.org/10.1007/s00220-018-3268-8
https://doi.org/10.1007/978-3-7643-7619-2
https://doi.org/10.1016/j.shpsb.2012.01.003
https://doi.org/10.1016/j.shpsb.2013.04.002
https://doi.org/10.4324/9781315623818-14
https://doi.org/10.7208/chicago/9780226502472.001.0001
https://doi.org/10.7208/chicago/9780226502472.001.0001
https://doi.org/10.1086/660301
https://doi.org/10.2307/2024906
https://doi.org/10.1016/0039-3681(85)90002-0
https://doi.org/10.1016/0039-3681(85)90002-0
https://doi.org/10.1088/0034-4885/56/7/001
https://doi.org/10.1088/0034-4885/56/7/001
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7


21Fletcher and Weatherall 
Philosophy of  Physics 
DOI: 10.31389/pop.6

TO CITE THIS 
ARTICLE:
Fletcher, Samuel C., and 
James Owen Weatherall. 
2023. “The Local Validity 
of Special Relativity, Part 
1: Geometry.” Philosophy of 
Physics 1(1): 7, 1–21. DOI: 
https://doi.org/10.31389/
pop.6

Submitted: 19 November 2022 
Accepted: 25 July 2023 
Published: 17 November 
2023

COPYRIGHT:
© 2023 The Author(s). This 
is an open-access article 
distributed under the terms 
of the Creative Commons 
Attribution 4.0 International 
License (CC-BY 4.0), 
which permits unrestricted 
use, distribution, and 
reproduction in any 
medium, provided the 
original author and source 
are credited. See http://
creativecommons.org/
licenses/by/4.0/.

Philosophy of Physics is a 
peer-reviewed open access 
journal published by LSE 
Press.

Pooley, Oliver. 2010. “Substantive General Covariance: Another Decade of Dispute.” In: 
EPSA Philosophical Issues in the Sciences, edited by Mauricio Suárez, Mauro Dorato, 
and Miklós Rédei, 197–209. Dordrecht: Springer. DOI: https://doi.org/10.1007/978-
90-481-3252-2_19

Read, James, Harvey R. Brown, and Dennis Lehmkuhl. 2018. “Two Miracles of 
General Relativity.” Studies in History and Philosophy of Modern Physics 64: 14–25. 
DOI: https://doi.org/10.1016/j.shpsb.2018.03.001

Reichenbach, Hans. 1958. The Philosophy of Space and Time. New York: Dover.
Schild, Alfred. 1967. “Lectures on General Relativity Theory.” In: Relativity Theory 

and Astrophysics, volume 1, edited by Jürgen Ehlers, 1–104. Providence: American 
Mathematical Society.

Sus, Adán. 2020. “Relativity without Miracles.” European Journal for Philosophy of 
Science 11: 1–33. DOI: https://doi.org/10.1007/s13194-020-00311-y

Synge, John Lighton. 1960. Relativity: The General Theory. Amsterdam: North-Holland.
Torretti, Roberto. 1996. Relativity and Geometry, 2nd ed. New York: Dover.
Wald, Robert M. 1984. General Relativity. Chicago: University of Chicago Press. DOI: 

https://doi.org/10.7208/chicago/9780226870373.001.0001
Wallace, David. 2019. “Who’s Afraid of Coordinate Systems? An Essay on 

Representation of Spacetime Structure.” Studies in History and Philosophy of Modern 
Physics 67: 125–136. DOI: https://doi.org/10.1016/j.shpsb.2017.07.002

Weatherall, James Owen. 2021. “Two Dogmas of Dynamicism.” Synthese 199: 253–275. 
DOI: https://doi.org/10.1007/s11229-020-02880-0

Wise, Derek K. 2010. “MacDowell-Mansouri Gravity and Cartan Geometry.” 
Classical and Quantum Gravity 27: 155010. DOI: https://doi.org/10.1088/0264-
9381/27/15/155010

https://doi.org/10.31389/pop.6
https://doi.org/10.31389/pop.6
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/978-90-481-3252-2_19
https://doi.org/10.1007/978-90-481-3252-2_19
https://doi.org/10.1016/j.shpsb.2018.03.001
https://doi.org/10.1007/s13194-020-00311-y
https://doi.org/10.7208/chicago/9780226870373.001.0001
https://doi.org/10.1016/j.shpsb.2017.07.002
https://doi.org/10.1007/s11229-020-02880-0
https://doi.org/10.1088/0264-9381/27/15/155010
https://doi.org/10.1088/0264-9381/27/15/155010

	Structure Bookmarks
	The Local Validity of Special Relativity, Part 1: Geometry
	The Local Validity of Special Relativity, Part 1: Geometry
	The Local Validity of Special Relativity, Part 1: Geometry
	The Local Validity of Special Relativity, Part 1: Geometry

	SAMUEL C. FLETCHER 
	SAMUEL C. FLETCHER 
	Link
	Figure


	JAMES OWEN WEATHERALL 
	Link
	Figure



	ABSTRACT
	ABSTRACT
	In this two-part essay, we distinguish several senses in which general relativity has been regarded as “locally special relativistic.” Here, in Part 1, we focus on senses in which a relativistic spacetime has been said to be “locally (approximately) Minkowskian.” After critiquing several proposals in the literature, we present a result capturing a substantive sense in which every relativistic spacetime is locally approximately Minkowskian. We then show that Minkowski spacetime is not distinguished in this r

	The general theory of relativity rests entirely on the premise that each infinitesimal line element of the spacetime manifold physically behaves like the four-dimensional manifold of the special theory of relativity. Thus, there are infinitesimal coordinate systems (inertial systems) with the help of which the ds are to be defined exactly like in the special theory of relativity. The general theory of relativity stands or falls with this interpretation of ds. It depends on the latter just as much as Gauss’ 
	The general theory of relativity rests entirely on the premise that each infinitesimal line element of the spacetime manifold physically behaves like the four-dimensional manifold of the special theory of relativity. Thus, there are infinitesimal coordinate systems (inertial systems) with the help of which the ds are to be defined exactly like in the special theory of relativity. The general theory of relativity stands or falls with this interpretation of ds. It depends on the latter just as much as Gauss’ 
	Albert Einstein to Paul Painlevé, December 7, 1921
	As translated in Lehmkuhl ()
	2021

	()
	Einstein 2009, Doc. 314

	1 INTRODUCTION
	The literature on the foundations of general relativity is replete with claims that, locally, general relativity is like special relativity. Such claims can take different forms. Sometimes it is said that, according to general relativity, spacetime is “locally (approximately) flat” or “locally Minkowskian,” where Minkowski spacetime is the flat, gravitation-free setting of special relativity. In other cases—not necessarily independent of the former ones—the key idea is that matter in general relativity beha
	1
	1
	1



	This locally flat, or locally special relativistic, character of general relativity has been taken to have great significance. For some authors, it is a crucial heuristic, motivating why one might adopt or postulate the structure and laws of general relativity as a theory of gravitation in the first place (; ). In this respect it functions similarly to “correspondence principles” in the formulation of the old quantum theory (). For others, claims about local flatness are presented as deductive consequences 
	Ehlers 1973
	Schild 1967
	Bokulich and Bokulich 2020
	Born 1962
	Ehlers 1973
	Reichenbach 1958
	Torretti 1996
	Butterfield 2011
	Nickles 1973
	Brown 1997
	2005
	Ehlers 1973
	Knox 2013
	Misner et al. 1973
	Ehlers 1973
	Knox 2013
	Brown 2005
	Read et al. 2018
	Schild 1967

	But despite the ubiquity of these claims, there is little clarity or agreement within the literature concerning what, precisely, such assertions are supposed to mean. Our goal here 
	1 In what follows, a relativistic spacetime is a pair (M, g), where M is a smooth, four-dimensional manifold that we assume to be connected, Hausdorff, and paracompact; and g is a smooth, Lorentz-signature metric on M. Relativistic spacetimes are the models, or “solutions,” of general relativity; they represent possible universes, according to the theory. For more on the conventions we adopt here, including the abstract index notation, see Wald () or Malament (). (Observe, though, that these texts differ in
	1 In what follows, a relativistic spacetime is a pair (M, g), where M is a smooth, four-dimensional manifold that we assume to be connected, Hausdorff, and paracompact; and g is a smooth, Lorentz-signature metric on M. Relativistic spacetimes are the models, or “solutions,” of general relativity; they represent possible universes, according to the theory. For more on the conventions we adopt here, including the abstract index notation, see Wald () or Malament (). (Observe, though, that these texts differ in
	ab
	ab
	1984
	2012
	4
	ab


	and in the sequel to this paper is to offer a new perspective on the sense, or senses, in 
	and in the sequel to this paper is to offer a new perspective on the sense, or senses, in 
	which general relativity is locally like special relativity, in the service both of clarifying 
	the sense in which it is true that spacetime is (approximately) locally flat and in assessing 
	what significance that has for the local dynamics of matter.
	2
	2
	2


	 The present paper focuses 
	on geometrical aspects of the question, with an emphasis on local approximate flatness; 
	the sequel, which will make use of the results here, will consider several senses in which 
	matter dynamics may be locally special relativistic.

	We will begin, in section 2, by presenting several possible interpretations—or perhaps better, explications—of the assertion “spacetime is locally (approximately) flat,” all inspired by attempts in the literature to state the claim precisely. As we will argue, each of these is inadequate—either because it is false, misleading, or does not perspicuously capture the relevant facts. Still, we claim there is a precise sense in which every relativistic spacetime is locally approximately flat. In section 3, we wi
	3
	3
	3



	In section 4, we will argue that once it is clear what local approximate flatness amounts to, there are reasons to be cautious about attributing too much significance to it. In particular, we will argue, there is nothing special about flatness in Theorem 1. In fact, every relativistic spacetime locally approximates every other relativistic spacetime in the same sense that Minkowski spacetime does. In other words, while it is true that spacetime is locally approximately Minkowskian, so, too, is it locally ap
	2 Given that the project here is to make sense of claims about local flatness in general relativity, and given that local flatness is implicated in some formulations of the equivalence principle, one might take the present project to be part of a long tradition of work attempting to precisely recover what various authors have meant by the equivalence principle or some other alleged principle, such as “substantive general covariance” (for which see, e.g., ; , ; ). But we see our project differently. In parti
	2 Given that the project here is to make sense of claims about local flatness in general relativity, and given that local flatness is implicated in some formulations of the equivalence principle, one might take the present project to be part of a long tradition of work attempting to precisely recover what various authors have meant by the equivalence principle or some other alleged principle, such as “substantive general covariance” (for which see, e.g., ; , ; ). But we see our project differently. In parti
	Lehmkuhl 
	2021
	Norton 1985
	1993
	Pooley 2010
	2021
	2021
	2020


	3 There are partial exceptions. For instance, Ehlers () calls versions of this Theorem a “well known theorem of differential geometry,” while Poisson () and Poisson et al. () call a somewhat weaker result the “local flatness theorem” and prove it. But neither treatment is as general as it could be, in ways that may obscure its significance. Even so, the result is not original: it is a trivial consequence of work by Ó Raifeartaigh (), and it is invoked by others such as Geroch and Jang () and Geroch and Weat
	3 There are partial exceptions. For instance, Ehlers () calls versions of this Theorem a “well known theorem of differential geometry,” while Poisson () and Poisson et al. () call a somewhat weaker result the “local flatness theorem” and prove it. But neither treatment is as general as it could be, in ways that may obscure its significance. Even so, the result is not original: it is a trivial consequence of work by Ó Raifeartaigh (), and it is invoked by others such as Geroch and Jang () and Geroch and Weat
	1973, pp. 20, pp. 44
	2004
	2011
	1957
	1975
	2018


	In section 5, we will show how Theorems 1 and 5 offer additional insight into another claim closely related to the claim that spacetime is locally approximately Minkowskian, which is that relativistic spacetimes admit local approximate Poincaré symmetries (; ). Finally, we will offer some brief concluding remarks in section 6. In Part 2, we will turn to the relationship between local approximate flatness and the behavior of matter.
	Fletcher 2020
	Read et al. 2018

	2. WHAT LOCAL APPROXIMATE FLATNESS IS NOT
	We begin by clearing the air. What should one not mean by the assertion “spacetime is locally flat” in general relativity?
	4
	4
	4



	As a first pass, recall that a relativistic spacetime (M, g) is flat just when its Riemann tensor, R, vanishes everywhere. Recall further that (M, g) is locally isometric to a spacetime (M′, g′) when, for each point p ∈ M, there exists a neighborhood U of p and a smooth map ψ: U → M′ such that (ψ)(g′) = g at each point of U. This condition captures a sense in which “locally” the spacetime (M, g) is equivalent to, or has the same structure as, (some region or other of) (M′, g′), even though globally the two 
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	These definitions suggest a natural, literal interpretation of the claim that (any) spacetime is locally flat or locally Minkowskian.
	Literal Interpretation: Every relativistic spacetime is locally isometric to a flat spacetime (e.g., a region of Minkowski spacetime).
	Unfortunately, interpreted in this way, the claim is simply false: not every relativistic spacetime is locally flat in this sense. And it would not help to restrict attention only to those spacetimes that are locally flat in this sense, such as by claiming that it is only those spacetimes that are physically reasonable (cf. ). Indeed: a relativistic spacetime is locally isometric to flat spacetime if and only if it is flat simpliciter, because Riemann curvature is preserved under isometry. So if a spacetime
	Manchak 2011

	Is this first interpretation ever endorsed in the literature? Perhaps not in such an explicit, and obviously unacceptable, form. But it is arguably a mere rephrasing of another interpretation that has been widely endorsed. On this interpretation, spacetime is locally flat in the sense that one can always “transform away” arbitrary gravitational effects by 
	4 An anonymous reviewer questions our use of the word “interpretation” throughout this section. Here is how we see what we are doing. The claim “spacetime is locally (approximately) flat” appears to be ambiguous, in the sense that different authors interpret it differently. Here we identify several such interpretations and offer precise statements (“explications”) intended to capture the meaning of the claim under each interpretation.
	4 An anonymous reviewer questions our use of the word “interpretation” throughout this section. Here is how we see what we are doing. The claim “spacetime is locally (approximately) flat” appears to be ambiguous, in the sense that different authors interpret it differently. Here we identify several such interpretations and offer precise statements (“explications”) intended to capture the meaning of the claim under each interpretation.
	Note, too: Occasionally the term “locally flat” is used in geometric topology (e.g., ) to denote a particularly “nice” or “neat” embedding of one topological manifold into another. Clearly that usage is not applicable to the case at hand.
	Brown 1962


	5 Note that in the literature, “locally isometric” denotes several distinct relations. For example, in contrast with this asymmetric relation, one can also define its symmetrization: spacetimes (M, g) and (M′, g′) are (mutually) locally isometric when each is locally isometric to the other.
	5 Note that in the literature, “locally isometric” denotes several distinct relations. For example, in contrast with this asymmetric relation, one can also define its symmetrization: spacetimes (M, g) and (M′, g′) are (mutually) locally isometric when each is locally isometric to the other.
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	ab


	choosing appropriate coordinates, much as one can fictitious forces. Such interpretations 
	choosing appropriate coordinates, much as one can fictitious forces. Such interpretations 
	identify gravitational effects not directly with curvature, but with the coordinate-
	dependent Christoffel symbols of the metric connection. This claim was what many early 
	commentators, such as Pauli 
	(
	1921, 705–6
	1921, 705–6

	)
	, identified with the equivalence principle.
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	Coordinate Chart Interpretation, first pass: In any sufficiently small region of any relativistic spacetime, coordinates may be chosen relative to which the Christoffel symbols of the Levi-Civita (i.e., unique torsion-free metric-compatible) connection vanish.
	But once again, as has been observed by many others (e.g., ; ; ; ), this claim is false in general; and it is true of a spacetime precisely when that spacetime is flat. Here the basic facts are that the Christoffel symbols are constant in an open neighborhood if and only if the Riemann tensor vanishes in that neighborhood, and that the Riemann tensor is a tensor—and thus it vanishes in any coordinate system if and only if it is the zero tensor.
	Eddington 1924
	Friedman 
	1983
	Norton 1985
	Synge 1960
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	The problem with these first two readings is that they insist that spacetime is flat “in a neighborhood” of any point, which can hold only if it is flat everywhere. But sometimes, authors who appear to endorse such readings explain that the neighborhoods in question must be “infinitesimal” (see, e.g., ). This suggests that perhaps local flatness should not be associated with an open set of spacetime points at all, but rather with the points themselves. One possible reading of this idea would be that “local 
	Reichenbach 1958, 226
	1997, 71
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	These considerations lead to our third interpretation:
	Tangent Space Interpretation: The tangent space at a point of spacetime is, or is equivalent to, Minkowski spacetime.
	At first blush, this proposal has something going for it. The tangent space at any point of a spacetime manifold is a four-dimensional vector space, which means, in particular, 
	6 See Norton () or Lehmkuhl () for a discussion of this point, and for a contrast with Einstein’s own views. In a word, Einstein only claimed equivalence for a homogeneous gravitational field, that is, constant Christoffel symbols (). One can show that the Christoffel symbols are constant in a neighborhood if and only if the metric is flat there, so Einstein’s view is not an example of the following first pass of the Coordinate Chart Interpretation.
	6 See Norton () or Lehmkuhl () for a discussion of this point, and for a contrast with Einstein’s own views. In a word, Einstein only claimed equivalence for a homogeneous gravitational field, that is, constant Christoffel symbols (). One can show that the Christoffel symbols are constant in a neighborhood if and only if the metric is flat there, so Einstein’s view is not an example of the following first pass of the Coordinate Chart Interpretation.
	1985
	2021
	Janssen 2012


	7 The fact that this claim was refuted by Eddington in the 1920s did little to stop others from repeating it from time to time. Even Misner et al. () seem to endorse this claim, for instance when they assert that “one can always construct local inertial frames at a given event ; and as viewed in such frames, free particles must move along straight lines, at least locally—which means  must vanish, at least locally.” Here, the  are the Christoffel symbols for the coordinate system generated by the mentioned f
	7 The fact that this claim was refuted by Eddington in the 1920s did little to stop others from repeating it from time to time. Even Misner et al. () seem to endorse this claim, for instance when they assert that “one can always construct local inertial frames at a given event ; and as viewed in such frames, free particles must move along straight lines, at least locally—which means  must vanish, at least locally.” Here, the  are the Christoffel symbols for the coordinate system generated by the mentioned f
	1973, 285
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	Misner et al. 1973, 297


	8 See also Friedman (), who similarly draws a connection between Minkowski spacetime and the tangent space at each point of a relativistic spacetime.
	8 See also Friedman (), who similarly draws a connection between Minkowski spacetime and the tangent space at each point of a relativistic spacetime.
	1983, 183–4


	that it carries the structure of the smooth manifold ℝ
	that it carries the structure of the smooth manifold ℝ
	4
	, just as Minkowski spacetime does. 
	Moreover, the spacetime metric induces a Lorentz-signature metric on the tangent space, 
	and so there is a sense in which the tangent space metrical structure is also arguably the 
	same as that of Minkowski spacetime.

	Nonetheless, there are important differences between the tangent space of a relativistic spacetime and Minkowski spacetime. In the first place, the tangent space is a vector space, while Minkowski spacetime has the structure of an affine space. The difference is significant, as the lack of a preferred point in the latter—the zero element in the former—precludes the classification of individual points as being spacelike, timelike, or null (as opposed to classifying pairs of points as “spacelike [etc.] relate
	An advocate for this interpretation might reply that “local flatness” means that infinitesimal neighborhoods of each point—that is, the tangent space—should be thought of as equivalent to Minkowski spacetime with a distinguished point, since, after all, we are representing a neighborhood of a particular point. Alternatively, one might argue that vector space structure is more structure than affine space structure, and so if any point can be associated with a vector space, then ipso facto it can be associate
	More generally, curvature is a measure of the failure of parallel transport of vectors and tensors around (infinitesimally small!) closed curves to return a vector or tensor to its original value; in that sense, it is a characterization of the relationship between the tangent spaces at nearby points, as determined relative to some connection. Observing that the tangent space at each point has the structure of a vector space with a Minkowskian inner product, though, says nothing at all about parallel transpo
	Torretti () proposes a different take on the tangent space interpretation. He writes, “The Minkowski inner product on each tangent space induces—through the exponential mapping—a local approximate Minkowski geometry on a small neighborhood of each worldpoint.” Fix a spacetime (M, g). The exponential map, at a point p ∈ M, is a map from a neighborhood O of the 0 vector in the tangent space TM to some open set U ⊆ M containing p; the map is defined relative to a derivative operator on M by taking each vector 
	1996, 240
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	The fact that this local Minkowski geometry is only approximate importantly distinguishes Torretti’s claims from the literal interpretation discussed above. As Torretti himself emphasizes, the existence of normal coordinates generated in this way in no sense implies that the spacetime is flat, even at p. As he acknowledges, “The mere fact that the tangent space has a Minkowskian … inner product—as it obviously does everywhere, by definition, on the manifolds under consideration—says nothing whatsoever about
	Torretti 1996, 
	314n13

	Torretti’s invocation of Lorentz normal coordinates brings us to another common interpretation of the local flatness claim. On this interpretation, it is the existence of certain normal coordinates at each point or along certain curves, such as timelike geodesics, that is supposed to capture the sense in what spacetime is locally flat.
	Coordinate Chart Interpretation, second pass: At any point of any relativistic spacetime (or along certain curves), local coordinates may be chosen so that, at that point (or along that curve), (a) the components of the metric agree with the Minkowski metric in standard coordinates and (b) all Christoffel symbols vanish.
	This is true. And as we will discuss in the next section, it is very close to our own preferred interpretation. But even so, we think this way of stating things obscures what is going on, for several reasons.
	First, it is not clear what coordinates have to do with the basic claim of local flatness. On the one hand, any coordinate system gives rise to a flat derivative operator, and coordinates can always be used to define flat metrics. If local flatness is nothing more than the observation that there exist coordinates in neighborhoods of any points, then, just as with the tangent space interpretation, the present interpretation seems too weak to be of interest. In particular, it seems to say nothing about the lo
	Likewise, what significance should be attributed to the fact that Christoffel symbols can be made to vanish at a point or along a curve? After all, given any derivative operator, including any flat derivative operator, one can also always find coordinates for which Christoffel symbols for that derivative operator do not vanish at any point. So the existence of coordinate systems in which Christoffel symbols do (or do not) vanish does not obviously reveal any coordinate-independent facts about the derivative
	A second set of issues concerns whether the interpretation is intended as an assertion of the existence of coordinates with certain properties (such as being normal), or if it is supposed to come with a further claim about the significance of particular coordinate systems—say, ones constructed from the exponential map, à la Torretti—in which case, it is not clear just which properties are supposed to be the ones that realize the claim about local flatness. That is: is the relevant fact supposed to be the ex
	To make matters worse, some authors move quickly from the observation (or argument) that certain coordinates exist to comments about their physical significance. For instance, some authors suggest that local flatness obtains because one can find a class of coordinates known as Fermi normal coordinates along timelike geodesics, which are constructed by parallel transporting along the geodesic an orthonormal frame whose timelike vector is tangent to the geodesic, and then extending it to a neighborhood of the
	9
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	Still, as we said above, we think this final interpretation does express something with meaningful content about the structure of relativistic spacetimes—something that is well-expressed by the claim “spacetime is locally approximately flat.” In the next section, we will restate and generalize this interpretation in a way that makes that content more perspicuous.
	3. IN WHAT SENSE IS SPACETIME LOCALLY FLAT?
	We have now presented four interpretations of the claim “spacetime is locally flat in general relativity.” Two of these were unacceptable because they were simply false claims about relativistic spacetimes; the third was unacceptable because it had so little content that it seemed it could not do any foundational work at all. The final one, related to the 
	9 See, for instance, Schild (), Friedman (), or Knox (). Poisson () offers a nice example of the ambiguity: he states a “local flatness theorem” that asserts the existence of Lorentz normal coordinates; he then proceeds to indicate that the particular coordinates he constructs to prove the theorem indicate something about what freely falling observers will “see.” But Lorentz normal coordinates are not unique, and so it is unclear whether local flatness is an assertion about the existence of such coordinates
	9 See, for instance, Schild (), Friedman (), or Knox (). Poisson () offers a nice example of the ambiguity: he states a “local flatness theorem” that asserts the existence of Lorentz normal coordinates; he then proceeds to indicate that the particular coordinates he constructs to prove the theorem indicate something about what freely falling observers will “see.” But Lorentz normal coordinates are not unique, and so it is unclear whether local flatness is an assertion about the existence of such coordinates
	1967, 20–23
	1983, 199–200
	2013, §2
	2004, 11–12


	existence of normal coordinates on certain neighborhoods, does capture a sense in which 
	existence of normal coordinates on certain neighborhoods, does capture a sense in which 
	spacetime is locally approximately flat—but we argued that common expressions of this 
	interpretation in the literature are unsatisfactory. We will now proceed to rephrase and 
	generalize the final interpretation of the previous section.
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	We begin by stating and proving a theorem.
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	Theorem 1 (Local Flatness). Given any spacetime (M, g), any embedded curve γ : I → M therein, and any point p ∈ γ[I], there exists, on some neighborhood O containing p, a flat metric ḡ such that on γ[I] Ç O, (a) g = ḡ and (b) , where  and  are the Levi-Civita derivative operators associated with g and ḡ, respectively.
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	Here an “embedded curve” is a curve whose image is a one-dimensional embedded submanifold.
	Proof. Given any torsion-free derivative operator  on a smooth manifold M, there exists, in sufficiently small neighborhoods of sufficiently small segments of an arbitrary (non-self-intersecting) curve γ, flat derivative operators that agree with  on the intersection of the neighborhood and segment of γ (, Thm. II.3.2). Let  be the Levi-Civita derivative operator compatible with g. For any point p ∈ γ[I], choose some such flat derivative operator  defined on a suitably small neighborhood O meeting γ[I] and 
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	There are several technical remarks to make before proceeding. First, note that the theorem does not require γ to be a geodesic or even timelike. Indeed, it can be generalized from embedded curves to embedded submanifolds with vanishing intrinsic curvature (, Thm. II.5.1, II.5.2; ). This shows that the interpretation of γ as the worldline of an observer is not essential to the result: all that is needed is an intrinsically flat embedded submanifold, of which points and embedded curves are always examples. O
	Iliev 
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	10 As will be clear presently, the relationship between the sense of “local approximate flatness” captured by Theorem 1 and that expressed by the second coordinate chart interpretation above is very similar to that between “intrinsic” or coordinate-free characterizations of geometrical structures and ones that invoke classes of coordinate systems adapted to those structures (). To some extent, any preference between them is a matter of taste, and for many purposes, it is very useful to have both characteriz
	10 As will be clear presently, the relationship between the sense of “local approximate flatness” captured by Theorem 1 and that expressed by the second coordinate chart interpretation above is very similar to that between “intrinsic” or coordinate-free characterizations of geometrical structures and ones that invoke classes of coordinate systems adapted to those structures (). To some extent, any preference between them is a matter of taste, and for many purposes, it is very useful to have both characteriz
	Wallace 2019


	11 We do not claim that this theorem is notably original—it follows trivially from work by Ó Raifeartaigh (). (See also .) But we have not seen it stated in this form before, nor have we seen it discussed in the context of claims about local flatness in the philosophical literature. So we think there is some value in stating and proving it here.
	11 We do not claim that this theorem is notably original—it follows trivially from work by Ó Raifeartaigh (). (See also .) But we have not seen it stated in this form before, nor have we seen it discussed in the context of claims about local flatness in the philosophical literature. So we think there is some value in stating and proving it here.
	1957
	Iliev 2006


	12 Iliev () has a nice discussion of this point.
	12 Iliev () has a nice discussion of this point.
	2006, §II.3.1


	the curve; one could relax the assumption that the curve is embedded, but then one would 
	the curve; one could relax the assumption that the curve is embedded, but then one would 
	have to work with neighborhoods (in 
	M
	) of images of neighborhoods of parameter values 
	(in 
	I
	), which seems less natural to us.

	As we have indicated before, there is a certain sense in which Theorem 1 expresses the same facts as a (strengthened) version of the second coordinate chart interpretation above. In particular, anything that follows from the existence of normal coordinates also follows from the existence of the flat derivative operators considered here, and vice versa. This is because normal coordinates always give rise to a flat derivative operator that will agree with the spacetime Levi-Civita derivative operator wherever
	Even so, we suggest that the most natural interpretation of the claim that spacetime is locally approximately flat is given by Theorem 1. Why? First, we have stated this result as a claim about the existence of certain structures on regions of spacetime—namely, a flat metric and derivative operator that coincide, along curve segments, with the spacetime metric and its derivative operator. Moreover, this flat metric approximates the background metric near p, in a sense we can make precise. Fix a spacetime (M
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	(This norm is the Frobenius norm on the tensors expressed in terms of their components relative to the frame field.) Using this family of norms, we can define a family of distance functions on tensors as:
	max{0,,}(,;,)=sup|()()|,jUjkhUdffhkff
	max{0,,}(,;,)=sup|()()|,jUjkhUdffhkff

	where  abbreviates “act with j derivatives,”  is the Levi-Civita derivative operator determined by h, and (f – f′) abbreviates . What this distance function does is return the greatest distance, relative to h, between f and f′ or any of their first k derivatives, ranging over all points in U. And the distance between f and f′ (or their 
	()j
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	13 We adapt the following definitions from Fletcher (), who treats the special case of approximate local spacetime symmetries, and the interpretation of the structures invoked from Fletcher () and Fletcher ().
	13 We adapt the following definitions from Fletcher (), who treats the special case of approximate local spacetime symmetries, and the interpretation of the structures invoked from Fletcher () and Fletcher ().
	2020
	2018, 20
	2019, §4


	14 Nothing in the definition demands specializing to the case of U being relatively compact, but this restriction is most relevant for what follows. Implicit in this choice is understanding that for the present investigation, approximation at single spacetime points is insufficient but approximation across the entire spacetime is unnecessary. What is important seems to be approximation on extended but bounded regions. That is why we examine relatively compact regions, similarity across which can be captured
	14 Nothing in the definition demands specializing to the case of U being relatively compact, but this restriction is most relevant for what follows. Implicit in this choice is understanding that for the present investigation, approximation at single spacetime points is insufficient but approximation across the entire spacetime is unnecessary. What is important seems to be approximation on extended but bounded regions. That is why we examine relatively compact regions, similarity across which can be captured
	Fletcher, 2016


	15 This definition can be extended to arbitrary tensors, but for present purposes only covariant ones are of interest, and so we limit attention to those to simplify notation.
	15 This definition can be extended to arbitrary tensors, but for present purposes only covariant ones are of interest, and so we limit attention to those to simplify notation.

	derivatives, respectively) is simply the Euclidean magnitude of the differences in their 
	derivatives, respectively) is simply the Euclidean magnitude of the differences in their 
	components expressed with respect to the frame field 
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	The case of greatest interest here will be when we use distance functions defined in this way to measure distances between different Lorentzian metrics on U. Indeed, let g, ḡ, and O be as in the statement of Theorem 1. Then it immediately follows from the smoothness of g and ḡ that for any h on O and any ϵ > 0, there exists a neighborhood U ⊆ O such that d (g,ḡ; h, 1) < ϵ. Thus we see that not only do the two metrics coincide at p, but they also approximate one another, to first order, arbitrarily well in s
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	As we saw above, claims about local flatness are sometimes expressed as the assertion that (every) spacetime is locally (approximately) Minkowskian. This idea can be captured in the present context using Theorem 1 and the notion of “approximate isometry” introduced by Flecher (2020). With this distance function in hand, consider spacetimes (M, g) and (M′, g′) with open subsets U ⊆ M and U′ ⊆ M′, respectively, both of compact closure, and suppose that there is a diffeomorphism χ : U′ → U. Then given any Riem
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	Theorem 1 then has the following corollary.
	Corollary 2. Given any spacetime (M, g), embedded curve γ : I → M, point p ∈ γ[I], compact neighborhood U of p, Riemannian metric h on U, real ϵ > 0, and point p′ in Minkowski spacetime (ℝ, η), there exist neighborhoods O ∋ p and O′ ∋ p′, an embedded curve γ′ : I′ → ℝ with p′ ∈ γ′ [I′], and an (h, 1, ϵ)-isometry χ: O′ → O between (O, g) and (O′, η) satisfying χ ◦ γ′ = γ on I′ and χ(g) = η on γ′[I′].
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	Proof. By Theorem 1, there is a neighborhood O ∋ p on which exists a flat metric ḡ such that on γ[I] Ç O, g= ḡ and , where  and  are the Levi-Civita derivative operators associated with g and ḡ, respectively. Furthermore, O can be chosen to be relatively compact and sufficiently small to be in U, diffeomorphic to ℝ, and satisfy d(g,ḡ; h, 1) < ϵ. This last property follows from the facts that h is smooth and O is a relatively compact neighborhood of γ[I] Ç O. Therefore there is an isometric embedding ψ of (O
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	This corollary captures the sense in which every spacetime is “locally approximately Minkowski,” to first order, in neighborhoods of any embedded curve. One can also state a sense in which this local approximation holds only to order 1. In fact, we have the following:
	16 Here and in what follows, if (M, g) is a spacetime and U is an open subset of M, we will use “(U, g)” to denote the spacetime with manifold U and metric g restricted to U. We will not explicitly indicate that g is restricted in this way.
	16 Here and in what follows, if (M, g) is a spacetime and U is an open subset of M, we will use “(U, g)” to denote the spacetime with manifold U and metric g restricted to U. We will not explicitly indicate that g is restricted in this way.
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	Remark 3. Cor. 2 holds as stated, but with k > 1, only if the Riemann tensor associated with g vanishes everywhere.
	ab

	Thus we see that even approximate local flatness to order 2 or greater can hold only for spacetimes that are flat simpliciter. This result follows from the tensorial character of curvature as the deviation of the second covariant derivative of the metric from zero. Any metric with non-zero curvature at a point p will fail to fall within ϵ of a flat metric in any neighborhood of that point, to order 2 or greater, for any fixed h and sufficiently small ϵ.
	ab

	Yet another advantage of the present approach to local approximate flatness is that it clarifies the uniqueness properties of this approximating structure. As we noted above, in general there are many normal coordinates associated with any point or curve; one might wonder whether some of them are privileged, or even how they are related. Theorem 1 provides insight into this situation. First, given a flat metric with the properties described in the Theorem, there will be be many different normal coordinates 
	On the other hand, we also have the following.
	Corollary 4. In general, for any sufficiently small neighborhood of any point on the image of an embedded curve in a spacetime, there are (infinitely) many flat metrics with the properties described in Theorem 1.
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	Proof. Fix a spacetime (M, g) and curve γ : I → M. Choose any point p ∈ γ[I] and let O be some neighborhood of p on which there exists a flat metric ḡ that agrees with g, to first order, on γ[I] Ç O. Let ϕ : O → O be any diffeomorphism on O such that ϕ takes each point in γ[I] Ç O to itself, ϕ acts as the identity on the tangent space of each point on γ[I] Ç O, and ϕ is not the identity outside γ[I] Ç O. Then we claim ϕ(ḡ) will also be flat and agree with g to first order on γ[I] Ç O. For flatness, observe 
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	Thus, the failure of uniqueness of normal coordinates corresponds not just to the fact that there are many coordinate systems adapted to a given flat metric, but also that there are many distinct flat metrics that approximate a given (curved) metric along a curve. It follows that while every spacetime is locally approximately flat, none is canonically so, 
	17 Another construction is available that may help drive the point home. We will describe it for geodesics, as it’s simplest to state in that context; similar constructions are available for general curves. Let γ : I → M be a geodesic in a spacetime (M, g) with Levi-Civita derivative , and let  be a flat derivative operator on a neighborhood O of (some point of) γ[I] agreeing with  on γ[I]. Then , where γ is the unit tangent to γ parallel transported to all of O with  and α is any scalar field such that (a)
	17 Another construction is available that may help drive the point home. We will describe it for geodesics, as it’s simplest to state in that context; similar constructions are available for general curves. Let γ : I → M be a geodesic in a spacetime (M, g) with Levi-Civita derivative , and let  be a flat derivative operator on a neighborhood O of (some point of) γ[I] agreeing with  on γ[I]. Then , where γ is the unit tangent to γ parallel transported to all of O with  and α is any scalar field such that (a)
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	as there are many flat metrics locally approximating any given metric at any given point. 
	as there are many flat metrics locally approximating any given metric at any given point. 
	This failure of uniqueness is obscured, in our view, by approaches that focus on particular 
	construction procedures, or on the existence of certain coordinates, because not all such 
	flat metrics (or normal coordinates) arise from a single construction procedure.

	Thus we see that the sense of local flatness captured by Theorem 1 offers some immediate advantages, mostly of clarity and elegance, over the second coordinate chart interpretation, above. How significant are these advantages? On the one hand, the claims we have made thus far could be rephrased using Lorentz normal coordinates, and they would still follow. In that sense we have added nothing. Nonetheless, we suggest that thinking in terms of flat approximating metrics leads to a fruitfully different perspec
	In the next two sections, we will draw out some further consequences of Theorem 1 and Corollary 2.
	4. IS FLATNESS SPECIAL?
	In section 3, we presented two ways of expressing the sense in which any relativistic spacetime is locally approximately flat. We also argued that these statements expressed the strongest sense of local approximate flatness available—at least insofar as one cannot achieve approximation to order greater than 1. Now we turn to the question of how to best understand the significance of these results. In particular, we wish to investigate the role of flatness in claims about local flatness. When one claims that
	As a first remark, there is a sense in which Minkowski spacetime is distinguished from other spacetimes, in a way that makes the fact that every spacetime is locally approximately flat especially salient. This is because flat spacetime is often a much more convenient setting for performing calculations and other analyses, and often useful constructions—such as Fourier decompositions, vector and tensor integration, and so on—are only generally defined in that context. It is useful to be able to immediately e
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	But one might still ask whether there is a deeper sense in which flat spacetime is distinguished in Theorem 1. And the answer is “no.” This result is more naturally expressed using the resources of Corollary 2. While Minkowski spacetime features in the statement of that result in the above section, it can in fact be replaced with an arbitrary spacetime:
	Theorem 5. Given any spacetime (M, g), embedded curve γ : I → M, point p ∈ γ[I], compact neighborhood U of p, Riemannian metric h on U, real ϵ > 0, spacetime (M′, g′), and point p′ ∈ M′, there exist neighborhoods O ∋ p and O′ ∋ p′, an embedded curve γ′ : I′ → M′ with 
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	18 There are special cases that admit of generalizations to curved spacetimes, such as integration involving differential forms and partial Fourier decompositions in spacetimes admitting certain symmetries (e.g., stationarity), but these are not the general cases to which we refer here.
	18 There are special cases that admit of generalizations to curved spacetimes, such as integration involving differential forms and partial Fourier decompositions in spacetimes admitting certain symmetries (e.g., stationarity), but these are not the general cases to which we refer here.
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	Proof. Pick any point  of Minkowski spacetime. By Corollary 2, there exist neighborhoods  and , an embedded curve  with , and an (h,1,ϵ/2)-isometry  between  and  satisfying  on  and  on . Now, there is a linear isomorphism  that preserves the classification of vectors into timelike, null, and spacelike. In addition, the exponential map  is a diffeomorphism, and so is the exponential map  onto its image. Thus we may define, for a sufficiently small interval domain containing , the curve , and by definition 
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	Next, note that for any sufficiently small compact neighborhood of p,  is a Riemannian metric on a compact neighborhood of p′. So, by corollary 2, there exist neighborhoods  and , an embedded curve  with , and an -isometry  between  and  satisfying  on  and  on . In particular,  and  coincide where they are both defined since  can be chosen to coincide with  where they are both defined.
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	So by the triangle inequality, , i.e., χ is an (h,1, ϵ)-isometry. 
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	If we call any spacetime fulfilling the role of Minkowski spacetime in Corollary 2 a universal locally approximating spacetime, then Theorem 5 shows that every spacetime is a universal locally approximating spacetime. For example, one could equally well take (anti-)de Sitter spacetime or Schwarzschild spacetime to play this role. So, it may be misleading to assert that “free-falling observers see no effect of gravity in their immediate vicinity” (); one might just as well say “free-falling observers see the
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	Poisson 2004, 11

	All this said, the fact that other spacetimes are universal locally approximating does not imply that Minkowski spacetime is not—and so one might ask whether there are other reasons to think that Minkowski spacetime has a distinguished role to play (beyond its pragmatic advantages already noted). One possible answer would return to an issue we 
	19 See Wise () for an application of this idea using Cartan geometry to describe MacDowell-Mansouri gravity.
	19 See Wise () for an application of this idea using Cartan geometry to describe MacDowell-Mansouri gravity.
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	raised previously, in section 2: in some discussions of local (approximate) flatness, authors 
	raised previously, in section 2: in some discussions of local (approximate) flatness, authors 
	present particular constructions of normal coordinates, or flat approximating metrics, 
	motivated by physical considerations. For instance, as we noted above, Fermi normal 
	coordinates along a timelike geodesic may be thought of as the coordinates that a certain 
	kind of idealized inertial observer might assign to spacetime—the vectors of the associated 
	frame might represent something like an ideal clock and rigid measuring rods. The fact 
	that these coordinates may be interpreted as standard Minkowski coordinates adapted to a 
	particular flat metric that approximates the spacetime metric along the observer’s worldline 
	might be taken to give Minkowski spacetime a special status as a universal approximating 
	spacetime. In other words, the argument would go, it is not just that spacetime is locally 
	approximately flat; it is that certain observers, under certain idealized circumstances and 
	using certain prescribed procedures, would naturally construct a particular approximating 
	metric, which happens to be Minkowskian—and not, say, (anti-)de Sitter. Authors who 
	invoke local (approximate) flatness to explain the success of special relativity may well 
	have something like this argument in mind.

	Perhaps this is true—though we emphasize that it is not clear how this argument really yields a special sense in which spacetime is locally approximately flat. Moreover, this interpretation of the Fermi normal coordinate construction is not conceptually innocent, as perfectly rigid objects exist only under very special circumstances in general relativity, circumstances not fulfilled in most cases of interest (e.g., involving acceleration or geodesic deviation). But even if we set that issue aside, it remain
	5. LOCAL APPROXIMATE POINCARÉ SYMMETRY
	There is another variant on the claim that spacetime is locally approximately Minkowskian that one sometimes sees in the literature, according to which spacetime is said to exhibit, locally and approximately, the symmetries of Minkowski spacetime: that is, that spacetime is locally approximately Poincaré invariant. In this penultimate section, we turn to discuss this claim in light of Theorems 1 and 5.
	In fact, several different notions of “local approximate Poincaré invariance” are to be found in the literature; here, we focus on one recently introduced by Fletcher (). Fletcher defines (h, k, ϵ)-approximate isometries (or symmetries) as we do here; he then considers smooth vector fields ξ near a point p whose one-parameter families of diffeomorphisms, 
	2020
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	a

	20 Read et al. () have also introduced notions of “local Poincaré invariance,” but Fletcher () argues that the definition they give of local Poincaré invariance of a spacetime is unsatisfactory. (See also .) The alternative definition that Fletcher proposes is intended to address somewhat different issues from those that concern Read et al., and it is not clear that it can play the role in their arguments that their own definition does. But a full assessment of that question would take us too far afield, an
	20 Read et al. () have also introduced notions of “local Poincaré invariance,” but Fletcher () argues that the definition they give of local Poincaré invariance of a spacetime is unsatisfactory. (See also .) The alternative definition that Fletcher proposes is intended to address somewhat different issues from those that concern Read et al., and it is not clear that it can play the role in their arguments that their own definition does. But a full assessment of that question would take us too far afield, an
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	ab
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	whose Lie derivatives 
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	, 
	the one parameter families of diffeomorphisms generated by those vector fields 
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	ϵ
	)
	-
	approximate symmetries on sufficiently small neighborhoods of 
	p.
	 He 
	then shows that every spacetime has local approximate Poincaré symmetry, to any order 
	and relative to any metric 
	h
	ab
	,
	 near every point.

	In fact, though Fletcher does not emphasize this, on his definitions the following holds: any smooth vector field ξ defined near any point p in any relativistic spacetime generates (h, k, ϵ)-approximate symmetries, for all k and h. This follows simply from the smoothness of all of the structures under consideration. So the key move in his argument that every spacetime has local approximate Poincaré symmetry is to show that one can always find smooth vector fields, near any point, that satisfy the commutatio
	a
	ab
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	ab
	ab
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	In fact, a similar moral holds if one adopts a slightly stronger notion of when a smooth vector field generates an “approximate local symmetry” than Fletcher explicitly endorses. Let us say that a smooth vector field ξ on a relativistic spacetime (M, g) generates an approximate local symmetry near a point p ∈ M if  at p. This definition captures the idea that not only is the difference between g and the flow of g along ξ bounded in sufficiently small neighborhoods, but that the derivative of g along ξ also 
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	ab
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	ab
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	The argument sketched above establishes that every spacetime admits local approximate Poincaré symmetries. This is because, given any point p ∈ M and any flat metric ḡ approximating g in the sense of Theorem 1 at p, if ξ is a Killing vector field for ḡ at p, then
	*
	ab
	ab
	a
	ab

	()()==2=2=ababababgg∇∇ξξ¯ξξ0
	()()==2=2=ababababgg∇∇ξξ¯ξξ0

	at p, where  and  are the Levi-Civita derivative operators associated with ḡ and g, respectively, and we have made use of the fact that, at p, . Thus the exact Poincaré symmetries of the approximating metric ḡ gives rise to approximate Poincaré symmetries 
	
	
	ab
	ab
	=
	ab
	*

	21 Indeed, a tensor field is smooth at a point p if and only if every smooth vector field generates (h, k, ϵ)-approximate symmetries, for all k and h, near p.
	21 Indeed, a tensor field is smooth at a point p if and only if every smooth vector field generates (h, k, ϵ)-approximate symmetries, for all k and h, near p.
	ab


	22 This definition of an approximate local Killing vector field is apparently the same as one implicitly adopted by Sus ().
	22 This definition of an approximate local Killing vector field is apparently the same as one implicitly adopted by Sus ().
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	*
	of the original metric,
	 g
	ab
	. 
	Once again, the approximate local Poincaré symmetries
	 of a 
	generic metric
	 g
	ab
	 
	will fail to be unique, in the sense that they will be realized relative to 
	different representations of the Poincaré algebra near
	 p,
	 corresponding to the different flat 
	metrics that approximate
	 g
	ab
	 
	to first order near
	 p
	.

	One can push this line of thought even further by making use of Theorem 5. In particular, we have just seen that there is a relationship between the local (exact) symmetries of a flat metric that approximates a given metric g near a point p and the local approximate Poincaré symmetries of g. But in light of Theorem 5, identical arguments show that the symmetries of any relativistic spacetime can be implemented as local approximate symmetries near any point of any spacetime at all. In other words, while ever
	ab
	ab
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	Taken together, these observations clarify just how weak the property of “approximate local invariance under some spacetime symmetry group” is. We take this point to amplify remarks made by Fletcher () in his original discussion of approximate local Poincaré symmetries, where he argues that the existence of such symmetries has no logical relationship to any “local symmetries” (or other substantive properties) of matter equations. We also wish to emphasize an important distinction that is especially importan
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	6. INTERLUDE
	In this part, we have considered several possible interpretations of the claim that relativistic spacetimes are “locally approximately Minkowskian” or “locally approximately flat.” We argued that two possible interpretations were simply false and that a third was too weak to have substance. On the fourth interpretation we offered—the second of two coordinate chart interpretations—the claim is true, but its significance was difficult to fully assess. We then stated and proved Theorem 1, which captures a prec
	This final interpretation is closely related to the second coordinate chart interpretation just mentioned. But recasting things as we did, in terms of the existence of an approximating flat metric, allowed us to clarify certain features of local flatness that do not appear to have been 
	23 It is perhaps worth noting that not all local approximate symmetries or symmetries* arise in this way. For instance, every relativistic spacetime also has local approximate Euclidean symmetries*, even though no Riemannian metric can approximate a Lorentzian one in the sense of Theorem 1. To see this, note that in normal coordinates near any point of any spacetime (M, g), one can always construct a flat Riemannian metric whose Levi-Civita derivative operator is the coordinate derivative operator, and thus
	23 It is perhaps worth noting that not all local approximate symmetries or symmetries* arise in this way. For instance, every relativistic spacetime also has local approximate Euclidean symmetries*, even though no Riemannian metric can approximate a Lorentzian one in the sense of Theorem 1. To see this, note that in normal coordinates near any point of any spacetime (M, g), one can always construct a flat Riemannian metric whose Levi-Civita derivative operator is the coordinate derivative operator, and thus
	ab
	ab


	24 Compare with Sus ().
	24 Compare with Sus ().
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	widely recognized before. In particular, we showed, in section 3, that the approximating 
	widely recognized before. In particular, we showed, in section 3, that the approximating 
	flat metric is not unique. In other words, while it is true that every spacetime is locally 
	approximately flat, it is not canonically so—which means that one cannot unambiguously 
	invoke “the” approximate Minkowski structure associated with a point or curve. Particular 
	physical constructions or idealized observational contexts might suggest particular choices 
	of approximating flat metric, but these are privileged only relative to those further choices.

	We also showed that although there is a sense in which every spacetime is locally approximately Minkowskian, Minkowski spacetime is not the unique universal approximating spacetime, and that, in fact, every spacetime locally approximates every other spacetime. We used this result to cast doubt on the idea that the local approximate Minkowski character of spacetime carried great foundational (as opposed to pragmatic) significance. The upshot of all of this is that while one can isolate a precise and accurate
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	Finally, we used these results to show that although every spacetime admits local approximate Poincaré symmetries near any point, in the sense introduced by Fletcher () and in another, slightly stronger sense that we introduced here, there are in general infinitely many ways in which they do so, and so, again, one cannot unambiguously speak of “the” local approximate Poincaré symmetries of a spacetime. Indeed, not only does every spacetime admit local approximate Poincaré symmetries in many distinct senses 
	2020

	In the next part, we will further develop and apply these ideas in the context of a related set of claims, to the effect that general relativity is “locally special relativistic” because matter in general relativity behaves, locally, as if it were in flat spacetime.
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