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Abstract

Defining the degree of categoricity of a computable structure M to be
the least degree d for which M is d-computably categorical, we investigate
which Turing degrees can be realized as degrees of categoricity. We show
that for all n, degrees d.c.e. in and above 0™ can be so realized, as can
the degree 0.

1 Introduction

The notion of computable categoricity has been part of computable model the-
ory for more than fifty years, since Frohlich and Shepherdson first produced an
example of two computable fields which were isomorphic but not computably
isomorphic. (See [2, Theorem 5.51], where the terms used are “explicitly pre-
sented” and “explicitly isomorphic.”) Since then, the definition has been stan-
dardized and relativized to arbitrary Turing degrees d, and has been the subject
of much study.

Definition 1.1 A computable structure M is d-computably categorical if, for
every computable structure A isomorphic to M, there exists a d-computable iso-
morphism from M onto A. In case d = 0, we simply say that M is computably
categorical.

Definition 1.2 Let M be any computable structure. The categoricity spectrum
of M is the set

CatSpec(M) = {d : M is d-computably categorical},
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the set of all Turing degrees capable of computing isomorphisms among arbitrary
computable copies of M. We say that a Turing degree d is the degree of cate-
goricity of M if d is the least degree in CatSpec(M). Finally, d is categorically
definable if it is the degree of categoricity of some computable structure.

This terminology is intended to recall the notions of the spectrum of a struc-
ture A (that is, the set of all Turing degrees of structures with domain w which
are isomorphic to A), and the degree of the isomorphism class of A, which was
defined by Richter in [17] to be the least degree in the spectrum of A, if such
a degree exists. The terminology for structures has become confusing, since
the simple phrase “degree of A” usually means the Turing degree of the atomic
diagram of A, rather than the concept defined by Richter. For categoricity,
however, no such confusion exists.

The focus of this paper will be the question of which Turing degrees are cate-
gorically definable. Since there are only countably many computable structures,
clearly most Turing degrees are not categorically definable. Our main result,
proven in several steps which culminate in Section 5, will be

Theorem 5.9 If d is any Turing degree for which there exists an m € w such
that 0™ <rdbutdisc.e. in O(m), or even d.c.e. in O(m), then d is categori-
cally definable.

In Section 6 we show that the nonarithmetical degree 0) is also categorically
definable.

The concepts we use from computability and computable model theory are
standard; we suggest [8] and [18] as references. For further background on the
notion of computable categoricity, [5] is very useful. Much of the literature on
this topic uses the term autostability in place of computable categoricity. The
distinct terminology reflects the historical development of the subject, which was
studied, largely independently, in both Russia and the West. We the present
authors are grateful to those who came before us and helped to bridge that
divide.

2 The Basic Construction

Theorem 2.1 Let d be any c.e. degree. Then there exists a computable struc-
ture B with degree of categoricity d. Moreover, an index for such a structure B
is computable uniformly in the index e of any c.e. set W, € d.

Proof. Fix a c.e. set A = W, € d with a computable total 1-1 function h with
range A. The domain of B will be w, partitioned computably into

{o, 8,7, 0} U{z;:icw}U{y; i € wpU{u; : i € w}.

We view {z; : i € w} and {y; : i € w} as w-chains, while {u; : i € w} and
{v; : i € w} serve only as witness nodes. The language has a binary predicate P



and a ternary predicate R. In our B, P holds of all pairs of each of the following
forms
(Tiy Tit1) (Tis Yit1) (Yir Tiv1) (Y, Yi+1)

for every i € w. Also, for each i, R holds of the triples
(o, uei, Th(s)) (Vs Usit1, Yn(iy) (Bs Usi+2, Th(s)) (6, Ui+, Yn(i))-
Moreover, for all 4, R holds of the triples
(8, ugi+a,yi) and (0, usits, i)

Clearly these relations are all computable. Finally we have constant symbols ¢
and d, which will be used to distinguish « from v and g from ¢. In our B we
set B =~ and dB = 4.

The idea of the construction is that, even though B is computable, it is
built in a dynamic way. In the diagrams below, we draw an arrow from
a to x; to represent the truth of (JuR(«,u,z;)), and similarly for 3, ~, 0,
and for the nodes y;. Thus the arrows form a c.e. relation, appearing dur-
ing the construction as A is enumerated by h. Some arrows, however, are
present right from the start. Our picture of B at stage 0 is the following:

The next picture shows the arrows which are added in the situation in which
1,4,5 € A and 0,2,3 ¢ A. (For clarity we omit the pre-existing arrows drawn
in the previous picture.)



Remembering that we started with arrows from 3 to all nodes y; and from
6 to all nodes x;, we see now that the nodes divide into two cases, depending
on A, as follows.

If i € A, then there are arrows to x; from «, §, and 4, and arrows to y; from
0, 7, and 0. Hence in this case, an automorphism g of B (in the reduct without
the constants ¢ and d) must interchange « with v iff ¢ interchanges x; with y;,
and it is irrelevant whether g fixes 6 and § or interchanges them.

If i ¢ A, then the only arrow to z; comes from 0, and the only arrow to y;
comes from [. The situation for an automorphism g (again ignoring ¢ and d)
is now the opposite: g must interchange 3 with § iff g interchanges z; with y;,
and it is irrelevant whether g fixes o and v or interchanges them.

The structure B will be an exact copy of B (with all elements represented by
adding hats to the elements of B), except that we define ¢® = & (and d® = 5,
just as in B). Clearly there is a unique isomorphism f from B onto B, with
f(a) =4 and f(8) = 3, which must have f(z;) = §; and f(y;) = @; for each
i€ A, and f(x;) = &; and f(y;) = §; for each ¢ ¢ A. (Since each witness element
u; is part of a unique triple satisfying R, this also lets us compute f(u;) for all
j.) Intuitively, f interchanges the a-portion of the z;-chain with the «-portion
of the y;-chain, but leaves the 8- and d-portions fixed.

Now f(a) =4, so for every i € A we have

(u € B)RB (e, u, ;) = (3u € B)RB(3, 4, f(z:)) = flxi) # &4,

since we know —(3u € B)Ré(ﬁ,ﬁ,xi). (In fact, f(z;) will equal §;, with an
arrow from 4 to §;.) On the other hand, f(3) = 3, so for i ¢ A we have

(Vu € B)~RE(B,u,z;) = (Vi € B)~RP(B,4, f(x:)) = flx:) = &,

since (30 € B) RB(B, u, ;). Thus A <p f, as the theorem requires.
We also claim that for every computable D = B, an A-oracle can compute an
isomorphism g from B onto D. (In particular, this will show f =r A.) Clearly



g(v) = cP and ¢(§) = dP. Notice that since PP is computable, we can induct
on i and identify which two elements a;,b; € D must be g(z;) and g(y;). PP
does not determine which of these is which, so now we use our A-oracle. If
i¢ A, then

g(z;) = a; <= (Ju € D) RP(d®,u,a;) <= —(3u € D) RP(d®,u,b;)
since R®(d®,u, z;) holds for some u € B. Similarly, if i € A, then
g(yi) = a; <= (3u € D) RP(cP,u,a;) <= —(Ju € D) RP(cP,u,b;).

So g on the elements z; and y; is computable from our A-oracle, and it is easy
to extend g to the witness elements w in B, since each u lies in a unique triple
in RB. Thus this B is the computable structure required by Theorem 2.1.

For the uniformity claim, we note that this entire process was uniform in
any index e such that W, = A, assuming only that A is infinite. It can be made
uniform for finite A as well: one only needs to ensure that the domain of B will
be w, and this can be done by building only finitely much of B at each stage,
always adding the least available fresh element to the domain. Of course, for
two distinct sets W, of the same Turing degree, the two structures B built by
this uniform process may be nonisomorphic. The theorem only states that there
is a process, uniform in e, for building some B whose degree of categoricity is
deg(We). n

We remark that the structure B built in this proof can be made uniformly
d-computably categorical, by adding one more unary predicate Py to hold of the
elements zo and yo. (Without Py, we need to know these elements to compute
g from A.)

Also, we note that we can relativize the above proof to an X-oracle. This
will be exploited in Section 5. It requires a generalization of Definition 1.2.

Definition 2.2 Let ¢ be the Turing degree of a structure M. We define the
categoricity spectrum of M relative to ¢, written CatSpec,(M), to be the set:

{d: (VA2 M)[deg(A) < ¢ => T an isomorphism f <t d from M onto Al]}.

Thus d € CatSpec.(M) iff all c-computable copies of M are d-computably iso-
morphic.

Corollary 2.3 Fix an oracle X C w, and let d be any Turing degree containing
a set W which is c.e. relative to X and satisfies X <p W. Then there exists an
X -computable structure B for which CatSpecy.qx)(B) contains precisely those
Turing degrees which compute W (that is, the upper cone of degrees > d).
Moreover, an index for B is computable uniformly from the index e of any set
WX € d serving as W, under the usual numbering of X -c.e. sets. ]

The relativization of the proof is immediate, but one subtlety can be missed.
If the degree d failed to compute X, then the two structures B and B we built
would still have the property that every isomorphism between them computes
W, but we would not be able to show that d € CatSpecye,(x)(B). Indeed, since
the B we built is rigid, the following lemma shows this to be impossible.



Lemma 2.4 Let B be a rigid structure, of Turing degree ¢, and suppose ¢ £ d.
Then d ¢ CatSpec,.(B).

Proof. Let f be a permutation of w of degree precisely c¢. Define a structure
A = B so that f is an isomorphism between them: x € RA iff f(z) € R5,
etc. Then this “pullback structure” A is also c-computable, but by rigidity
the unique isomorphism between them is f, which is not d-computable since
c Lrd. |

The structure B built here is similar in some ways to those used by Gon-
charov in [3] to show that all finite computable dimensions are possible, and
to those built by Cholak, Goncharov, Khoussainov, and Shore in [1] to show
that computable categoricity need not persist under expansions by constants.
However, by a theorem of Goncharov in [4], if two computable structures B
and C are 0’-computably isomorphic but not computably isomorphic, then the
computable dimension of B must be infinite. This is the case with the B built
in Theorem 2.1, so its computable dimension is w.

3 D.C.E. Degrees

Theorem 3.1 Let d be any d.c.e. degree. Then there exists a computable struc-
ture B with degree of categoricity d.

Proof. Fix ad.c.e. set D = A— B € d, where B C A are c.e. sets, and let h be a
computable total 1-1 function h with range A. Define the c.e. set C = h=1(B) =
{z : h(z) € B} and thed.ce.set E=D®C ={2x:x€ D}U{2z+1:2 € C}.
It is easy to see that D = FE and

D<pX <= FEisce inX

for every X C w (since C'is c.e. and D is c.e. in C'). So without loss of generality
we can assume from the beginning that

D<pr X <= Disce. inX

for every X C w.
Define first a computable structure A with universe partitioned computably
into five pieces:

{z;:iewtU{ariewlU{bicwtU{g :icwlU{d;:iecw}

The language has one binary predicate P. In the structure A, P holds of all
pairs of each of the following forms

(zisTiv1) (zi,ai) (2i,00) (zi,¢) (wi,di) (aisbi) (biyei) (cirdi) (disaq)

for every i € w. We can view this as the w-chain {z; : i € w}, each node z; of
which is connected with all nodes of the cycle {a;, b;,¢;,d;} of length 4.



Keeping D = A — B, let B be the substructure of A on the universe
{z;:icewtU{a;:i€ A U{b;:i€ BlU{¢:i€wtU{d; i€ w}.

Note that the universe of B is c.e. so we can fix a computable 1 — 1 function
which enumerates the elements of B. Thus B is computably isomorphic to its
preimage under this function, so we may treat B itself as computable.

We claim that for every computable D 22 B there is a D-computable isomor-
phism ¢ : B — D. Since B and D are computable we can computably find g(z;)
for each i € w. If ¢ € D then B contains exactly three elements from the cycle
{a;,bi,c;,d;}, and in this case we can uniquely define g(a;), g(c;) and g(d;). If
i ¢ D then B has either two elements {c;,d;}, or the full cycle {a;,b;,¢;,d;}.
We define g(c¢;) and g(d;) as soon as we find two elements of D that can serve
as their images. If later we find that ¢ € A (so that a; € B), then also i € B,
so b; € B, and we will be able to extend the isomorphism g by the symmetry of
the 4-cycle. Thus, B is D-computably categorical.

Now consider another substructure C of A, with universe

{z;iriewlU{b:iec A} U{a;:i € BfU{¢:icw}U{d; i€ w}.

Again the universe is c.e., so we can identify C with the corresponding preimage
under a computable 1 — 1 function. It is easy to see that B = C.
Let f: B — C be an isomorphism. Then for each i € w,

i¢D < i€Bor f(c) =¢

Indeed, if i € D — B = A then a; and b; lie in neither B nor C, so that
f(ci) = ¢;. For the reverse direction we note that if a; € B then either b; € B
(so that i € B C D), or f(c;) = b; # ¢;. Finally, if a; ¢ B theni € AC D.
Hence, D is c.e in f, and by our choice of D above, we have D <7 f. Thus
the degree of categoricity of B is exactly d. [ |

This too relativizes, just as Theorem 2.1 did.

Corollary 3.2 Fix any X C w, and let d be any Turing degree containing a
set W which is d.c.e. relative to X and satisfies X <p W. Then there exists an
X -computable structure B for which CatSpec . x\(B) contains precisely those
Turing degrees which compute W. ]

4 Standard Theories

In [11], Hirschfeldt, Khoussainov, Shore, and Slinko showed how to make several
computability-theoretic properties of arbitrary nontrivial computable structures
(in computable languages) carry over to computable models of specific theories.
For example, for any computable structure M, they built a computable directed
graph G with the same computable dimension and the same spectrum as M,
and their results also covered spectra of relations and persistence of computable



categoricity. They did not consider the degree of categoricity of a computable
structure, but nevertheless their method of coding M into G does preserve the
categoricity spectrum: CatSpec(M) = CatSpec(G), and so M has a degree of
categoricity iff G does, in which case those degrees are equal. The same holds
for their coding of an arbitrary M into other structures, and when one examines
those codings, the following proposition becomes clear.

Proposition 4.1 For every computable structure M, there exist a directed
graph, a symmetric irreflexive graph, a lattice, an integral domain (of arbi-
trary characteristic), a commutative semigroup, and a two-step nilpotent group
with the same categoricity spectrum as M. In particular, every possible degree
of categoricity is categorically definable via a model of any of those theories. B

This also shows that any categoricity spectrum for a computable structure
in an infinite computable signature can be realized in a finite signature as well,
even with just a single binary relation, as for graphs. So, if it is simpler or
more intuitive to use an infinite computable signature to create a particular
categoricity spectrum, there is no reason not to do so.

Certain theories are omitted from the main theorem of [11], and indeed that
theorem is known to be false for linear orders, Boolean algebras, and trees, by
results of Richter in [17]. It is not known whether the theorem holds for fields
or not. Here we take a small step in that direction.

Theorem 4.2 Let d be any c.e. degree. Then there exists a computable alge-
braic field F with degree of categoricity d. Moreover, an index for F is com-
putable uniformly in the index e of any c.e. set W, € d.

Proof. Fix an infinite c.e. set W € d, and fix a presentation Q of the field of
rational numbers. Let p,, € w denote the n-th prime number, and let ¢, = ¢, €
Q be the result of adding the multiplicative identity to itself p, times in Q.
That is, g, is the element of QQ representing the n-th prime p,.

We build two isomorphic fields F and F in stages, with Fy being the field
of characteristic 0 generated by the square roots of all the primes ¢, in Q. F,
is the same field as Fy, but we write g, for the n-th prime in Fy. The idea is
that the unique isomorphism f from F to F should satisfy f (V) = —Vn
iff n € W. (So, for those n ¢ W, we must have f(,/qn) = v/Gn.) As long as
n appears not to be in the c.e. set W, we will ensure that /g, and V. both
satisfy an existential property (the existence of a root of a certain polynomial
with coefficients in Q[,/g,]) which —,/g, and —/¢, do not (yet) satisfy. If we
ever see n enter W, then we will adjoin more elements to the fields so that all of
+,/¢, and £/, satisfy this property, but so that /g, and —/Gn, now satisfy
a separate existential property which —,/g, and v/ do not satisfy.

(Of course, Fy contains two square roots of ¢,. For clarity, let us specify
that —./g, will always denote the lesser of these two, under the < relation on
the domain w of Fy, and that /g, will denote the greater. Likewise, —/q, will
denote the lesser square root of g, in I:"O.)

The existential properties we use are the existence of roots of polynomials
given by the following proposition, which is proven in [15, Prop. 2.15].



Proposition 4.3 (Miller) For any fized prime q, let E be the field Q[,/q].
Then for every odd prime number d, there exists a polynomial h(X) € E[X] of
degree d, with image h™ (X) € E[X] under the automorphism of E mapping \/q
to —./q, such that The splitting field of h over E has Galois group isomorphic
to Sq, the symmetric group on the d roots of h, and the same holds for h=. The
splitting field of h(X) over the splitting field of h=(X) also has Galois group
isomorphic to Sq (and vice versa). (It follows that h and h™ are both irreducible
in the polynomial ring E[X], of course, and likewise over the splitting fields of
each other.) Moreover, uniformly in q, d, and any computable presentation of
E, it is computable whether an arbitrary h(X) € E[X] satisfies these properties.

|

At stage 2s+1 of the construction, we choose a prime number d; bigger than
any prime used so far, and apply this proposition to find a polynomial hs of
degree dy satisfying these properties over the field Fs = Q[,/gs|. To each of Fyy

and }?23 we adjoin one root r (respectively 7) of hy(X), setting Fasi1 = Fas[r]

and Fyey1 = Fy,[f]. Notice that since dy = [E[r] : E,], this forces dy to
divide [Fos11 : Fpl, and since the large prime dy does not divide [Fos : Fp],
it must divide [Fasy1 : Fas]. Indeed [Fhspq @ Fbs] = ds, since 7 is a root

of the polynomial hs of degree ds, and so hs(X) is the minimal polynomial of
r over Fos. (This justifies us in not specifying r to be any particular root of
he(X); we must have Fooy1 = Fy,[X]/(hs(X)).) By induction, Fa, and Fy,
were isomorphic, and clearly now Fhsy; and ngH are isomorphic as well, but
only via an isomorphism mapping ,/qs to VGs.

At stage 2s+2, we check whether W1 = W,. (We arrange our enumeration
so that W11 C {0,...,s}, and so that at most one element may enter W at
stage s + 1.) If Wy = Wy, we do nothing. If not, then for the unique
n € (W1 —Ws), we adjoin to each of Foei1 and ngH a root of h, (X). Then
we choose a prime number d/, greater than any yet used, and find a polynomial
Jn(X) of degree d!, satisfying Proposition 4.3 over the field E,,. We adjoin one
root of this new 5, (X) to Fas41, and one root of j. (X) to ngﬂ. This completes
the constructions of Fy, o and Fheyo: they are still isomorphic (by an argument
similar to the above; see [15] for details), but every isomorphism between them
now maps \/qn to —v/qn-

The fields F and F thus built will be computable, algebraic, and isomorphic
to each other. However, in the argument above, we saw that for n ¢ W, h,(X)
has a root in F and also in F, whereas h; (X) has no root in either field, so
that /g, in F' must map to /¢, in F. On the other hand, for n € W, both
these polynomials had roots in both fields, and j,(X) had a root in F' but not
in F, whereas j, (X) had a root in F but not in F. Hence any isomorphism
f: F — F must satisfy

and therefore must compute W. So CatSpec(F) C {d : deg(W) <r d}.
Conversely, suppose that F” is any computable field isomorphic to F. There
is only one possible isomorphism from the rationals in F' to those in F’, and



with a W-oracle, we can determine how to extend this to an isomorphism from
F into F’, as follows. If n ¢ W, then wait for a root of either h,(X) or h,, (X)
to appear in F’ (where again we define —\/(Z to be the lesser square root of
q,, in F’), and when that root appears, we know which of j:m must be the
image in F’ of /g,. (We also map the root of h,(X) to the root of h,(X) or
h, (X) in F’, whichever appeared.) On the other hand, if n € W, then we run
the construction of F' until the stage when n enters W, thus determining the
polynomial j,(X). We now do the same with j,(X), finding an appropriate
root in F’ to be the image of the root of j,(X) from F’; this dictates the image
in F' of \/gn, which in turn dictates the images in F’ of the roots of h,(X)
and h; (X). Thus we have computed the images in F’ of all generators of F,
using a W-oracle, and extending the map to all of F is simple. Moreover, any
embedding of an algebraic field into a field isomorphic to itself must in fact
be an isomorphism (see e.g. [15, Lemma 2.10]). Therefore, deg(W') must lie in
the categoricity spectrum of F', and since every isomorphism from F' onto F
computes W, it must be the degree of categoricity of F'.

Finally, it is clear that this construction is uniform in any index e such that
W = W,. On the other hand, if W, and W, both have degree d, the fields
constructed for these two sets are generally not isomorphic, and this is often the
case even when W, = W,. [ |

It is shown in [15] that all algebraic fields are 0”-categorical (indeed, categor-
ical in any degree which is PA relative to 0'), so unlike Theorem 2.1, Theorem
4.2 does not carry over to arbitrarily large arithmetic degrees. Possibly for
arbitrary fields, as opposed to algebraic fields, it would carry over. (A field is
algebraic if it is an algebraic extension of its prime field, either Q or Z,.) Indeed,
[15] provides the first examples we know of structures with no degree of cate-
goricity: it shows that there exists a computable field with a splitting algorithm
which is not computably categorical, and that the categoricity spectrum of such
a field must contain degrees dy and d; with dy Ad; = 0. Subsequently, it builds
another computable field whose categoricity spectrum has no least degree and
does not contain 0.

5 Marker’s Construction

Fix a finite language L with no function symbols, and let A = (4, Pj°, ..., PIm)
be a structure of L. We assume that for every P of this structure the sets P
and A¥\ P are infinite, where k is the arity of P. For each k-ary predicate P of
this structure we define 3- and V-extensions of P, following the work of Marker
in [14].

Marker’s 3-extension of P is a (k + 1)-ary predicate denoted by P5 with
the following properties. Let X be an infinite set disjoint with A. Then P35
satisfies the following conditions:

1. If P3(a,az,...,ak, akt+1) then P(aq,...,a;) and ag41 € X.

10



2. For every apy1 € X there exists a unique tuple (ai,...,a;) € AF such
that Pg(al,ag, ey A, ak+1).

3. If P(ay,...,ax) then there exists a unique a such that P5(ay,as,...,ag,a).

Marker’s V-extension of the predicate P is a (k + 1)-ary predicate Py
with the following properties. Let X be an infinite set disjoint with A. Then
Py satisfies the following conditions:

1. If Py(ay,as,...,ak,ak41) then ay,...,ax € A and ap41 € X.

2. For all (a1,...,a;) € A there exists at most one apt1 € X such that
—Ry(ar,az, ... a0k, Gpt1)-

3. P(ay,...,ax) iff for every axy; € X we have Py(ay,as,..., a5, Gpt1).

4. For every apy1 € X there exists a unique tuple (ai,...,a;) € A* such
that ﬁPv(al, ag,...,0ak, ak+1).

The set X in an 3- or V-extension is called a fellow of P.

Definition 5.1 Let A= (A, Py°,...,P™) be a structure.

) m

1. Az is a structure (AUXq . ..UX,y, Pg"”‘l, co, Pt X0 X ), where
each Pi"iH, i =0,...,m, is a Marker’s 3-extension of P/ such that
fellows X; of distinct predicates are pairwise disjoint sets.

2. Ay is a structure (AUXg .. .UX,p, PS’O'H, e, Pt XG0 X)), where
each PMT' i = 0,...,m, is a Marker’s V-extension of P/ such that
fellows X; of distinct predicates are pairwise disjoint sets.

We now prove the properties we will need to lower the complexity of a
structure while preserving its categoricity spectrum.

Theorem 5.2 Let A, and B., for x € {3,V}, be the Marker’s extensions of the
models A and B. Then they satisfy the following properties:

1. The set A (the domain of the original model A) is definable without quan-
tifiers in the extension A,.

2. Ewvery isomorphism between A and B can be extended to an isomorphism
between A, and By, and moreover the extension is unique.

Proof. Let Xy, X1,...,X,, be all the fellows needed to define the predicates
Pyt . Prettin any of Marker’s extensions. The predicate A, ~X;(x)
defines the original domain of the structure A. Clearly, in the model A3, the
predicate P is definable by the formula EJJPZ-"iH(xl, .eeyTp,,x). Similarly,
the formula Vo P} "' (zy,...,2,,,2) defines the predicate P;"* in the model Ay.

Let f : A — B be an isomorphism. We want to extend f to an isomorphism
h of A5 and Bs. Take an z € X, where X is the fellow of a predicate P. Then
there exists a unique tuple (a1,...,ax) in A so that Ps(ay,...,ax,x). Note
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that A &= P(a1,...,ax) = B E P(f(a1),..., f(ax)). By the definition of Pj,
therefore, there is a unique y € X% such that B3 |= Pa(f(a1),.--, f(ax),y). Set
h(z) = y. Tt is not hard to see that h is an isomorphism from A3 onto B3 that
extends f. The isomorphism f can be extended to an isomorphism h’ of Ay
and By in exactly the same manner. [ ]

Let A be a structure and w be a word over the alphabet {3,V}. We define
A, by recursion. If w is an empty string then A, = A. If w = w'3 or w = w'V
and B = A, then A,3 = B3 and A, = By. An easy induction then yields
the following corollary:

Corollary 5.3 Let A, B be structures and w be a word over the alphabet {3,V}.
Then

1. The model A is definable in A,.

2. Ewvery isomorphism between A and B can be extended to an isomorphism
between A, and B, and moreover the extension is unique. [ ]

Our next goal is to show that Agy is less complex than A itself from a
computability-theoretic point of view. The following definition and lemmas can
be found in [6]; see also [13]. We will need them for the proof of the main result
of this section.

Definition 5.4 A one-to-one representation of a set A C w is a set Q C w*
satisfying:

1. For every n € w, aVbQ(n, a,b) if and only if n € A;

2. For every n € w, 3a¥bQ(n,a,b) if and only if I=1aVbQ(n, a,b);
3. For every b there exists a unique pair (n,a) such that ~Q(n,a,b);
4. For every pair (n,a) either 3=1b"Q(n,a,b) or VbQ(n,a,b);

5. For every a there exists a unique n such that VbQ(n, a,b).

Here 3712 P(x) means that there exists a unique x satisfying P.

Lemma 5.5 (see [6].) Let A be a coinfinite ¥9-set with an infinite computable
subset S such that A\ S is infinite. Then A has a computable one-to-one-
representation. |

Of course, if either A is cofinite or A\ S is finite, then A is computable (and
infinite), in which case it is easy to build a computable one-to-one representation
of A. Our construction will use the following relativized version of the lemma.

Lemma 5.6 Let A be a Eg’X-set with an infinite computable subset S. Then
there exists a set Q <7 X which is a one-to-one-representation of A and con-
tains an infinite computable subset of its own.
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Proof. The proof of Lemma 5.5 relativizes, yielding the desired @, and the
infinite computable subset of @ can be {(n,a,b) : b € w} for any fixed n € A
and the corresponding a from part (1) of Definition 5.4. n

A 00"+ _computable structure A whose predicates PA satisfy the hypothe-
ses of Lemma 5.6 for X = (™) i.e. with all P* containing a computable infinite
subset, will be called a O(m"‘l)—acceptable structure. This is a property of the
presentation A, not of its isomorphism type.

Proposition 5.7 Fizm € w. For every 0™ _acceptable structure A of finite

signature, the structure Asy from Definition 5.1 has a 0" -acceptable presen-
tation (which we will denote hereafter just by Asy) such that for all 0™ +1)-
computable A and B:

o cvery isomorphism f : Asy — Bay restricts to an isomorphism g : A — B
with g <7 f <p g ® 0" and

e cvery isomorphism g : A — B extends to an isomorphism f : Azy — Bay
with g < f <p g & 0m+Y.

Proof. For each predicate symbol P in the signature of A, say of arity k, we do
the following. The signature of A3 has a (k+1)-ary symbol P53 and a unary Xp,
and the signature of Azy has a (k + 2)-ary symbol Pay, a binary Xpy, and two
unary symbols Xp, and Xx,. We build our copy C of Agy with the original
domain {ag,a,...} of A and three disjoint computable copies of w. One of
these copies, with elements bg, b1, . . ., constitutes the set XICDH; the second, with
elements cg,cy,..., is X%P, and the third, with elements dy, dq, ..., is denoted
by X§, although the symbol Xp is not in the signature. The important symbol
is defined in C by:

PS, = {(a;,dj,by) € A" x X§ x X§.): (i,4,k) € Q},

where Q is the 00™)-computable predicate given by Lemma 5.6 for the set

{n : a, € PA}, which must be Eg’w(m since it is 0" Y_computable. The
acceptability of A allows us to apply the lemma, and the lemma in turn en-
sures that P§, contains an infinite computable subset. Finally, X§, is just the
diagonal subset of X§ x X)C(P7 i.e. the set {(dn,cn) 1 n € w}.

It is clear from Definitions 5.4 and 5.1 that Agy is isomorphic to the structure
C built by applying this process separately to each of the finitely many symbols
of the signature of .A. Moreover, C is O(m)—acceptable. Hereafter we write Agy to
denote this specific presentation C of the isomorphism type defined in Definition
5.1.

Now any isomorphism f from this Agy onto some By restricts to an iso-
morphism g from 4 onto B, with A and B viewed as the (computable) subsets
denoted A and B within the domains. Of course, the restriction is computable
from the original isomorphism. Conversely, suppose g : A — B is an isomor-
phism, with A and B both 0™ _computable. We claim that we can extend g
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to an isomorphism f from Asy onto Bay, using only g and a 0™+ _oracle. All
the distinct copies of w that were put together to form the domain of Azy are
computable, so we know that each must map onto the corresponding computable
subset in Bay. The extension of g is then defined using the 0™)-computable
relations Pa’?v and PSB\EV: part (3) of Definition 5.4 allows us to find the (unique
possible) image of each element of X 1’;‘;\’, and using part (5) we may likewise de-
termine the unique possible image of each element of X ﬁav. (For the latter, part
(5) requires the entire 0™+ _oracle, so as to decide universal questions about
the 0™ -computable relation PH“‘?V.) Elements of X ﬁ;“’ are easily mapped into
Bsy since this was defined as the diagonal relation.

Furthermore, the processes described above are inverse to each other, by
Corollary 5.3. This yields the Turing reductions named in the Proposition. H

To continue our analysis of categoricity spectra of computable structures,
we now need to refer to Definition 2.2 and show how, for a 0™ _-computable
structure M, we can transfer CatSpecgm+1) (M) and make it the categoricity
spectrum of a less complex structure.

Corollary 5.8 Let M be any 0D _acceptable structure, and assume that all
d € CatSpecyim+1) (M) satisfy 0m*+) < d. Then

CatSpecy(m+1) (M) = CatSpecym) (May).

Proof. Let o, o3 and o3y be the signatures of M, M3 and May, respectively.

First let d € CatSpecgym) (May), and take any O(m+1)—computable A= M.
Then the 0™ -computable presentations Asy and May given by Proposition 5.7
are d-computably isomorphic by assumption, and so A and M are d-computably
isomorphic by the proposition. Thus d € CatSpecg(m+1) (M).

Conversely, let d € CatSpecgm+1) (M), so that by assumption 0+ <, d.
Fix any O(m)—computable B isomorphic to the Msy given by the proposition,
say via an isomorphism h : Mgy — B. Let A be the image h(M), a subset
of the domain of B, which is existentially definable within B because h is an
isomorphism and the subset M is 3-definable within Mzy. (M is definable in
M3 by the conjunction of the negations of the fellows, as noted in Theorem 5.2,
and the fellows themselves are then V-definable in Mgy, so that the conjunction
of their negations is 3-definable there.) Next, for any predicate P in o, define
PA on A to be the image of PM under h. Now PM is AY-definable over
predicates in o3y, and since h is an isomorphism, this means that P4 must
be AY-definable from the predicates of B. Since B is 0™ _computable, A is
therefore 0 +t1)_computable, and isomorphic to M. By assumption there is a
d-computable isomorphism f between them.

Now each element y € Xﬁ/la of a fellow Xp (in o3) of a predicate P from
the signature ¢ is uniquely determined by the tuple i which it witnesses to be
in PM. By computing f(y1),..., f(yx), therefore, we can map any such z to
the witness in B for the corresponding tuple from the subset A of B. (The
predicate X p is not in the signature o3y, but le,\/la is definable in M3y without
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quantifiers, and the same definition defines the corresponding set within B. Since
d >7 00"+ | a d-oracle allows us to determine these sets.) Thus we extend f
to an isomorphism from the subset M3 of Mzy into B.

For elements of M3y not in the subset M3, a similar procedure holds: each
such element is the witness to the failure of a unique predicate in M3 to hold
for a unique tuple from M3, and the witnessing is defined by a predicate in
o3v. So, just by considering the fellows in o3y of the predicates of o3, we may
extend f to an isomorphism g from all of Mgy into B. By Theorem 5.2, g must
have all of B in its image. Moreover, g is computable from a d-oracle, proving
that d € CatSpecgm) (May). ]

Theorem 5.9 For any m € w, let d be any Turing degree c.e. or even d.c.e. in
0. Assume d >7 0™ . Then there is a computable structure B such that d
is the degree of categoricity of B.

Proof. By taking the join A@w if necessary, we may assume that A € d contains
an infinite computable subset. By Corollaries 2.3 and 3.2, there exists a 0(™)-
acceptable structure M such that CatSpecgim) (M) is the upper cone above
d. But now we can simply apply Corollary 5.8 repeatedly until we have a
computable structure B = M ay)....ay) with CatSpec(B) = CatSpecy(m)(M).
Moreover, since Corollaries 2.3 and 3.2 both built O(m)—computable structures
M 22 M such that all isomorphisms between them compute d, the same must
be true of B and M(gv)...(gv), by Proposition 5.7. [ ]

6 Non-arithmetical Degrees

We can extend Theorem 5.9 beyond the arithmetical degrees, but only just
barely: we know of exactly one non-arithmetical degree which can be the degree
of categoricity of a computable structure. Predictably, that degree is 0.

Theorem 6.1 There exists a computable structure A with degree of categoricity
0.

Proof. A is the cardinal sum of the computable structures built in Theorem 5.9
for the degrees 0™ over all n € w. Notice that the construction of Theorem 5.9
can be carried out uniformly in n and e, where Wg)(”) is a set c.e. in 0™ which
computes (). In particular, we can choose e such that Wf(n) = () and build
the corresponding structure A,,, with degree of categoricity 0™ uniformly in
n.

The cardinal sum A of these uniformly presented structures has domain w,
partitioned effectively into countably many infinite subsets, with each subset
identified by a unary relation symbol R,, in the language of the structure. The
set R, = {(n,i) : i € w} then becomes the domain of the structure A, built
using the second coordinate of each pair in R,. Since the symbols R,, are in the
language, they must be computable in any computable A’ = A, allowing us to
compute, below a 0“)-oracle, the isomorphism between RA and RA'. Thus A
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is 0(“)-computably categorical. On the other hand, we can also build, uniformly
in n, structures A}, & A,, such that the unique isomorphism between A,, and
A’ computes ). Now any isomorphism f between A and the cardinal sum A’
of these A/, must restrict to an isomorphism from 4,, onto A/,, and the resulting
computation of 0 can be done uniformly in n. Thus the degree of f must be
>7 0, and so 0“) itself must be the degree of categoricity of A. [ |

It remains open whether any other hyperarithmetical degrees can be degrees
of categoricity of computable structures. Our reason for giving the full proof of
Theorem 2.1 above, despite its subsequent generalization by Theorem 3.1 with
a different proof, is our belief that the construction proving Theorem 2.1 will
lend itself more readily to degrees above 0().

To go beyond the hyperarithmetical degrees, we would need different meth-
ods from those used here. All degrees of categoricity found in this paper are
strong, under the following definition.

Definition 6.2 If d is the degree of categoricity of a computable structure A,
and there exist computable B and C isomorphic to A such that every isomor-
phism from B onto C has Turing degree > d, then we say that d is the strong
degree of categoricity of A.

The proof of Theorem 5.9 actually showed that every degree d.c.e. in some
0 and above that 0™ is a strong degree of categoricity, and Theorem 6.1
did the same for the degree 0). Likewise, the fields built in Theorem 4.2 all
had strong degrees of categoricity. It remains open whether any degree can be
the degree of categoricity of a computable A without being the strong degree of
categoricity for A — or better yet, without being the strong degree of categoricity
for any computable structure. The next theorem shows that this would be our
only hope for finding degrees of categoricity beyond the hyperarithmetical.

Theorem 6.3 Ifd is the strong degree of categoricity of a computable structure,
then d is hyperarithmetical.

Proof. The Perfect Set Theorem is the key to this proof. Suppose that d is
the degree of categoricity of A, and that there is a computable B = A such
that every isomorphism from A onto B computes d. Being an isomorphism is
arithmetically definable, so the sets in d are precisely the sets S satisfying both
of the arithmetical conditions:

e (Je)[®5 is an isomorphism from A onto B]; and
e (Vi)[If ®7 is an isomorphism from A onto B, then (35)S = @fis.

The Effective Perfect Set Theorem (first proven by Harrison in [10]; see also [16,
Thm. 4F.1]) then shows that d must be hyperarithmetical. |
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7 Questions

While we are proud of the results in this paper, we also admit that they raise
more questions than they answer. First of all, we have examined c.e. and d.c.e.
degrees, but have gone no further in the Ershov hierarchy than that. We have
no proof that it is impossible to go further, but the methods used here do not
have an obvious generalization to n-c.e. sets, let alone w-c.e. sets or AJ sets.
Can all degrees of such sets be degrees of categoricity of computable structures?
A positive answer would presumably relativize to all degrees 00™), following the
methods of Section 5.

Moreover, there is no obvious reason why all categorically definable arith-
metical degrees must lie in the intervals [0(™), 0"*D]. A similar situation arose
in the paper [9] by Harizanov, Miller, and Morozov, but the result there was
finally generalized to degrees outside these intervals by the use of IT{-function
singletons. (If 7 C w<¥ is a computable subtree with a unique infinite path f,
then the degree of f is called a II{-function singleton.) Possibly the techniques
used there might extend to categoricity spectra as well, but the situation is
somewhat different. [9] concerns the automorphism spectrum of a computable
structure A, defined as the set of Turing degrees of all nontrivial automor-
phisms of A. Thus it is specifically a property of a single presentation of a
structure, and indeed [9] gives examples of isomorphic computable structures
with distinct automorphism spectra. In contrast, the categoricity spectra of
computable structures A and B are clearly equal whenever A = B; this is a
property of the isomorphism type of A, not of the presentation.

Next, there is the tantalizing possibility suggested by the single known non-
arithmetical degree of categoricity 0) from Theorem 6.1. Can the construction
there be extended to higher hyperarithmetical degrees? Or is there a different
proof for such degrees? Or could the result actually be false for some degree
00 with w < o < wEK? The results in [7], which lift many known arithmetical
results to hyperarithmetical degrees, might be useful here.

Finally, in Definition 6.2 we defined the strong degree of categoricity, without
addressing the question of whether there is any other kind of degree of categoric-
ity. That is, could a computable structure A have a degree of categoricity d
such that for every computable B and C isomorphic to A, there exists an iso-
morphism f from B onto C with d L1 f? By Theorem 6.3, this would be the
only hope for finding a nonhyperarithmetical degree of categoricity.
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