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abstract. This article develops a new measure of freedom of choice based on
the proposal that a set offers more freedom of choice than another if, and only if,
the expected degree of dissimilarity between a random alternative from the set of
possible alternatives and the most similar offered alternative in the set is smaller.
Furthermore, a version of this measure is developed, which is able to take into ac-
count the values of the possible options.

1. Introduction

In recent years, a growing literature has emerged concerning themeasure-
ment of freedom of choice.1 The aim has been to find an adequate way of
ranking sets of options with respect to how much freedom of choice they
offer. This article proposes a newmeasure, the expected-compromisemea-
sure. According to this measure, sets of alternatives should be ranked by
the expected degree of dissimilarity between a random alternative (from
the set of all possible alternatives) and themost similar alternative in each
set.

The structure of this article is as follows. Section 2 surveys some of the
previous proposals in the literature. In Sect. 3, I develop an unweighted
version of the new measure and in Sect. 4 a weighted version. Then, in
Sect. 5, some properties of the proposed measure are examined. p. 66
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2. Some previous proposals

In an influential 1990 article, Prasanta K. Pattanaik and Yongsheng Xu
present three conditions for ranking sets of alternatives with respect to
freedomof choice.2 Let𝜴 denote the set of all possible alternatives, which
we assume to be finite.

Indifference between No-choice Situations: For all 𝑥, 𝑦 ∈ 𝜴, {𝑥}
offers the same degree of freedom of choice as {𝑦}.

Strict Monotonicity: For all distinct 𝑥, 𝑦 ∈ 𝜴, {𝑥, 𝑦} offers more
freedom of choice than {𝑥}.

Independence: For all non-empty subsets 𝑼 and 𝑽 and for all
𝑥 ∈ 𝜴 ⧵ (𝑼 ∪ 𝑽), 𝑼 offers at least as much freedom of choice as 𝑽
iff 𝑼 ∪ {𝑥} offers at least as much freedom of choice as 𝑽 ∪ {𝑥}.

Pattanaik and Xu proved that the only measure that satisfies these condi-
tions is the cardinality measure, according to which a set offers at least as
much freedom of choice as another iff it has at least as many elements.

A stock objection to the independence condition, and, consequently,
to the cardinality measure, is that it does not take into account the degree
of dissimilarity between the alternatives.3 The effects of adding a new al-
ternative that is very similar to one of the original alternatives should be
smaller than those of adding a new alternative which is very dissimilar
to all the previous ones. However, this would violate the independence
condition. The standard way to take dissimilarity into account is to ex-
tend the framework with a dissimilarity function. Let 𝑑(𝑥, 𝑦) denote a
function from 𝜴 × 𝜴 to ℝ+ that measures the degree of dissimilarity on
a ratio scale, and let it satisfy 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥), 𝑑(𝑥, 𝑥) = 0. Moreover we
assume that if 𝑑(𝑥, 𝑦) = 0 then 𝑥 = 𝑦.4

For an illustration, suppose that you are to choose a temperature for
your office. The possible alternatives are𝜴 = {0 ∘C, 1 ∘C, 2 ∘C,… , 30 ∘C}.
In this case, a natural dissimilarity function on𝜴×𝜴 is simply the differ-
ence in temperature between the alternatives. For all 𝑥, 𝑦 ∈ 𝜴, 𝑑(𝑥, 𝑦) =

2 Pattanaik and Xu (1990, p. 386).
3 Pattanaik and Xu (1990, p. 390).
4 A standard assumption, see, e.g. van Hees (2004, p. 257), is that the dissimilarity

function satisfies the triangle inequality, 𝑑(𝑥, 𝑧) ≤ 𝑑(𝑥, 𝑦) + 𝑑(𝑦, 𝑧). This assumption is
not obviously valid, and is not needed for my purposes.
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|temp(𝑥) − temp(𝑦)|. In Figure 1 the alternatives in the subsets 𝑨 and 𝑩
of𝜴 are visualized as points on a line from 0 to 30.

𝑨 = {0 ∘C, 1 ∘C} 0 30
ss

𝑩 = {0 ∘C, 30 ∘C} 0 30
s s

Figure 1: The sets 𝑨 and 𝑩.

Suppose you judge, in line with the indifference between no-choice
situations condition, that {1 ∘C} offers an equal amount of freedom of
choice as {30 ∘C}. In order to satisfy the independence condition, you
also have to judge that𝑨 and 𝑩 offer equal amounts of freedom of choice.
However, intuitively 𝑩 seems to offer more freedom of choice than𝑨 due
to the lowdegree of dissimilarity between the alternatives in𝑨. Since both
𝑨 and 𝑩 have the same number of elements, they offer the same amount
of freedomof choice according to the cardinalitymeasure. It seems, there-
fore, that the cardinality measure does not fit our intuitions.

A number of measures that take dissimilarity into account have been
proposed. For example, Eckehard F. Rosenbaumproposed themaximum-
dissimilarity measure according to which a set 𝑼 offers at least as much p. 67

freedomof choice as a set𝑽 iff the greatest distance between the two alter-
natives in 𝑼 is at least as great as the greatest distance between two alter-
natives in𝑽.5 According to this measure, 𝑩would offer more freedom of
choice than𝑨, since the maximum dissimilarity between two elements is
30 in𝑩 but just 1 in𝑨. This seems to be in accordance with our intuitions.

However, what happens if we add a third alternative, 15 ∘C, to 𝑩 as
in the set 𝑪 in Fig. 2? Since 𝑪 in addition to the cold and hot alternatives

𝑪 = {0 ∘C, 15 ∘C, 30 ∘C} 0 30
s s s

Figure 2: The set 𝑪.

in 𝑩 also offers an alternative from the middle range that was unrepre-
sented in 𝑩, it intuitively offers more freedom of choice than 𝑩. However,

5 Rosenbaum (2000, p. 216).
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according to the maximum-dissimilarity measure 𝑩 and 𝑪 offer just as
much freedom of choice. Again, this is not in accordance with intuition.

In order to take diversity into account, Pattanaik and Xu have pro-
posed what they call ‘the simple similarity based ordering’, according to
which sets of alternatives are ranked with respect to freedom of choice by
the cardinality of the smallest similarity-based partition of the sets.6 A
problem with this approach is that it does not distinguish between differ-
ent degrees of dissimilarity. A counter-intuitive result of this is that any
three sets with two elements cannot all offer a different degree of freedom
of choice, since there are just two possible cardinalities of a partitioning
of a set with two elements. For example, the sets {𝑏𝑙𝑢𝑒 𝑡𝑟𝑎𝑖𝑛, 𝑟𝑒𝑑 𝑡𝑟𝑎𝑖𝑛},
{𝑏𝑙𝑢𝑒 𝑡𝑟𝑎𝑖𝑛, 𝑟𝑒𝑑 𝑏𝑢𝑠}, and {𝑏𝑙𝑢𝑒 𝑡𝑟𝑎𝑖𝑛, 𝑟𝑒𝑑 𝑤𝑖𝑛𝑒} cannot all offer different
degrees of freedom of choice. Martin van Hees has tried to reformulate
Pattanaik and Xu’s framework taken into account the degrees of dissimi-
larity between alternatives, but with negative results.7

Another criticism of the cardinality measure is that preferences need
to be taken into account. In order to take preferences into account, Pat-
tanaik and Xu have proposed a variation of their cardinality measure that
also measures the number of alternatives in a set of alternatives, but only
those which are considered best in that set by a reasonable person.8 How-
ever, the measure inherits some of the problems of the cardinality mea-
sure, since it also does not take the degree of similarity between alter-
natives into account. For example, if all alternatives in 𝑨 and 𝑩 are con-
sidered best in the set by a reasonable person, then Pattanaik and Xu’s
preference sensitive measure, like the cardinality measure, implies that p. 68

𝑨 offers the same amount of freedom of choice as 𝑩. But this again is
counter-intuitive.

Sebastian Bervoets and Nicolas Gravel use a similar approach, but
they also take the diversity of the alternatives in the sets into account.
Their measure ranks sets of alternatives in order of the maximum degree
of dissimilarity between two alternatives such that each is considered best
in that set by a reasonable person.9 A virtue of their measure is that it, un-
like the expected-compromise measure, only needs an ordinal dissimilar-
ity function. However, it also has counter-intuitive features. The measure

6 Pattanaik and Xu (2000, p. 127).
7 van Hees (2004).
8 Pattanaik and Xu (1998, p. 187).
9 Bervoets and Gravel (2007, p. 268).
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is very similar to Rosenbaum’s maximum-dissimilarity measure, and has
similar problems.As an example, suppose that all the alternatives in𝑩 and
𝑪 are considered best in the respective set by a reasonable person. Then,
Bervoets and Gravel’s measure implies, like the maximum-dissimilarity
measure, that 𝑩 offers the same amount of freedom of choice as 𝑪. As
before, this is contrary to intuition.

Kenneth Arrow and Clemens Puppe have proposed measures of free-
dom of choice based on preference for flexibility.10 To have a preference
for flexibility is roughly to prefer to have a wide range of options at a later
time.11 Arrow ranks sets of alternatives with respect to freedom of choice
by the expected utility of the sets given a probability distribution over
utility functions. This is a promising approach, althoughmore need to be
said about which probability distribution should be used. I will develop
this approach in Sect. 3.

3. The expected-compromise measure

Neither of the measures discussed above (except perhaps the flexibility
approach) properly accounts for the intuition that freedom of choice in-
creases as alternatives from a new range of the set of possible alternatives
become available. I will now develop a proposal that solves this problem.

Consider

The Unpredictable Boss. Suppose you are going to prepare a
set of alternatives fromwhich your boss will choose one. You
know that the boss has a favourite alternative in the set of all
possible alternatives, and that he wants to choose an alterna-
tive that is as similar as possible to his favourite alternative.
You estimate that all possible alternatives have the sameprob-
ability of being the boss’s favourite alternative.

Suppose you have to choose between offering the boss
one of two different sets of alternatives, 𝑫 and 𝑬, and you
happen to know that 𝑫 offers more freedom of choice than
𝑬. If you want to minimize the expected degree of dissim-
ilarity between the boss’s favourite alternative and the least
dissimilar alternative in the set of alternatives you offer him,
which of the sets,𝑫 and 𝑬, would you offer him?

10 Arrow (1995), Puppe (1996).
11 See, e.g. Koopmans (1964), Kreps (1979).
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p. 69
My intuition is that you should offer the boss𝑫, the set that offers him

more freedom of choice. It seems plausible that an agent with a random
favourite alternative ismore likely to be able to choose an alternativemore
similar to his favourite from a set that offersmuch freedomof choice than
a set that offers little.

Here is another example: Suppose that each day your tutor picks, at
random, a fruit from a giant bowl, containing one of each possible fruit.
Each day it is your job to find another fruit as similar as possible to the
one your tutor picked. It seems plausible that, in general, you would find
a fruit more similar to your tutor’s randomly picked fruit, if you each
day had to choose from a store whose selection offered much freedom
of choice than from a store whose selection offered little. The expected
compromise you have to make when choosing a fruit would be smaller
when the selection offers more freedom of choice.

The connection between freedom of choice and the expected degree
of dissimilarity (between a random possible alternative and the most
similar offered alternative) suggests the following measure of freedom of
choice:

The Expected-Compromise Measure: Given the domain𝜴, 𝑼
offers at least as much freedom of choice as 𝑽 iff the expected
degree of dissimilarity between a random alternative from𝜴 and
the least dissimilar alternative in 𝑼 is at least as low as the
expected degree of dissimilarity between a random alternative
from𝜴 and the least dissimilar alternative in 𝑽.

I shall now develop amore precise version of this proposal. For simplicity,
we start from the assumption that it is equally probable that each alterna-
tive in 𝜴 is picked. Other probability distributions will be discussed in
Sect. 4. Let the picked alternative be the value of the random variable 𝑋.
We then have the following probability function:

𝑝𝑋(𝑥) = 𝑃(𝑋 = 𝑥) =
1
|𝜴|
.

Let𝐷(𝑥,𝑼) denote the minimal dissimilarity between the element 𝑥 and
an element in𝑼,𝐷(𝑥,𝑼) = min({𝑑(𝑥, 𝑦) ∶ 𝑦 ∈ 𝑼}). The expected degree
of dissimilarity between this random alternative and the least dissimilar
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alternative in 𝑼 is

𝐸(𝐷(𝑋,𝑼)) = ∑
𝑥∈𝜴
𝐷(𝑥,𝑼)𝑝𝑋(𝑥) =

∑𝑥∈𝜴 𝐷(𝑥,𝑼)
|𝜴|

.

This allows us to state amore precise version of the expected-compromise
measure:

The Unweighted Expected-Compromise Measure: Given the
domain𝜴, the non-empty subset 𝑼 offers at least as much
freedom of choice as the non-empty subset 𝑽 iff

∑
𝑥∈𝜴
𝐷(𝑥,𝑼) ≤ ∑

𝑥∈𝜴
𝐷(𝑥,𝑽).

p. 70

According to thismeasure𝑼 offersmore freedom of choice than𝑽 if, and
only if, the sum of the minimal degrees of dissimilarity to an alternative
in𝑼 for each of all the possible alternatives is smaller than the sum of the
minimal degrees of dissimilarity to an alternative in 𝑽 for each of all the
possible alternatives.

A feature of the measure that initially might seem strange is that it
uses the entire domain, 𝜴, as a reference set. For most measures of free-
dom of choice, the only alternatives relevant for a comparison are those
in the compared sets. Why does it make sense to use𝜴 as a reference set?
Note first that 𝜴 has a special significance for rankings of sets in terms
of freedom; any plausible measure of freedom of choice should rank the
whole domain as offering at least asmuch freedomof choice as any subset
of the domain. So𝜴 represents an ideal choice set with respect to freedom
of choice, since any alternative can be chosen and any preference can be
expressed. As the subsets of𝜴 get smaller, there are more possible prefer-
ences for which one has to settle for an alternative dissimilar to the opti-
mal. These possible compromises should intuitively decrease the amount
of freedomof choice offered. Therefore, I think itmakes sense to rank sets
by some measure of similarity to 𝜴, like the expected-compromise mea-
sure.

The expected-compromise measure can also be obtained with Ar-
row’s approach as a starting point, with a few further plausible assump-
tions on the probabilities of the possible utility functions. Arrow ranks
sets of alternatives with respect to freedom of choice with the following
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freedom evaluation function:12

𝑉(A) = 𝐸𝜃[max({𝑈(𝑥, 𝜃) ∶ 𝑥 ∈ A})],

where 𝑈(𝑥, 𝜃) is the utility of the alternative 𝑥 given the random param-
eter 𝜃 and 𝐸𝜃[𝑓(𝜃)] is the expected value of 𝑓(𝜃).

I take the underlying intuition behind this approach to be roughly
that freedom of choice increases, if one is able to better satisfy a set
of relevant possible preferences. However, the approach needs to be
complemented with an account of which are the relevant preferences or
utility functions. One possible answer is to use a set of preferences that
prefers one alternative over all others and holds the other alternatives to
be equally bad, and to let a preference for each of the possible alternatives
be equally probable:

∀𝑥 ∈ 𝜴, 𝑃(𝜃 = 𝑥) = 1
|𝜴|

(1)

𝑈(𝑥, 𝜃) = {
1 if 𝜃 = 𝑥
0 otherwise

(2)

Given (1) and (2) Arrow’s function will rank sets according to the cardi-
nality measure. Similar to the cardinality measure, this probability dis-
tribution is problematic as it does not take into account the degree of
similarity between possible alternatives. For each utility function with a
positive probability, we have one optimal alternative, and all the other al-
ternatives, however similar to the optimal alternative, are equally bad. It
seems that a more plausible utility function would be to have an optimal
alternative and then prefer other alternatives gradually less as they be- p. 71

come more dissimilar to the optimal alternative. In order to obtain utility
functions like that we can replace (2) with the following:

𝑈(𝑥, 𝜃) = −𝑑(𝑥, 𝜃) (2′)

If we supplement Arrow’s approach with (1) and (2′) instead of (1) and
(2), then Arrow’s function coincides with the unweighted expected-
compromise measure.

In order to see how the expected-compromisemeasure works, wewill

12 Arrow (1995, pp. 10–11).
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return to the temperature example. In order to compare the sets of alter-
natives 𝑨 = {0 ∘C, 1 ∘C} and 𝑩 = {0 ∘C, 30 ∘C}, we have to consider the
degree of dissimilarity between each alternative in the set of all possible
alternatives𝜴 = {0 ∘C, 1 ∘C, 2 ∘C,… , 30 ∘C} and the least dissimilar alter-
native in 𝑨 and 𝑩.

In Fig. 3 the value of 𝐷(𝑥,𝑼) for each possible alternative has been
added to the sets from Figs. 1 and 2, that returns the degree of dissim-
ilarity between an alternative 𝑥 and the least dissimilar in the set of al-
ternatives 𝑼. The values of 𝐷(𝑥,𝑼) have been added as bars to the line,
which represented the set of all possible alternatives. Thus, the height of
a bar over an alternative represents the degree of dissimilarity between
the alternative and the least dissimilar alternative in the set of alterna-
tives. In Figure 3, the bars in 𝑨 get taller to the right as they get further
from the two offered alternatives to the left. In 𝑩 the bars are tallest in
the middle around 15 ∘C and get shorter as the alternatives get more sim-
ilar to one of the offered alternatives to the far left and right. Hence, the

𝑨 = {0 ∘C, 1 ∘C} 0 30
ss

𝑩 = {0 ∘C, 30 ∘C} 0 30
s s

Figure 3: The dissimilarity with the most similar alternative in 𝑨 and 𝑩
for all possible alternatives.

expected-compromise measure has an intuitive graphical interpretation.
The freedom of choice in a set of alternatives increases as the sum of the
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heights of all the bars decreases.
Since the sum of𝐷(𝑥, 𝑩) for all possible alternatives 𝑥 is smaller than

the sum of 𝐷(𝑥, 𝑨) for all possible alternatives 𝑥, 𝑩 offers more freedom
of choice than 𝑨.13 As mentioned in Sect. 2, the cardinality measure has
the disadvantage of not reflecting that the alternatives in 𝑨 came from a
very similar range of the set of all possible alternatives, whereas the alter-
natives in𝑩 came from two very dissimilar ranges of the set of all possible
alternatives. This is reflected in the expected-compromisemeasure. Since
𝑨 has no warm alternatives, the degree of dissimilarity to the least dissim-
ilar alternative in 𝑨 becomes very high for the warm range of the set of
all possible alternatives.

Next, let us turn to the comparison of 𝑩with𝑪 that was troublesome
for the maximum-dissimilarity measure. As seen in Fig. 4 the new alter-

𝑪 = {0 ∘C, 15 ∘C, 30 ∘C} 0 30
s s s

Figure 4: The dissimilarity with the most similar alternative in 𝑪 for all
possible alternatives.

native, 15 ∘C, makes the degree of dissimilarity smaller than in 𝑩 for all
possible alternatives between 7.5 ∘C and 22.5 ∘C and the same as in 𝑩
for all other alternatives. Thus, the sum of 𝐷(𝑥, 𝑪) for all possible alter-
natives 𝑥 is smaller than the sum of 𝐷(𝑥, 𝑩) for all possible alternatives
𝑥. Therefore 𝑪 offers more freedom of choice than 𝑩 according to the
expected-compromise measure. This fits with our intuitions. p. 72

The problem for the maximum-dissimilarity measure was that it did
not reflect that the amount of freedomof choice offered to an agent seems
to increase when alternatives from a new range of the set of possible alter-
natives become available to the agent. This is reflected by the expected-
compromise measure.

13 Since the unweighted expected-compromise measure implies that {0 ∘C} offers at
least asmuch freedomof choice as {30 ∘C} and also that {0 ∘C}∪{1 ∘C} donot offer at least
as much freedom of choice as {30 ∘C} ∪ {1 ∘C}, it violates the independence condition.
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4. A weighted version of the measure

In addition to the failure to account for diversity, there has been another
line of response against the cardinality measure. Amartya Sen argues that
it is counter-intuitive that a set of three alternatives that are seen as ‘bad’,
‘terrible’ and ‘disastrous’ offers as much freedom of choice as a set of three
alternatives that are seen as ‘good’, ‘terrific’ and ‘wonderful’.14 In other
words, the intuition is that an adequate measure should take into account
that good alternatives are more relevant for an agent’s freedom of choice
than bad alternatives. The measure proposed, in this article can easily be
modified to take Sen’s very plausible intuition into account. p. 73

In the unweighted version of the expected-compromise measure, all
possible alternatives are assumed to be equally relevant for the degree of
freedomof choice that a set of alternatives offers. In light of Sen’s intuition,
thismight not seemplausible. In response to this, I will introduce aweight
function that gives each possible alternative a weight. Let 𝑤(𝑥) denote a
function on 𝜴 that returns a weight on a ratio scale for each possible
alternative. These weights could represent the value or relevance of each
possible alternative. For example, consider again the example with sets of
alternative temperatures for an office.

In this case, it seems strange that each of the possible alternatives in
𝜴 = {0 ∘C, 1 ∘C, 2 ∘C,… , 30 ∘C} would be equally relevant to the boss’s
freedom of choice. Who would want 0 ∘C in their office? 0 ∘C appears to
be much less relevant than 20 ∘C. A simple weight function for this case
that gives more weight to the warmer alternatives than the cold ones is,
𝑤(𝑥) = 20 − |temp(𝑥) − 20|.

Instead of assigning equal probability to all possible alternatives of be-
ing the boss’s favourite, we assign to each possible alternative a probability
as follows:

𝑝𝑋(𝑥) =
𝑤(𝑥)
∑𝑦∈𝜴 𝑤(𝑦)

.

With these probabilities, we get a weighted version of the expected-
compromise measure:

14 See Sen (1990, p. 470) and Sen (1993, p. 529).

11



The Weighted Expected-Compromise Measure: Given the domain
𝜴, the non-empty subset 𝑼 offers at least as much freedom of
choice as the non-empty subset 𝑽 iff

∑
𝑥∈𝜴
𝑤(𝑥)𝐷(𝑥,𝑼) ≤ ∑

𝑥∈𝜴
𝑤(𝑥)𝐷(𝑥, 𝑽).

This measure differs from the unweighted version only in that the dissim-
ilarity of the alternatives in a set to a possible alternative is multiplied by
the weight of that possible alternative. This implies that a set of alterna-
tives will not be heavily penalized for not covering a range of alternatives
with low weights, such as in our example, the range of extremely cold
alternatives no one would want for their office.

5. Properties of the measure

In this section, I discuss some formal properties of the expected-
compromise measure, viz. localized independence, domain sensitivity,
monotonicity, and moderation. I shall also examine the widely discussed
indifference between no-choice situations condition and the measure’s
relation to the multi-attribute approach.

Pattanaik andXu’s independence condition has been criticized for not
taking similarity into account, as was mentioned in Sect. 2. The expected-
compromise measure violates independence, but it satisfies a related sim-
ilarity sensitive condition: p. 74

Localized Independence: For all non-empty subsets 𝑼 and 𝑽 and
for all 𝑥 ∈ 𝜴, if for all 𝑧 ∈ 𝜴,
[𝑑(𝑧, 𝑥) < max({𝐷(𝑧, 𝑼), 𝐷(𝑧, 𝑽)})] → [𝐷(𝑧,𝑼) = 𝐷(𝑧, 𝑽)] then
𝑼 offers at least as much freedom of choice as 𝑽 iff 𝑼 ∪ {𝑥} offers
at least as much freedom of choice as 𝑽 ∪ {𝑥}.15

Pattanaik and Xu’s independence was problematic, since it required that
the ranking of 𝑼 and 𝑽 should be the same as that for 𝑼 ∪ {𝑥} and 𝑽 ∪
{𝑥} even if 𝑥 is very similar to an alternative in 𝑼 but dissimilar to all
alternatives in 𝑽. This problem does not affect localized independence,
since it only requires that extensions of 𝑼 and 𝑽 with options from a
range that is equally well-represented in 𝑼 as in 𝑽 should be ranked the
same.

15 In this article ‘→’ denotes a material implication.
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In order to see that the weighted expected-compromise measure
satisfies localized independence, note that it ranks sets 𝑼 by sum of
𝑤(𝑦)𝐷(𝑦,𝑼) for all alternatives 𝑦 in 𝜴. For all 𝑧 ∈ 𝜴 such that 𝑑(𝑧, 𝑥) ≥
max({𝐷(𝑧, 𝑼), 𝐷(𝑧, 𝑽)}) we have that 𝑤(𝑧)𝐷(𝑧,𝑼) = 𝑤(𝑧)𝐷(𝑧, 𝑼 ∪ {𝑥})
and that𝑤(𝑧)𝐷(𝑧, 𝑽) = 𝑤(𝑧)𝐷(𝑧, 𝑽∪ {𝑥}); so these will be unaffected by
the extension. For all 𝑧 ∈ 𝜴 such that 𝑑(𝑧, 𝑥) < max({𝐷(𝑧, 𝑼), 𝐷(𝑧, 𝑽)})
and 𝐷(𝑧,𝑼) = 𝐷(𝑧, 𝑽) we have that 𝑤(𝑧)𝐷(𝑧,𝑼) = 𝑤(𝑧)𝐷(𝑧, 𝑽)
and that 𝑤(𝑧)𝐷(𝑧,𝑼 ∪ {𝑥}) = 𝑤(𝑧)𝐷(𝑧, 𝑽 ∪ {𝑥}); so even though
these will be affected by the extension of {𝑥} it will be by the same
amount for 𝑼 and 𝑽. Thus, if for all 𝑧 ∈ 𝜴, [𝑑(𝑧, 𝑥) < max({𝐷(𝑧,
𝑼), 𝐷(𝑧, 𝑽)})] → [𝐷(𝑧,𝑼) = 𝐷(𝑧, 𝑽)], the weighted measure ranks 𝑼
and 𝑽 the same as 𝑼 ∪ {𝑥} and 𝑽 ∪ {𝑥}, which was to be shown. Since
the unweighted measure, is just a special case of the weighted measure it
follows that the former also satisfies localized independence.

VanHees has argued that freedom is sensitive to variations of the rele-
vant domain or the set of technologically feasible options.16 The expected-
compromise measure differs from most other dissimilarity-based mea-
sures in that it is sensitive to what is included in the domain of possible
alternatives, and not just to the alternatives in the compared sets of alter-
natives. It satisfies the following condition:

Domain Sensitivity: There exist domains𝜴′ and𝜴″ and
non-empty sets of alternatives𝑿 and 𝒀 such that𝑿,𝒀 ⊆ 𝜴′,
𝑿,𝒀 ⊆ 𝜴″, and𝑿 offers at least as much freedom of choice as 𝒀
given domain𝜴′ and𝑿 does not offer at least as much freedom
of choice as 𝒀 given domain𝜴″.

For an example of domain sensitivity, let 𝜴1 = {10 ∘C, 11 ∘C, 12 ∘C,… ,
20 ∘C}. Given that the domain of possible alternatives is𝜴1, consider the
two sets of alternatives in Fig. 5. In this case, I think it is intuitively rea-

𝑭 = {10 ∘C, 20 ∘C} 10 20
t t

𝑮 = {12 ∘C, 18 ∘C} 10 20
t t

Figure 5: Sets 𝑭 and 𝑮 given domain𝜴1.

16 van Hees (1998).
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sonable to judge that 𝑮 offers more freedom of choice than 𝑭, as the un-
weighted expected-compromise measure does. The alternatives in 𝑮 are
less extreme relative to the domain than those in𝑭 and are arguablymore
representative of the range of possible choices from𝜴1.

Now, we will compare 𝑭 and 𝑮 again but with another domain. Let
𝜴2 = {0 ∘C, 1 ∘C, 2 ∘C,… , 30 ∘C}. Consider 𝑭 and 𝑮 in Fig. 6 with the
larger domain 𝜴2. This time it seems more intuitively plausible that 𝑭

𝑭 = {10 ∘C, 20 ∘C} 0 30
t t

𝑮 = {12 ∘C, 18 ∘C} 0 30
t t

Figure 6: Sets 𝑭 and 𝑮 given domain𝜴2.

offers more freedom of choice than 𝑮. Given the new domain, the alter-
natives in 𝑭 are no longer extreme. The new extended range of alterna- p. 75

tives is better represented by the alternatives in 𝑭which compensates the
better coverage of the middle range in 𝑮. This intuition also fits with the
unweighted expected-compromise measure as it, with domain 𝜴2, im-
plies that 𝑭 offers more freedom of choice than 𝑮. This shows that the
expected-compromise measure satisfies domain sensitivity.

It is easy to show that the unweighted expected-compromisemeasure
satisfies the strict monotonicity condition, presented in Sect. 2. Of Pat-
tanaik and Xu’s three conditions, this is the least controversial one. It can
also trivially be shown that the unweighted expected-compromise mea-
sure satisfies the following monotonicity condition:

Strong Monotonicity: For all non-empty sets of alternatives 𝑼 ⊂ 𝜴
and for all alternatives 𝑥 ∈ 𝜴 such that 𝑤(𝑥) > 0 and 𝑑(𝑥, 𝑦) > 0
for all 𝑦 ∈ 𝑼, 𝑼 ∪ {𝑥} offers more freedom of choice than 𝑼.

The weighted expected-compromise measure satisfies strongmonotonic-
ity, but not strictmonotonicity, since if an added alternative does not have
a positive weight, it might not increase the degree of freedom of choice.

A possible objection to the expected-compromise measure is that it
does not satisfy the indifference between no-choice situations condition
(INS), according to which all singleton sets of alternatives always offer

14



the same degree of freedom of choice.17 The intuition given in support of
INS in the literature is that all singleton sets offer no freedom of choice
and therefore they offer the same degree of freedom of choice.18

The INS condition is not, however, without critics. Sen has argued
that it is absurd to say that the sets {hop on one leg to home} and {walk
normally home} offer exactly asmuch freedom of choice.19 Singleton sets
with an alternative, we would not have chosen if we had the option to
avoid it do not offer as much ‘freedom to live as we would like’, as single-
ton sets with an alternative that we would have chosen even if we could p. 76

have had any possible alternative.20 Furthermore, Peter Jones and Robert
Sugden have shown that INS is incompatible with the conjunction of the
following plausible principles: if a choice set is extended by an alternative
that is a significant addition to it, then the freedom of choice offered in-
creases, and if a choice set is extended by an alternative that is an insignifi-
cant addition to it, then the freedomof choice offered does not increase.21

Like Sen I believe that the INS condition should be dropped since
it conflicts with more compelling intuitions.22 Rather than INS, the
expected-compromise measure ranks singleton sets based on a con-
flicting moderation intuition. The unweighted expected-compromise
measure satisfies the following new condition:

Moderation: For all singleton sets {𝑥} and {𝑦} such that 𝑥, 𝑦 ∈ 𝜴,
{𝑥} offers at least as much freedom of choice as {𝑦} iff

∑
𝑧∈𝜴
𝑑(𝑥, 𝑧) ≤ ∑

𝑧∈𝜴
𝑑(𝑦, 𝑧).

17 This condition was first proposed by Peter Jones and Robert Sugden, Jones and
Sugden (1982, p. 56).

18 Jones and Sugden (1982, p. 56), Pattanaik and Xu (1990, pp. 386–387), Pattanaik and
Xu (1998, p. 183).

19 Sen (1990, p. 471).
20 Sen (1991, p. 25).
21 See Jones and Sugden (1982, p. 57) and Sugden (1998, p. 328).
22 If one still is unwilling to give up INS, one could make my approach compatible

with INS by a slight modification:

The INS-Expected-Compromise Measure: Given the domain𝜴, the non-empty
subset𝑼 offers at least as much freedom of choice as the non-empty subset𝑽 iff

(1) 𝑽 is a singleton set, or
(2) neither 𝑼 nor 𝑽 is a singleton set, and
∑𝑥∈𝜴 𝑤(𝑥)𝐷(𝑥,𝑼) ≤ ∑𝑥∈𝜴 𝑤(𝑥)𝐷(𝑥, 𝑽).
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The intuition behind the condition is that singleton sets with extreme al-
ternatives offer less freedom of choice than singleton sets withmoremod-
erate alternatives in the domain. Themoderate sets offermore freedomof
choice than the extreme sets, not because they offer more alternatives but
because they offer amore similar alternative tomore possible alternatives,
than the extreme sets do. For example, the set {vote center party} arguably
offers more freedom of choice than {vote extreme right} or {vote extreme
left}, since, in themiddle of the political spectrum, it offers amore similar
alternative to more possible political views than the extreme sets do.

The weighted expected-compromisemeasure satisfies a weighted ver-
sion of the moderation condition:

Weighted Moderation: For all singleton sets {𝑥} and {𝑦}, such that
𝑥, 𝑦 ∈ 𝜴, {𝑥} offers at least as much freedom of choice as {𝑦} iff

∑
𝑧∈𝜴
𝑑(𝑥, 𝑧)𝑤(𝑧) ≤ ∑

𝑧∈𝜴
𝑑(𝑦, 𝑧)𝑤(𝑧).

The intuition behind the weighted moderation condition is the same as
the one behind the unweighted version, with the exception that it is more
important for freedom of choice that a set offers an alternative that is p. 77

similar to possible alternatives with greater weights.
Note that themoderation conditions do not rule out that there are do-

mains, in which any two singleton sets offer the same degree of freedom
of choice. Suppose that you have to choose a direction and the set of all
the possible alternatives was𝜴 = {0 ∘, 1 ∘, 2 ∘,… , 359 ∘}. A natural dissim-
ilarity function on𝜴×𝜴would in this case, be theminimal angle between
the directions. For all 𝑥, 𝑦 ∈ 𝜴, 𝑑(𝑥, 𝑦) = min({| deg(𝑥) − deg(𝑦)|, 360 −
| deg(𝑥)−deg(𝑦)|}). Suppose also that all directions have the sameweight.
In this case, no alternative is more extreme or moderate than the others.
Therefore, according to either of themoderation conditions, no singleton
set offers more freedom of choice than any other, which is very intuitive.

In the related literature on how to measure the diversity offered by
a set, Claus Nehring and Clemens Puppe have developed the very influ-
ential multi-attribute approach. This approach ranks sets of alternatives
by their diversity value, which is the sum of all the weights for all the
attributes realized by the set. In Nehring and Puppe’s framework, an at-
tribute is any subset 𝑨 ⊆ 𝜴. An attribute 𝑨 is realized by a set, if there is
an element in the set that is also an element in𝑨. The relative importance
or weight of an attribute 𝑨 is denoted by ‘𝜆𝑨’. The diversity value of a set

16



𝑼 is then defined as follows: 23

𝑣(𝑼) = ∑
𝑨⊆𝜴∶𝑨∩𝑼≠∅

𝜆𝑨

I will now show that the expected-compromisemeasure is equivalent to a
version of the multi-attribute approach. That is, with certain constraints
on the attribute weights, the multi-attribute approach and the expected-
compromise measure rank sets of alternatives equivalently.

The weighted expected-compromise measure ranks sets of alterna-
tives according to the following function:

𝑒(𝑼) = − ∑
𝑥∈𝜴
𝑤(𝑥)𝐷(𝑥,𝑼)

The set of alternatives that offers themaximum freedomof choice accord-
ing to the expected-compromise measure is the set of all possible alterna-
tives, i.e. 𝜴. If 𝜴 is offered, we have that 𝑒(𝜴) = 0 and that all possible
features are realized. If a set of alternatives 𝑨 is removed, we have that
𝑒(𝜴) − 𝑒(𝜴 ⧵ 𝑨) = ∑𝑥∈𝜴 𝑤(𝑥)𝐷(𝑥,𝜴 ⧵ 𝑨), and that 𝑣(𝜴) − 𝑣(𝜴 ⧵ 𝑨) =
∑𝑺⊆𝑨∶𝑺≠∅ 𝜆𝑺. Thus the functions 𝑣(⋅) and 𝑒(⋅) give equivalent rankings if
for all sets 𝑨 ⊂ 𝜴 such that 𝑨 ≠ ∅,

∑
𝑥∈𝜴
𝑤(𝑥)𝐷(𝑥,𝜴 ⧵ 𝑨) = ∑

𝑺⊆𝑨∶𝑺≠∅
𝜆𝑺. (3)

This provides us with a formula for how to assign attribute weights in p. 78

order for 𝑣(⋅) and 𝑒(⋅) to give equivalent rankings. First, we let 𝜆∅ = 𝜆𝜴 =
0.24 It follows from (3) that for all sets 𝑨 ⊂ 𝜴 such that 𝑨 ≠ ∅,

𝜆𝑨 = ∑
𝑧∈𝜴
𝑤(𝑧)𝐷(𝑧,𝜴 ⧵ 𝑨) − ∑

𝑺⊂𝑨∶𝑺≠∅
𝜆𝑺. (4)

For all singleton sets𝑼we have that 𝜆𝑼 = ∑𝑧∈𝜴 𝑤(𝑧)𝐷(𝑧,𝜴⧵𝑼), and the
attribute weights for all larger sets follow recursively from (4).

We have now assigned attribute weights in such a way that the multi-
attribute approach and the expected-compromise measure rank sets of
alternatives equivalently. The weights have been assigned so that the at-
tribute weights for all singletons are the degree of dissimilarity between

23 Nehring and Puppe (2002, p. 1161).
24 These weights are arbitrary and do not affect the rankings.
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the sets’ element to the most similar of all the other options in the do-
main multiplied by the element’s weight. Larger sets have been assigned
attribute weights that are the sum of the degree of dissimilarity between
each of the sets’ elements to the most similar of all the options in the do-
main not included in the set multiplied by the element’s weightminus the
attribute weights for all the subsets. Any positive linear transformation of
the attribute weights passing through the origin would, of course, lead to
the same result. The question whether this version of the multi-attribute
approach is a plausible measure of diversity is left for future work.

I wish to thank John Cantwell, Erik Carlson, Karin Enflo, Nicolas Espinoza,
Sven Ove Hansson, Fredrik Johansson,Martin Peterson, Tor Sandqvist, and two
anonymous referees for valuable comments on earlier versions.
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