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Abstract

Science, like any other cognitive activity, is
grounded in the sensorimotor interaction of
our bodies with the environment. Human em-
bodiment thus constrains the class of scien-
tific concepts and theories which are accessi-
ble to us. The paper explores the possibil-
ity of doing science with artificial cognitive
agents, in the framework of an interactivist-
constructivist cognitive model of science. In-
telligent robots, by virtue of having different
sensorimotor capabilities, may overcome the
fundamental limitations of human science and
provide important technological innovations.
Mathematics and nanophysics are prime can-
didates for being studied by artificial scien-
tists.

1. Introduction

Science is one of the highest achievements of hu-
man cognition, and its technological applications are
certainly extremely important to human civilization.
This paper argues that, in spite of the impressive re-
sults achieved so far, human science has fundamen-
tal limitations, given by our embodiment. In order
to ensure the unconstrained advancement of science,
intelligent robots capable of doing science should be
built.

First, we briefly present an interactivist - construc-
tivist cognitive model of science. It sets a framework
for discussing the capabilities of cognitive agents
needed for doing science and the relationship be-
tween science and embodiment. We introduce next
artificially made science and argue that it may over-
come the limitations of human science. Mathematics
seems to be the field for which it is easiest to build
artificial scientists, but their most important contri-
bution will be in domains distant from human sen-
sorimotor experience, such as nanotechnology. We
also compare the current approach to artificial sci-
ence with previous work in the field of automated
science and machine discovery.

2. Science – a cognitive point of view

Science is a systematic process by which we come
to understand the structure of the surrounding en-
vironment, to generate predictions about evolutions
and explanations of causality in this environment.
Social factors influence the evolution of science, by
establishing socially accepted truth, setting research
agendas and through the communication of scientific
results. But before science becomes a social issue,
scientific concepts and theories must be generated,
understood and verified by the scientists themselves.
Here the focus will be on the cognitive properties of
a single individual needed for science.

2.1 Interactionist-constructivist cognition

The cognitive model of cognition presented here
has as epistemological framework the interactionist-
constructivist model of cognition of Indurkhya
(1992), originally developed for explaining the un-
derstanding of similarity creating metaphors. Ac-
cording to this theory, reality does not have a mind-
independent ontology: the concepts of the cognitive
agent impose an ontology to the world. The concepts
are internal to the agent and generated by its senso-
rimotor interaction with the environment. However,
the structure of the world with respect to this on-
tology cannot be arbitrary: reality has a structure
external to the cognitive agent. It is autonomous
and manifested in the structure of the sensorimotor
data set, directly accessible to the agent. We may
assume that reality exists prior to conceptualization,
but its ontology does not.

While some of the empirical findings that moti-
vated these considerations come from cognitive an-
thropology and psychology (Indurkhya, 1992, pp.
94–111), this theory is also largely compatible with
the results of modern science. It has been estab-
lished that it is pointless to look for the final the-
ory of the world, the final truth, which would be
the equivalent of discovering its “real” ontology. A
scientific theory can only be refuted, not justified,
and may be considered valid only until its refuta-



tion. This follows not only from theoretical consider-
ations (Popper, 1959), but was also shown by mod-
ern physics (Feynman, 1992, chap. 7). Moreover,
a theory should only approximate relevant aspects
of reality, balancing predictive power with complex-
ity, otherwise its details would be unmanageable for
our finite cognitive capabilities (Tolman, 1932). A
scientific theory is however useful for its coherence
(viability, functional fitness) with a limited domain
of the world (see also Peschl, 2001). Quantum me-
chanics and the theory of relativity are incompatible
theories, with different ontologies; however, they are
both accepted as valid theories for their explanatory
domain. But scientific theories cannot be arbitrary:
nature resists their predictions. The result of an ex-
periment is given solely by the structure of reality.

As we will show later, an interactionist - construc-
tivist model of cognition also agrees with the latest
results in neuroscience and cognitive science.

2.2 Neurobiological foundations for knowl-
edge and science

It is generally accepted that the biological basis of
cognition is the neuronal activity. Part of the in-
teraction of the environment with the organism is
captured by sensors and is translated in neuronal
patterns of activation. Activation of motor neurons
results in actions that are externalized in the envi-
ronment and may change it, or change its perception
by the agent (as in a movement). Synapses transmit
neuronal activation to other neurons, and in general
it is sustained even in the absence of significant sen-
sorial input.

Quasi-hebbian learning, associating concomitant
activations, is widely considered as an important
learning mechanism in biological neural networks
and it was demonstrated experimentally in some ar-
eas of the mammalian brain (Kandel, Schwartz, &
Jessel, 2000, chap. 63; Rolls & Treves, 1998, chap.
1; Fuster, 1995, chap. 3). In general, learning corre-
sponds to changes in the chemical composition of the
neuronal environment, and modifications of synap-
tic strengths and synaptic connectivity. Long term
modifications in the synaptic connectivity yields a
neural constructivism (Quartz and Sejnowski, 1997)
that mirrors and is the physical basis of the con-
ceptual one. These changes are caused by the neu-
ral activity, which is largely environmentally de-
rived: learning and cognitive development in biolog-
ical agents is thus inextricably related to their senso-
rimotor capabilities, and thus to their embodiment
(see also Tolman, 1932, Gibson, 1979, MacDorman
et al., 2000).

The representational properties of the brain, which
are mostly a result of learning, thus also largely de-
pend on the sensorimotor capabilities of the sup-

porting body. Moreover, it is believed that im-
agery and short term memory share many com-
mon neural mechanisms with perception or motor
action (Kosslyn and Thompson, 2000, Fuster, 1995,
Jeannerod, 1994, Jeannerod, 1999). Many results
point out that the neural correlates of a cer-
tain concept, activated, for example, by a word,
are activations of the neural networks that were
also active during the experiences of the person
with the significant of that word (Damasio, 1990,
Pulvermuller, 1999, Martin et al., 2000). The rep-
resentational properties of a symbol cannot thus
go further than the perceptual, motor or emo-
tional states that are associated by learning with
the phonological or visual form of the sym-
bol. It was argued that even the understanding
of abstract concepts is ultimately grounded like
this (Barsalou, 1999). Such grounded representa-
tions are internal to the cognitive agent, and do
not have the shortcomings of the classical sym-
bolic representations (Harnad, 1990, Bickhard, 1993,
Pfeifer and Scheier, 1999, Ziemke, 2001). Further
associations between symbols are also possible, but
ultimately their representational content will be
grounded in the sensorimotor states associated with
them.

These facts seem to confirm an interactivist-
constructivist view of cognition: representations de-
pend on the interaction of the cognitive agent with
the external environment and are constructed ac-
cording to his individual history of interactions. Pre-
vious experiences induce long term changes in the
synaptic connectivity, and thus each perception is
influenced by the past. Each agent thus has a differ-
ent ontology of the world, the differences being at-
tenuated only by genetically induced similarities be-
tween bodies, commonality of the environments and
by communication.

Motor capability is of the utmost importance for
the possibility of representation for the cognitive
agent himself (in contrast to the representation for
the user and designer, as in classical symbol-based
artificial intelligence). Bickhard (1993) argues on
theoretical grounds that genuine representational
content can be generated only by an embodied, ac-
tion capable, goal directed agent. This content is
in fact the potentialities for action activated by the
current perceptual input and by the internal state of
an agent (which correspond to the “behavioral pos-
sibilities” of Tolman, 1932, and to the “affordances”
of Gibson, 1979). In robotics, the importance
of sensorimotor coordination was demonstrated for
solving the problems that appear in information
processing approaches (Pfeifer and Scheier, 1999,
Steels and Brooks, 1995).

In the primate brain, the main locus of integration
between the perceptual and the motor pathways is



the prefrontal cortex, which is considered essential
for certain types of memory, but also for planning,
initiation of action, and creativity (Fuster, 1995).
On one hand, associations between perceptual and
sensorimotor networks capture part of the environ-
ment structure, together with the structure that may
be detected from a static sensorial input or from the
temporal changes of sensorial input. On the other
hand, mutual activations between these networks
may allow planning of actions by mental simulation
and the prediction of results. For example, it was ex-
perimentally shown that visuomotor anticipation—
the prediction of the visual consequences of a fu-
ture motor action—is likely to be also the mechanism
that drives mental rotation (Wexler et al., 1998). It
is thus possible for the cognitive agent to internally
simulate and predict the evolution of the environ-
ment in reaction to a given action or to a chain of
actions. Causality may also be represented, alter-
natively, by direct associations between cause and
result, without temporal continuity.

2.3 A cognitive model of science

We are now close to introducing science in this pic-
ture. The technological breakthroughs made pos-
sible by science in the last few centuries are rela-
tively recent on evolutionary timescales. The cog-
nitive mechanisms that allow us to do science could
not be favored by evolution for science itself. Those
mechanisms must thus be the same as those involved
in more mundane, though evolutionary adaptive,
cognitive processes (Nersessian, 1992, Peschl, 1999,
Peschl, 2001). Some of these mechanisms are:

• Causality detection and mental simulation. Re-
peated associations between actions and per-
ceptions of the results, or between evolution
in time of perceptions, may yield permanent
associations under the form of causality rela-
tions. Further, once these causalities are learned,
one may mentally simulate chains of actions
and their causally related results to construct
plans of actions and predict results of these
plans. This is an adaptive mechanism, which
may be found also in animals, and which serves
in science as a basis for causality detection and
the formulation of predictions. Computational
modeling of simulation and prediction based
on sensorimotor experience is an active field of
research (Jirenhed et al., 2001, Stojanov, 2001,
MacDorman et al., 2000, Clark, 2001).

• Coherence detection. When executing a mentally
simulated plan, the result may or may not be the
same as what was planned. It is adaptive for the
agent to evaluate the coherence of the predicted
and actual result and to consequently enforce the
causal associations used in the plan, or alterna-

tively to loose them, or to explain the result with
an alternative causal chain.

• Projective reasoning. This comprises the type of
reasoning used for the understanding and gener-
ation of similes, analogies, metaphors and mod-
els. It may be considered a “projection” of the
structure of a source domain on a target domain
(Indurkhya, 1992). While a definite, biologically
plausible model of this phenomenon remains to
be developed, we may speculate that it arises
from simultaneous activation of the neural net-
works activated with the source and target do-
main. The common features of the two domains
are revealed, if there are any. If the target domain
has little sensorimotor structure associated with
it, the structure of the source domain will dom-
inate the conceptualization of the target. How-
ever, an asymmetry between the source and the
target domain always exists during a metaphor
or an analogy, and a mechanism that accounts
for it has to be determined. Emergent capability
for projective reasoning should be an important
test for every model of human knowledge repre-
sentation.

Reasoning by analogy is also an adaptive mech-
anism, as it may suggest ways to deal with
new situations, based on experience acquired
with previous situations. While nonhuman pri-
mates can successfully reason analogically af-
ter training only, young children do it naturally
(Holyoak and Thagard, 1996) and have no prob-
lems understanding metaphors.

• Abstraction. Abstraction implies extraction of
common sensorimotor structure and may be re-
lated to categorization, which is easily obtained
with neural networks. Another type of abstrac-
tion is related to the schematicity of concepts
(Barsalou, 1999), which is implicitly realized if
the concepts are grounded in distributed neural
networks.

• Symbolic association. This capability may have
evolved for communication, which is also an
adaptive mechanism.

• Subitizing. It was shown that newborns and
some animals are capable to precisely and in-
stantly discriminate (without counting) between
small quantities, up to numbers of the or-
der of 4 or 5 (Wynn, 1993, Dehaene, 1997).
The numerosity of greater quantities can be
also imprecisely estimated by animals, the vari-
ability being proportional with the magnitude
(Gallistel and Gelman, 2000). This is also an
adaptive mechanism, which may be used to boot-
strap the understanding of numbers. Subitiz-



ing was simulated with connectionist models
(Dehaene and Changeux, 1993).

Out of these mechanisms, the most important is
probably the projective reasoning, as it allows the
formation of theories and the reasoning about do-
mains of reality where there is no direct sensorimotor
access. Through projective reasoning, the structure
of a (source) domain, learned by sensorimotor in-
teraction with it, is projected to a different (target)
domain. If the projection is coherent with the target
domain, it may allow predictions, through simula-
tions that follow the sensorimotor associations in the
source domain. Moreover, the source domain can in-
duce a different structure in the target domain, thus
inducing a creative conceptualization of this domain
(Indurkhya, 1992).

For example, we may know that if we put a cup of
water in the fridge, or if we put it outside in the win-
ter, it will transform into ice. A sensorimotor con-
ceptualization of this target domain would involve
associations between the perception of cold, visual
and tactile perceptions of water and ice, the motor
actions involved in the experiment, other associa-
tions with previous encounters with water and ice,
and so on. However, we may also think about this
phenomenon in the terms of the molecular structure
of water: the solidification would thus be seen as a
change in the movement of the molecules. The source
domain would be here spatial perception (we would
imagine the molecules ranged orderly in three dimen-
sional space) and the sensorimotor interactions with
objects, which serve as a source for the conceptual-
ization of the molecules. The sensorimotor ground-
ing of the source domain is thus different than the
one of the target domain, and through projection it
imposes a new conceptualization of water and ice.

The mechanism of projective reasoning may
explain also the incommensurability of different
paradigms (Kuhn, 1962). If in different paradigms
there are different source domains that structure the
target domain, and if there are no similarities be-
tween the different source domains that could be ab-
stracted, there is simply no way to reconcile the two
views: they are simply different and activate differ-
ent neural networks. Projective reasoning also intro-
duces an extra degree of variability in the ontology of
the world, which has special importance in science:
the ontology not only depends on the experiential
history of the cognitive agent, but also on which sen-
sorimotor domain it is grounded on, and in which
way.

Abstraction is another important cognitive mech-
anism used in science. For example, the concept
of number is abstracted from the manipulation and
construction of objects, measurement of linear di-
mensions and quantities, and movement on a path
(Lakoff and Nunez, 2000). They are several differ-

ent sensorimotor domains, but they have a certain
common structure that is abstracted in the con-
cept of number. This structure is also associated
with subitizing mechanisms, counting, and the dif-
ferent forms of symbolic representation of numbers
(Dehaene, 2000, Pesenti et al., 2000, Dehaene, 1992,
Dehaene and Cohen, 1995).

In general, the structure of a source domain has a
certain plasticity; some new associations are added,
and some older associations are inhibited, after the
application in a target domain. This modified struc-
ture may be abstracted, or restructured with a pro-
jection from another domain, in a more and more
elaborated construction that eventually leads to the
creation and understanding of modern scientific con-
cepts.

Science is thus the process of selecting source do-
mains and adapting their structure, initially acquired
from sensorimotor processes, such as the resulting
structure is coherent with the structure of a certain
domain of the environment where is no direct senso-
rimotor access, or where the sensorimotor generated
structure is not rich enough. The projected struc-
ture of the source domain allows mental simulations,
which yield predictions in the target domain.

3. Limitations of human science

Human scientific concepts thus crucially depend on
human sensorimotor capabilities, given by the hu-
man body. The limited range of these sensorimo-
tor capabilities thus fundamentally limits the class
of abstract concepts, including scientific concepts,
that a human can understand and use. The ani-
mal world exemplifies some biologically implemented
sensorial capabilities that are beyond human expe-
rience, such as space perception through sonar-like
interactions, magnetoreception and electroreception
(Hughes, 1999). Presumably, if we had these per-
ceptual pathways in addition to our current ones,
theories about waves and electromagnetism would
have been much simpler to generate and acquire, and
much closer to our intuition.

Artifacts obtained with current technologies may
extend further the domain, spectral range, preci-
sion and intensity of receptors and effectors. Mea-
surement instruments that use those enhanced sen-
sors and effectors are routinely used in science. Via
transductors, the signals can be perceived by the
human sensorimotor apparatus, and human move-
ments can be translated to other types of ac-
tions, thus leading to novel sensorimotor couplings,
which may associate an extra sensorimotor ground-
ing with the theories. For example, it was argued
that tools extend action and perception capabilities
(Hirose, 2002). The sensorimotor contingencies gen-
erated by the use of tools and instruments integrate
smoothly, after training, with the sensorimotor con-



tingencies of our own body (O’Regan and Noe, 2001,
Stojanov and Gerbino, 1999).

However, current scientific theories constrain the
design of the experimental apparatus, and the output
of the measurement instruments has to be accessible
to human sensors. The expansion of this productive
cycle, from theories to new sensorimotor groundings
and back, thus cannot fully escape the limitations of
human body.

Other limitations of human science may come from
limits of short-term memory and slow reasoning per-
formance (Riegler, 1998). General limitations of hu-
man cognition were also discussed by McGinn (1994).

4. Artificial science

4.1 Introducing artificial scientists

Having reviewed the cognitive capabilities needed for
science, it is naturally to ask if it is possible to im-
plement them in artificial cognitive agents. It seems
that there is, in principle, no impediment for such
agents to develop science—artificial science.

As discussed in Section 2.3, they would have to
be embodied and to have both sensors and effectors.
They will conceptualize on their own their environ-
ment. At first, this conceptualization will be through
sensorimotor interaction. Later, these sensorimotor
structures generated for some domains of the envi-
ronment may be projected on other domains. As
human science has shown, if the structure of the sen-
sorimotor data set is rich enough, it may be coherent
with other structures from other parts of the environ-
ment. We may ensure this emergent phenomenon in
the artificial scientists by giving them access to a
complex environment and to a wide range of sensors
and effectors. The control apparatus of the agents,
which would probably be implemented in artificial
neural networks, will have to implement causality de-
tection, internal simulation, abstraction, projective
reasoning and eventually symbolic association. In
biological agents, the need for coherence is imposed
by their need for survival: a lack of coherence may
result in injuries or death. In the artificial agents,
the goal may be simply to maximize the coherence
and the diversity of their predictions. Alternatively,
their goal may be to conceive and later build tech-
nological applications of their science. In this way,
they may generate technological innovations.

For example, with the recent advent of nanotech-
nology, cognitive agents could be build that would
have direct perceptual access to quantum phenom-
ena. Quantum mechanics would then be at least as
easy to understand for them as classical mechanics
is for humans. Moreover, it is possible that their
conception of quantum mechanics would be much
simpler than the conception that humans painfully
acquire through an elaborate construction from an

unadapted grounding. This new way of conceiving
quantum phenomena may lead to novel applications.

In general, having a different embodiment, the ar-
tificial agents will have access to different classes of
concepts than the one available in human science.
The science generated by artificial agents will thus
escape the limits imposed by the human body.

Once enough of the structure of the environment is
acquired through sensorimotor interaction, the artifi-
cial scientist could also continue the scientific process
of searching coherences “offline”, without permanent
interaction with the environment.

4.2 Communication between humans and
artificial scientists

As in any other communication between two agents
with different types of bodies, the communication
between humans and the artificial scientists may
prove difficult. We will not be able to understand
in their entirety the conceptualizations of the artifi-
cial agents. Understanding an utterance means an
internal simulation involving the sensorimotor sig-
nificants of the communicated symbols, previously
learned by association. As the sensorimotor ground-
ings of the agents are different than ours, there will
be an important loss of information in the commu-
nication between the two parties. The situation may
be different if the environment and the sensorimotor
capabilities of the agents are moderately similar to
the human ones.

4.3 Artificial mathematics

Many results point out that the groundings of hu-
man mathematics are mainly the conceptualiza-
tion of space and objects. A brain imagery study
(Dehaene et al., 1999) has shown that arithmetic
uses bilateral areas of the parietal lobes involved in
visuo-spatial processing, for estimation of numeri-
cal magnitudes, besides part of the brain involved in
word association, for the addition tables. Lakoff and
Nunez (1999, 2000) have theoretically studied the
embodiment of the mathematical concepts. Their
results also point to the (active) perception of space
and objects as the grounding of mathematics. Many
psychological experiments have shown a strong cor-
relation between spatial abilities and mathematical
and scientific abilities (Siemankowski and MacK-
night, 1971, Poole and Stanley, 1972, Bishop, 1973,
Guay and MacDaniel, 1977, Mitchelmore, 1980, Pall-
rand and Seeber, 1984). It seems thus that an arti-
ficial agent that will acquire an accurate conceptual-
ization of space and object perception and manipu-
lation, through sensorimotor interaction, and which
will also have symbolic capabilities, will be able to
understand and generate mathematics, and eventu-
ally, later, classical mechanics.



There already exist many neuroscience results
about space and object perception, as they may be
collected also from direct brain recordings from an-
imals. They may guide the realization of the artifi-
cial mathematician. The discreteness of mathemat-
ics, based on the discreteness of objects, may ease
the communication between the agent and humans.
The results of human mathematics may be communi-
cated to the artificial mathematician, and at its turn
it may provide us its innovative results. Finally, the
result would be an artifact that would be able to mas-
ter the whole human mathematics and continuously
generate new mathematical results (which yields the
question, maybe senseless until now, if interesting
mathematics could ever be complete, or infinitely
new important results may be generated). The arti-
ficial mathematician will be able to escape the limits
of Gödel’s theorem, as a human mathematician does,
because its demonstrations will not be limited to the
use of a single grounding. Through projective rea-
soning, it will be able to change groundings, and use
results from a grounding in different ones, as a hu-
man does.

4.4 Comparison with previous approaches

There is an important volume of work in artificial in-
telligence dedicated to the computational discovery
of new scientific knowledge. Some of this work was
successful and concluded with publications in spe-
ciality journals of the scientific results discovered by
the programs (for reviews, see Langley, 2000, Lang-
ley, 1998, Colton and Steel, 1999, Valdes-Perez, 1999,
Langley et al., 1993). However, this work is only su-
perficially similar with the approach proposed here.
In general, previous approaches to machine discovery
or automated science were concerned with clustering,
searching of qualitative and quantitative laws, and
formulation of models, always using human provided
data. It is up to the developer of the automated
discovery program to choose a problem formulation
adapted to the input data, and also to choose a rep-
resentation for the data fed to the program. Often,
the input data is preprocessed and filtered by the de-
veloper, and the developer manipulates the program
algorithm to modulate its performance for certain
inputs (Langley, 2000).

In most cases, the program has no effectors and
has no access to the environmental phenomena stud-
ied, other than the preprocessed data. An exception
is a project of closed-loop scientific discovery, where
experiments are planned automatically and carried
out by robots (Bryant et al., 2001); that paper also
introduces the term “artificial scientist”. However,
in all cases the ontology of the world, as seen by the
program carrying out the automatic scientific discov-
ery work, is fixed by its human developer.

In contrast, the approach presented here suggests

that the most interesting fact about doing science
with robots is that they are able to come up with
novel ontologies of the world, by virtue of having an
embodiment different than the human one. This is
why they should have both perceptual and effector
access to the phenomena they study, and the capa-
bility to conceptualize on their own the environment,
according to their sensorimotor affordances.

5. Conclusion

The paper presented a cognitive model of science and
a blueprint for artificial scientists. While they are
sometimes speculative, they open a research direc-
tion that may finally yield important technological
applications. Results from neuroscience, artificial life
and robotics accumulate at a fast rate, and may soon
prove that the construction of an artificial mathe-
matician is a question of years.
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