Skip to main content
Log in

Are genes units of inheritance?

  • Published:
Biology and Philosophy Aims and scope Submit manuscript

Abstract

Definitions of the term ‘gene’ typically superimpose molecular genetics onto Mendelism. What emerges are persistent attempts to regard the gene as a ‘unit’ of structure and/or function, language that creates multiple meanings for the term and fails to acknowledge the diversity of gene architecture. I argue that coherence at the molecular level requires abandonment of the classical unit concept and recognition that a gene is constructed from an assemblage of domains. Hence, a domain set (1) conforms more closely to empirical evidence for genetic organization of DNA regions capable of transcription and (2) has ontological properties lacking in the traditional unit definition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adelman, J. P., C. T. Bond, J. Douglass, and E. Herbert: 1987, ‘Two Mammalian Genes Transcribed from Opposite Strands of the Same DNA Locus’, Science 235, 1514–1518.

    Google Scholar 

  • Benzer, S.: 1957, ‘The Elementary Units of Heredity’, in The Chemical Basis of Heredity, Johns Hopkins Press, Baltimore, pp. 70–93.

    Google Scholar 

  • Bonner, D. M.: 1965, ‘Gene-enzyme Relationships’, in S. J. Geerts (ed.), Gene Today, Vol. 2, Pergamon Press, Oxford, pp. 141–149.

    Google Scholar 

  • Breathnach, R. and P. Chambon: 1981, ‘Organization and Expression of Eucaryotic Split Genes Coding for Proteins’, Annual Review of Biochemistry 50, 349–383.

    Google Scholar 

  • Bridges, C.: 1936, ‘The Bar “Gene” a Duplication’, Science 83, 210–211.

    Google Scholar 

  • Castle, W. E.: 1919, ‘Piebald Rats and the Theory of Genes’, Proceedings of the National Academy of Science 5, 126–130.

    Google Scholar 

  • Chen, C., T. Malone, S. K. Beckendorf, and R. L. Davis: 1987, ‘At Least Two Genes Reside within a Large Intron of the Dunce Gene of Drosophila’, Nature 329, 721–724.

    Google Scholar 

  • Edlund, T., M. D. Walker, W. J. Barr, and W. J. Rutter: 1985, ‘Cell-Specific Expressions of the Rat Insulin Gene: Evidence for Role of Two Distinct 5′ Flanking Elements’, Science 230, 912–916.

    Google Scholar 

  • Evans, M. J. and R. C. Scarpulla: 1988, ‘Both Upstream and Intron Sequence Elements Are Required for Elevated Expression of the Rat Somatic Cytochrome c Gene in COS-1 Cells’, Molecular and Cellular Biology 8, 35–41.

    Google Scholar 

  • Falk, R.: 1986, ‘What Is a Gene?’, Studies in History and Philosophy of Science 17, 133–173.

    Google Scholar 

  • Fogle, T.: 1987, ‘The Phenotypic Deception: Influences of Classical Genetics on Genetic Paradigms’, Perspectives in Biology and Medicine 31, 65–80.

    Google Scholar 

  • Frezal, J., A. Munnich, and G. Mitchell: 1983, ‘One Gene, Several Messages. From Multifunctional Proteins to Endegenous Opiates’, Human Genetics 64, 311–314.

    Google Scholar 

  • Goldschmidt, R.: 1938, ‘The Theory of the Gene’, The Scientific Monthly 46, 268–273.

    Google Scholar 

  • Hampson, R. K. and F. M. Rottman: 1987, ‘Alternative Processing of Bovine Growth Hormone mRNA: Nonsplicing of the Final Intron Predicts a High Molecular Weight Variant of Bovine Growth Hormone’, Proceedings of the National Academy of Science 84, 2673–2677.

    Google Scholar 

  • Henikoff, S. and M. K. Eghtedarzadeh: 1987, ‘Conserved Arrangements Nested Genes at the Drosophila Gart Locus’, Genetics 117, 711–725.

    Google Scholar 

  • Hull, D. L.: 1974, The Philosophy of Biological Science, Prentice Hall, Englewood Cliffs, N.J.

    Google Scholar 

  • Jacob, F. and J. Monod: 1961, ‘Genetic Regulatory Mechanisms in the Synthesis of Proteins’, Journal of Molecular Biology 3, 318–356.

    Google Scholar 

  • Johanssen, W.: 1909, Elemente der exakten Eblichkeitslehre, Fisher, Jena.

    Google Scholar 

  • Kitcher, P.: 1982, ‘Genes’, British Journal for the Philosophy of Science 33, 337–359.

    Google Scholar 

  • Koller, B., H. Fromm, E. Galun, and M. Edelman: 1987, ‘Evidence for in vivo Trans Splicing of Pre-mRNAs in Tobacco Chloroplasts’, Cell 48, 111–119.

    Google Scholar 

  • Krause, M. and D. Hirsh: 1987, ‘A Trans-Spliced Leader Sequence on Actin mRNA in C. Elegans’, Cell 49, 753–761.

    Google Scholar 

  • Lederman, M.: 1987, ‘“Genes” Amplified’, British Journal for the Philosophy of Science 38, 561–566.

    Google Scholar 

  • Lee, W., A. Haslinger, M. Karin, and R. Tijan: 1987, ‘Activation of Transcription by Two Factors That Bind Promoter and Enhancer Sequences of the Human Metallothionein Gene and SV40’, Nature 325, 368–372.

    Google Scholar 

  • Levis, R., T. Hazelrigg, and G. M. Rubin: 1985, ‘Effects of Genomic Position on the Expression of Transduced Copies of White Gene of Drosophila’, Science 229, 558–561.

    Google Scholar 

  • Lewin, B.: 1987, Genes III, Wiley, New York.

    Google Scholar 

  • Lewis, E. B.: 1950, ‘The Phenomenon of Position Effect’, Advances in Genetics 3, 75–115.

    Google Scholar 

  • Maull, N.: 1977, ‘Unifying Science without Reduction’, Studies in History and Philospphy of Science 8, 143–162.

    Google Scholar 

  • Melton, D. W.: 1987, ‘Strategies and Mechanisms for the Control of Transcriptional Initiation of Mammalian Protein-Coding Genes’, Journal of Cell Science 88, 267–270.

    Google Scholar 

  • Nagel, E.: 1961, The Structure of Science, Harcourt, Brace and World, New York.

    Google Scholar 

  • Raffel, D. and H. J. Muller: 1940, ‘Position Effect and Gene Divisibility Considered in Connection with Three Strikingly Similar Scute Mutations’, Genetics 25, 541–583.

    Google Scholar 

  • Rosenberg, A.: 1985, The Structure of Biological Science, Cambridge University Press, Cambridge.

    Google Scholar 

  • Sastry, K. N., U. Seedorf, and S. K. Karathanasis: 1988, ‘Different cic-Acting DNA Elements Control Expression of the Human Apolipoprotein AI Gene in Different Cell Types’, Molecular and Cellular Biology 8, 605–614.

    Google Scholar 

  • Schaffner, K. F.: 1967, ‘Approaches to Reduction’, Philosophy of Science 34, 137–147.

    Google Scholar 

  • Schulz, R. A., L. Cherbas, and P. Cherbas: 1986, ‘Alternative Splicing Generates Two Distinct Eip28/29 Gene Transcripts in Drosophila Kc Cells’, Proceedings of the National Academy of Science 83, 9428–9432.

    Google Scholar 

  • Spencer, C. A., R. D. Gietz, and R. B. Hodgetts: 1986, ‘Overlapping Transcription Units in the Dopa Decarboxylase Region of Drosophila’, Nature 322, 279–281.

    Google Scholar 

  • Sutcliffe, J. and R. Milner: 1988, ‘Alternative mRNA Splicing: The Shaker Gene’, Trends in Genetics 4, 297–299.

    Google Scholar 

  • Watson, J. D., N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner: 1987, Molecular Biology of the gene, 4th ed., Vol. 1, Benjamin/Cummings, Menlo Park, Ca.

    Google Scholar 

  • Wieczorek, D. F., C. W. J. Smith, and B. Nadal-Ginard: 1988, ‘The Rat a-Tropomyosin Gene Generates a Minimum of Six Different mRNAs Coding for Striated, Smooth, and Nonmuscle Isoforms by Alternative Splicing’, Molecular and Cellular Biology 8, 679–694.

    Google Scholar 

  • Wimsatt, W. C.: 1976, ‘Reductive Explanation: A Functional Account’, in R. S. Cohen (ed.), PSA 1974, Reidel, Dordrecht, Holland, pp. 671–710.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fogle, T. Are genes units of inheritance?. Biol Philos 5, 349–371 (1990). https://doi.org/10.1007/BF00165258

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00165258

Key words

Navigation