
Turing vs. Super-Turing: a Defence of the Church-Turing Thesis

The following section comes from the second chapter of L. Floridi, Philosophy and Computing
(London: Routledge, forthcoming). It is an introductory text to ITC (Information Technology
and Communication) and conceptual issues in computer science written for students in
philosophy with an elementary training in mathematical logic but no particular competence in
computer science.

[…]

2.3. Turing Machines
For centuries, human ingenuity addressed the problem of devising a conceptual and discrete
language that would make it possible to assemble and disassemble ever larger semantic
molecules according to a compositional logic. Today, we know that this was the wrong
approach. Data had to be fragmented into digital atoms, yet the very idea that the quantity of
elements to be processed had to be multiplied to become truly manageable was almost
inconceivable, not least because nobody then knew how such huge amounts of data could be
processed at a reasonable speed. The road leading to semantic atomism was blocked and the
analytic engine was probably as close as one could get to constructing a computer without
modifying the very physics and logic implemented by the machine. This fundamental step was
first taken, if only conceptually, by Alan Turing.

Alan Turing's contributions to computer science are so outstanding that two of his seminal
papers, “On Computable Numbers with an application to the Entscheidungsproblem” and
“Computing Machinery and Intelligence”, have provided the foundations for the development
of the theory of computability, recursion functions and artificial intelligence. In chapter five,
we shall analyse Turing's work on the latter topic in detail. In what follows, I shall merely
sketch what is now known as a Turing machine and some of the conceptual problems it raises
in computation theory. In both cases, the scope of the discussion will be limited by the principal
aim of introducing and understanding particular technologies.

A simple Turing Machine (TM) is not a real device, nor a blueprint intended to be
implemented as hardware, but an abstract model of a hypothetical computing system that
Turing devised as a mental experiment in order to answer in the negative a famous
mathematical question. In 1928, David Hilbert had posed three questions:
1. Is mathematics complete (can every mathematical statement be either proved or

disproved)?
2. Is mathematics consistent (is it true that contradictory statements such as “1 = 2” cannot be

proved by apparently correct methods)?
3. Is mathematics decidable (is it possible to find a completely mechanical method whereby,

given any expression s in the logico-mathematical system S, we can determine whether or
not s is provable in S?)

The last question came to be known as the Entscheidungsproblem. In 1931, Kurt Gödel proved
that every formal system sufficiently powerful to express arithmetic is either incomplete or
inconsistent, and that, if an axiom system is consistent, its consistency cannot be proved within
itself. In 1936, Turing offered a solution to the Entscheidungsproblem. He showed that, given
the rigorous representation of a mechanical process by means of TM, there are decision
problems (problems that admit Yes/No answers) that are demonstrably unsolvable by TM.

To understand what a Turing machine is it may help to think of it graphically, as a

flowchart—a stylised diagram showing the various instructions constituting the algorithm and
their relationship to one another—a matrix, or just a program. For our present purposes, we can
describe a TM as a (possibly fully mechanical) elementary tape recorder/player consisting of
1. a control unit that can be in only one of two internal states s, usually symbolised by 0/1 (s ∈

{0,1}), operating
2. a read/write head that can move to the right or to the left (m ∈ {R,L}), to scan
3. an unlimited tape, divided into symmetric squares, each bearing at most one symbol α or β

(where both α and β ∈ {0,1} and there is a finite number of squares bearing a 1). The tape
holds the finite input for the machine (the string of 0s and 1s), stores all partial results
during the execution of the instructions followed by the control unit (the new string of 0s
and 1s generated by the head), and provides the medium for the output of the final result of
the computation.

The computational transitions of TM are then regulated by the partial function: ƒ: (α, s) → (β,
m, s’) (a function ƒ: S → T is an operation that maps strings of symbols over some finite
alphabet S to other strings of symbols over some possibly different finite alphabet T, a partial
function holds only for a proper subset of S) and the machine can be fully described by a
sequence of ordered quintuples: for example, <0, α, β, R, 1> can be read as the instruction “in
state 0, if the tape square contains an α, then write β, move one cell right and go into state 1”.
Note that we have already simplified the finite alphabet of TM by limiting it to only two
symbols and that we have also limited the number of tapes that TM can use to only one. The
number of types of operations that TM can perform is very limited. In each cycle of activity
TM may
• read a symbol at a time from the current square of the tape (the active square)
• write a symbol on the active square
• change the internal state of the control unit into a (possibly) different state
• move the head one space to the right or to the left (whether it is the tape or the head that

moves is irrelevant here)
• halt (i.e. carry out no further operations).
TM begins its computation by being in a specified internal state, it scans a square, reads its
symbol, writes a 0 or 1, moves to an adjacent square, and then assumes a new state by
following instructions such as “if the internal state = 0 and the read symbol on the active square
= 1 then write 1, move left, and go into internal state = 1”. The logical sequence of TM
operations is fully determined by TM's internal state (the first kind of input), the symbol on the
active square (the second kind of input) and the elementary instructions provided by the
quintuples. The machine can be only in a finite number of states (“functional states”), each of
which is defined by the quintuples. All this means that a standard TM qualifies as at least a
deterministic finite state machine (FSM, also known as finite automaton or transducer. Note
that I say “at least” because a TM can do anything a simple FSM can do, but not vice versa) in
that it consists of
• a set of states, including the initial one
• a set of input events
• a set of output events
• a state transition function that takes the current state and an input event and returns as

values the new set of output events and the next state.
TM is deterministic because each new state is uniquely determined by a single input event. At
any particular moment in time, TM is always in a fully describable state. Any particular TM
provided with a specific list of instructions could be described in diagrammatic form by a flow

chart, and this helps to explain why TM is better understood as a program or software, and
therefore as a whole algorithm, than as a mechanical device. After all, the mechanical nature of
the tape recorder is irrelevant, and any similar device would do.

Despite the apparent simplicity of a TM, it is possible to specify lists of “instructions” that
allow specific TMs to compute an extraordinary number of functions (more precisely, if a
function is computable by a TM this means that its computation can be transformed into a
series of quintuples that constitute the TM in question). How extended is this class of
functions? To answer this question we need to distinguish between two fundamental results
achieved by Turing, which are usually known as Turing’s Theorem (TT) and the Church-
Turing Thesis (CTT), and a number of other corollaries and hypotheses, including Church’s
thesis.

The theorem proved by Turing was that there is a Universal Turing Machine (UTM) that can
emulate the behaviour of any special-purpose TM. There are different ways of formulating this
result, but the one which is most useful in this context, in order to distinguish TT from other
hypotheses, refers to the class of functions that are computable by a machine. Turing’s
Theorem says that there is a UTM that computes any function that is computable by a TM:
TT) ∀∀ ƒƒ ∃∃x (TMC(ƒƒ) →→ (UTM(x) ∧∧ C(x, ƒƒ)))
TT means that, given any TM, there is a UTM whose tape contains the description of TM’s
data and instructions and can mechanically reproduce it or, more briefly, that can be
programmed to imitate TM. TT is a crucial result in computation theory: to say that a UTM is a
TM that can encompass any other TM is like saying that, given m specific flow charts, drawn in
a standard and regimented symbolism, which describe the execution of as many specific tasks,
there is a universal flow chart n, written with the same symbols, that can reproduce any of them
and thus perform the same tasks. This “super flow chart”, UTM, is a general-purpose
programmable computing device that provides the logical foundation for the construction of the
PC on our desk. Its universality is granted by the distinction between the elementary operations,
performed by the hardware, and the instructions specified by a given program, contained in the
software. Unlike the abacus, an analog calculator or a special-purpose TM, the same UTM can
perform an unlimited number of different tasks, i.e. it can become as many TMs as we wish.
Change the software and the machine will carry out a different job. In a way that will become
clearer in a moment, the variety of its functions is limited only by the ingenuity of the
programmer. The importance of such a crucial feature in the field of computation and
information theory can be grasped by imagining what it would be like to have a universal
electric engine in the field of energy production, an engine that could work as a drill, a vacuum
cleaner, a mixer, a motor bike, and so forth, depending on the program that managed it. Note
that sometimes UTMs may generically and very misleadingly (see below) be called Super
Turing Machines.

Turing's fundamental theorem brings us to a second important result, a corollary of his
theorem:
U) a UTM can compute anything a computer can compute.
This corollary may be the source of some misunderstandings. If by U one means roughly that
U.a) a UTM can be physically implemented on many different types of hardware
or, similarly, that
U.b) every conventional computer is logically (not physically) equivalent to a UTM
then U is uncontroversial: all computer instruction sets, high level languages and computer
architectures, including multi-processor parallel computers, can be shown to be functionally
UTM-equivalent. Since they belong to the same class of machines, in principle any problem

that one can solve can also be solved by any other, given sufficient time and space resources
(e.g. tape or electronic memory), while anything that is in principle beyond the capacities of a
UTM will not be computable by other traditional computers. All conventional computers are
UTM-compatible, as it were. However, on the basis of a more careful analysis of the concept of
computability, the corollary U is at best incorrectly formulated, and at worst completely
mistaken. To understand why we need to introduce the Church-Turing Thesis.

There are many contexts in which Turing presents his thesis. In 1948, for example, Turing
wrote that “[TMs] can do anything that could be described as ‘rule of thumb’ or ‘purely
mechanical’, so that “’calculable by means of a [TM]’ is the correct accurate rendering of such
phrases” (Turing 1948:7, see webliography). A similar suggestion was also put forward by
Alonzo Church and nowadays this is known as the Church-Turing Thesis: if a function ƒ is
effectively computable (EC) then ƒ is computable by an appropriate TM (TMC) hence by a
UTM (UTMC, henceforth I shall allow myself to speak of TMC or UTMC indifferently,
whenever the context does not generate any ambiguity), or more formally
CTT) ∀∀ ƒƒ (EC(ƒƒ) →→ TMC(ƒƒ))
Broadly speaking, CTT suggests that the intuitive but informal notion of “effectively
computable function” can be replaced by the more precise notion of “TM-computable
function”. CTT implies that we shall never be able to provide a formalism F that both captures
the former notion and is more powerful than a Turing Machine, where “more powerful” means
that all TM-computable functions are F-computable but not vice versa. What does it mean for a
function ƒ to be effectively computable? That is, what are the characteristics of the concept we
are trying to clarify? Following Turing’s approach, we say that ƒ is EC if and only if there is a
method m that qualifies as a procedure of computation (P) that effectively computes (C) ƒ:
a) ∀∀ ƒƒ (EC(ƒƒ) ↔↔ ∃∃m (P(m) ∧∧ C(m,ƒƒ))
A method m qualifies as a procedure that effectively computes ƒ iff m satisfies all the
following four conditions:
1. m is finite in length and time
m is set out in terms of a finite number of discrete, exact and possibly repeatable instructions,
which, after a given time (after a given number of steps), begin to produce the desired output.
To understand the finite nature of m in length and time recall that in a TM the set of
instructions is constituted by a finite series of quintuples (more precisely, we say that a TM is a
particular set of quintuples), while in an ordinary computer the set of instructions is represented
by a stored program, whose application is performed through a fetch-execute cycle (obtaining
and executing an instruction). A consequence of (1) is the halting problem that we shall analyse
at the end of this section.
2. m is fully explicit and non-ambiguous
each instruction in m is expressed by means of a finite number of discrete symbols belonging to
a language L and is completely and uniquely interpretable by any system capable of reading L.
3. m is faultless and infallible
m contains no error and, when carried out, always obtains the same desired output in a finite
number of steps.
4. m can be carried out by an idiot savant
m can (in practice or in principle) be carried out by a meticulous and patient human being,
without any insight, ingenuity or the help of any instrument, by using only a potentially
unlimited quantity of stationery and time (it is better to specify “potentially unlimited” rather
than “infinite” in order to clarify the fact that any computational procedure that necessarily
requires an actually infinite amount of space and time never ends and is not effectively

computable, see below). A consequence of (4) is that whatever a UTM can compute is also
computable in principle by a human being. I shall return to this point in chapter five. At the
moment, suffice to notice that, to become acceptable, the converse of CTT requires some
provisos, hidden by the “in principle” clause, for the human being in question would have to be
immortal, infinitely patient and precise, and use the same kind of stationery resources used by
UTM. I suppose it is easier to imagine such a Sisyphus in Hell than in a computer room, but in
its most intuitive sense, the one endorsed by Turing himself (see chapter five), the thesis is
easily acceptable as true by definition.
More briefly, we can now write that:
a) ∀∀ m (((P(m) ∧∧ C(m,ƒƒ)) ↔↔ ({1,2,3,4}(m)))
When a TM satisfies {1,2,3,4} we can say that it represents a particular algorithm, if a UTM
implements {1,2,3,4} then UTM is a programmable system and it is not by chance that the set
of conditions {1,2,3,4} resembles very closely the set of conditions describing a good algorithm
for a classical Von Neumann Machine (see below). The main difference lies in the fact that
condition (4) is going to be replaced by a condition indicating the deterministic and sequential
nature of an algorithm for VNM. Since the criteria are less stringent, any good algorithm
satisfies {1,2,3,4}, and the three expressions “programmable system”, “system that satisfies the
algorithmic criterion” and “system that satisfies conditions {1,2,3,4}” can be used
interchangeably, as roughly synonymous.

Typical cases of computational procedures satisfying the algorithmic criterion are provided
by truth tables and tableaux in propositional logic, and the elementary operations in arithmetic,
such as the multiplication of two integers. It takes only a few moments to establish that a=149 ×
b=193 = c=28757, although, since in this example both a and b are prime numbers (integers
greater than 1 divisible only by 1 and themselves), it is interesting to anticipate here the fact
that there is no efficient algorithm to compute the reverse equation, i.e. to discover the values of
a and b given c, and that the computation involved in the prime factorisation of 28757 could
take us more than an hour using present methods. This is a question concerning the complexity
of algorithms that we shall discuss in more detail in chapter five. Here, it is worth remarking
that the clause “in principle”, to be found in condition (4) above, is important because, together
with the unbounded resources available to the idiot savant, it means that huge elementary
calculations, such as 798876 × 38737, do not force us to consider the multiplication of integers a
procedure that fails the test, no matter how “lengthy” the computation involved is.

Clearly, conditions {1,2,3,4} are sufficiently precise to provide us with a criterion of
discrimination, but they are not rigorous and formal enough to permit a logical proof. This
seems to be precisely the point of CTT, which is perhaps best understood as an attempt to
provide a more satisfactory interpretation of the intuitive concept of effective computation, in
terms of TM-computability. From this explanatory perspective, wondering whether it is
possible to falsify CTT means asking whether it is possible to show that CTT does not fully
succeed in capturing our concept of “effective computation” in its entirety. To show that CTT
is no longer satisfactory we would have to prove that there is a class of functions that qualify as
effectively computable but are demonstrably not computable by TM, that is
NOT-CTT) ∃∃ ƒƒ (EC(ƒƒ) ∧∧ ¬ TMC(ƒƒ))
The difficulty in proving NOT-CTT lies in the fact that, while it is relatively easy to discover
functions that are not TM-computable but can be calculated by other mathematical models of
virtual machines—all non-recursive functions would qualify (see below)—it is open to
discussion whether these functions can also count as functions that are effectively computable
in the rather precise though neither sufficiently rigorous nor fully formal sense, adopted in

(a)/(b) and specified by the algorithmic criterion. The problem of proving whether NOT-CTT
is the case can be reformulated in the following terms: does the existence of Super Turing
Machines (STMs) falsify CTT? STMs are a class of theoretical models that can obtain the
values of functions that are demonstrably not TM-computable. These include the ARNN
(analog recurrent neural network) model of Siegelmann and Sontag or the dynamic systems of
Koiran, Garzon, Cosnard and Moore. ARNNs consist of a structure of n interconnected, parallel
processing elements. Each element receives certain signals as inputs and computes them
through a scalar—real-valued not binary—function. The real-valued function represents the
graded response of each element to the sum of excitatory and inhibitory inputs. The activation
of the function generates a signal as output, which is in turn sent to the next element involved in
a given computation. The initial signals originate from outside the network, and act as inputs to
the whole system. Feedback loops transform the network into a dynamical system. The final
output signals are used to encode the end result of the computation and communicate it to the
environment. Recurrent ANNs are mathematical models of graphs not subject to any
constraints. We shall discuss the general class of artificial neural networks at greater length in
chapter five. The dynamic systems of Koiran et al. are mathematical structures representing
models of systems whose state changes with time, and which may therefore exhibit chaotic
behaviour. Note that neural networks may represent dynamic systems, but the latter can also be
discrete models. The question concerning the computational significance of such models is
perfectly reasonable, and trying to answer it will help us to understand better the meaning of
CTT, and the power of UTM (recall that we began this section by asking how large the class of
functions that are UTM-computable is).

Let us begin by presenting a second hypothesis—sometimes simply mistaken for CTT and
sometimes understood as a “strong” version of it—which is plainly falsified by the existence of
STM. Following the literature on the topic, I shall label it M:
M) ∀∀ ƒƒ (C/M (ƒƒ) →→ TMC(ƒƒ))
M says that if ƒ is a mechanically calculable (M/C) function—ƒ can be computed by a machine
working on finite data in accordance with a finite set of conditions—then ƒ is TM-computable.
M is irrecoverably false. It may never be possible to implement and control actual STMs—
depending on the model, STMs require either an actually infinite number of processing
elements or, if this number is finite, an infinite degree of precision in the computational
capacity of each processing element—but this is irrelevant here. A TM is also a virtual
machine, and the demonstration of the existence of a class of Super Turing (virtual) Machines
is sufficient to prove, at the mathematical level, that not every function that can in principle be
calculated by a any machine is also computable by a TM, that is
STM) ∃∃ ƒƒ (M/C (ƒƒ) ∧∧ ¬TMC(ƒƒ))
Since we can prove STM, this falsifies M:
NOT-M) STM →→ ¬ M
An interesting consequence of what has been said so far is that, while CTT does not support
any substantial philosophical conclusion about the possibility of strong AI (what is sometimes
called GOFAI, see chapter five), NOT-M undermines any interpretation of the feasibility of
strong AI based on M. The brain may well be working as a computational engine running
mechanically computable functions without necessarily being a UTM (“brain functions” may
be TM-uncomputable), in which case it would not be programmable nor “reproducible” by a
UTM-equivalent system. But more on the strong AI program in chapter five. At the moment,
we may ask whether NOT-M implies that CTT is also falsified, that is, whether we should also
infer that

CTT) STM →→ (NOT-CTT)
Some computer scientists, most notably Hava T. Siegelmann, seem to hold that CTT is the
case. They interpret the existence of STMs as ultimate evidence that CTT is no longer tenable
and needs to be revised. They may in fact be referring to M, in which case they are
demonstrably right, that is CTT = NOT-M. However, if we refer more accurately to NOT-
CTT, CTT is incorrect, for STMs do not satisfy the first half of the conjunction. They are
theoretical machines that can compute classes of TM-uncomputable functions, but they do not
qualify as machines in the sense specified by the algorithmic criterion, that is STMs implement
computational processes but not computational procedures that effectively compute ƒ in the
sense specified by {1,2,3,4}. In STMs we gain more computational power at the expense of a
complete decoupling1 between programming and computation (we have calculation as a
phenomenon without having computational programmability as a procedure), while in UTM-
compatible systems we gain complete coupling between the programmable algorithmic
procedure and the computational process of which it is a specification (in terms of computer
program, the process takes place when the algorithm begins its fetch-execute cycle) at the
expense of computational power.

A likely criticism of the previous analysis is that it may end up making the defensibility of
CTT depend on a mere definitional criterion. There is some truth in this objection, and by
spelling it out we reach the second important result inferable from the existence of STMs (the
first is NOT-M).

A purely definitional position with respect to CTT holds that all computable functions are
TM-computable and vice versa:
CTTdef) ∀∀ ƒƒ (C(ƒƒ) ↔↔ TMC(ƒƒ))
Obviously, if (CTTdef) is the case, then M follows, so defenders of CTT may really be
referring to (CTTdef) when they seem to move objections against CTT. In which case, it is
possible to show that they are arguably right in evaluating the significance of STMs for CTT.
For the existence of STMs proves that (CTTdef) is either false and hence untenable, or that it is
tenable but then only as a matter of terminological convention, i.e. it should actually be re-
written thus:
Def.) (∀∀ ƒƒ (C(ƒƒ) =def. TMC(ƒƒ))
My suggestion is that the possibility of STMs is sufficient to let us abandon (Def.). This is the
second interesting contribution to our understanding of the validity of CTT, made by defenders
of the computational significance of STMs. If we adopt (Def.), it becomes thoroughly unclear
precisely what kind of operations STMs perform when they obtain the values of TM-
uncomputable functions. The acceptance of (Def.) would force us to conclude that STMs are
not computing and, although this remains a viable option, it is certainly a most counterintuitive
one, which also has the major flaw of transforming the whole problem of the
verification/falsification of CTT into a mere question of vocabulary or axiomatic choice. As a

1 Coupling is the technical word whereby we refer to the strength of interrelations between the
components of a system (e.g. the modules of a program, or the processing elements of an artificial neural
network). These interrelations concern the number of references from one component to another, the
complexity of the interface between the components, the amount of data passed or shared between
components and the amount of control exercised by one component over another. The tighter the
coupling, the higher the interdependency, the looser the coupling the lower the interdependency.
Completely decoupled components—systems with the a null degree of interdependency—have no
common data and no control flow interaction.

result, it is more useful to acknowledge that STMs should be described as computing the values
of ƒ. We have seen, however, that they do not effectively compute ƒ, in the sense specified by
the algorithmic criterion, although they calculate its values. Given the differences between
TMs and STMs, the class of calculable functions is therefore a superclass of the class of
effectively computable functions. This is the strictly set-theoretic sense in which Super Turing
Machines are super: whatever can be computed by a TM can be calculated by a STM but not
vice versa. Up to Turing power, all computations are describable by suitable algorithms that, in
the end, can be shown to be equivalent to a series of instructions executable by a Turing
Machine. This is the Church-Turing Thesis. From Turing power up, computations are no longer
describable by algorithms, and the process of calculation is detached from the computational
procedure controllable via instructions. This is the significance of STMs. Since there are
discrete dynamical systems (including parallel systems, see below) that can have superturing
capacities, the distinction between effective computability and calculability cannot be reduced
to the analog/digital or continuous/discrete systems distinction. It turns out that Turing’s model
of algorithmic computation does not provide a complete picture of all the types of
computational processes that are possible. Artificial neural networks and dynamic systems are
computing models that offer an approach to computational phenomena that is complementary
and potentially superior to the one provided by conventional algorithmic systems. In terms of
computational power, digital computers are only a particular class of computers, though so far
they have been the only physically implemented general-purpose abstract devices. However,
even if STMs enlarge our understanding of what can be computed, it should be clear that this
has no direct bearing on the validity of CTT. The fact that there are STMs demonstrates that M
is false and shows that CTTdef is either provably false or trivially true but useless, but STMs do
not show that CTT is in need of revision in any significant sense, because the latter concerns
the meaning of effective computation, not the extent of what can be calculated by a system.
CTT remains a “working hypothesis”, still falsifiable if it is possible to prove that there is a
class of functions that are effectively computable in the sense of {1,2,3,4} but are not TM-
computable. So far, any attempt to give an exact analysis of the intuitive notion of an
effectively computable function—the list includes Post Systems, Markov Algorithms, λ-
calculus Gödel-Herbrand-Kleene Equational Calculus, Horn Clause Logic, Unlimited Register
Machines, ADA programs on unlimited memory machines—has been proved either to have the
same computational power of a Universal Turing Machine (the classes of functions computable
by these systems are all TM-computable and vice versa) or to fail to satisfy the required
algorithmic criterion, so the Church-Turing Thesis remains a very reasonable way of looking at
the concept of effective computation. This holds true for classical Parallel Processing
Computers (PPC) and non-classical Quantum Computers (QC) as well. As I hope it will
become clearer in chapter five, either PPCs and QCs are implementable machines that perform
effective computations, in which case they can only compute recursive functions that are in
principle TM-computable and CTT is not under discussion, or PPCs and QCs are used to
model virtual machines that can calculate TM-uncomputable functions, but then these idealised
Parallel or Quantum STMs could not be said to compute their functions effectively, so CTT
would still hold. From the point of view of what is technologically achievable, not just
mathematically possible, PPCs and QCs are better understood as “Super” Turing Machines
only in the generic sense of being machines that are exponentially more efficient than ordinary
TMs, so rather than “super” they should be described as richer under time constraints (i.e. they
can do more in less time). The “richness” of PPCs and QCs lets us improve our conception of
the tractability of algorithms in the theory of complexity, but does not influence our

understanding of the decidability and computability of problems in the theory of computation.
Since they are not in principle more powerful than the classical model, richer computers do not
pose any challenge to CTT.

At this point, we can view a UTM as the ancestor of our personal computers, no matter what
processors the latter are using and what software they can run. The computational power of a
UTM does not derive from its hardware (in theory a TM and a UTM can share the same
elementary hardware) but depends on
• the use of algorithms
• the intelligence and skills of whoever writes them
• the introduction of a binary language to codify both data and instructions, no longer as

actual numbers but as symbols
• the potentially unlimited amount of space provided by the tape to encode the whole list of

instructions, the input, the partial steps of computation and the final output, and finally
• the potentially unlimited amount of time the machine may take to complete the huge

amounts of very simple instructions provided by the algorithms in order to achieve its task.
Despite their impressive capabilities, UTMs are really able to perform only the simplest of
tasks, based on recursive functions. A recursive function is, broadly speaking, any function ƒ
that is defined in terms of the repeated application of a number of simpler functions to their
own values, by specifying a recursion formula and a base clause. More specifically, the class of
recursive functions includes all functions generated from the four operations of addition,
multiplication, selection of one element from an ordered n-tuple (an ordered n-tuple is an
ordered set of n elements) and determination of whether a < b by the following two rules: if F
and G1,…Gn are recursive, then so is F (G1,…,Gn); and if H is a recursive function such that for
each a there is an x with (Ha, x) = 0, then the least such x is recursively obtainable.

We can now state the last general result of this section. According to Church’s Thesis, every
function that is effectively computable is also recursive (R) and vice versa:
CT) ∀∀ ƒƒ (EC(ƒƒ) ↔↔ R(ƒƒ))
CT should not be confused with, but can be proved to be logically equivalent to CTT, since it
can be proved that the class of recursive functions and the class of TM-computable functions
are identical. Like CTT then, CT is not a theorem but a reasonable conjecture that is supported
by a number of facts and nowadays results widely accepted as correct. If we assume the validity
of CT, then we can describe a function ƒ from set A to set B as recursive iff there is an
algorithm that effectively computesƒ(x), for x ∈ A. This is the shortest answer we can give to
our original question concerning the extension of the class of functions computable by a UTM.
We still have to clarify what it means for a problem to be provably uncomputable by a Turing
Machine.

Recall clause (1) above: m is finite in length and time. If the task in question is endless, such
as the generation of the infinite expansion of a computable real number, then there is a sense in
which the algorithm cannot terminate, but it would still be a correct algorithm. This is a
different case from that represented by problems that cannot be solved by any TM because
there is no way of predicting in advance whether or when the machine will ever stop. In the
former case, we know that the machine will never stop. Likewise, given sufficient resources
and a record of the complete state of the execution of the algorithm at each step, it is possible to
establish that, if the current state is ever identical to some previous state, the algorithm is in a
loop. Algorithmic problems are provably TM-unsolvable when it is possible to demonstrate
that, in principle, it is impossible to determine in advance whether TM will ever stop or not.
The best known member of this class is the halting problem (HP). Here is a simple proof by

contradiction of its undecidability (a direct demonstration of the existence of undecidable
decision problems is achievable via diagonalisation, but goes beyond the scope of this section):
1. Let us assume that HP can be solved
2. if (1) then, for any algorithm N, there is an algorithm P such that P solves HP for N
3. let us code N so that it takes another algorithm W as input, i.e. W ⇒ N
4. make a copy of W and code it so that W ⇒ W
5. let P evaluate whether W ⇒ W halts (i.e. whether W will halt with W as an input) and let

the algorithm N be coded depending on the output of P
6. if the output of P indicates that W ⇒ W will halt, then let N be coded so that, when it is

executed, it goes into an endless loop
7. if the output of P indicates that W ⇒ W will not halt, then let N be coded so that, when it is

executed, it halts.
In other words, let N be coded in such a way that it does exactly the opposite of what the output
of P indicates that W ⇒ W will do. It is now easy to generate a self-referential loop and then a
contradiction by assuming N = W. For when we use algorithm N as input to algorithm N
8. if the output of P indicates that N ⇒ N will halt, then because of (7) when N is executed it

will enter into an endless loop and it will not halt
9. if the output of P indicates that N ⇒ N will not halt, then, because of (8) when N is

executed it will halt.
So, according to (8), if N ⇒ N halts then it does not halt, but if it does not halt then according
to (9) it does halt, but then it does not halt and so forth. This is a contradiction: N does and does
not halt at the same time. Therefore there is at least one algorithm N such that P cannot solve
HP for it, but (2) is true, so (1) must be false: HP cannot be solved. Sometimes, the simplest
way to show that a computational problem cannot be solved is to prove that its solution would
be equivalent to a solution of HP.

After Turing, we have a more precise idea of the concepts of “mechanical procedure”,
“effective computation” and “algorithm”. This was a major step, soon followed by a wealth of
mathematical and computational results. Nevertheless, a UTM leaves unsolved a number of
practical problems, above all the unlimited resources (space and time) it may require to
complete even very simple computations. To become a reliable and useful device, a UTM
needs to be provided with a more economical logic, that may take care of the most elementary
operations by implementing them in the hardware, and a more efficient architecture (HSA,
hardware system architecture, that is the structure of the system, its components and their
interconnections). In summary, one may say that Boole and Shannon provided the former, and
Von Neumann, with others, the latter.

