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After Non-Euclidean Geometry: Intuition,
Truth and the Autonomy of Mathematics

Janet Folina

“. . . as the mathematical results shook themselves free from
philosophical controversies, they assumed gradually a more

stable form, from which further development, we may reasonably
hope, will take the form of growth rather than transformation.”

(Russell 1897, sec. 46)

1. Introduction

How do mathematics and its philosophy influence each other?
Does philosophy support mathematics by providing it with a
foundation, or do such efforts impede progress, as Russell sug-
gests? Conversely, how does mathematics influence philosophy?
When mathematics is “shaken free” from its philosophical fet-
ters, how does philosophy respond? When does it, as Russell
suggests, “borrow of Science, accepting its final premises as
those imposed by a real necessity of fact or logic” (Russell 1897,
sec. 46)? And when does it resist change, by trying to restrain
and steer mathematics in certain directions?

These questions underpin any attempt to understand the 19th
century mathematical revolutions and their philosophical im-
pact. Before this time, through Kant, it made at least some sense
to think of mathematics as springing from two main sources: ge-
ometry and arithmetic (with algebra understood as abstracted
and generalized arithmetic or as a symbolic generalization of ge-
ometry). Kant produced a philosophy of mathematics roughly
based on this two-pronged foundation, which seems engineered
for its epistemic symmetry.1 Though arithmetic is (mainly) based

1At least at first glance; there are some who emphasize the asymmetries

on succession, which is given by the a priori form of time while
geometry is (mainly) based on the a priori form of space, both are
synthetic a priori in nature, both depend on a priori intuition, and
the methodology for both involves the so-called “construction of
concepts”—the methodology that is distinctive of mathematics,
according to Kant. This is what I mean by “epistemic symmetry”:
despite some methodological differences between geometry and
arithmetic, they provide the same kind of knowledge (synthetic
a priori), which is obtained in the same kind of way (through
construction of concepts by utilizing a priori intuition).

Developments in both geometry and algebra, however, chal-
lenge the symmetry view and its foundation. Non-Euclidean
geometries undermine Kant’s idea that there is a spatial intu-
ition, or at least one that suffices to single out Euclidean geom-
etry as a priori true. Around the same time, symbolical algebra
after calculus challenges the idea that there is any kind of in-
tuition (temporal or otherwise) sufficient to ground the truths
of both ordinary arithmetic and the investigation of various
types of algebraic structures. The philosophical impact of the
two revolutions is slightly different. The emerging sentiment
regarding geometry is generally towards empiricism, with par-
ticular geometric systems seen as more like applied (sometimes
called “mixed”) mathematics. In contrast, algebra seems to move
philosophy towards a more formalist conception. Nevertheless,
whether empiricism or formalism, the net effect is a broad chal-

too, such as the fact that Kant focuses much more on geometry than arithmetic,
he does not connect arithmetic very strongly to time or sensibility, and the fact
that we use a geometric line to represent time to ourselves. (See, e.g., Shabel
1998, who argues that for Kant “symbolic” constructions, say in arithmetic or
algebra, are not a different kind of construction from ostensive (geometric) con-
structions; rather, “symbolic constructions” symbolize ostensive constructions
in space, entailing that even symbolic constructions presuppose spatial intu-
ition.) For purposes of this paper I begin with a basic interpretation of Kant,
which I believe was held by the figures I will be highlighting. (See Section 4
below.)
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lenge to Kant’s philosophy.2 The Kantian view is further strained
by the proliferation of mathematical subfields (set theory, graph
theory, etc.), and by the apparent intermingling of disciplines as
in algebraic geometry. By the end of the 19th century it might
seem implausible to view mathematics as in any simple way
about, limited to, or constrained by spatio-temporal intuition.

Philosophy of mathematics at this time is in some ways as
liberated as the mathematics that has shaken itself free of it,
with both philosophers and mathematicians considering new
ways to make sense of the changes. Alternative views about
mathematical reality, truth, method, etc., arise in programs such
as logicism, intuitionism, formalism, and platonism.3 Along
with these new philosophies come new ways to understand the
relationship between mathematics and natural science.

This paper focuses on how these mathematical and philosoph-
ical developments affected Kantian philosophies. By the late
19th century, is there any remaining sense in Kant’s view that
mathematics has a truth determining content that is constrained
by, and tied to, intuition or human cognition via the form of ex-
perience? If so, what sense is this; for example, how can one
assert that spatio-temporal a priori intuition plays a constitutive
role in mathematics while accommodating the consistency and
real possibility of non-Euclidean geometries? If not—if it is no
longer sensible to defend Kant’s theory of intuition—then can
anything of Kant’s general conception of mathematics (and/or
cognition) be salvaged? In short, in what ways can Kant be mod-
ified, and defended, rather than abandoned after non-Euclidean
geometry?

I will compare the ways several figures adjusted rather than
rejected Kant’s philosophy, as they wrestled with both the math-

2Not just his philosophy of mathematics. Mathematics provides evidence
for his general view of cognition as well as the status of philosophy. Without
that evidence, the general picture is undermined.

3For example, Frege’s view that though they are abstract, mathematical
objects are just as real as concrete objects—a view distinct from Plato’s theory
of forms.

ematical changes and the philosophical questions that thereby
arose. One such adjustment, associated with Marburg Neo-
Kantianism, is discussed in recent literature on Cassirer. For
example, Heis argues that Cassirer retains Kant’s methodolog-
ical doctrine of the “construction of concepts” while giving up
the associated commitment to a priori intuition, space and time.
So Cassirer takes the second option above: though the theory
of a priori intuition at its basis is abandoned, there is something
worth preserving in Kant’s general approach to the philosophy
of mathematics (and perhaps cognition even more generally).

This adjustment involves a new spin on Kant’s account of the
“construction of concepts”. For Kant, space and time are the
media for constructing mathematical concepts: we construct the
concept of “triangle” in space, of “twelve” in time via successive
synthesis. So for Kant, “construction of concepts”—the method-
ology that is distinctive of mathematics—is an activity that lies
more or less between two equals, that of concepts and intuition.
In contrast, Cassirer, for example, construes the “construction of
concepts” as dependent only on concepts, thus detached from
intuition. In addition, apriority is also detached from intuition,
becoming a category that is relative, embedded, and depen-
dent on science (see Heis 2011; Friedman 2016). Modeled after
Dedekind’s logicism, Cassirer aims to accommodate the increas-
ingly abstract nature of the subject matter of mathematics.4

Another type of reaction involves modifying Kant’s conception
of a priori intuition rather than trying to construct a Neo-Kantian
philosophy of mathematics without it. That is, rather than elimi-
nate intuition owing to challenges to it, some mathematicians—
such as Brouwer, Poincaré and Weyl—attempt to reconceive,
or reconfigure, “intuition”. Intuition so reconfigured becomes
more abstract, less tied to experience, and closer to concepts or
cognition, than spatio-temporality was for Kant. For example,

4See Heis (2011, sec. 3). How this purportedly works, and whether or not
it succeeds, I will leave to Cassirer scholars.
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Poincaré construes intuition as more of a flexible, “all purpose”
cognitive tool; indeed he suggests that it is even required for (the
emerging) symbolic logic.

With “intuition” so reconceived, its job is somewhat trans-
formed. Rather than the field or form of sensibility in which ob-
jects corresponding to mathematical concepts are “constructed”,
mathematical intuition primarily takes on the job of domain-
determination. That is, intuition determines whether and what
concepts determine their objects, and whether and what domain
corresponds to a given mathematical concept. Obviously this is
a job that lies more on the side of concepts than Kantian intu-
ition, and resembles the role played by schemata for Kant. But
I’m getting ahead of myself.

If 20th century “intuition” moves away from space and time
in this way, then we might think of the difference between a
view like Cassirer’s and that of the intuitionists in the following
way. While Cassirer sees mathematics in terms of construction
of concepts without intuition, the intuitionists see mathematics
as governed by intuition without construction of concepts.

It may be tempting to see this as a distinction without a differ-
ence. However, I will argue that there are important philosophi-
cal differences between the two methods of accommodating the
changes in mathematics, and its relationship to natural science.
In particular, retaining intuition enables certain core elements
of mathematics to remain conceived as isolated from shifts in
the mathematical-scientific landscape. Thus for example, per-
haps geometry needs to be seen as more closely connected to
physics; but that does not mean arithmetic needs to be similarly
reconceived. For those who wished to preserve a more tradi-
tional vision of mathematics, adjusting rather than eliminating
intuition can be understood as advantageous in at least the fol-
lowing, related ways.

First, intuition blocks the potential lure of holism about math-
ematics and science. Second, it does this by providing a more
absolute foundation for mathematics than, say, Cassirer’s con-

struction of concepts without intuition. Third, this is because in-
tuition provides a foundation for mathematics that is internal to
mathematics, and thus the aspects of mathematics that remain
grounded in intuition are regarded as isolated from scientific
shifts. Fourth, this approach better preserves the autonomy of
(at least a core of) mathematics from natural science. Fifth, this
is because mathematical truth is independent of the methodologi-
cal role of mathematics in natural science; that is, mathematical
truth requires neither scientific applicability nor empirical con-
firmation. Sixth, this view can thus clearly preserve the apriority
of mathematics as well as its distinctiveness from natural sci-
ence. These are not distinctions without a difference; they are
philosophical advantages of an intuition-based reconstruction
of Kant.

2. Overview of Kant’s Philosophy of Mathematics

Famously for Kant, mathematical knowledge is synthetic a priori.
In fact, mathematics is presented as a paradigm case of synthetic
a priori knowledge in arguing for the legitimacy of the general
category, putting philosophy in its good company. (See for ex-
ample, Kant 1781/87, Preface to the Second Edition, B8, etc.)
Though philosophy and math are both synthetic a priori, Kant
thinks the two differ in methodology. Philosophy is “merely
discursive”; philosophers only analyze concepts. In contrast,
mathematicians can also “construct their concepts”; as Kant fa-
mously claims, “[p]hilosophical knowledge is the knowledge
gained by reason from concepts; mathematical knowledge is the
knowledge gained by reason from the construction of concepts”
(Kant 1781/87, B741).

Construction of concepts is the method of considering an arbi-
trary object or instance of a mathematical concept, allowing one
to advance to general judgments. Of course, general judgments
can be valid without constructing any concepts, as is codified
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in logic, in rules for the universal quantifier. For Kant, how-
ever, constructing concepts enables the same universality as is
obtained through universal generalization, while also adding
to, or supplementing, the information provided by the (explicit)
concepts alone.

When I construct (the concept of) a triangle, for instance, I
consider it as an object in space and time. So facts about spatio-
temporality—such as the existence of space in which to extend a
line and the ability to iterate any construction operations—add
to the information provided by the concept of triangle alone.
Thus, conclusions about triangles can on this view contain more
information than conclusions about the mere concept of triangle.
For Kant this is because constructing the concept of triangle—
considering triangles as spatio-temporal objects—enables my
judgment to be ampliative, or synthetic. Yet the judgment re-
mains a priori since the information added comes only from the
spatio-temporal form—the a priori form of all experience. That is,
the added content that is distinctive of mathematical judgments
comes from the a priori form of experience; and “construction of
concepts” is for Kant how this addition occurs in mathematics,
and is possible a priori.5

3. The Challenge of Non-Euclidean Geometries

Non-Euclidean geometries provide a paradigm case of mathe-
matical change that demands a philosophical response. They
prod philosophy to ask about the nature of mathematics, math-
ematical knowledge, and the relationship between mathematics
and natural science. They also seem to refute Kant’s view that
Euclidean geometry is necessarily true, as following from the
a priori form of space. Some reactions that I will compare in

5This is of course so rough an explanation it is a caricature. There is a huge
literature by Kant scholars on this topic. For just a few examples, see Carson
(1999), Friedman (1985), and Shabel (1998, 2006).

this section are empiricism about (at least certain aspects of)
geometry, geometric conventionalism, and the related idea of
the relative, or non-absolute, a priori. Each of these represents
a philosophical shift that attempts to accommodate, rather than
challenge or obstruct, the mathematical developments. The ex-
istence of real geometric alternatives raises the question whether
mathematics really is absolutely a priori, and each of these reac-
tions acknowledges the new role of natural science in geometry.

One response to non-Euclidean geometry associated with
Russell and Helmholtz6 is to shift some mathematical truth—
geometry—to the empirical, folding some geometric content
into physics. This entails rejecting Kant’s epistemic symmetry
doctrine, singling out geometry as the discipline that needs to
be understood in a new way.7 Given the consistent alterna-
tives, geometric axioms can be regarded as (more like) physical
hypotheses—an attitude that seems supported by the fact that
one needs the conjunction of physics and geometry for rele-
vant empirical tests. This empiricist-holist reaction effectively
re-allocates certain aspects of mathematics to physics; it shifts the
determination of geometric axioms, or systems, away from pure
mathematics across the boundary to physics.8

Conventionalism is a somewhat similar, though subtler, re-
action to non-Euclidean geometry. It views geometric systems

6For example, Helmholtz (1876/78) strikes me as articulating a fairly strong
version of empiricism. However, see Patton (2016) for cautions about this
characterization.

7Geometric empiricism may seem even more attractive after general rela-
tivity.

8Philosophy of geometry in the late 19th/early 20th centuries is filled with
attempts to make sense of this emerging asymmetry in mathematics; conven-
tionalism, empiricism, holism, etc., are each engaged in very similar efforts.
(For an account of the subtle relationships between the views of Einstein,
Helmholz and Poincaré, see Friedman 2009.) Furthermore, the idea that ge-
ometry was more like applied mathematics pre-dates the actual mathematical
revolutions. (One can see such remarks by Gauss, Bolzano and others.) So
perhaps Kant’s epistemic symmetry thesis was never very plausible to the
mathematicians, after all.
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as measurement systems; as such they are neither a priori nor
empirical in any straightforward sense. “Convention” is a new
scientific category, promoted by Poincaré,9 for this intermedi-
ary status. As conventions, geometric systems are stipulative;
however, unlike some conventions, geometric systems are not
arbitrary stipulations. Conventionalism accepts that geometry
is closely connected to physics, but it does not see geometry as
merely incorporated into physics. Rather, along with other con-
ventional aspects of science, geometry maintains a separation
from physics owing to its distinctive methodological role.

Scientific conventions arise for Poincaré when there is more
than one option, yet the choice between options is neither
straightforwardly empirical nor determined by purely a priori
criteria. Poincaré points out that empirical testing presupposes
certain conventions, so it cannot decide them. He agrees with the
empiricist-holist that we can only test the conjunction of physics
and geometry. The difference is that the conventionalist empha-
sizes the fact that some parts of the whole are (and should be)
treated differently from other parts. In particular, some parts
can be (and usually are) generally isolated from revision. More-
over, what is so isolated is typically not arbitrary; geometry is
shielded from revision because it plays a different role in sci-
entific testing than the more empirical parts of physics. In fact,
geometry is part of the testing apparatus, or framework, rather
than what is tested. This does not mean that conventions are
never revised; rather, revising aspects of a testing apparatus in-
volves a different kind of process than revising some other content
in light of outcomes based on using that apparatus.

According to conventionalism, geometric systems and some
other fundamental physical principles thus function as a third
category between the empirical and the a priori. They are not as
absolute as what is a priori imposed, since we are at times willing

9For his explanation of conventionalism, see Poincaré (1898, 1902); for my
take, see Folina (2014).

to try other conventions, other frameworks. But they are not
directly tested because they are part of what makes empirical
testing possible. Thus Poincaré carves out a new category for
the boundary between mathematics and science, considering
some of what used to be considered as mathematics (particular
geometric systems), and some of what used to be considered
empirical (particular mechanical principles) as “conventions”.
Importantly, however, it leaves much of science and mathematics
conceived as it was: the highly empirical parts of science remain
empirical; the core of mathematics remains a priori.10

Both empiricism and conventionalism are consistent with a
view about intuition like Brouwer’s (which will be further dis-
cussed in the next section). Brouwer famously declares that
he gives up the apriority of space but not that of time, building
(pure) mathematics only on the foundation provided by the a pri-
ori form of time (1913, 80).11 These reactions—empiricism (about
geometry), conventionalism (about principles on the border be-
tween geometry and physics) and Brouwerian intuitionism—
each more or less isolate geometry as the “problem”. They seg-
regate geometry, protecting the rest of mathematics from the
need for a new foundation, by allowing it to remain conceived
as a priori in some former sense.12

10It is important to note that these responses are focused on the determina-
tion of particular geometric systems. That is, pure mathematics still includes
the study of various geometries; it just cannot determine the “one” that is
“true”, any more than mathematics can determine the “one” algebraic struc-
ture that is “true”.

11Of course this alters what counts as pure mathematics, since what is
“constructible” in, or via, intuitive time may not be identical with what is
constructible in space and time. On the other hand Brouwer also reconceived
time, which changed the grounding in a different way than simply eliminating
half of it. In fact, Brouwer helps himself to both the continuity of time as well
as its “two-oneness”. Again, more on this later.

12It is important to emphasize that bracketing off geometry in this and other
ways is purely philosophical. What it provides is conceptual freedom—from
reconceiving the rest of mathematics; it has no direct impact on mathematical
practice.
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A third important reaction to non-Euclidean geometry, how-
ever, re-frames the category of apriority as non-absolute, or “rel-
ative”.13 Associated with Cassirer, this is a different kind of re-
action that is more general and more drastic. Rather than simply
yielding some areas of inquiry such as geometry to the empiri-
cal, or creating a new intermediary category such as the conven-
tional, this response changes the entire conceptual framework
for thinking about mathematics, science, and their relationship.
In some sense it takes the conventionalist reaction and extends
it to the whole category of the a priori. Thus it is a more dras-
tic reaction, since it affects the conceptual framework for all of
mathematics. For Kant and others, a priori knowledge consists
of necessary truths that are knowable independently of experi-
ence. In contrast, this view regards the a priori as only relatively
fixed, determined only by its role in providing a framework
for science. When science changes drastically enough so can its
framework; the a priori is thus not generally permanent on this
view.

This conceptual shift enables geometry to retain the (relative)
a priori label, despite the multiple options—that is, even though
no one option is (absolutely) necessary or fixed. Geometry is
not absolutely a priori, as is shown by the multiple options; but

13This is also a topic I can only mention, on which there is a large and
growing literature. I’ll just say that merely including the relative a priori in
the category—so dividing apriority into the relative and absolute—is in effect
very similar to the partial re-allocation “moves” of geometric empiricism and
(especially) conventionalism. In contrast, it is the replacement idea that really
contrasts with these other reactions. For important work on the relative a
priori and its historical roots, begin with Friedman (2001, 2002). That Friedman
advocates replacing the absolute with the relative a priori (rather than merely
dividing the a priori into the relative and the traditional, absolute) is explicit
in his remark that though he views scientific knowledge as differentiated
into three levels—the empirical, the relativized a priori and the philosophical
meta-frameworks which guide our transitions between frameworks—“[n]one
of these three levels are fixed and unrevisable. . . ” (2002, 20). This is the view
of the relative a priori that I address here.

it is “relatively a priori” because whichever geometric system is
chosen provides part of the framework presupposed in empirical
testing. Geometry is thus still “prior to” scientific testing, or the
more straightforwardly empirical; so it retains a position that
can be seen as in the Kantian tradition.

Reconceiving the category renders the “apriority” of an area of
inquiry a question about its methodological role in science rather
than its intrinsic properties, such as the fact that its basic truths
are necessary or justifiable independently of experience. While
it is important to take methodology seriously, the view that all
a priori knowledge is merely relative is revolutionary. Though
perhaps in the Kantian tradition, it nevertheless opposes Kant’s
view of the a priori as necessary, rather than contingent on nat-
ural science. Tying mathematics too closely to science—even as
its privileged aspects, its “framework”—fails to preserve its au-
tonomy, for it seems to make mathematical truth depend on the
role or utility of mathematics in natural science. Blurring the
boundary between mathematics and natural science, it also fails
to reflect the apparent purity of mathematical methodology.14 In
these ways the relative a priori drastically alters the conception
of mathematics as distinct from natural science: in its content,
methodology, and epistemic status. Although there is clearly
a close relationship between conventionalism and the relative
a priori, the virtue of the former (as well as empiricism-holism
about geometry) is that while it treats particular geometric sys-
tems in a new way, it leaves the rest of mathematics alone.15

Whether or not geometry is a special case provides an inter-
esting division between responses to non-Euclidean geometry.

14Granted, if we can conceive of and interpret non-Euclidean geometry,
then neither our concepts alone nor our concepts aided by the a priori form
of experience determine geometric truth. But reconceiving the category of a
priori knowledge because of some changes in it seems somewhat drastic.

15That is, conventionalism about geometry need not reverberate throughout
all of mathematics; it does not imply the conventionality of arithmetic, for
example. Again, this is a point about the philosophy of mathematics only, not
mathematical practice.
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Does non-Euclidean geometry mean that the nature and role of
all of mathematics needs to be reconsidered; does it undermine
the entire category of the a priori, or the whole of a philosophy
of mathematics? Does it refute Kant’s philosophy? Or can the
damage be isolated, leaving much of mathematics conceived in
some general Kantian way? Reconceiving the a priori as rela-
tive seems an example of the former, while limiting empiricism
and conventionalism to geometry enables a more Kantian ap-
proach to the rest of mathematics—one that retains a limited or
reconceived theory of intuition.

Another interesting division is between philosophical re-
sponses that merely accommodate mathematical changes and re-
actions that also aim to steer future mathematics. The views
about geometry so far discussed can be seen as philosophy fol-
lowing mathematics, and accommodating the changes that oc-
curred in it. They are reactions that, as Russell said, “borrow of
Science, accepting its final premises as those imposed by a real
necessity of fact or logic” (Russell 1897, sec. 46). We might now
call such responses “naturalistic”, or “second” philosophy.

Other responses see the role of philosophy of mathematics
as more “first”, proactive, and more traditional. For example,
the new intuitionists not only react to the existence of alterna-
tive geometries; their programs address the rest of mathematics
too. That is, rather than merely accommodating the mathemat-
ical changes presented by non-Euclidean geometries (and other
mathematical developments), they also aim to steer mathemat-
ics, to actively direct it, and even to limit it, to reflect their philo-
sophical views.

Thus, the new intuitionists play a double role in my analy-
sis. First, both intuitionism and semi-intuitionism provide im-
portant examples of adapting, rather than abandoning, Kant’s
theory of intuition. The conceptions of intuition in question are
slightly different from one another, but they each aim to pre-
serve a basic traditional view: one that yields the independence
of mathematical truth from natural science, and one that sup-

ports the absolute apriority of mathematics. Second, they all
preserve a more proactive, prescriptive, traditional role for the
philosophy of mathematics.

4. Intuition and the Absolute A Priori

Towards the end of the 19th century, some new philosophies
of mathematics arise in response to the mathematical develop-
ments discussed above. As we saw, non-Euclidean geometries
undermine Kant’s vision of the epistemic symmetry of arith-
metic and geometry, as well as the theory of a priori intuition
at its basis. If, then, geometry is less pure and less fundamen-
tal than arithmetic, there are two main strategies for a Kantian
“rescue” regarding intuition. One can retain the Kantian view
that intuition supports geometry while offering a new account
of arithmetic, or one can reject Kant’s view that intuition de-
termines Euclidean geometry but retain Kantian intuition for
arithmetic.

Most defenders of intuition at this time take the second path,
dropping geometry to rescue a limited form of Kantianism for
the rest of mathematics, in particular number theory. That is, the
effect of non-Euclidean geometry on Kant’s epistemic symmetry
view is to “push geometry down”, allowing the rest of mathe-
matics to stay at its former epistemic level, with its former philo-
sophical grounding (however these are conceived). Frege takes
the opposite path: he retains Kantian intuition for geometry and
instead reconceives arithmetic as logical. So, in his vision, ge-
ometry remains at its former level with its former philosophical
grounding, and instead Frege aims to “lift arithmetic up” a level
from that of geometry to that of logic. Interestingly, he regards
non-Euclidean geometry as evidence for geometric intuition:
unlike arithmetic, for which there is only one option, the con-
sistent geometric alternatives illustrate, for him, that intuition is
required in order to single out which alternative is true. “For pur-
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poses of conceptual thought we can always assume the contrary
of some one or other of the geometrical axioms, without in-
volving ourselves in any self-contradictions . . . ” (1884, sec. 14).
The alternatives are consistent because geometric axioms are
synthetic, not analytic truths; intuition is deployed to select, or
determine, the Euclidean system as true. For example, Frege
regards thinking about non-Euclidean geometries as using “still
the same old intuition of Euclidean space, the only one whose
structures we can intuit” (1884, sec. 14). In other words, with
Kant, Frege believes we can conceive of non-Euclidean geome-
tries, but we can only intuit Euclidean geometry.16 It is in this
sense that the view constitutes a Kantian rescue (for geometry).

It is a view that contrasts with intuitionism in its character-
ization of arithmetic as well as of geometry. Frege’s program,
logicism, “rescues” Kantianism about geometry in part by “pro-
moting” or elevating arithmetic to the logical. This view of arith-
metic truth as logical was particularly offensive to the intuition-
ists for they regarded logical truth as empty. In contrast, they saw
arithmetic truth as substantive, a genuine body of knowledge,
and thus synthetic. Their defense of Kantian intuition centers
on non-geometric areas of mathematics, with a particular focus
on arithmetic and what it can ground.

Thus, rather than promoting arithmetic to the logical, the in-
tuitionists’ Kantian rescue “demotes” geometry as a first step in
preserving Kant’s vision of mathematics. As Brouwer articulates
it:

But the most serious blow for the Kantian theory was the discov-
ery of non-euclidean geometry, . . . However weak the position of

16Another source of asymmetry for Frege is that arithmetic is more general
and abstract than geometry, and he notes that it is “closer to the laws of
thought”. But being close to the laws of thought does not in itself rule out
intuition in arithmetic. As we shall see, others around this time endorsed just
such an intuition—one that is very abstract and fundamental to systematic
thinking—as part of the grounding for arithmetic. Thus, Frege’s positive
arguments for logicism were essential for his project of refuting arithmetic
intuition—though of course his particular version was doomed.

intuitionism seemed to be after this period of mathematical devel-
opment, it has recovered by abandoning Kant’s apriority of space
but adhering the more resolutely to the apriority of time. (Brouwer
1913, 80)

So both logicism and intuitionism proceed from the same rough
basis: that of rejecting the epistemic symmetry view associated
with Kant. Whether arithmetic is “promoted” to the logical or
geometry is “demoted” to the empirical (or the conventional),
the effect is in some ways very similar: both sides recognize
arithmetic as more fundamental than geometry. Here, however,
the views diverge sharply.

Of course, merely demoting geometry would not suffice to
preserve Kant’s philosophy. First, Kant himself said very little
about the role of time in the methodology of arithmetic and
algebra. There are a few remarks, for example, the famous pas-
sage in the Prolegomena about the successive synthesis in time
in knowing 7 + 5 � 12. Kant also mentions the importance of
“symbolic construction” for algebra (in contrast with ostensive
construction for geometry) in the Critique. But these few pas-
sages are insufficient to flesh out how processes like successive
addition or symbolic construction are anything like constructing
triangles, lines and circles. In addition, Kant’s emphasis on suc-
cessive synthesis in determining the general concept of number
takes place in the Schematism rather than in a section featuring
intuition. It is thus unclear what is left of the Kantian philosophy
of mathematics without spatial intuition and geometry.17

Second, and perhaps more importantly, mathematics had al-
ready moved into quite abstract territory by the end of the 19th
century. Symbolical approaches to algebra freed it from its arith-
metic fetters, just as geometry was freed from its Euclidean
fetters; and both developments occurred despite philosophical

17Hamilton notes and attempts to fill in this gap in Kant’s own work, rather
unsuccessfully in my opinion. See Hamilton (1837) and/or Folina (2012).
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concerns about meaning, reference and truth.18 Any theory that
defended Kantian intuition for arithmetic would not only need
to detach spatial-geometric intuition from temporal-arithmetic
intuition; it would also have to offer a new version of the latter.
This is precisely what the new intuitionists do.

In the rest of this section, I sketch and compare the ways
several mathematicians adapted Kant’s concept of intuition to
ground the non-geometric areas of mathematics. Each aimed to
preserve the traditional view that pure mathematics is a priori,
autonomous (independent of natural science), a realm of truth,
etc. Though the concepts of intuition vary slightly, they are thus
each put to similar uses: to ground a fixed basis for core areas
of mathematics, to preserve the apriority of these areas, and to
balance the autonomy of mathematics with the importance of
its (potential) applicability and its connection to natural science.

4.1. Brouwer

Frege elevates, or “promotes”, arithmetic to the logical—thus
independent of intuition—while preserving Kantianism about
geometry as based on the a priori intuition of space. In con-
trast, Brouwer lowers, or “demotes”, geometry—eliminating
traditional (synthetic) geometry from pure mathematics—to
preserve Kantianism about other areas of mathematics. Thus
Brouwer sees the threat of non-Euclidean geometry to Kant’s
philosophy as isolated, as applying only to the apriority of space.
And he blames the emerging asymmetry of geometry and arith-
metic on geometry. He thus gives up spatial intuition, but he
retains Kantian temporal intuition as foundational for mathe-

18An interesting example is when the British algebraists finally “shook”
algebra free of its Berkeleyan “controversies” in the mid-1800s. Until then, such
philosophical concerns seriously impeded mathematical progress in Britain.
“Impossible” numbers do not trouble the new intuitionists because they do
not require the individual objects of mathematics to be “intuitive”. Intuition
at this point becomes process-oriented rather than object-oriented.

matics. So, Brouwer’s reaction is more or less the opposite of
Frege. Frege preserves Kantianism about geometry, elevating
arithmetic to logic; Brouwer preserves Kantianism about non-
geometric areas of mathematics, demoting synthetic geometry
to the empirical.19

As mentioned earlier, Brouwer calls non-Euclidean geome-
try a “serious blow” to the Kantian theory of mathematics, but
that, though weakened, “the position of intuitionism. . . . has re-
covered by abandoning Kant’s apriority of space but adhering
the more resolutely to the apriority of time” (1913, 80). Thus
Brouwer states explicitly that the position he is calling “intu-
itionism” can be built on the Kantian theory of the apriority of
time alone.

He famously describes how this works as follows.

This neo-intuitionism considers the falling apart of moments of
life into qualitatively different parts, to be reunited only while re-
maining separated by time, as the fundamental phenomenon of the
human intellect, passing by abstracting from its emotional content
into the fundamental phenomenon of mathematical thinking, the
intuition of the bare two-oneness. This intuition of two-oneness,
the basal intuition of mathematics, creates not only the numbers
one and two, but also all finite ordinal numbers, inasmuch as one of
the elements of the two-oneness may be thought of as a new two-
oneness, which process may be repeated indefinitely; this gives
rise still further to the smallest infinite ordinal number ω. Finally
this basal intuition of mathematics, in which the connected and
the separate, the continuous and the discrete are united, gives rise
immediately to the intuition of the linear continuum, i.e., of the
“between,” which is not exhaustible by the interposition of new
units and which therefore can never be thought of as a collection
of units. (Brouwer 1913, 80)

Brouwer further asserts that the apriority of time grounds
the study of various geometric systems as well as arith-

19Or at least the more empirical; pure mathematics includes only the study
of geometrical systems via arithmetic means and does not yield the truth of
any one system.
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metic and algebra—since geometric systems can be represented
arithmetically—and thus all of these areas of mathematics are
synthetic a priori. So time but not space is a priori, and it suffices
to ground all of genuine pure mathematics for Brouwer.

Does Brouwer simply retain Kantian time, while eschewing
Kantian space? This seems partly right. Kant and Brouwer agree
that all experience is temporal, and that time as the a priori
form of all experience provides a foundation for mathematics.
But there are at least two differences. First, Brouwer’s concep-
tion of time is arguably both more phenomenal (rather than
objective/inter-subjective) and more tied to the human intel-
lect (rather than sensibility) than Kant’s. Second, whereas Kant
is frustratingly silent on the exact role of time in mathemat-
ics (focusing mainly on the activity of mental synthesis, which
takes place in time), Brouwer connects the nature of temporal
experience somewhat more explicitly to its role in grounding
mathematics.

According to Brouwer, the “fundamental phenomenon of the
human intellect” is that it has a temporal form. Not only do our
experiences occur in phenomenal time, but our thoughts emerge
from this temporal basis too. We experience things as connected
via time,20 but also as separated by time, since experience is
sequential. So we experience one thing and then another. Since
thoughts are intellectual experiences, the same goes for them.

The first step towards mathematics is to abstract away from
the content of these experiences. So, say I experience the taste of
pizza and then the taste of wine. The first step towards mathe-
matics is to abstract the sensorial aspects of the pizza taste and
wine taste from those experiences. If I abstract enough content,
what is left is simply one experience and then another experi-
ence; thus what is left is something more formal—the form of:

20I take it that this is because the entity having those experiences also ex-
periences herself as a single person, thereby unifying and connecting the
individual experiences into a single consciousness.

one thing and another; or first and then next, or second. This
is what Brouwer calls a “two-oneness”. Because we could (and
most of us presumably do) have another experience after the
second, the relationship between the second and the next forms
another two-oneness; and so on.

Brouwer then simply asserts that this process, which “cre-
ates” some finite ordinal numbers, can be repeated indefinitely.
This can be thought of as the next step towards mathematics—
essentially the iteration of the basic successor function. The nat-
ural number structure thus emerges as the (abstracted and iter-
ated) temporal structure of experience—when we focus on the
separation, the differences, between two experiences.

Additionally, Brouwer regards time as supplying the back-
ground connectedness between the experiences that occur at these
different times. So mathematics has access to continuous do-
mains as well as discrete domains via the single intuition of
time.21 Although only discrete mathematical systems can be re-
garded as sets or collections, this enables more of mathematics
to be grounded in the one a priori intuition, time. Thus, for
Brouwer, time is continuous, always supplying a background
“between” any two experiences. And sets are “lifted out” of
this background owing to the fact that we can abstract discrete
number structures by iterating the basic structure left from the
imprint of successive experiences on the form of time. In these
ways Brouwer has contributed quite a bit of detail in explain-
ing how mathematical objects and domains can be thought of
as emerging from, and reliant on, intuitive time. Mathemati-
cal objects, domains, systems etc. can—roughly—be thought of

21Brouwerian time can be envisioned as a kind of idealized measuring stick,
indefinitely long and unfolding, or emerging, at one end. Each person has
her own such stick and the marks on the stick are “drawn” from the person’s
experiences. These are separated from each other by their position on the stick,
but connected since they are all on the same stick. If this is the right kind of
analogy, one can immediately see that there are worries about the solipsistic
nature of mathematics on Brouwer’s conception.

Journal for the History of Analytical Philosophy vol. 6 no. 3 [173]



as idealized and generalized temporal structures of our experi-
ences.

4.2. Poincaré

The same contrast with Frege applies to Poincaré. Frege elevates
arithmetic to the logical—thus not in need of intuition—while
preserving some form of Kantianism about geometry. In con-
trast, like Brouwer, Poincaré downgrades geometry22 in order
to preserve Kantianism about other areas of pure mathematics,
including arithmetic. However, in addition to defending con-
ventionalism about geometry, unlike Brouwer, Poincaré further
modifies the a priori intuitions that he appeals to in defending
Kant.

Rather than space and/or time, Poincaré’s fundamental math-
ematical intuition is that of indefinite iteration; he also claims
the intuitive continuum as an important source of mathematical
information. The latter is closer to a Kantian conception of intu-
ition (space) than the former, though it plays a less central role
in his philosophy of mathematics. Poincaré claims that the intu-
itive continuum is necessary to organize “brute sensation” into
the coherent experiences that we have (1913, 44). The intuitive
continuum is thus more explicitly tied to sense experience for
Poincaré. In contrast, the intuition of indefinite iteration seems
more like a form of cognition, or thinking, rather than the form
of experience, or sensibility.23

The intuition of indefinite iteration is thus particularly in-
teresting, for it illustrates an important shift in thinking about
“intuition” from Kant’s spatio-temporality. Poincaré appeals to
the intuition of iteration in his early arguments against logicism
(e.g., 1894), though he does not explicitly defend this intuition

22To the conventional rather than the empirical, but this is still a demotion.
23A question to be dealt with at another point is if so, whether it is really an

“intuition” in Kant’s sense. This question, however, applies to all post-Kantian
accounts of intuition.

until later writings. His eventual defense (e.g., in his 1905–06 pa-
pers) is fairly sophisticated; and he retains intuition as a way to
support a semi-Kantian philosophy of mathematics throughout
his philosophical work.24 Iteration also links Poincaré’s mathe-
matical intuition to those of both Brouwer and Weyl: Brouwer,
because he relies on the fact that we can indefinitely iterate the
mathematical process extracted from intuition, and for whom
time is the a priori form of the intellect; Weyl, because he follows
Poincaré in regarding iteration as a fundamental mathematical
intuition.

A main focus related to this intuition is the principle of mathe-
matical induction. Poincaré says induction is mathematical rea-
soning “par excellence”, and “only the affirmation of the power
of the mind which knows itself capable of conceiving the indefi-
nite repetition of the same act when once this act is possible . . . ”
(1902, chap. 1, part 6). Since intuition here is of a mental power, it
is clear that this conception is quite different from Kant’s forms
of experience, space and time. For Poincaré, intuition provides
a kind of self-insight into the mind’s power to apprehend in-
finite domains via indefinite iteration of their defining opera-
tions. That is, we can apprehend a domain as infinite when we
“see” that the construction acts that define or produce it can
be repeated without end. And the ability to conceive of the
domain in this construction-iterating way is also what grounds
our knowledge that induction results in true conclusions about
these domains.

Poincaré’s remarks connecting intuition to induction relate
also to his general views about what makes a domain of ob-
jects definite, or determinate. He contrasts two approaches to
infinity: that of the “Cantorian” and that of the “pragmatist”
(assigning himself to the latter group). He also refers to the
issue of “extension”:

The pragmatists adopt the point of view of extension, and the
Cantorians the point of view of comprehension. (When a finite

24For an explication and defense of these arguments see Folina (2006).
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collection is concerned, this distinction can be of interest only to
the theorists of formal logic; but this distinction seems to us much
more profound when infinite collections are concerned.) If we
adopt the point of view of extension, a collection is formed by the
successive addition of new members; we can construct new objects
by combining old objects, then with these new objects construct
newer ones, and if the collection is infinite, it is because there is
no reason for stopping. From the point of view of comprehension,
on the other hand, we begin with the collection in which there are
pre-existing objects . . . (Poincaré 1913, 67–68)

And continuing on the next page:

Another source of divergence arises from the manner of conceiving
the definition . . . Let us note in passing that there are definitions
which are incomplete in the sense that they do not define a par-
ticular thing but rather an entire genus. They are legitimate and
they are even the ones most frequently used. But according to the
pragmatists it is necessary to understand therein the set of the par-
ticular objects which satisfy the definition and which could finally
be defined in a finite number of words. (For the Cantorians this
restriction is artificial and devoid of meaning.) (Poincaré 1913, 69)

Poincaré here addresses the issue of the proper relationship be-
tween mathematical concepts and sets. Under what conditions
does a definite set exist? When does a concept determine a set?

Though he is arguing against realism here, he is not endors-
ing strict constructivism. In the second quote, for example, he
admits that some acceptable definitions do not provide explicit
construction-instructions for the objects concerned. In fact, he
agrees that one can define an entire “genus” at once. Neverthe-
less, as a semi-constructivist, he thinks even general definitions
of this sort should provide insight into the nature of the indi-
vidual objects so determined. The first quote tells us a little bit
about the conditions that provide this insight.

For finite sets, as Poincaré admits, the difference between
the realist and the anti-realist is not important. But our in-
sight into the objects that form an infinite set relies on what

he calls the point of view of “extension” or composition. Collec-
tions are formed by successive constructions, and infinite collec-
tions are just those for which there is “no reason for stopping”.
Thus, our insight into infinite sets comes, if not from explicit
constructions, at least from understanding how we would de-
fine/construct/access the individual objects if we wanted. And
such an understanding is provided by intuition—the same in-
tuition that underpins mathematical induction. So for Poincaré,
intuition is what grounds our understanding of infinite mathe-
matical sets.

As I mentioned, Poincaré also appeals to a second intuition—
of the “intuitive continuum”. This is not an operational intu-
ition; furthermore, it creates even more distance between his
and a strict constructivist view. Yet its epistemological role is
similarly to ground the mathematical commitment to definite
domains—such as the real numbers—on the basis of an idea (the
continuum). That is, just as the intuition of iteration grounds our
commitment to a definite simply infinite set; so the intuitive con-
tinuum grounds our commitment to a definite domain of real
numbers.25 In this way, intuition generally shifts for Poincaré to-
wards something that grounds the practice of associating certain
concepts with determinate mathematical domains.

4.3. Weyl

In The Continuum, Weyl produces a predicative system of anal-
ysis based on arithmetically definable properties only (and on
restrictions to the quantifiers). In response to the set theoretic

25And indeed other n-dimensional continua, such as topological spaces.
It must be emphasized that such domains are not sets for Poincaré. This is
because they are not formed by a collecting activity; nor do they provide objects
to which further set theoretic operations can be applied. So, for example, he
agrees that the real numbers do not have the same cardinality as the natural
numbers; but he denies that they have a higher cardinality, by denying that
they form a collection with a cardinality in the first place. The same reserve
would apply to other continua, such as spaces.
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paradoxes he aimed to build a theory of real numbers in a strictly
non-circular constructivist way. Predicative analysis loses some
results from classical analysis but at the time he “saw no other
possibility” as he famously remarks:

It is not the purpose of this work to cover the “firm rock” on which
the house of analysis is founded with a fake wooden structure of
formalism—a structure which can fool the reader and, ultimately,
the author into believing that it is the true foundation. Rather, I
shall show that this house is to a large degree built on sand. I be-
lieve I can replace this shifting foundation with pillars of enduring
strength. They will not, however, support everything which today
is generally considered to be securely grounded. I give up the rest,
since I see no other possibility. (Weyl 1918, 1)26

His so-called “genetic” point of view limits mathematics to what
can be built explicitly (at least in principle), from some basic
operations/intensions and—for Weyl—some basic set like the
natural numbers. Though Weyl articulates this differently, with
Poincaré intuition is central to his account of what makes a set
of objects definite.

Weyl helps himself to the basic set,N, which already depends
on intuition in his view. “The intuition of iteration assures us that
the concept ‘natural number’ is extensionally determinate” (110). New
mathematical objects are then produced via “the mathematical
process” by explicit definitions on N.

Weyl ties the nature (and thus level) of an object to its defini-
tion, and each type of definition on a set creates a new “sphere
of existence”. So for Weyl, although the set of natural numbers
and the set of rationals m/1 are very similar, their objects are
not identical (61). This may seem strange to us, but for Weyl
the way an object is defined determines what object it is. So the
natural number m and the rational number m/1 are not identical
objects. Thus for him there is a very close relationship between
a concept or definition, and its extension, the set so defined.

26All citations in this section are to Weyl (1918).

Nevertheless, it is important to note that set identity remains
extensional for Weyl:

How two sets (as opposed to properties) are defined . . . does not
determine their identity. Rather, an objective fact . . . is decisive;
namely, whether each element of the one set is also an element of
the other, and conversely. (Weyl 1918, 20)

So sets, and the objects of mathematics in general, are exten-
sional as in classical mathematics. And the mathematical pro-
cess is the formation of new sets, or extensions, from properties
defined on old sets (28).

What governs which properties form new sets? Those sanc-
tioned by intuition. For Weyl, “[n]o one can describe an infinite
set other than by indicating properties which are characteristic
of the elements of the set” (23). Furthermore, “the sense of a con-
cept is logically prior to its extension” (110). So the requirement
of concepts for sets is not a mere human weakness, or episte-
mological requirement; it is a logical requirement. Finally, not all
senses of concepts correspond to “extensionally determinate”
sets (109).

Weyl appeals to intuition for his basic category and also to
justify his restriction to explicit definitions on this category.

The intuition of iteration assures us that the concept “natural number”
is extensionally determinate. (Certainly, every version of arithmetic
must extract this basic fact from intuition.) However, the univer-
sal concept “object” is not extensionally determinate—nor is the
concept “property”, nor even just “property of natural numbers.”
(Weyl 1918, 110)

Both “object” and ‘’property of natural numbers” are too open-
ended to yield definite extensions.

Weyl and Poincaré thus have a similar vision of the epis-
temic role of intuition (though Weyl is more explicit)—that of
grounding how and which concepts determine their domains.
They also both focus on the intuition of indefinite iteration as
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the primary mathematical intuition. Iteration provides a basis
for mathematics in the form of insight into the natural number
structure. In addition, iteration is foundational for any insights
gained through symbolic logic, “since logical inference consists
of iterating certain elementary logical inferences . . . ” (19; see
also 48). Thus, both Poincaré and Weyl reconceive intuition as a
more general epistemic tool—a tool that both mathematics and
logic depend on, a tool for thinking rather than for providing the
sensorial background for “constructing” concepts. This seems
quite a big shift from Kant’s spatio-temporality.

4.4. Analysis

I have described the reactions of several mathematicians to
mathematical developments of the 19th century, especially non-
Euclidean geometry. Each aimed to preserve some aspects of
Kant’s philosophy of mathematics they thought were correct.
Each renounced the apparent symmetry of arithmetic and ge-
ometry to do so, showing that they conceived Kant’s appeals to
space and time to be fairly independent of each other.27

Frege preserves intuitive space, arguing that intuition is
needed to single out Euclidean geometry from other, non-
Euclidean, options. However, he eliminates intuitive time for
mathematics, attempting to show that arithmetic (and later,
analysis) is analytic, a development of logic, rather than syn-
thetic, and a development of intuition.

Brouwer’s position can be seen as the opposite of Frege. He
gives up intuitive space, arguing that non-Euclidean geometry
shows that Kant was wrong about it, since there is more than one
viable option.28 But he preserves intuitive time, which for him
retains a fairly Kantian connotation. He argues that time yields

27See note 1 above.
28Of course, Brouwer and others were writing later than Frege (1884); they

had the benefit of more work supporting the real possibility of non-Euclidean
geometries.

various mathematical structures (both discrete and continuous)
when we abstract from its experiential content and iterate the
formal relationships, or structures, revealed by this abstraction
process.

Poincaré and Weyl both move quite a bit further from Kantian
spatio-temporality than both Frege and Brouwer. For them it is
neither space nor time, but indefinite iteration that is highlighted
as the central mathematical intuition. Of course iteration takes
place in time (at least for us), but it is iteration rather than time
that is identified as the main a priori intuition for mathematics.
Neither stresses time as the source of iteration, which is thus
rather further from Kantian intuition than mathematical intu-
ition is for Brouwer. Though like Brouwer, they also both allude
to the intuitive continuum, unlike Brouwer this is mentioned as
a second intuition in addition to iteration, rather than a property
of intuitive space or time.

Here Poincaré and Weyl part company. For Poincaré the intu-
itive continuum has a spatial connotation: we have “the intuitive
notion of the continuum of any number of dimensions what-
ever because we possess the capacity to construct a physical and
mathematical continuum”. This is a priori because the intuition
is strictly speaking “merely the awareness that we possess this
faculty” for constructing continua (1913, 44). This thus links the
intuitive continuum to the intuition of iteration, which is also
merely the awareness of our ability to indefinitely repeat certain
operations.

For Weyl, in contrast, the continuum he wished to capture
mathematically has a temporal connotation. The intuitive con-
tinuum is given in the “constant form of my experiences of
consciousness by virtue of which they appear to me to flow
by successively” (1918, 88). Though he also applies his ideas
to continuous spaces, the source of the intuitive continuum is
phenomenal time. In addition, Weyl argues at this point (in a
further contrast with Poincaré) that the mathematical process
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cannot completely represent the phenomenal, intuitive contin-
uum. Regarding this, he cites Bergson for the “deep division”
between mathematics and our experience of the continuity of
time (90).

Despite the differences in connotation (spatial versus tempo-
ral), for both Poincaré and Weyl, the continuum is a separate
intuition, or resource, distinct from the intuition of indefinite
iteration. Yet there is a final divide between them on this matter.
Poincaré cites as evidence of a foundation in intuition, our abil-
ity to construct physical and mathematical continua; one might
well argue that this was rather ad hoc, designed to fill in and sup-
port the mathematics and science on which he worked. Weyl’s
intuitive continuum, in contrast, eludes scientific-mathematical
description—a problem that drove him from one foundation to
another, from predicativism to Brouwer’s intuitionism then to
formalism, or axiomatics.

We see, then, the wide variety of attempts to defend Kant’s
philosophy of mathematics. Uniting the intuitionists, though,
is their common vision and goals. They each strive to uphold
Kant’s view that a priori intuition is necessary for mathematics,
by focusing on non-geometric areas of mathematics, and “de-
moting” geometry to the empirical or conventional. And they
all oppose alternative foundations for the non-geometric areas,
such as logicism, formalism and platonism. They see geome-
try as a special case, one that does not imply anything new
about the nature of the rest of mathematics. And for the rest of
mathematics they aim to preserve a traditional philosophical ap-
proach: one that not only accommodates existing mathematical
changes, but also guides and directs future mathematics.

5. Conclusion

I have tried to explain some of the pressures on philosophy of
mathematics after Kant, in light of mathematical developments

during the 19th century. I’ve particularly focused on those who
are inclined towards a Kantian account of mathematical knowl-
edge, and for whom the mathematical changes necessitate some
fairly significant philosophical adjustment. Perhaps, as I think,
philosophical issues are what often motivate mathematics to
shake itself free from an old conception and its fetters;29 but phi-
losophy, in turn, must also react to and reflect the changes that
thereby come about, as Russell asserted.

The philosophical accounts I have highlighted share the idea
of adjusting, rather than eliminating, a priori intuition as a foun-
dation for mathematics—despite its alterations. Though each
view has its own flavor, they share some important common
features. They also represent more proactive philosophies that
aim to guide and restrain mathematics, rather than to merely ac-
commodate it. What remains is to defend these efforts—at least
so we understand why someone might adopt this approach.
Why might a foundation based on an adjusted a priori intuition
be preferred over other reactions such as the relative a priori,
formalism or holism-empiricism?

As I’ve interpreted them, our central figures reconceive intu-
ition to be less tied to sensibility and more tied to cognition. Of
the three here considered—Poincaré, Brouwer, and Weyl—it is
Poincaré and Weyl who most alter the concept of intuition that
they defend. Yet, even Brouwer’s “two-oneness” seems a more
cognitive, structural conception of mathematical intuition than
Kantian space or time (despite Brouwer’s appeal to intuitive
time in explaining two-oneness). The question remains, why
“water down” Kantian intuition in this way; with intuition so
weakened, or altered, do these views really count as defending
Kant? Are they plausible, or at least appealing?

The new conceptions of intuition are more abstract, or op-
erational, which admittedly moves intuition away from a strict

29That is, the impetus for mathematical change is often philosophical in
nature, even if it is mathematicians who are doing the philosophizing.
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Kantian approach, where intuition is so tied to sense experi-
ence as to be the form of sensibility. However, the benefit of this
move is that the more abstract conception arguably grounds a
wider domain of mathematics. That is, mathematics had already
changed; as stated above, simply dropping geometry out of the
domain of the synthetic a priori would not suffice to ground its
increasingly formal and abstract subject matter. The only options
were to reject or adjust intuition.

Though the proposed concepts of intuition are somewhat
new, the epistemic role of intuition remains basically Kantian
for Brouwer, Poincaré and Weyl. None of them are “realist”
so they share with Kant the idea that mathematical knowledge
is not a reflection of an independently existing reality. Instead,
mathematics is governed and constrained by what we bring to ex-
perience in order to cognize it; and intuition is one of the things
we so bring. Though modified more towards cognition than
sensibility, the new conceptions preserve these general Kantian
roles for intuition. They also enable a conception of mathematics
that is Kantian in the following more specific ways.

First, the intuition grounding mathematics remains a priori,
and it is purportedly common to all humans. Second, intu-
ition is thus independent of shifts in both natural science and
conceptual frameworks. Third, intuition delivers an account of
mathematics that is substantive but necessary, i.e., synthetic a
priori. Fourth, and finally, intuition governs the relationship be-
tween concepts and their objects or domains.30 Thus, as for Kant,
intuition remains part of an explanation of our (human) epis-
temic access to the objects falling under a given mathematical
concept. It also remains part of an explanation of the stability
and definiteness of mathematical domains without realism. The

30For example, iteration grounds domains like the natural numbers for
Poincaré and Weyl; time grounds both continuous and discrete domains for
Brouwer; and the absence of a separate intuition of sets prohibits domains
such as the set of all objects or all sets.

benefits of adapting Kantian intuition over other philosophies
of mathematics that rejected it—such as axiomatics, empiricism
and/or the relative a priori—are therefore substantial. Intuition
avoids the main pitfalls of realism, while preserving the tradi-
tional conception of mathematics as a domain of truth that is a
priori, absolute, and substantive, with an internal methodology
that renders it autonomous from natural science. The attractions
seem obvious.
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