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1 Introduction

I love information upon all subjects that come in my way, and espe-
cially upon those that are most important.

Thus boldly declares Euphranor, one of the defenders of Christian faith in
Berkley’s Alciphron (Berkeley, (1732), Dialogue 1, Section 5, Paragraph 6/10).
Evidently, information has been an object of philosophical desire for some time,
well before the computer revolution, Internet or the dot.com pandemonium (see
for example Dunn (2001) and Adams (2003)). Yet what does Euphranor love,
exactly? What is information? The question has received many answers in dif-
ferent fields. Unsurprisingly, several surveys do not even converge on a single,
unified definition of information (see for example Braman 1989, Losee (1997),
Machlup and Mansfield (1983), Debons and Cameron (1975), Larson and Debons
(1983)).

Information is notoriously a polymorphic phenomenon and a polysemantic
concept so, as an explicandum, it can be associated with several explanations,
depending on the level of abstraction adopted and the cluster of requirements
and desiderata orientating a theory. The reader may wish to keep this in mind
while reading this article, where some schematic simplifications and interpreta-
tive decisions will be inevitable. Claude E. Shannon, for one, was very cautious:

The word ‘information’ has been given different meanings by various
writers in the general field of information theory. It is likely that at least
a number of these will prove sufficiently useful in certain applications
to deserve further study and permanent recognition. It is hardly to be
expected that a single concept of information would satisfactorily account
for the numerous possible applications of this general field. (italics added)
(Shannon (1993), p. 180).

Thus, following Shannon, Weaver (1949) supported a tripartite analysis of
information in terms of (1) technical problems concerning the quantification of
information and dealt with by Shannon’s theory; (2) semantic problems relating
to meaning and truth; and (3) what he called “influential” problems concern-
ing the impact and effectiveness of information on human behaviour, which he
thought had to play an equally important role. And these are only two early
examples of the problems raised by any analysis of information.
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Indeed, the plethora of different analyses can be confusing. Complaints about
misunderstandings and misuses of the very idea of information are frequently
expressed, even if to no apparent avail. Sayre (1976), for example, criticised the
“laxity in use of the term ‘information”’ in Armstrong (1968) (see now Armstrong
(1993)) and in Dennett (1969) (see now Dennett (1986), despite appreciating
several other aspects of their work. More recently, Harms (1998) pointed out
similar confusions in Chalmers (1996), who

seems to think that the information theoretic notion of information
[see section 3, my addition] is a matter of what possible states there are,
and how they are related or structured ... rather than of how probabilities
are distributed among them (p. 480).

In order to try to avoid similar pitfalls, this article has been organised into
three main parts.

Section two attempts to draw a map of the main senses in which one may speak
of semantic information, and does so by relying on the analysis of the concept
of data (Fig. 1). Sometimes the several concepts of information organised in the
map can be variously coupled together. This should not be taken as necessarily a
sign of confusion, for in some philosophers it may be the result of an intentional
bridging. The map is not exhaustive and it is there mainly in order to avoid some
obvious pitfalls and to narrow the scope of this article, which otherwise could
easily turn into a short version of the Encyclopedia Britannica. Its schematism
is only a starting point for further research.

After this initial orientation, section three provides a brief introduction to in-
formation theory, that is, to the mathematical theory of communication (MTC).
MTC deserves a space of its own because it is the quantitative approach to the
analysis of information that has been most influential among several philoso-
phers. It provides the necessary background to understand several contempo-
rary theories of semantic information, especially Bar-Hillel and Carnap (1953),
Dretske (1981) and Floridi (2004b)).

Section four focuses entirely on the philosophical understanding of semantic
information, what Euphranor really loves.

The reader must also be warned that an initial account of semantic informa-
tion as meaningful data will be used as yardstick to outline other approaches.
Unfortunately, even such a minimalist account is open to disagreement. In favour
of this approach one may say that at least it is less controversial than others. Of
course, a conceptual analysis must start somewhere. This often means adopting
some working definition of the object under scrutiny. But it is not this com-
monplace that one needs to emphasize here. The difficulty is rather more daunt-
ing. Philosophical work on the concept of (semantic) information is still at that
lamentable stage when disagreement affects even the way in which the problems
themselves are provisionally phrased and framed. Nothing comparable to the
well-polished nature of the Gettier problem is yet available, for example. So the
“you are here” signal provided in this article might be placed elsewhere by other
philosophers. The whole purpose is to put the concept of semantic information
firmly on the philosophical map. Further adjustments will then become possible.
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2 An Informational Map

Information is a conceptual labyrinth, and in this section we shall begin to have a
look at a general map of one of its regions, with the purpose of placing ourselves
squarely in the semantic area. Fig. 1 summarises the main distinctions that are
going to be introduced.

Fig. 1. An informational map

Clearly, percolating through the various points in the map will not make for a
linear journey. Using a few basic examples, to illustrate the less oblivious steps,
will also help to keep our orientation. So let me introduce immediately the one
to which we shall return more often.

2.1 An Everyday Example of Information

Monday morning. You turn on the ignition key of your car, but nothing hap-
pens: the engine does not even cough. The silence of the engine worries you.
Unsurprisingly, you also notice that the red light of the low battery indicator
is flashing. After a few more attempts, you give up and ring the garage. You
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explain that your husband forgot to switch off the lights of the car last night it
is a lie, you did, but you are too ashamed to confess it and now the battery is
flat. The mechanic tells you that the instruction manual of your car explains how
to use jump leads to start the engine. Luckily, your neighbour has everything
you need. You read the manual, look at the illustrations, follow the instructions,
solve the problem and finally drive to the office.

This everyday episode will be our “fruit fly”. Although it is simple and intu-
itive, it provides enough details to illustrate the many ways in which we under-
stand one of our most important resources: information.

2.2 The Data-Based Definition of Information

It is common to think of information as consisting of data. It certainly helps,
if only to a limited extent. For, unfortunately, the nature of data is not well-
understood philosophically either, despite the fact that some important past
debates - such as the one on the given and the one on sense data - have provided
at least some initial insights. There still remains the advantage, however, that
the concept of data is less rich, obscure and slippery than that of information,
and hence easier to handle. So a data-based definition of information seems to
be a good starting point.

Over the last three decades, several analyses in Information Science, in Infor-
mation Systems Theory, Methodology, Analysis and Design, in Information (Sys-
tems) Management, in Database Design and in Decision Theory have adopted
a General Definition of Information (GDI) in terms of data + meaning (see
Floridi 2005b) for an extended bibliography). GDI has become an operational
standard, especially in fields that treat data and information as reified entities
(consider, for example, the now common expressions “data mining” and “infor-
mation management”). Recently, GDI has begun to influence the philosophy of
computing and information (Floridi (1999) and Mingers (1997)).

A clear way of formulating GDI is as a tripartite defintion (Fig. 2):

Fig. 2. The General Definition of Information (GDI)

GDI requires a definition of data. This will be provided in the next section.
Before, a brief comment on each clause is in order.

According to (GDI.1), data are the stuff of which information is made. We
shall see that things can soon get more complicated.

In (GDI.2), “well-formed” means that the data are clustered together
correctly, according to the rules (syntax ) that govern the chosen system, code or
language being analysed. Syntax here must be understood broadly (not just lin-
guistically), as what determines the form, construction, composition or
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Fig. 3. How to jump start your car c©Copyright Bosh 2005

structuring of something (engineers, film directors, painters, chess players and
gardeners speak of syntax in this broad sense). For example, the manual of your
car may show (see Fig. 3) a two dimensional picture of the two cars placed one
near the other, not one on top of the other.

This pictorial syntax (including the linear perspective that represents space by
converging parallel lines) makes the illustrations potentially meaningful to the
user. Using the same example, the actual battery needs to be connected to the
engine in a correct way to function: this is still syntax, in terms of correct physical
architecture of the system (thus a disconnected battery is a syntactic problem).
And of course the conversation you carry on with your neighbour follows the gram-
matical rules of English: this is syntax in the ordinary linguistic sense.

Regarding (GDI.3), this is where semantics finally occurs. “Meaningful” means
that the data must comply with the meanings (semantics) of the chosen system,
code or language in question. However, let us not forget that semantic information
is not necessarily linguistic. For example, in the case of the manual of the car, the
illustrations are such as to be visually meaningful to the reader.

2.3 A Definition of Data

According to GDI, information cannot be dataless but, in the simplest case, it
can consist of a single datum (d). Now a datum is reducible to just a lack of
uniformity (diaphora is the Greek word for “difference), so a general definition
of a datum is (Fig. 4):

Depending on philosophical inclinations, the diaphoric definition of data can
be applied at three levels:

1. data as diaphora de re, that is, as lacks of uniformity in the real world out
there. There is no specific name for such “data in the wild”. A possible sug-
gestion is to refer to them as dedomena (“data” in Greek; note that our word
“data comes from the Latin translation of a work by Euclid entitled Dedom-
ena). Dedomena are not to be confused with environmental data (see section
2.7.1). They are pure data or proto-epistemic data, that is, data before they
are epistemically interpreted. As “fractures in the fabric of being” they can
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Fig. 4. The diaphoric definition of data

only be posited as an external anchor of our information, for dedomena are
never accessed or elaborated independently of a level of abstraction (more
on this in section 4.2.2). They can be reconstructed as ontological require-
ments, like Kant’s noumena or Locke’s substance: they are not epistemically
experienced but their presence is empirically inferred from (and required
by) experience. Of course, no example can be provided, but dedomena are
whatever lack of uniformity in the world is the source of (what looks to
information systems like us as) as data, e.g. a red light against a dark back-
ground. Note that the point here is not to argue for the existence of such
pure data in the wild, but to provide a distinction that (in section 2.6) will
help to clarify why some philosophers have been able to accept the thesis
that there can be no information without data representation while rejecting
the thesis that information requires physical implementation;

2. data as diaphora de signo, that is, lacks of uniformity between (the percep-
tion of) at least two physical states, such as a higher or lower charge in a
battery, a variable electrical signal in a telephone conversation, or the dot
and the line in the Morse alphabet; and

3. data as diaphora de dicto, that is, lacks of uniformity between two symbols,
for example the letters A and B in the Latin alphabet.

Depending on one’s position with respect to the thesis of ontological neu-
trality (section 2.6) and the nature of environmental information (section 2.7.1)
dedomena in (1) may be either identical with, or what makes possible signals in
(2), and signals in (2) are what make possible the coding of symbols in (3).

The dependence of information on the occurrence of syntactically well-formed
data, and of data on the occurrence of differences variously implementable phys-
ically, explain why information can so easily be decoupled from its support. The
actual format, medium and language in which semantic information is encoded
is often irrelevant and hence disregardable. In particular, the same semantic in-
formation may be analog or digital, printed on paper or viewed on a screen, in
English or in some other language, expressed in words or pictures. Interpreta-
tions of this support-independence can vary quite radically. For Dd (see Fig. 4
above) leaves underdetermined

– the classification of the relata (taxonomic neutrality);
– the logical type to which the relata belong (typological neutrality);
– the kind of support required for the implementation of their inequality (on-

tological neutrality); and
– the dependence of their semantics on a producer (genetic neutrality).

We shall now look at each form of neutrality in turn.
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2.4 Taxonomic Neutrality

A datum is usually classified as the entity exhibiting the anomaly, often be-
cause the latter is perceptually more conspicuous or less redundant than the
background conditions. However, the relation of inequality is binary and sym-
metric. A white sheet of paper is not just the necessary background condition
for the occurrence of a black dot as a datum, it is a constitutive part of the
[black-dot-on-white-sheet] datum itself, together with the fundamental relation
of inequality that couples it with the dot. Nothing seems to be a datum per se.
Rather, being a datum is an external property. So GDI endorses the following
thesis:

TaN) a datum is a relational entity.
The slogan is “data are relata”, but GDI is neutral with respect to the identifi-
cation of data with specific relata. In our example, GDI refrains from identifying
either the red light or the white background as the datum. To understand why
there cannot be “dataless information”, we shall now look at the typological
neutrality of GDI.

2.5 Typological Neutrality

According to GDI, information can consist of different types of data as relata
(δ). Five classifications are quite common, although the terminology is not yet
standard or fixed (but see Floridi (1999)). They are not mutually exclusive, and
one should not understand them as rigid: depending on circumstances, on the
sort of analysis conducted and on the level of abstraction adopted, the same
data may fit different classifications.

δ1 Primary data. These are the principal data stored e.g. in a database, for
example a simple array of numbers. They are the data an information-
management system such as the one used in the car to indicate that the
battery needs to be charged is generally designed to convey (in the form of
information) to the user in the first place. Normally, when speaking of data,
and of the corresponding information they constitute, one implicitly assumes
that primary data/information is what is in question. So, by default, the red
light of the low battery indicator flashing is assumed to be an instance of
primary data conveying primary information.

δ2 Secondary data. These are the converse of primary data, constituted by their
absence (one could call them anti-data). Recall how you first suspected that
the battery was flat: the engine failed to make any of the usual noise. Like-
wise, in Silver Blaze, Sherlock Holmes solves the case by noting something
that has escaped everybody else: the unusual silence of the dog. Clearly,
silence may be very informative. This is a peculiarity of information: its ab-
sence may also be informative. When it is, the point is stressed by speaking
of secondary information.

δ3 Metadata. These are indications about the nature of some other (usually
primary) data. They describe properties such as location, format, updating,
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availability, usage restrictions, and so forth. Correspondingly, metainforma-
tion is information about the nature of information. “’The battery is flat’ is
encoded in English” is a simple example.

δ4 Operational data. These are data regarding the operations of the whole data
system and the systems performance. Correspondingly, operational informa-
tion is information about the dynamics of an information system. Suppose
the car has a yellow light that, when flashing, indicates that the car check-
ing system is malfunctioning. The fact that the light is on may indicate
that the low battery indicator is not working properly, thus undermining
the hypothesis that the battery is flat.

δ5 Derivative data. These are data that can be extracted from some data when-
ever the latter are used as indirect sources in search of patterns, clues or
inferential evidence about other things than those directly addressed by the
data themselves, e.g. for comparative and quantitative analyses (ideome-
try). As it is difficult to define this category precisely, a familiar example
may be helpful to convey the point. Credit cards notoriously leave a trail of
derivative information. From someones credit card bill, concerning e.g. the
purchase of petrol in a certain petrol station, one may derive the informa-
tion of her whereabouts at a given time. Again, derivative information is not
something new. Hume provides a beautiful example in these days of global
warming. In the Essays oral, Political, and Literary (Part II, Essay 11. Of
the Populousness of Ancient Nations, Para. 155/186 mp. 448 gp. 432, see
now Hume (1987)) he reports that

It is an observation of LAbbe du Bos, that Italy is warmer at
present than it was in ancient times. The annals of Rome tell us,
says he, that in the year 480 ab U.C. the winter was so severe that
it destroyed the trees. [. . . ] Many passages of Horace suppose the
streets of Rome full of snow and ice. We should have more certainty
with regard to this point, had the ancients known the use of ther-
mometers: But their writers, without intending it, give us informa-
tion, sufficient to convince us, that the winters are now much more
temperate at Rome than formerly.

Hume has just extracted some derivative information from some primary
information provided by LAbbe du Bos.

Let us now return to our question: can there be dataless information? GDI
does not specify which types of data constitute information. This typological
neutrality is justified by the fact that, when the apparent absence of data is not
reducible to the occurrence of negative primary data, what becomes available
and qualifies as information is some further non-primary information μ about σ
constituted by some non-primary data δ.2-δ.5. For example, if a database query
provides an answer, it will provide at least a negative answer, e.g. “no documents
found”. This is primary negative information. However, if the database provides
no answer, either it fails to provide any data at all, in which case no specific
information σ is available so the rule “no information without data” still applies
or it can provide some data δ to establish, for example, that it is running in a



Philosophical Conceptions of Information 21

loop. Likewise, silence, this time as a reply to a question, could represent negative
primary information, e.g. as implicit assent or denial, or it could carry some non-
primary information μ, e.g. about the fact that the person has not heard the
question, or about the amount of noise in the room.

2.6 Ontological Neutrality

By rejecting the possibility of dataless information, GDI also endorses the fol-
lowing modest thesis of ontological neutrality:

ON) no information without data representation.
Following Landauer and Bennett (1985, and Landauer (1987), (1991), (1996),
ON is often interpreted materialistically, as advocating the impossibility of phys-
ically disembodied information, through the equation “representation = physical
implementation”, that is:

ON.1) no information without physical implementation.
ON.1 is an inevitable assumption, when working on the physics of computation,
since computer science must necessarily take into account the physical proper-
ties and limits of the data carriers. Thus, the debate on ON.1 has flourished
especially in the context of the philosophy of quantum information and com-
puting (see Deutsch (1985);(1997) and Di Vincenzo and Loss (1998); Steane
(1998) provides a review). ON.1 is also the ontological assumption behind the
Physical Symbol System Hypothesis in AI and Cognitive Science (Newell and
Simon (1976). But ON, and hence GDI, does not specify whether, ultimately,
the occurrence of every discrete state necessarily requires a material implemen-
tation of the data representations. Arguably, environments in which all entities,
properties and processes are ultimately noetic (e.g. Berkeley, Spinoza), or in
which the material or extended universe has a noetic or non-extended matrix
as its ontological foundation (e.g. Pythagoras, Plato, Descartes, Leibniz, Fichte,
Hegel), seem perfectly capable of upholding ON without necessarily embracing
ON.1. The relata in Dd could be dedomena, such as Leibnizian monads, for ex-
ample. Indeed, the classic realism debate on the ultimate nature of “being” can
be reconstructed in terms of the possible interpretations of ON.

All this explains why GDI is also consistent with two other popular slogans,
this time favourable to the proto-physical nature of information and hence com-
pletely antithetic to ON.1:

ON.2) “It from bit”. Otherwise put, every “it” every particle, every field
of force, even the space-time continuum itself derives its function,
its meaning, its very existence (even if in some contexts indirectly)
from the apparatus-elicited answers to yes-or-no questions, binary
choices, bits. “It from bit” symbolizes the idea that every item of
the physical world has at bottom a very deep bottom, in most
instances an immaterial source and explanation; that which we call
reality arises in the last analysis from the posing of yes-no questions
and the registering of equipment-evoked responses; in short, that all
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things physical are information-theoretic in origin and that this is a
participatory universe (Wheeler (1990), 5);

ON.3) [information is] a name for the content of what is exchanged with
the outer world as we adjust to it, and make our adjustment felt
upon it. (Wiener (1954), 17).

Information is information, not matter or energy. No materialism
which does not admit this can survive at the present day (Wiener
(1961, 132).

ON.2 endorses an information-theoretic, metaphysical monism: the universe’s
essential nature is digital, being fundamentally composed of information as
data/dedomena instead of matter or energy, with material objects as a com-
plex secondary manifestation (a similar position has been defended more re-
cently in physics by Frieden (1998), whose work is based on a loosely Platonist
perspective). ON.2 may but does not have to endorse a computational view of
information processes. ON.3 advocates a more pluralistic approach along similar
lines. Both are compatible with GDI.

A final comment concerning GDI.3 can be introduced by discussing a fourth
slogan:

ON.4) In fact, what we mean by information - the elementary unit of in-
formation - is a difference which makes a difference. (Bateson (1973),
428).

ON.4 is one of the earliest and most popular formulations of GDI (see for example
Franklin (1995), 34 and Chalmers (1996 ), 281). The formulation in Mackay
(1969) - that is ”information is a distinction that makes a difference” - predates
Batesons but it is slightly different from it in that, by speaking of “distinction”
instead of “difference”, it has an epistemological rather than an ontological twist.
A “difference” (a “distinction”) is just a discrete state, namely a datum, and
“making a difference” simply means that the datum is “meaningful”, at least
potentially.

2.7 Genetic Neutrality

Finally, let us consider the semantic nature of the data. How data can come
to have an assigned meaning and function in a semiotic system in the first
place is one of the hardest problems in semantics. Luckily, the point in question
here is not how but whether data constituting information as semantic content
can be meaningful independently of an informee. The genetic neutrality (GeN)
supported by GDI states that:

GeN) δ can have a semantics independently of any informee.
Before the discovery of the Rosetta Stone, Egyptian hieroglyphics were already
regarded as information, even if their semantics was beyond the comprehension
of any interpreter. The discovery of an interface between Greek and Egyptian
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did not affect the semantics of the hieroglyphics but only its accessibility. This
is the weak, conditional-counterfactual sense in which GDI.3 speaks of meaning-
ful data being embedded in information-carriers informee-independently. GeN
supports the possibility of information without an informed subject, to adapt a
Popperian phrase. Meaning is not (at least not only) in the mind of the user.
GeN is to be distinguished from the stronger, realist thesis, supported for ex-
ample by Dretske (1981), according to which data could also have their own
semantics independently of an intelligent producer/informer. This is also known
as environmental information, a concept sufficiently important to deserve a brief
presentation before we close this first part.

Environmental information. One of the most often cited example of envi-
ronmental information is the series of concentric rings visible in the wood of
a cut tree trunk, which may be used to estimate its age. Yet “environmental”
information does not need to be natural. Going back to our example, when you
turned the ignition key, the red light of the low battery indicator flashed. This
signal too can be interpreted as an instance of environmental information.

Environmental information is defined relative to an observer (an information
agent), who is supposed to have no direct access to pure data in themselves. It
requires two systems a and b to be coupled in such a way that a’s being (of type,
or in state) F is correlated to b being (of type, or in state) G, thus carrying for
the observer the information that b is G (this analysis is adapted from Barwise
and Seligman (1997), who improve on a similar account by Dretske (1981)).

Fig. 5. Environmental information

The correlation in Fig. 5 is usually nomic (it follows some law). It may be
engineered as in the case of the low battery indicator (a) whose flashing (F ) is
triggered by, and hence it is informative about, the battery (b) being flat (G).
Or it may be natural, as when litmus - a natural colouring matter from lichens
- is used as an acid-alkali indicator because it turns red in acid solutions and
blue in alkaline solutions. Other typical examples include the correlation between
fingerprints and personal identification.

One may be so used to see the low battery indicator flashing as carrying the
information that the battery is flat to find it hard to distinguish, with sufficient
clarity, between environmental and semantic information. However, it is impor-
tant to stress that environmental information may require or involve no semantics
at all. It may consist of (networks or patterns of) correlated data understood as
mere differences or constraining affordances. Plants (e.g., a sunflower), animals
(e.g., an amoeba) and mechanisms (e.g., a photocell) are certainly capable of
making practical use of environmental information even in the absence of any
(semantic processing of) meaningful data.
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2.8 Summary of the First Part

To summarise, GDI defines information, broadly understood, as syntactically
well-formed and meaningful data. Its four types of neutrality (TyN, TaN, ON
and GeN) represent an obvious advantage, as they make GDI perfectly scalable
to more complex cases and reasonably flexible in terms of applicability and
compatibility. Indeed, philosophers have variously interpreted and tuned these
four neutralities according to their theoretical needs.

Our next step is to check whether GDI is satisfactory when discussing the
most important type of semantic information, namely factual information. Before
addressing this issue, however, we need to pause and look at the mathematical
theory of communication (MTC).

MTC is not the only successful mathematical approach to the concept of
information. Fisher information (Frieden (1998) and the algorithmic information
theory (Chaitin (1987)) provide two other important examples. However, MTC
is certainly the most widely known among philosophers. As such, it has had a
profound impact on philosophical analyses of semantic information, to which it
has provided both the technical vocabulary and at least the initial conceptual
frame of reference. One needs to grasp its main gist if one wishes to make sense
of the issuing philosophical debate.

3 Information as Data Communication

Some features of information are intuitive. We are used to information being
encoded, transmitted and stored. One also expects it to be additive (information
a + information b = information a + b) and non-negative, like other things
in life, such as probabilities and interest rates. If you ask a question, the worst
scenario is that you receive no answer or a wrong answer, which will leave you
with zero new information.

Similar properties of information are quantifiable. They are investigated by
the mathematical theory of communication (MTC) with the primary aim of
devising efficient ways of encoding and transferring data.

The name for this branch of probability theory comes from Shannon’s seminal
work (Shannon and Weaver (1949 )). Shannon pioneered this field and obtained
many of its principal results, but he acknowledged the importance of previous
work done by other researchers and colleagues at Bell laboratories, most notably
Nyquist and Hartley (see Cherry (1978) and Mabon (1975)). After Shannon,
MTC became known as information theory, an appealing but unfortunate label,
which continues to cause endless misunderstandings. Shannon came to regret its
widespread popularity, and we shall avoid using it in this context.

This second part of the article outlines some of the key ideas behind MTC,
with the aim of understanding the relation between MTC and some philosophi-
cal theories of semantic information. The reader with no taste for mathematical
formulae may wish to go directly to section 3.2, where some conceptual implica-
tions of MTC are outlined. The reader interested in knowing more may start by
reading Weaver (1949), Pierce (1980), Shannon and Weaver (1949), then Jones
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(1979), and finally Cover and Thomas (1991). The latter two are technical texts.
Floridi (2003a) provides a simplified analysis oriented to philosophy students.

3.1 The Mathematical Theory of Communication

MTC has its origin in the field of electrical engineering, as the study of commu-
nication limits. It develops a quantitative approach to information as a means to
answer two fundamental problems: the ultimate level of data compression (how
small can a message be, given the same amount of information to be encoded?)
and the ultimate rate of data transmission (how fast can data be transmitted
over a channel?). The two solutions are the entropy H in equation [9] (see below)
and the channel capacity C. The rest of this section illustrates how to get from
the problems to the solutions.

To have an intuitive sense of the approach, let us return to our example. Recall
the telephone conversation with the mechanic. In Fig. 6, the wife is the informer,
the mechanic is the informee, “the battery is flat” is the (semantic) message (the
informant), there is a coding and decoding procedure through a natural language
(English), a channel of communication (the telephone system) and some possible
noise. Informer and informee share the same background knowledge about the
collection of usable symbols (technically known as the alphabet ; in the example
this is English).

MTC is concerned with the efficient use of the resources indicated in
Fig. 6. Now, the conversation with the mechanic is fairly realistic and hence

Fig. 6. Communication model (adapted from Shannon and Weaver [1949 rep. 1998])
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more difficult to model than a simplified case. We shall return to it later but,
in order to introduce MTC, imagine instead a very boring device that can pro-
duce only one symbol. Edgar Alan Poe wrote a short story in which a raven can
answer only “nevermore” to any question. Poe’s raven is called a unary device.
Imagine you ring the garage and your call is answered by Poe’s raven. Even at
this elementary level, Shannons simple model of communication still applies. It
is obvious that the raven (a unary device) produces zero amount of information.
Simplifying, we already know the outcome of the communication exchange, so
our ignorance (expressed by our question) cannot be decreased. Whatever the
informational state of the system is, asking appropriate questions (e.g. “will I
be able to make the car start?”, “can you come to fix the car?”) of the raven
does not make any difference. Note that, interestingly enough, this is the ba-
sis of Platos famous argument in the Phaedrus against the value of semantic
information provided by written texts:

[Socrates]: Writing, Phaedrus, has this strange quality, and is very
like painting; for the creatures of painting stand like living beings, but if
one asks them a question, they preserve a solemn silence. And so it is with
written words; you might think they spoke as if they had intelligence,
but if you question them, wishing to know about their sayings, they
always say only one and the same thing [they are unary devices, in our
terminology]. And every word, when [275e] once it is written, is bandied
about, alike among those who understand and those who have no interest
in it, and it knows not to whom to speak or not to speak; when ill-treated
or unjustly reviled it always needs its father to help it; for it has no power
to protect or help itself.

As Plato well realises a unary source answers every question all the time with
only one message, not with silence or message, since silence counts as a message,
as we saw in 2.5, when discussing the nature of secondary information. It follows
that a completely silent source also qualifies as a unary source. And if silencing
a source (censorship) may be a nasty way of making a source uninformative, it
is well known that crying wolf is a classic case in which an informative source
degrades to the role of uninformative unary device.

Consider now a binary device that can produce two symbols, like a fair coin
A with its two equiprobable symbols {h, t}; or, as Matthew 5:37 suggests, “Let
your communication be Yea, yea; Nay, nay: for whatsoever is more than these
cometh of evil”. Before the coin is tossed, the informee (for example a computer)
is in a state of data deficit greater than zero: the informee does not “know”
which symbol the device will actually produce. Shannon used the technical term
“uncertainty” to refer to data deficit. In a non-mathematical context this can be
a very misleading term because of the strong epistemological connotations of this
term. Remember that the informee can be a simple machine, and psychological,
mental or doxastic states are clearly irrelevant.

Once the coin has been tossed, the system produces an amount of information
that is a function of the possible outputs, in this case 2 equiprobable symbols,
and equal to the data deficit that it removes.
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Let us now build a slightly more complex system, made of two fair coins A and
B. The AB system can produce 4 ordered outputs: 〈h, h〉 , 〈h, t〉 , 〈t, h〉 , 〈t, t〉 It
generates a data deficit of 4 units, each couple counting as a symbol in the source
alphabet. In the AB system, the occurrence of each symbol 〈−,−〉 removes a
higher data deficit than the occurrence of a symbol in the A system. In other
words, each symbol provides more information. Adding an extra coin would
produce a 8 units of data deficit, further increasing the amount of information
carried by each symbol in the ABC system, and so on.

We are now ready to generalise the examples. Call the number of possible
symbols N. For N = 1, the amount of information produced by a unary device
is 0. For N = 2, by producing an equiprobable symbol, the device delivers 1 unit
of information. And for N = 4, by producing an equiprobable symbol the device
delivers the sum of the amount of information provided by a device producing
one of two equiprobable symbols (coin A in the example above) plus the amount
of information provided by another device producing one of two equiprobable
symbols (coin B), that is, 2 units of information, although the total number of
symbols is obtained by multiplying As symbols by Bs symbols. Now, our informa-
tion measure should be a continuous and monotonic function of the probability
of the symbols. The most efficient way of satisfying these requirements is by
using the logarithm to the base 2 of the number of possible symbols (the loga-
rithm to the base 2 of a number n is the power to which 2 must be raised to give
the number n, for example log2 = 3, since 23 = 8). Logarithms have the useful
property of turning multiplication of symbols into addition of information units.
By taking the logarithm to the base 2 (henceforth log simply means log2) we
have the further advantage of expressing the units in bits. The base is partly a
matter of convention, like using centimetres instead of inches, partly a matter of
convenience, since it is useful when dealing with digital devices that use binary
codes to represent data.

Given an alphabet of N equiprobable symbols, we can now rephrase some
examples more precisely (Fig. 7) by using equation [1]:

average informativeness per symbol (or “uncertainty”)

= log2(N)bits of information per symbol (1)

The basic idea is all in equation [1]. Information can be quantified in terms of
decrease in data deficit (Shannon’s “uncertainty”). Unfortunately, real coins are
always biased. To calculate how much information they produce one must rely on
the frequency of the occurrences of symbols in a finite series of tosses, or on their
probabilities, if the tosses are supposed to go on indefinitely. Compared to a fair
coin, a slightly biased coin must produce less than 1 bit of information, but still
more than 0. The raven produced no information at all because the occurrence of
a string S of “nevermore” was not informative (not surprising, to use Shannon’s
more intuitive, but psychologistic vocabulary), and that is because the probability
of the occurrence of “nevermore” was maximum, so overly predictable. Likewise,
the amount of information produced by the biased coin depends on the average
informativeness (also known as average surprisal, another unfortunate term to
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Fig. 7. Examples of communication devices and their information power

refer to the average statistical rarity) of the string S of h and t produced by
the coin. The average informativeness of the resulting string S depends on the
probability of the occurrence of each symbol. The higher the frequency of a
symbol in S, the less information is being produced by the coin, up to the point
when the coin is so biased to produce always the same symbol and stops being
informative at all, behaving like the raven or the boy who cries wolf.

So, to calculate the average informativeness of S we need to know how to
calculate S and the informativeness of the ith symbol in general. This requires
understanding what the probability of the ith symbol (Pi) to occur is.

The probability Pi of the ith symbol can be “extracted” from equation [1],
where it is embedded in log(N), a special case in which the symbols are equiprob-
able. Using some elementary properties of the logarithmic function, we have:

log (N) = −log
(
N−1

)
= −log

(
1
N

)
= −log (P ) (2)

The value of 1
N = P can range from 0 to 1. If Poe’s raven is our source, the

probability of it saying “good morning” is 0. In the case of the coin, P (h)+P (t) =
1, no matter how biased the coin is. Probability is like a cake that gets sliced more
and more thinly depending on the number of guests, but never grows beyond its
original size and, in the worst case scenario, can at most be equal to zero, but
never become “negative”. More formally, this means:

N∑

i=1

Pi = 1 (3)

The sigma notation in [3] is simply a shortcut that indicates that if we add
all probabilities values from i = 1 to i = N their sum is equal to 1.

We can now be precise about the raven: “nevermore” is not informative at
all because Pnevermore = 1. Clearly, the lower the probability of occurrence
of a symbol, the higher is the informativeness of its actual occurrence. The
informativeness u of the ith symbol can be expressed by analogy with −log (P )
in equation [2]:



Philosophical Conceptions of Information 29

ui = −log (Pi) (4)

Next, we need to calculate the length of a general string S. Suppose that the
biased coin, tossed 10 times, produces the string: 〈h, h, t, h, h, t, t, h, h, t〉. The
(length of the) string S (in our case equal to 10) is equal to the number of times
the h type of symbol occurs added to the numbers of times the t type of symbol
occurs.

Generalising for i types of symbols:

S =
N∑

i=1

Si (5)

Putting together equations [4] and [5] we see that the average informativeness
for a string of S symbols is the sum of the informativeness of each symbol divided
by the sum of all symbols: ∑N

i=1 Siui
∑N

i=1 Si

(6)

Term [6] can be simplified thus:

N∑

i=1

S

Si
ui (7)

Now
Si
S is the frequency with which the ith symbol occurs in S when S is

finite. If the length of S is left undetermined (as long as one wishes), then the
frequency of the ith symbol becomes its probability Pi. So, further generalising
term [7], we have:

N∑

i=1

Piui (8)

Finally, by using equation [4] we can substitute for ui and obtain

H = −
N∑

i=1

PilogPi (bits per symbol) (9)

Equation [9] is Shannon’s formula for H = uncertainty, which we have called
data deficit (actually, Shannon’s original formula includes a positive constant K
which amounts to a choice of a unit of measure, bits in our case; apparently,
Shannon used the letter H because of R.V.L. Hartley’s previous work).

Equation [9] indicates that the quantity of information produced by a device
corresponds to the amount of data deficit erased. It is a function of the average
informativeness of the (potentially unlimited) string of symbols produced by the
device. It is easy to prove that, if symbols are equiprobable, [9] reduces to [1] and
that the highest quantity of information is produced by a system whose symbols
are equiprobable (compare the fair coin to the biased one).



30 L. Floridi

To arrive at [9] we have used some very simple examples: a raven and a hand-
ful of coins. Things in life are far more complex, witness our Monday morning
accident. For example, we have assumed that the strings of symbols are ergodic:
the probability distribution for the occurrences of each symbol is assumed to be
stable through time and independently of the selection of a certain string. Our
raven and coins are discrete and zero-memory sources. The successive symbols
they produce are statistically independent. But in real life occurrences of sym-
bols are often interdependent. Sources can be non-ergodic and have a memory.
Symbols can be continuous, and the occurrence of one symbol may depend upon
a finite number n of preceding symbols, in which case the string is known as
a Markov chain and the source an n-th order Markov source. Consider for ex-
ample the probability of hearing “n” (followed by the string “ing”) after having
received the string of letters “Good mor-” over the phone, when you called the
garage. And consider the same example through time, in the case of a child (the
son of the mechanic) who is learning how to answer the phone instead of his
father. In brief, MTC develops the previous analysis to cover a whole variety
of more complex cases. We shall stop here, however, because in the rest of this
section we need to concentrate on other central aspects of MTC.

The quantitative approach just sketched plays a fundamental role in coding
theory (hence in cryptography) and in data storage and transmission techniques.
MTC is primarily a study of the properties of a channel of communication and
of codes that can efficiently encipher data into recordable and transmittable sig-
nals. Since data can be distributed either in terms of here/there or now/then,
diachronic communication and synchronic analysis of a memory can be based on
the same principles and concepts (our coin becomes a bistable circuit or flip-flop,
for example). Two concepts that play a pivotal role both in communication anal-
ysis and in memory management are so important to deserve a brief explanation:
redundancy and noise.

Consider our AB system. Each symbol occurs with 0.25 probability. A simple
way of encoding its symbols is to associate each of them with twodigits, as in Fig. 8:

Fig. 8. Code 1

Call this Code 1. In Code 1 a message conveys 2 bits of information, as
expected. Do not confuse bits as bi-nary units of information (recall that we
decided to use log2 also as a matter of convenience) with bits as bi-nary digits,
which is what a 2-symbols system like a CD-ROM uses to encode a message.
Suppose now that the AB system is biased, and that the four symbols occur
with the following probabilities (Fig. 9):

Fig. 9. A biased system
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This biased system produces less information, so by using Code 1 we would
be wasting resources. A more efficient Code 2 (Fig. 10) should take into account
the symbols probabilities, with the following outcomes:

Fig. 10. Code 2 (Fano Code)

In Code 2, known as Fano Code, a message conveys 1.75 bits of information.
One can prove that, given that probability distribution, no other coding system
will do better than Fano Code.

In real life, a good codification is also modestly redundant. Redundancy refers to
the difference between the physical representation of a message and the
mathematical representation of the same message that uses no more bits than nec-
essary. Compression procedures work by reducing data redundancy, but redun-
dancy is not always a bad thing, for it canhelp to counteract equivocation (data sent
but never received) and noise (data received but unwanted). A message + noise
contains more data than the original message by itself, but the aim of a communi-
cation process is fidelity, the accurate transfer of the original message from sender
to receiver, not data increase. We aremore likely to reconstruct a message correctly
at the end of the transmission if some degree of redundancy counterbalances the
inevitable noise and equivocation introduced by the physical process of commu-
nication and the environment. Noise extends the informee’s freedom of choice in
selecting a message, but it is an undesirable freedomand some redundancy can help
to limit it. That is why the manual of your car includes both verbal explanations
and pictures to convey (slightly redundantly) the same information.

We are now ready to understand Shannons two fundamental theorems. Sup-
pose the 2-coins biased system AB produces the following message:

〈t, h〉 〈h, h〉 〈t, t〉 〈h, t〉 〈h, t〉
Using Fano Code we obtain: 11001111010. The next step is to send this string
through a channel. Channels have different transmission rates (C), calculated in
terms of bits per second (bps). Shannons fundamental theorem of the noiseless
channel states that there is no method of encoding which gives an equivocation
less than H C, as explained in Fig. 11.

Fig. 11. Shannon’s fundamental theorem of the noiseless channel
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Fig. 12. Shannon’s fundamental theorem for a discrete channel

In other words, if you devise a good code you can transmit symbols over a
noiseless channel at an average rate as close to C/H as one may wish but, no
matter how clever the coding is, that average can never exceed C/H. We have
already seen that the task is made more difficult by the inevitable presence of
noise. However, the fundamental theorem for a discrete channel with noise comes
to our rescue, as explained in Fig. 12.

Roughly, if the channel can transmit as much or more information than the
source can produce, then one can devise an efficient way to code and transmit
messages with as small an error probability as desired. These two fundamental
theorems are among Shannon’s greatest achievements. They are limiting results
in information theory that constrain any conceptual analysis of semantic infor-
mation. They are thus comparable to Gdel’s Turing’s and Church’s theorems in
logic and computation. With our message finally sent, we may close this section
and return to a more philosophical approach.

3.2 Conceptual Implications of the Mathematical Theory
of Communication

For the mathematical theory of communication (MTC), information is only a
selection of one symbol from a set of possible symbols, so a simple way of grasp-
ing how MTC quantifies information is by considering the number of yes/no
questions required to determine what the source is communicating. One ques-
tion is sufficient to determine the output of a fair coin, which therefore is said to
produce 1 bit of information. A 2-fair-coins system produces 4 ordered outputs:
〈h, h〉, 〈h, t〉, 〈t, h〉, 〈t, t〉, and therefore requires at least two questions, each out-
put containing 2 bits of information, and so on. This erotetic (the Greek word
for “question”) analysis clarifies two important points.

First, MTC is not a theory of information in the ordinary sense of the word. In
MTC, information has an entirely technical meaning. Consider some examples.
According to MTC, two equiprobable “yes”’s contain the same quantity of infor-
mation, no matter whether their corresponding questions are “have the lights of
your car been left switched on for too long, without recharging the battery?” or
“would you marry me?”. If we knew that a device could send us, with equal prob-
abilities, either this article or the whole Stanford Encyclopedia of Philosophy, by
receiving one or the other we would receive very different amounts of bytes of data
but actually only one bit of information in the MTC sense of the word. On June 1
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1944, the BBC broadcasted a line from Verlaine’s Song of Autumn: “Les sanglots
longs des violons de Autumne”. The message contained almost 1 bit of informa-
tion, an increasingly likely “yes” to the question whether the D-Day invasion was
imminent. The BBC then broadcasted the second line “Blessent mon coeur d’une
longueur monotone”. Another almost meaningless string of letters, but almost an-
other bit of information, since it was the other long-expected “yes” to the question
whether the invasion was to take place immediately. German intelligence knew
about the code, intercepted those messages and even notified Berlin, but the high
command failed to alert the Seventh Army Corps stationed in Normandy. Hitler
had all the information in Shannons sense of the word, but failed to understand
(or believe in) the crucial importance of those two small bits of data. As for our-
selves, we were not surprised to conclude in the previous section that the maxi-
mum amount of information (again, in the MTC sense of the word) is produced by
a text where each character is equally distributed, that is by a perfectly random
sequence. According to MTC, the classic monkey randomly pressing typewriter
keys is indeed producing a lot of information.

Second, since MTC is a theory of information without meaning (not in the
sense of meaningless, but in the sense of not yet meaningful), and since we
have seen that [information - meaning = data], “mathematical theory of data
communication” is a far more appropriate description of this branch of proba-
bility theory than “information theory”. This is not a mere question of labels.
Information, as semantic content (more on this shortly), can also be described
erotetically as data + queries. Imagine a piece of (propositional) information
such as “the earth has only one moon”. It is easy to polarise almost all its
semantic content by transforming it into a [query + binary answer], such as
[does the earth have only one moon? + yes]. Subtract the “yes” - which is at
most 1 bit of information, in the equiprobable case of a yes or no answer - and
you are left with virtually all the semantic content, fully de-alethicised (from
aletheia, the Greek word for truth; the query is neither true nor false). To use
a Fregean expression, semantic content is unsaturated information, where the
latter is semantic information that has been “eroteticised” and from which a
quantity of information has been subtracted equal to logP (yes), with P being
the probability of the yes-answer.

The datum “yes” works as a key to unlock the information contained in the
query. MTC studies the codification and transmission of information by treating
it as data keys, that is, as the amount of details in a signal or message or memory
space necessary to saturate the informees unsaturated information. As Weaver
(1949) remarked

the word information relates not so much to what you do say, as to
what you could say. The mathematical theory of communication deals
with the carriers of information, symbols and signals, not with informa-
tion itself. That is, information is the measure of your freedom of choice
when you select a message (p.12).

Since MTC deals not with semantic information itself but with the data that
constitute it, that is, with messages comprising uninterpreted symbols encoded in
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well-formed strings of signals, it is commonly described as a study of information
at the syntactic level. MTC can be successfully applied in ICT (information and
communication technologies) because computers are syntactical devices. What
remains to be clarified is how H in equation [9] should be interpreted.

H is also known in MTC as entropy. It seems we owe this confusing label to
John von Newman, who recommend it to Shannon:

You should call it entropy for two reasons: first, the function is al-
ready in use in thermodynamics under the same name; second, and more
importantly, most people don’t know what entropy really is, and if you
use the word entropy in an argument you will win every time (quoted
by Golan (2002)).

Von Newman proved to be right on both accounts, unfortunately.
Assuming the ideal case of a noiseless channel of communication, H is a

measure of three equivalent quantities:

a) the average amount of information per symbol produced by the informer, or
b) the corresponding average amount of data deficit (Shannons uncertainty)

that the informee has before the inspection of the output of the informer, or
c) the corresponding informational potentiality of the same source, that is, its

informational entropy.

H can equally indicate (a) or (b) because, by selecting a particular alphabet,
the informer automatically creates a data deficit (uncertainty) in the informee,
which then can be satisfied (resolved) in various degrees by the informant. Recall
the erotetic game. If you use a single fair coin, I immediately find myself in a 1
bit deficit predicament: I do not know whether it is head or tail. Use two fair
coins and my deficit doubles, but use the raven, and my deficit becomes null.
My empty glass (point (b) above) is an exact measure of your capacity to fill it
(point (a) above). Of course, it makes sense to talk of information as quantified
by H only if one can specify the probability distribution.

Regarding (c), MTC treats information like a physical quantity, such as mass
or energy, and the closeness between equation [9] and the formulation of the con-
cept of entropy in statistical mechanics was already discussed by Shannon. The
informational and the thermodynamic concept of entropy are related through
the concepts of probability and randomness (“randomness” is better than “dis-
order” since the former is a syntactical concept whereas the latter has a strongly
semantic value, that is, it is easily associated to interpretations, as I used to try
to explain to my parents when I was young). Entropy is a measure of the amount
of “mixedupness” in processes and systems bearing energy or information. En-
tropy can also be seen as an indicator of reversibility: if there is no change of
entropy then the process is reversible. A highly structured, perfectly organised
message contains a lower degree of entropy or randomness, less information in
Shannon sense, and hence it causes a smaller data deficit, which can be close to
zero (remember the raven). By contrast, the higher the potential randomness of
the symbols in the alphabet, the more bits of information can be produced by
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the device. Entropy assumes its maximum value in the extreme case of uniform
distribution, which is to say that a glass of water with a cube of ice contains
less entropy than the glass of water once the cube has melted, and a biased coin
has less entropy than a fair coin. In thermodynamics, we know that the greater
the entropy, the less available the energy. This means that high entropy corre-
sponds to high energy deficit, but so does entropy in MTC: higher values of H
correspond to higher quantities of data deficit.

4 Information as Semantic Content

We have seen that, when data are well-formed and meaningful, the result is also
known as semantic content (Bar-Hillel and Carnap (1953; Bar-Hillel (1964). In-
formation, understood as semantic content, comes in two main varieties: factual
and instructional. In our example, one may translate the red light flashing into
semantic content in two senses:

a) as a piece of factual information, representing the fact that the battery is
flat; and

b) as a piece of instructional information, conveying the need for a specific
action, e.g. the re-charging or replacing of the flat battery.

In this third part of the article we shall be concerned primarily with (a), so it
is better to clear the ground by considering (b) first. It is the last detour in our
journey.

4.1 Instructional Information

Instructional information is a type of semantic content. An instruction booklet,
for example, provides instructional information, either imperatively - in the form
of a recipe: first do this, then do that - or conditionally, in the form of some
inferential procedure: if such and such is the case do this, otherwise do that.

Instructional information is not about a situation, a fact, or a state of affairs
w and does not model, or describe or represent w. Rather, it is meant to (help
to) bring about w. For example, when the mechanic tells one over the phone to
connect a charged battery to the flat battery of ones car, the information one
receives is not factual, but instructional.

There are many plausible contexts in which a stipulation (“let the value of
x = 3” or “suppose we discover the bones of a unicorn”), an invitation (“you
are cordially invited to the college party”), an order (“close the window!”), an
instruction (“to open the box turn the key”), a game move (“1.e2-e4 c7-c5” at the
beginning of a chess game) may be correctly qualified as kinds of instructional
information. The printed score of a musical composition or the digital files of a
program may also be counted as typical cases of instructional information.

All these instances of information have a semantic side: they have to be at
least potentially meaningful (interpretable) to count as information. Moreover,
instructional information may be related to factual (descriptive) information in
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performative contexts, such as christening - e.g. “this ship is now called HMS
The Informer” - or programming - e.g. as when deciding the type of a variable.
The two types of semantic information (instructional and factual) may also come
together in magic spells, where semantic representations of x may be (wrongly)
supposed to provide some instructional power and control over x. Nevertheless,
as a test, one should remember that instructional information does not qualify
alethically (cannot be correctly qualified as true or false). In the example, it
would be silly to ask whether the information “only use batteries with the same
rated voltage” is true. Stipulations, invitations, orders, instructions, game moves,
and software cannot be true or false. As Wittgenstein remarks “The way music
speaks. Do not forget that a poem, even though it is composed in the language
of information, is not used in the language-game of giving information.” (Zettel,
§160, see Wittgenstein (1981).

4.2 Factual Information

In the language game that Wittgenstein seems to have in mind, the notion
of “semantic information” is intended in a declarative or factual mode. Fac-
tual information may be true or untrue (false, in case one adopts a binary
logic). True semantic content is the most common sense in which information
seems to be understood (Floridi (2004b)). It is also one of the most impor-
tant, since information as true semantic content is a necessary condition for
knowledge. Some elaboration is in order, and in the following sub-sections we
shall briefly look at the concept of data as constraining affordances, at the role
played by levels of abstraction in the transformation of constraining affordances
into factual information, and finally at the relation between factual information
and truth.

4.2.1 Constraining Affordances
The data that constitute factual information allow or invite certain constructs
(they are affordances for the information agent that can take advantage of them)
and resist or impede some others (they are constraints for the same agent),
depending on the interaction with, and the nature of, the information agent that
processes them. For example, the red light flashing repetitively and the engine
not starting allow you (or any other information agent like you) to construct the
information that (a) the battery is flat, while making it more difficult to you (or
any other information agent like you) to construct the information that (b) there
is a short circuit affecting the proper functioning of the low battery indicator,
where the engine fails to start because there is no petrol in the tank, a fact not
reported by the relevant indicator which is affected by the same short circuit.
This is the sense in which data are constraining affordances for (an information
agent responsible for) the elaboration of factual information.

4.2.2 Levels of Abstraction
In section 2.3, we saw that the concept of pure data in themselves (dedomena)
is an abstraction, like Kant’s noumena or Locke’s substance. The point made
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was that data are never accessed and elaborated (by an information agent) inde-
pendently of a level of abstraction (LoA). The time has come to clarify what a
LoA is.

A LoA is a specific set of typed variables, intuitively representable as an in-
terface, which establishes the scope and type of data that will be available as a
resource for the generation of information (Floridi and Sanders (forthcoming).
This concept of LoA is purely epistemological, and it should not be confused with
other forms of “levellism” that are more or less explicitly based on an ontological
commitment concerning the intrinsic architecture, syntax or structure of the sys-
tem discussed (Dennett (1971), Marr (1982) , Newell (1982), Simon (1969), see
now Simon (1996) ; Poli (2001) provides a reconstruction of ontological levellism;
more recently, Craver (2004) has analysed ontological levellism, especially in bi-
ology and cognitive science, see also Craver (forthcoming)). Ontological levellism
has come under increasing attack. Heil (2003) and Schaffer (2003) have seriously
and convincingly questioned its plausibility. However, epistemological levellism
is flourishing, especially in computer science (Roever et al. (1998), Hoare and
Jifeng (1998)), where it is regularly used to satisfy the requirement that systems
constructed in levels (in order to tame their complexity) function correctly.

Through a LoA, an information agent (the observer) accesses a physical or
conceptual environment, the system. LoAs are not necessarily hierarchical and
they are comparable. They are interfaces that mediate the epistemic relation be-
tween the observed and the observer. Consider, for example, a motion detector
(Fig. 13). In the past, motion detectors caused an alarm whenever a movement
was registered within the range of the sensor, including the swinging of a tree
branch (object a in Fig. 13). The old LoA1 consisted of a single typed variable,
which may be labelled MOVEMENT. Nowadays, when a PIR (passive infrared)
motion detector registers some movement, it also monitors the presence of an in-
frared signal, so the entity detected has to be something that also emits infrared
radiation usually perceived as heat before the sensor activates the alarm. The
new LoA2 consists of two typed variables: MOVEMENT and INFRARED RA-
DIATION. Clearly, your car (object b in Fig. 13) leaving your house is present
for both LoAs; but for the new LoA2, which is more finely grained, the branch of
the tree swinging in the garden is absent. Likewise, a stone in the garden (object
c in Fig. 13) is absent for both the new and the old LoA, since it satisfies no
typed variable of either one.

The method of LoA is an efficient way of making explicit and managing the
ontological commitment of a theory. In our case, “the battery is what provides
electricity to the car” is a typical example of information elaborated at a drivers
LoA. An engineers LoA may output something like “12-volt lead-acid battery
is made up of six cells, each cell producing approximately 2.1 volts”, and an
economists LoA may suggest that “a good quality car battery will cost between
$50 and $100 and, if properly maintained, it should last five years or more”.

Data as constraining affordances - answers waiting for the relevant questions
- are transformed into factual information by being processed semantically at a
given LoA (alternatively: the relevant question is associated to the right answer
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Fig. 13. An example of Levels of Abstraction

at a given LoA). Once data as constraining affordances have been elaborated into
factual information at a given LoA, the next question is whether truth values
supervene on factual information.

4.2.3 Information and Truth
Does some factual content qualify as information only if it is true? Defenders of
the alethic neutrality of semantic information (Fetzer (2004) and Dodig-Crnkovic
(2005), who criticises Floridi (2004b) ; Colburn (2000) , Fox (1983), and, among,
situation theorists, Devlin (1991)) argue that meaningful and well-formed data
already qualify as information, no matter whether they represent or convey a
truth or a falsehood or indeed have no alethic value at all. Opponents, on the
other hand, object that “[. . . ] false information and mis-information are not
kinds of information - any more than decoy ducks and rubber ducks are kinds
of ducks” (Dretske (1981), 45) and that “false information is not an inferior
kind of information; it just is not information” (Grice (1989), 371; other philoso-
phers who accept a truth-based definition of semantic information are Barwise
and Seligman (1997) and Graham (1999)). The result is a definition of factual
semantic information as well-formed, meaningful and truthful data (defended
in Floridi (2004b), (2005b)), where “truthful” is only a stylistic choice to be
preferred to “true” because it enables one to say that a map conveys factual
information insofar as it is truthful.

Once again, the debate is not about a mere definition, but concerns the possible
consequences of the alethic neutrality thesis, three of which can be outlined here,
whereas a fourth requires a longer analysis and will be discussed in section 5.1.

If the thesis “meaningful and well-formed data already qualify as information”
is correct then

i) false information (including contradictions) would count as a genuine type of
semantic information, not as pseudo-information;

ii) all necessary truths (including tautologies) would qualify as information (on
this issue see Bremer (2003)); and
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iii) “it is true that p” - where p is a variable that can be replaced by any instance
of genuine semantic information - would not be a redundant expression; for
example, “it is true” in the conjunction “‘the earth is round’ qualifies as
information and it is true” could not be eliminated without semantic loss.

All these new issues are grafted to some old branches of the philosophical tree.
Whether false information is a genuine type of information has important

repercussions on any philosophy and pragmatics of communication.
The question about the informative nature (or lack thereof) of necessary

truths, tautologies, equations or identity statements is an old one, as it runs
through Hume, Kant, Frege and Wittgenstein. The latter, for example, interest-
ingly remarked:

Another expression akin to those we have just considered is this: ‘Here
it is; take it or leave it!’ And this again is akin to a kind of introductory
statement which we sometimes make before remarking on certain alter-
natives, as when we say: ‘It either rains or it doesn’t rain; if it rains we’ll
stay in my room, if it doesn’t . . . ’. The first part of this sentence is no
piece of information (just as ‘Take it or leave it’ is no order). Instead of,
‘It either rains or it doesn’t rain’ we could have said, ‘Consider the two
cases . . . ’. Our expression underlines these cases, presents them to your
attention (The Blue and Brown Books, The Brown Book, II, p. 161, see
Wittgenstein (1960)).

The solution of the problem of hyperintensionality (how one can draw a se-
mantic distinction between expressions that are supposed to have the same mean-
ing according to a particular theory of meaning that is usually model-theoretic or
modal in character) depends on how one can make sense of the relation between
truth and informativeness in the case of logically equivalent expressions.

Finally, the possibly redundant qualification of information as true is also
linked with the critique of the deflationary theories of truth (DTT), since one
could accept a deflationary T-schema as perfectly correct, while rejecting the
explanatory adequacy of DTT. “It is true that” in “it is true that p” could be
redundant in view of the fact that there cannot be factual information that is
not true, but DTT could mistake this linguistic or conceptual redundancy for
unqualified dispensability. “It is true that” could be redundant because, strictly
speaking, information is not a truth-bearer but already encapsulates truth as
truthfulness. Thus, DTT may be satisfactory as theories of truth-ascriptions
while being inadequate as theories of truthfulness.

Once information is available, knowledge can be built in terms of justifiable or
explainable semantic information. An information agent knows that the battery
is flat not by merely guessing rightly, but because e.g. it perceives that the red
light of the low battery indicator flashing and/or that the engine does not start.
In this sense, information provides the basis of any further scientific investigation.
Note, however, that the fact that data may count as resources for (i.e. inputs an
agent can use to construct) information, and hence for knowledge, rather than
sources, may lead to constructionist arguments against mimetic theories that
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interpret information as some sort of picture of the world. The point requires
some elaboration.

Whether empirical or conceptual, data make possible only a certain range of
information constructs, and not all constructs are made possible equally easily.
An analogy may help here. Suppose one has to build a shelter. The design and
complexity of the shelter may vary, but there is a limited range of “realistic”
possibilities, determined by the nature of the available resources and constraints
(size, building materials, location, weather, physical and biological environment,
working force, technical skills, purposes, security, time constraints, etc.). Not any
shelter can be built. And the type of shelter that will be built more often will
be the one that is more likely to take close-to-optimal advantage of the available
resources and constraints. The same applies to data. Data are at the same time
the resources and constraints that make possible the construction of informa-
tion. The best information is that better tuned to the constraining affordances
available. Thus informational coherence and adequacy do not necessarily entail
nor support nave or direct realism, or a correspondence theory of truth as this
is ordinarily presented. Ultimately, information is the result of a process of data
modelling; it does not have to represent or photograph or portray or photocopy,
or map or show or uncover or monitor or . . . the intrinsic nature of the system
analysed, no more than an igloo describes the intrinsic nature of snow or the
Parthenon indicates the real properties of stones.

When semantic content is false, this is a case of misinformation (Fox (1983)).
And if the source of misinformation is aware of its nature, one may speak of
disinformation, as when one says to the mechanic “my husband forgot to turn
the lights on”. Disinformation and misinformation are ethically censurable but
may be successful in achieving their purpose: tell the mechanic that your husband
left the lights on last night, and he will still be able to provide you with the right
advice. Likewise, information may still fail to be successful; just imagine telling
the mechanic that your car is out of order.

5 Philosophical Approaches to Semantic Information

What is the relation between MTC and the sort of semantic information that
we have called factual? The mathematical theory of communication approaches
information as a physical phenomenon. Its central question is whether and how
much uninterpreted data can be encoded and transmitted efficiently by means
of a given alphabet and through a given channel. MTC is not interested in
the meaning, “aboutness”, relevance, reliability, usefulness or interpretation of
information, but only in the level of detail and frequency in the uninterpreted
data, being these symbols, signals or messages. Philosophical approaches differ
from MTC in two main respects.

First, they seek to give an account of information as semantic content, inves-
tigating questions like “how can something count as information? and why?”,
“how can something carry information about something else?”, “how can seman-
tic information be generated and flow?”, “how is information related to error,
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truth and knowledge?”, “when is information useful?”. Wittgenstein, for exam-
ple, remarks that “One is inclined to say: ‘Either it is raining, or it isn’t - how
I know, how the information has reached me, is another matter.’ But then let
us put the question like this: What do I call information that it is raining’?
(Or have I only information of this information too?) And what gives this ‘in-
formation’ the character of information about something? Doesn’t the form of
our expression mislead us here? For isn’t it a misleading metaphor to say: “My
eyes give me the information that there is a chair over there”? (Philosophical
Investigations, I. §356, see now Wittgenstein (2001)).

Second, philosophical theories of semantic information also seek to connect it
to other relevant concepts of information and more complex forms of epistemic,
mental and doxastic phenomena. For instance, Dretske (1981) and Barwise and
Seligman (1997) attempt to ground information, understood as factual seman-
tic contents, on environmental information. The approach is also known as the
naturalization of information. A similar point can be made about Putnams twin
earths argument, the externalization of semantics and teleosemantics.

Philosophical analyses usually adopt a propositional orientation and an epis-
temic outlook, endorsing, often implicitly, the prevalence or centrality of factual
information within the map outlined in Fig. 1. They tend to base their analyses
on cases such as “Paris is the capital of France” or “The Bodleian Library is in
Oxford”. How relevant is MTC to similar researches?

In the past, some research programs tried to elaborate information theories
alternative to MTC, with the aim of incorporating the semantic dimension. Don-
ald M. Mackay (1969) proposed a quantitative theory of qualitative information
that has interesting connections with situation logic (see below). According to
MacKay, information is linked to an increase in knowledge on the receiver’s side:

Suppose we begin by asking ourselves what we mean by information.
Roughly speaking, we say that we have gained information when we
know something now that we didn’t know before; when ‘what we know’
has changed. (Mackay (1969), p. 10).

Around the same years, Doede Nauta (1972) developed a semiotic-cybernetic
approach. Nowadays, few philosophers follow these lines of research. The ma-
jority agrees that MTC provides a rigorous constraint to any further theorising
on all the semantic and pragmatic aspects of information. The disagreement
concerns the crucial issue of the strength of the constraint.

At one extreme of the spectrum, any philosophical theory of semantic-factual
information is supposed to be very strongly constrained, perhaps even overdeter-
mined, by MTC, somewhat as mechanical engineering is by Newtonian physics.
Weavers optimistic interpretation of Shannons work is a typical example.

At the other extreme, any philosophical theory of semantic-factual informa-
tion is supposed to be only weakly constrained, perhaps even completely under-
determined, by MTC, somewhat as tennis is constrained by Newtonian physics,
that is in the most uninteresting, inconsequential and hence disregardable sense
(see for example Sloman (1978) and Thagard (1990)).
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The emergence of MTC in the 1950s generated earlier philosophical enthu-
siasm that has gradually cooled down through the decades. Historically, philo-
sophical theories of semantic-factual information have moved from “very strongly
constrained” to “only weakly constrained”. Recently, we find positions that care-
fully appreciate MTC for what it can provide in terms of a robust and well-
developed statistical theory of correlations between states of different systems
(the sender and the receiver) according to their probabilities. This can have
important consequences in mathematically-friendly contexts, such as some ap-
proaches to naturalised epistemology (Harms (1998)) or scientific explanation
(Badino (2004)).

Although the philosophy of semantic information has become increasingly au-
tonomous from MTC, two important connections have remained stable between
MTC and even the most recent philosophical accounts:

1. the communication model, explained in section 3.1 (see Fig. 6); and
2. what Barwise labelled the “Inverse Relationship Principle” (IRP).

The communication model has remained virtually unchallenged, even if nowadays
theoretical accounts are more likely to consider as basic cases multiagent and dis-
tributed systems interacting in parallel, rather than individual agents related by
simple, sequential channels of communication. In this respect, the philosophy of
information (Floridi (2002);(2004a)) is less Cartesian than “social”.

IRP refers to the inverse relation between the probability of p - which may
range over sentences of a given language (as in Bar-Hillel and Carnap) or events,
situations or possible worlds (as in Dretske) - and the amount of semantic in-
formation carried by p (recall that Poe’s raven, as a unary source provides no
information because its answers are entirely predictable). It states that informa-
tion goes hand in hand with unpredictability. Popper (1935) is often credited as
the first philosopher to have advocated IRP explicitly. However, systematic at-
tempts to develop a formal calculus involving it were made only after Shannons
breakthrough.

We have seen that MTC defines information in terms of probability space dis-
tribution. Along similar lines, the probabilistic approach to semantic information
defines the semantic information in p in terms of logical probability space and the
inverse relation between information and the probability of p. This approach was
initially suggested by Bar-Hillel and Carnap (1953) (see also Bar-Hillel (1964))
and further developed by Kemeny (1953), Smokler (1966), Hintikka and Suppes
(1970) and Dretske (1981). The details are complex but the original idea is sim-
ple. The semantic content (CONT) in p is measured as the complement of the
a priori probability of p:

CONT (p) = 1 − P (p) (10)

CONT does not satisfy the two requirements of additivity and conditional-
ization, which are satisfied by another measure, the informativeness (INF) of p,
which is calculated, following equations [9] and [10], as the reciprocal of P (p),
expressed in bits, where P (p) = 1 − CONT (p):
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INF (p) = log
1

1 − CONT (p)
= −logP (p) (11)

Things are complicated by the fact that the concept of probability employed
in equations [10] and [11] is subject to different interpretations. In Bar-Hillel and
Carnap (1953), the probability distribution is the outcome of a logical construc-
tion of atomic statements according to a chosen formal language. This introduces
a problematic reliance on a strict correspondence between observational and for-
mal language. In Dretske, the solution is to make probability values refer to the
observed states of affairs (s), that is:

I (s) = −logP (s) (12)

The modal approach further modifies the probabilistic approach by defining
semantic information in terms of modal space and in/consistency. The informa-
tion conveyed by p becomes the set of all possible worlds, or (more cautiously)
the set of all the descriptions of the relevant possible states of the universe, that
are excluded by p.

The systemic approach, developed especially in situation logic (Barwise and
Perry 1983, Israel and Perry 1990, Devlin (1991); Barwise and Seligman (1997 )
provide a foundation for a general theory of information flow) also defines infor-
mation in terms of states space and consistency. However, it is less ontologically
demanding than the modal approach, since it assumes a clearly limited domain of
application. It is also compatible with Dretske’s probabilistic approach, although
it does not require a probability measure on sets of states. The informational
content of p is not determined a priori, through a calculus of possible states
allowed by a representational language, but in terms of factual content that p
carries with respect to a given situation. Information tracks possible transitions
in a system’s states space under normal conditions. Both Dretske and situation
theorists require some presence of information already immanent in the envi-
ronment (environmental information), as nomic regularities or constraints. This
“semantic externalism” can be controversial.

The inferential approach defines information in terms of entailment space:
information depends on valid inference relative to an information agent’s theory
or epistemic state.

Each of the previous extensionalist approaches can be given an intentionalist
interpretation by considering the relevant space as a doxastic space, in which
information is seen as a reduction in the degree of personal uncertainty, given
a state of knowledge of the informee. Wittgenstein addressed this distinction in
his Remarks on the Philosophy of Psychology I §817 (Wittgenstein (1980))

The important insight is that there is a language-game [Wittgen-
stein seems to have in mind here the information game we have already
encountered above] in which I produce information automatically, infor-
mation which can be treated by other people quite as they treat non-
automatic information only here there will be no question of any ‘lying’
- information which I myself may receive like that of a third person. The
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‘automatic’ statement, report etc. might also be called an ‘oracle’. - But
of course that means that the oracle must not avail itself of the words ‘I
believe . . . ’.

5.1 The Bar-Hillel-Carnap Paradox

Insofar as they subscribe to the Inverse Relationship Principle, the extensionalist
approaches outlined in the previous section can be affected by what has been
defined, with a little hyperbole, as the Bar-Hillel-Carnap Paradox (BCP, Floridi
(2004b)).

In a nutshell, we have seen that, following IRP, the less probable or possible
p is the more semantic information p is assumed to be carrying. This explains
why most philosophers agree that tautologies convey no information at all, for
their probability or possibility is 1. But it also leads one to consider contradic-
tions - which describe impossible states, or whose probability is 0 - as the sort
of messages that contain the highest amount of semantic information. It is a
slippery slope. Make a statement less and less likely and you gradually increase
its informational content, but at certain point the statement “implodes” (in the
quotation below, it becomes “too informative to be true”).

Bar-Hillel and Carnap (1953) were among the first to make explicit this prima
facie counterintuitive inequality. Note how their careful wording betrays the
desire to defuse the problem:

BCP)
It might perhaps, at first, seem strange that a self-contradictory sen-

tence, hence one which no ideal receiver would accept, is regarded as
carrying with it the most inclusive information. It should, however, be
emphasized that semantic information is here not meant as implying
truth. A false sentence which happens to say much is thereby highly
informative in our sense. Whether the information it carries is true or
false, scientifically valuable or not, and so forth, does not concern us. A
self-contradictory sentence asserts too much; it is too informative to be
true (p. 229).

Since its formulation, BCP has been recognised as an unfortunate, yet per-
fectly correct and logicall inevitable consequence of any quantitative theory of
weakly semantic information (TWSI; “weakly” because truth values play no role
in it). As a consequence, the problem has often been either ignored or tolerated
(Bar-Hillel and Carnap (1953)) as the price of an otherwise valuable approach.
Sometimes, however, attempts have been made to circumscribe its counterintu-
itive consequences. This has happened especially in Information Systems Theory
(Winder et al. (1997)) - where consistency is an essential constraint that must re-
main satisfied for a database to preserve data integrity - and in Decision Theory,
where inconsistent information is obviously of no use to a decision maker.

In these cases, whenever there are no possible models that satisfy a state-
ment or a theory, instead of assigning to it the maximum quantity of semantic
information, three strategies have been suggested:
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1. assigning to all inconsistent cases the same, infinite information value (Lozin-
skii (1994)). This is in line with an economic approach, which defines x as
impossible if and only if x has an infinite price;

2. eliminating all inconsistent cases a priori from consideration, as impossible
outcomes in decision-making (Jeffrey (1990)). This is in line with the syn-
tactic approach developed by MTC;

3. assigning to all inconsistent cases the same zero information value (Mingers
(1997 ), Aisbett and Gibbon (1999).

The latter approach is close to the strongly semantic approach, to which we
shall now turn.

5.2 The Strongly Semantic Approach to Information

The general hypothesis is that BCP indicates that something has gone essen-
tially amiss with TWSI. TWSI is based on a semantic principle that is too weak,
namely that truth-values are independent of semantic information. A semanti-
cally stronger approach, according to which information encapsulates truth, can
avoid the paradox and is more in line with the ordinary conception of what
generally counts as factual information, as we have seen in section 4.2.3. MTC
already provides some initial reassurance. MTC identifies the quantity of infor-
mation associated with, or generated by, the occurrence of a signal (an event
or the realisation of a state of affairs) with the elimination of possibilities (re-
duction in uncertainty) represented by that signal (event or state of affairs).
In MTC, no counterintuitive inequality comparable to BCP occurs, and the
line of argument is that, as in the case of MTC, a theory of strongly seman-
tic information (TSSI), based on alethic and discrepancy values rather than
probabilities, can also successfully avoid BCP (Floridi (2004b ); (2005b ), see
Bremer and Cohnitz (2004 ) chap. 2 for an overview). The idea is to define
semantic-factual information in terms of data space, as well-formed, meaning-
ful and truthful data. This constrains the probabilistic approach introduced
above, by requiring first a qualification of the content as truthful. Once the
content is so qualified, the quantity of semantic information in p is calculated
in terms of distance of p from the situation/resource w that p is supposed to
model. Total distance is equivalent to a p true in all cases (all possible worlds
or probability 1), including w and hence minimally informative, whereas maxi-
mum closeness is equivalent to the precise modelling of w at the agreed level of
abstraction.

Suppose there will be exactly three guests for dinner tonight. This is our
situation w. Imagine we are told that

T) there may or may not be some guests for dinner tonight; or
V) there will be some guests tonight; or
P) there will be three guests tonight.

The degree of informativeness of T is zero because, as a tautology, T applies
both to w and to ¬ w. V performs better, and P has the maximum degree of
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informativeness because, as a fully accurate, precise and contingent truth, it
“zeros in” on its target w. Generalising, the more distant some semantic-factual
information σ is from its target w, the larger is the number of situations to which
it applies, the lower its degree of informativeness becomes. A tautology is a true
σ that is most “distant” from the world.

Let us now use the letter ϑ to refer to the distance between a true σ and
w. Using the more precise vocabulary of situation logic, ϑ indicates the degree
of support offered by w to σ. We can now map on the x axis of a Cartesian
diagram the values of ϑ given a specific σ and a corresponding target w. In our
example, we know that ϑ (T ) = 1 and ϑ (P ) = 0. For the sake of simplicity, let us
assume that ϑ (V ) = 0.25 (see Floridi (2004b) on how to calculate ϑ values). We
now need a formula to calculate the degree of informativeness ι of σ in relation
to ϑ (σ). It can be shown that the most elegant solution is provided by the
complement of the square value of ϑ (σ), that is y = 1 − x2. Using the symbols
just introduced, we have:

ι (σ) = 1 − ϑ (σ)2 (13)

Fig. 14 shows the graph generated by equation [13] when we include also
negative values of distance for false σ ( ϑ ranges from −1 = contradiction to 1 =
tautology).

If σ has a very high degree of informativeness ι (very low ϑ) we want to be
able to say that it contains a large quantity of semantic information and, vice

Fig. 14. Degree of informativeness
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Fig. 15. Maximum amount of semantic information α carried by σ

versa, the lower the degree of informativeness of σ is, the smaller the quantity
of semantic information conveyed by σ should be. To calculate the quantity of
semantic information contained in σ relative to ι (σ) we need to calculate the
area delimited by equation [13], that is, the definite integral of the function
ι (σ) on the interval [0, 1]. As we know, the maximum quantity of semantic
information (call it α) is carried by P, whose ϑ = 0. This is equivalent to the
whole area delimited by the curve. Generalising to σ we have:

∫ 1

0

ι (σ) dx = α =
2
3

(14)

Fig. 15 shows the graph generated by equation [14]. The shaded area is the
maximum amount of semantic information α carried by σ.

Consider now V, “there will be some guests tonight”. V can be analysed as a
(reasonably finite) string of disjunctions, that is V = [“there will be one guest
tonight” or “there will be two guests tonight” or . . . “there will be n guests
tonight”], where n is the reasonable limit we wish to consider (things are more
complex than this, but here we only need to grasp the general principle). Only
one of the descriptions in V will be fully accurate. This means that V also con-
tains some (perhaps much) information that is simply irrelevant or redundant.
We shall refer to this “informational waste” in V as vacuous information in V.
The amount of vacuous information (call it β) in V is also a function of the
distance ϑ of V from w, or more generally
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∫ ϑ

0

ι (σ) dx = β (15)

Since ϑ(V) = 0.25, we have

∫ 0.25

0

ι (σ) dx = 0.24479 (16)

Fig. 16 shows the graph generated by equation [16]. The shaded area is the
amount of vacuous information β in V. Clearly, the amount of semantic in-
formation in V is simply the difference between α (the maximum amount of
information that can be carried in principle by σ) and β (the amount of vacuous
information actually carried by σ), that is the clear area in the graph of Fig. 16.
More generally, and expressed in bits, the amount of semantic information γ in
σ is:

γ (σ) = log (α − β) (17)

Note the similarity between [14] and [15]. When ϑ (σ) = 1, that is, when the
distance between σ and w is maximum, then α = β and γ (σ) = 0. This is
what happens when we consider T. T is so distant from w as to contain only
vacuous information. In other words, T contains as much vacuous information
as P contains relevant information.

Fig. 16. Amount of semantic information γcarried by σ
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6 Conclusion

Philosophical theories of semantic information have recently contributed to a
new area of research in itself, the philosophy of information (Adams (2003),
Floridi (2002), (2003b), (2004a)). The two special issue volumes of Minds and
Machines on the philosophy of information (Floridi (2003c)) provide an overview
of the scope and depth of current work in the field. Information seems to have
become a key concept to unlock several philosophical problems. “The most valu-
able commodity I know of is information”, boldly declares Gordon Gekko in
Oliver Stones Wall Street (1987). Euphranor would probably have concurred.
The problem is that we still have to agree about what information is exactly.
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