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We present a model of similarity-based retrieval that attempts to capture three 

seemingly contradictory psychological phenomena: (a) structural commonalities 

are weighed more heavily than surface commonalities in similarity judgments 

for items in working memory: (b) in retrieval, superficial similarity is more impor- 

tant than structural sirnjlarj~: ond yet (c) purely structural (analogical) remindings 

e sometimes experienced. Our model, MAUFAC, explains these phenomena in 

terms of o two-stage process. The first stage uses a computationolly cheap, non- 

structural matcher to filter candidate long-term memory items. It uses content 

vectors, a redundant encoding of structured representations whose dot product 

estimotes how well the corresponding structural representations will match. The 

second stage uses SME (structure-mapping engine) to compute structural matches 

on the hondful of items found by the first stoge. We show the utility of the 

MAClFAC model through o series of computational experiments: (a) We demon- 

strate thot MAC/FAC can model patterns of access found in psychological data: 

(b) we argue via sensitivity analyses that these simulation results rely on the 

theory: and (c) we compare the performance of MAUFAC with ARCS, an alternate 

model of similarity-based retrieval, and demonstrate that MAUFAC explains the 

data better than ARCS. Finally, we discuss limitations and possible extensions of 

the model, relationships with other recent retrieval models, and place MACiFAC 

in the context of other recent work on the nature of similarity. 

1. INTRODUCTION 

Similarity-based remindings range from the sublime to the stupid. At one 
extreme, seeing the periodic table of elements reminds one of octaves in 
music. At the other, a bicycle reminds one of a pair of eyeglasses. Often, 
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remindings are neither brilliant nor superficial but simply mundane, as 
when a bicycle reminds one of another bicycle. Theoretical attention is inevit- 
ably drawn to spontaneous analogy: That is, to structural similarity unsup- 
ported by surface similarity, as in the octave/periodic table comparison. 
Such remindings seem clearly insightful and seem linked to the creative pro- 
cess and should be included in any model of retrival. But, as we review 
below, research on the psychology of memory retrieval points to a prepon- 
derance of the latter two types of similarity: (mundane~ literal similarity, 
based on both structural and superficial commonalities; and (dumb) super- 
ficial similarity, based on surface commonalities. A major challenge for 
research on similarity-based remindings is to devise a model that will pro- 
duce chiefly literal similarity and superficial remindings, but still produce 
occasional analogical remindings. 

A further constraint on models of access comes from considering the role 
of similarity in transfer and inference. The large number of superficial 
remindings indicates that retrieval is not very sensitive to structural sound- 
ness. But appropriate transfer requires structural soundness, so that knowl- 
edge can be exported from one description into another. And psychological 
evidence (also discussed below) indicates that the mapping process involved 
in transfer is actually very sensitive to structural soundness. Hence our 
memories often give us information we don’t want, which at first seems 
somewhat paradoxical. Any model of retrieval should explain this paradox. 

This article presents MAC/FAC, a model of similarity-based reminding 
that attempts to capture these phenomena. MAUFAC models similarity- 
based retrieval as a two-stage process. The first stage (MAC) uses a cheap, 
nonstructur~ matcher to quickly filter potenti~ly relevant items from a 
pool of such items. These potential matches are then processed in the FAC 
stage by a more powerful (but more sensitive) structural matcher, based on 
the structure-mapping notion of literal similarity (Gentner, 1983). 

We begin in Section 2 by briefly reviewing psychological evidence on sim- 
ilarity-based retrieval and mapping, thereby extracting some criteria which 
retrieval models must satisfy. This section also outlines the computational 
issues raised by similarity-based retrieval, drawing on the AI literature as 
necessary. Section 3 describes the MACYFAC model, showing how it satis- 
fies the psychological and computational desiderata. Section 4 illustrates 
the model’s psychological plausibility by simulating the results of a psycho- 
logical experiment. Section 5 explores the consequences of different design 
decisions by sensitivity analyses at the level of algorithms, demonstrating 
that the model’s performance depends on the theoretically important param- 
eters. Section 6 compares MAC/FAC with ARCS, the closest competing 
model of similarity-based retrieval, demonstrating that MAC/FAC per- 
forms well on databases designed by others (e.g., the ARCS data sets) and 
that MACfFAC’s performance fits the psychoIogL pvidence better than 
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ARCS. Finally, Section 7 compares MAC/FAC to several other memory 
models, analyzes some of its limitations, and discusses possible extensions. 

2. FRAMEWORK 

Similarity-based transfer can be decomposed into subprocesses. Given that 
a person has some current target situation in working memory, transfer 
from prior knowledge requires at least 

1. accessing a similar (base) situation in long-term memory, 
2. creating a mapping from the base to the target, and 
3. evaluating the mapping. 

In this case, the base is an item from memory, and the target is the probe; 
that is, we think of the retrieved memory items as mapped to the probe. 
Other processes may also occur-verifying new inferences about the target 
(Clement, 1986), elaborating the base and target (Falkenhainer, 1988; Ross, 
1987), adapting or tweaking the domain representations to improve the 
match (Falkenhainer, 1990a, b; Holyoak, Novick, & Melz, 1994; Kass, 
1986, 1989), and abstracting the common structure from base and target 
(Gick & Holyoak, 1983; Skorstad, Gentner, & Medin, 1988; Winston, 1982) 
-but our focus is on the first three processes. 

2.1 Structure-Mapping and the Typology of Similarity 
The process of mapping aligns two representations and uses this alignment 
to generate analogical inferences (Gentner, 1983, 1988, 1989b). Alignment 
occurs via matching, which creates correspondences between items in the 
two representations. Analogical inferences are generated by using the corre- 
spondences to import knowledge from the base representation into the target. 
The mapping process is assumed to be governed by the constraints of struc- 
tural consistency: one-to-one mapping and parallel connectivity. One-to-one 
mapping means that an interpretation of a comparison cannot align (e.g., 
place into correspondence) the same item in the base with multiple items in 
the target, or vice versa. Parallel connectivity means that if an interpreta- 
tion of a comparison aligns two statements, their arguments must also be 
placed into correspondence.’ In this account, similarity is defined in terms 
of correspondences between structured representations (Gentner, 1983; 
Gentner & Markman, 1993, 1994a, 1994b; Goldstone & Medin, 1994a, 
1994b; Goldstone, Medin, & Gentner, 1991; Markman & Gentner, 1990, 
1993a, 1993b; Medin, Goldstone, & Gentner, 1993). Matches can be distin- 
guished according to the kinds of commonalities present. An analogy is a 
match based on a common system of relations, especially involving higher- 

’ Previously we used the term structurally grounded for parallel connectivity. 
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order relations2 A literal-similarity match includes both common relational 
structure and common object descriptions. A surface similarity or mere- 
appearance match is based primarily on common object descriptions, with 
perhaps a few shared first-order relations. 

There is considerable evidence that the mapping process is sensitive to 
structural commonalities. People can readily align two situations, preserv- 
ing structurally important commonalities, making the appropriate lower- 
order substitutions, and mapping additional predicates into the target as 
candidate inferences. For example, Clement and Gentner (1991) showed 
people analogies and asked which of two lower-order assertions, both shared 
by base and target, was most important to the match. Subjects chose asser- 
tions that were connected to matching causal antecedents: That is, their 
choice was based not only on the goodness of the local match but also on 
whether it was connected to a larger matching system. In a second study, 
subjects were asked to make a new prediction about the target based on the 
analogy with the base story. They again showed sensitivity to connectivity 
and systematicity in choosing which predicates to map as candidate infer- 
ences from base to target. Evidence for structural consistency in mapping 
comes from a study by Spellman and Holyoak (1992). They asked people to 
explicate the analogy between the Gulf War and World War II, assuming 
Saddam Hussein maps onto Hitler. Although people were divided in their 
mappings, they were highly consistent. People who mapped Bush onto 
Churchill mapped the current USA onto World War II Britain, and people 
who mapped Bush onto F.D.R. mapped the USA today onto the USA during 
World War II. 

The degree of relational match is also important in determining people’s 
evaluations of comparisons. People rate metaphors as more apt when they 
are based on relational commonalities than when they are based on common 
object descriptions (Gentner, 1988; Gentner & Clement, 1988). Gentner, 
Rattermann, and Forbus (1993) asked subjects to rate the soundness and sim- 
ilarity of story pairs that varied in which kinds of commonalities they shared. 
Subjects’ soundness and similarity ratings were substantially greater for 
pairs that shared higher-order relational structure than for those that did 
not (Gentner & Landers, 1985; Gentner, Rattermann, & Forbus, 1993; 
Rattermann & Gentner, 1987). Common relational structure also contributes 
strongly to judgments of perceptual similarity (Goldstone et al., 1991) as 
well as to the way in which people align pairs of pictures in a mapping task 
(Markman & Gentner, 1990, 1993b) and determine common and distinctive 
features (Gentner & Markman, 1994a, b; Markman & Gentner, 1993a). 

2 We define the order of an item in a representation as follows: Objects and constants are 
order 0; the order of a statement is 1 plus the maximum of the order of its arguments. 
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Any model of human similarity and analogy must capture this sensitivity 
to structural ~ommon~ity. To do so, it must involve structural representa- 
tions and processes that operate to align them (Barnden, 1994; Gentner & 
Markman, 1994a, b; Goldstone et al., 1991; Holyoak et al., 1994; Keane, 
1988a, 1988b; Markman & Gentner, 1993a, 1993b; Medin et al., 1993; Reed, 
1987; Reeves & Weisberg, 1994). This would seem to require abandoning 
some highly inff uential models of similarity: for example, modeling similar- 
ity as the intersection of independent feature sets or as the dot product of 
feature vectors. However, we will show that a variant of these nonstru~~al 
models can be useful in describing memory retrieval. 

2.1.1 Similarity-based Access from Long-term Memory 
There is considerable evidence that access to long-term memory relies more 
on surface ~ommonalities and less on structural commonalities than does 
mapping. For example, people often fail to access potentially useful analogs, 
as in Gick and Holyoak’s (1980, 1983) dramatic demonstration. When sub- 
jects were told a story and then given an analogous problem to solve, about 
30% solved the problem. However, if subjects were simply told to think 
about the story they had heard, 80% to 90% solved the problem. We can 
infer that most of the subjects retained representations of the prior story 
sufficient to provide a useful analogy, but that hearing the structurally 
analogous problem did not provide spontaneous access to the story repre- 
sentation in memory. Other research has shown that, although people in a 
problem-solving task are often reminded of prior problems, these remindings 
are often based on surface simi~~ity rather than on structural similarities 
between the solution principles (Holyoak & Koh, 1987; Keane, 1987, 1988b; 
Novick, 1988a, b; Reed, Ernst, & Banerji, 1974; Ross, 1984,1987,1989; see 
also the comprehensive review by Reeves & Weisberg, 1994). 

The experiments we will model here investigated which kinds of similari- 
ties led to the best retrieval from long-term memory (Gentner & Landers, 
1985; Gentner, Ratterm~n, & Forbus, 1993; Ratte~~n & Gentner, 1987). 
Subjects were first given a relatively large memory set (the “Karla the Hawk” 
stories). About a week later, they were given new stories that resembled the 
original stories in various ways and were asked to write out any remindings 
they experienced to the prior stories while reading the new stories. Finally, 
they rated all the pairs for soundness-that is, how well inferences could be 
carried from one story to the other. The results showed a marked disassoci- 
ation between retrieval and subjective soundness and similarity. Surface 
similarity was the best predictor of memory access, and structural similarity 
was the best predictor of subjective soundness. This dissociation held not 
only between subjects but also within subjects. That is, subjects given the 
soundness task immediately after the cued retrieval task judged that the very 
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matches that had come to their minds most easily (the surface matches) were 
highly unsound (i.e., unlikely to be useful in inference). This suggests that 
similarity-based access may be based on qualitatively distinct processes 
from analogical inferencing. 

It is not the case that higher-order relations contribute nothing to retrieval. 
Adding higher-order relations led to nonsignificantly more retrieval in two 
studies and to a small but significant benefit in the third. Other research has 
shown positive effects of higher-order relational matches on retrieval, 
especially in cases where subjects were brought to do intensive encoding 
of the original materials (Faries & Reiser, 1988) or were expert in the domain 
(Novick, 1988a, 1988b). But higher-order commonalities have a much bigger 
effect on mapping once the two analogs are present than they do on similar- 
ity-based retrieval, and the reverse is true for surface commonalities. 

These results place several constraints on a computational model similar- 
ity-based retrieval. The first two criteria ensure that the model can provide 
an account of mapping and inference: 

Structured representation criterion: The model must be able to store struc- 
tured representations. 

Structured mappings criterion: The model must incorporate processes of 
structural mapping (i.e., alignment and transfer) over its representations. 

The remaining four criteria summarize the pattern of retrieval results: 

Primacy of the mundane criterion: The majority of retrievals should be 
literal similarity matches: that is, matches high in both structural and surface 
commonalities. 

Surface superiority criterion: Retrievals based on surface similarity are frequent. 

Rare insights criterion: Relational remindings must occur at least occasionally, 
with lower frequency than literal similarity or surface remindings. 

Scalability criterion: The model must be plausibly capable of being extended 
to large memory sizes. 

No current model of transfer succeeds in satisfying all six criteria. There 
are two major approaches to memory models: indexing models, commonly 
used in case-based reasoning work, and feature-vector models, commonly 
used in mathematical modeling of human memory. We examine the trade- 
offs of each in turn. 

Most case-based reasoning models (Birnbaum & Collins, 1989; Branting, 
in press; Kass, 1986, 1989; Kolodner, 1984, 1988, 1989,1993; Schank, 1982) 
use structured representations and focus on the process of adapting and 
applying old cases to new situations. Such models satisfy the structured 
representation and structured mappings criteria. However, such models 
also typically presume a highly indexed memory in which the vocabulary 
used for indexing captures significant higher-order abstractions such as 
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themes and principles. Viewed as psychological accounts, these models would 
predict that people should typically access the best structural match. That 
prediction fails to match the pattern of psychological results summarized by 
the primacy of the mundane and surface superiority criteria. Scalability is 
also an open question at this time, because no one has yet accumulated and 
indexed a large (say 103 to 106) corpus of structured representations. 

The reverse set of advantages and disadvantages holds for approaches 
that model similarity as the result of a dot product (or some other simple 
operation) over feature vectors, as in many mathematical models of human 
memory (e.g., Gillund & Shiffrin, 1984; Hintzman, 1986, 1988; Medin & 
Schaffer, 1978; but see Murphy & Medin, 1985) as well as in many con- 
nectionist models of learning (e.g., Smolensky, 1988; see also reviews by 
Humphreys, Bain, & Pike, 1989, and Ratcliff, 1990). These models typically 
use nonstructured knowledge representations and relatively simple match 
processes and hence do not allow for structural matching and inference. 
Such models also tend to use a unitary notion of similarity, an assumption 
that is called into question by the dissociation described earlier (see also 
Gentner & Markman, 1993; Medin et al., 1993). However, the use of feature 
vectors has some advantages for modeling access to long-term memory. The 
computations are simple enough to make it feasible to compute many matches 
and choose the best, thus satisfying the scalability criterion. Furthermore, 
because object features are included in the feature vectors, these models 
should be able to capture the surface superiority criterion and in many cases 
the primacy of the mundane criterion. (Failures on the latter will occur for 
cross-mappings, when the objects and relations match but their bindings do 
not.) It should be noted that some case-based reasoning work also restricts 
itself to feature-vector representations and thus has the same strengths and 
weaknesses (e.g., Stanfill & Waltz, 1986), 

The MAC/FAC model seeks to combine the advantages of both ap- 
proaches. We turn now to its description. 

3. THE MAC/FAC MODEL 

The complexity of the phenomena in similarity-based access suggests a two- 
stage model. Consider the computational constraints on access. The large 
number of cases in memory and the speed of human access suggests a com- 
putationally cheap process. But the requirement of judging soundness, 
essential to establishing whether a match can yield useful results, suggests 
an expensive match process. A common computational solution to such 
problems is to use a two-stage process, in which a cheap filter is used to pick 
out a subset of likely candidates for more expensive processing (cf. King & 
Bareiss, 1989; Waltz, 1989). MAC/FAC uses this strategy. The disassocia- 
tion noted previously can be understood in terms of the interactions of its 
two stages. 
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Figure 1 illustrates the components of the MAC/FAC model. The inputs 
are a pool of memory items and a probe, that is, a description for which a 
match is to be found. The output is an item from memory (i.e., a structured 
description) and a comparison of this item with the probe. (Section 3.1 
describes exactly what a comparison is.) Internally there are two stages. The 
MAC stage provides a cheap but nonstructural filter, which only passes on a 
handful of items. The FAC stage uses a more expensive but more accurate 
structural match to select the most similar item(s) from the MAC output, 
producing a full structural alignment. Each stage consists of matchers, 
which are applied to every input description, and a selector, which uses the 
evaluation of the matchers to select which comparisons are produced as the 
output of that stage. Conceptually, matchers are applied in parallel within 
each stage. 

We make minimal assumptions concerning the global structure of long- 
term memory. We assume here only that there is a large pool of descriptions 
from which we must select one or a few that are most similar to a probe. We 
are uncommitted as to whether the pool is the whole of long-term memory or 
a subset selected via some other method, for example, spreading activation. 

We begin by describing the FAC stage. In doing so, we also describe the 
computational framework which underlies MAC and FAC, including our 
conventions for representation and the information about the SME algorithm 
that is required to fully understand MAC/FAC. 

3.1 The FAC Stage and SME 
The FAC stage takes as input the descriptions selected by the MAC stage 
and computes a full structural match between each item and the probe. 
We model the FAC stage by using SME, the structure-mapping engine 
(Falkenhainer, Forbus, & Gentner, 1986, 1989). Here we briefly summarize 
SME’s operation, both by way of describing the FAC stage and to provide 
the vocabulary needed to motivate the design of the MAC stage. 

SME is an analogical matcher designed as a simulation of structure- 
mapping theory. It takes two inputs, a base description and a target descrip- 
tion. (For simplicity we speak of these descriptions as being made up of 
items, meaning both objects and statements about these objects.) It com- 
putes a set of global interpretations of the comparison between base and 
target. Each global interpretation includes the following. 

. A set of correspondences which pair specific items in the base represen- 
tation to specific items in the target. 

l A structural evaluation reflecting the estimated soundness of the match. 
In subsequent processing, the structural evaluation provides one source 
of information about how seriously to take the match. 

l A set of candidate inferences, potential new knowledge about the target 
which is suggested by the correspondences between the base and target. 
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Candidate inferences are what give analogy its generative power, because 
they represent the ~m~ortatiou of new knowledge into the target descrip- 
tion. However, they are only conjectures; they must be tested and evat- 
uated by other means. 

We can illustrate these ideas with the Ruth~r~~rd analogy, which describes 
the structure of the atom in terms of that of the solar system. The solar sys- 
tem is the base description and the atom is the target description. 

* Rutherford paired the Sun to the nucleus and the planets to the efec- 
trans. These correspondences seem reasonabre not because of intrinsic 
object sjmilarjties but because they allow various reiatio~a~ statements 
also to be placed in correspondence (i.e.$ uligned): for exampie, the 
relative masses of the objects and the fact that the planets/eiectrons 
revolve around the Sunfnucleus. 

l This ~~t~pretat~on is a selection from among many common relations. 
It focuses on the causal system of a central ~ravitation~/eiect~omagneti~ 
force, the relative mass of the two bodies within each system, and the 
fact that the less massive body revolves around the heavier body. Other 
common relations-such as the relative temperatures or differences in 
color of the two objects-that do not belong to a common connected sys- 
tem are not i~~~uded in the j~terpretat~on~ We refer to this preference for 
connected systems of common predicates as the ~~~~e~~t~cj~y principle. 

* The preferred ~nterpretatio~ might also sanetioxl new conjectures about 
the atom, such as that the cause of the electrons revolving around the 
nucleus is the existence of an attractive force.3 

The ~nter~r~~at~ous produced by SME are str~ctur~ly ~o~s~st~nt, in that 
they satisfy the constraints of one-to-one mapping and parallel. connectivity, 
as defined in Section 2.1. These constraints are ~mport~t because they 
&ow for the generation of coherent candidate inferences. The systematicity 
constraint is important because it captures the human preference for aligning 
connected systems of predicates (e.g., logical arguments or causal sequence& 
In addition, SME attempts to find ~~~~~~ i~ter~retat~~us. An interpreta- 
tion is maximal if adding any additional correspondences would render it 
structurally inconsistent. M~~mality is important both because it reduces 
the number of possible interpretations and because it ensures that the full 
structural implications of a set of correspondences wilt be considered. 

Before describing the SME algorithm further, some conventions con- 
cerning representation are k order. We use infix notation or Lisp prefix syn- 
tax for statements as appropriate, We use the term funcior of a statement 

) Incorrect candidate inferences are also possible-fox example, that the attractive force in 
the atom is gravity. What counts as a carrdidate inference versus an aiignabte (or nonalignable). 
structure depem% on the reasoner’s state of knowledge about the ta~gct. 
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as a general term for the relation or function or connective that takes the re- 
maining parts of the statement as its arguments. For example, 

1. In GREATER-THAN (HEIGHT (A), HEIGHT (B)), the functor is GREATER-THAN. 

2. In NOT (ABOVE (B, A)), the functor is NOT. 

3. In HEIGHT (A), the functor is HEIGHT. 

4. In RED (A), the functor is RED. 

Example #I is an example of a relation. Relations range over truth values, 
and their arguments can be entities or other statements. Relations always 
have multiple arguments, with the exception of logical connectives (e.g., 
Example #2), which are always treated as relations regardless of the number 
of arguments. For the purposes of structure-mapping, modal operators and 
other higher-order predicates are classified as relations. Example #3 is an 
example of a function, which maps one or more entities into another entity 
or constant. In our psychological modeling, functions are often used to 
represent known dimensions or components of structured objects (e.g., 
height, pressure, or color). Example #4 is an example of an attribute, an 
atomic description of some property of an entity. Attributes take only one 
argument to capture the notion of a unitary description. This of course does 
not mean that attributes cannot be decomposed. For instance, the following 
forms are logically equivalent: 

. RED (A) 

. COLOR-OF (A, red) 

. COLOR (A) = red 

However, we use these three distinct forms to represent distinct psycho- 
logical constructs. Roughly, the first, an attribute, indicates that the subject 
thinks of redness as a quality of the object. The second, a relation, indicates 
that the subject has to some degree disengaged redness from the object and 
sees color as a relationship between an object and a set of possible values. The 
third, a function, indicates that the subject conceives a color as a dimension 
of general application and thinks of the color of A as a value along this 
dimension. We view this kind of dimensional representation as important 
because dimensions may in the process of comparison be aligned with quite 
different dimensions (e.g., HEIGHT and DARKNESS). Thus, qualities that 
are conceived as of dimensions are more likely to participate in systematic 
cross-dimensional matches. (For the implications of this idea in analogical 
development, see Gentner & Rattermann, 1991; Gentner, Rattermann, 
Kotovsky, & Markman, in press; Kotovsky & Gentner, 1990.) 

With these conventions in mind, let us turn to the SME algorithm. SME 
operates via a local-to-global process. Conceptually, its operation can be 
divided into four phases. The first phase constructs a network of local 
matches between items in the base and target. The second phase constructs 
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global interpretations by coalescing structurally consistent combinations of 
local matches. The third phase computes the structural evaluation, and the 
fourth phase computes candidate inferences for each interpretation. We 
examine each in turn. 

SME begins by finding all possible local matches between statements in 
the base and statements in the target. A local match is created between base 
item Bi and target item Tj when either 

1. Bi and Tj are both statements whose functors are sufficiently alike 
(typically identical, but see below), or 

2. Bi and Tj are corresponding arguments of other statements which are 
connected by a local match and are both either objects or functions. 

For instance, given the base item Bl and the target item Tl defined as 

Bl: (CAUSE Event17 Event31) 
Tl: (CAUSE Event5 Event63), 

a match would be hypothesized between 61 and Tl because their functors 
(i.e., CAUSE) are identical. This local match suggests in turn hypothesizing 
that Event17 and Event5 match, and also that Event31 and Event63 match. Each 
suggested match leads to the creation of new local matches involving the 
arguments of the statement if either (a) both are entities (e.g., objects or 
constants), (b) both are terms involving functions, which are an indirect 
means of referring to entities or dimensions, or (c) both are expressions whose 
functors match. Here is an example of substitution involving functions: 

82: (PRESSURE Water32) 
T2: (TEMPERATURE Brick45) 

62 and T2 could be placed into correspondence if they were the arguments 
of some other matching pair of statements since PRESSURE and TEMPERATURE 

are both functions (in this case referring to values on physical dimensions of 
the respective objects). 

The idea that two statements can match only if their relational predicates 
are “sufficiently alike” is based on the claim that some common relational 
content is required in analogy. We disagree with Holyoak and Thagard’s 
(1989) claim that pure structural isomorphisms can qualify as analogies. 
They have presented the following pair: 

Bill is smart and tall. Rover is hungry and friendly. 
Steve is smart. Fido is hungry. 
Tom is timid and tall. Blackie is frisky and friendly. 

Holyoak and Thagard (1989, p. 343) noted that ACME (and five out of 
the eight subjects tested) could match this pair and agree on the best attri- 
bute correspondence. But the fact that it can be solved is not decisive: We 
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would suggest that it is taken as a logical puzzle to be solved for the best cor- 
respondences, not as an analogy. The trouble with accepting pure graph 
matches is that it leads to the claim that pairs like (1) and (2) are analogies, 
which seems patently untrue: 

(1) Fred loves New York. (2) General Motors sells cars. 

Note that it is the relational meaning that must be shared; (2) and (3) 
form an analogy but (2) and (4) do not: 

(3) Fred peddles popsicles. (4) General Motors heads the list. 

The question is how to formalize this requirement of common relational 
content. Structure-mapping uses the idea of tiered identicality. The default 
criterion is “sufficiently alike” for predicates other than functions is that 
the predicates are identical. We call this the simple identically criterion. 
Simple identicality of conceptual relations is an excellent first-pass criterion 
because it is computationally cheap. The notion of simple identicality might 
suggest an inability to process any matches other than literal matches. This 
is not the case. First, we assume that input representations are canonical 
conceptual representations, not semi-verbal strings. Second, functions, 
which represent domain dimensions, can be matched nonidentically if they 
are embedded in matching relational structure. This ability to align non- 
identical functions provides considerable flexibility. This is what allows 
SME to make cross-dimensional matches, as when we interpret “Sally is 
sharper than Bill” to mean that Sally is smarter than Bill. However, there 
are circumstances where criteria requiring more processing are worthwhile 
(e.g., when placing two items in correspondence would allow a larger, or 
very relevant, structure to be mapped, as in Falkenhainer’s (1987, 1990a, b), 
work). In these circumstances weaker criteria (in that they allow more items 
to match) that involve more processing are allowed. One such test is 
minimal ascension (Falkenhainer, 1987, 1990a, b) which allows two items to 
be placed into correspondence if their predicates have close common super- 
ordinates. Another technique is decomposition: Two concepts that are simi- 
lar but not identical (such as “bestow” and “bequeath”) are decomposed 
into a canonical representation language so that their similarity is expressed 
as a partial identity (here, roughly, “give”). Decomposition is the simplest 
form of re-representation (Gentner, 1989; Gentner & Rattermann, 1991), 
where additional knowledge is used to reformulate a description in order to 
achieve a better match. In this article, we only use SME with the first-level 
identicality constraint. As Section 6 argues, this simple constraint seems to 
provide a better psychological account than more complex constraints do. 

The process of using matches to propose lower matches is recursive, 
ending with entity matches. SME does not try matches between every pair 
of objects in base and target: It only hypothesizes object matches when 
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there is some aspect of the relational structure that suggests that the objects 
might correspond. This leads to substantial efficiencies over purely bottom- 
up matchers, such as Winston’s (analogy program, 1992). 

The output of the first phase is a network of match hypotheses, each rep- 
resenting a local match between an item of the base and target. At this stage, 
the network is incoherent. The set of correspondences taken as a whole is 
structurally inconsistent, often including N-to-one mappings. Furthermore, 
this initial network may contain match hypotheses that are not grounded 
and so can never be part of any global interpretation. A match hypothesis is 
grounded if a recursive chain of correspondences from it through its argu- 
ments exists all the way down to entities. Only grounded match hypotheses 
can participate in global interpretations. Otherwise, global interpretations 
might include statements whose arguments did not match, which would 
violate the parallel connectivity constraint. 

Looking at a simple example makes this process clearer. Figure 2 shows 
two drawings used in psychological experiments concerning anaiogy,4 with 
a propositional representation of these pictures suitable for simulation shown 
in Figure 3. The right-hand side of Figure 3 shows the propositions in stan- 
dard Iogical format, whereas the Ieft-hand side contains an equivalent graph- 
ical repr~entation which is useful for underst~~ng the match process. Figure 
4 illustrates the match hypotheses computed by SME for these descriptions. 

Even though the initial network of match hypothesis is structurally in- 
consistent, it contains every consistent interpretation of the match; global 
interpretations emerge out of the initial network. Thus, the maximum size 
of any globai interpretation, as measured in number of correspondences, is 
limited by the size of this network. We exploit this fact in Section 3.3. 

In the second phase, these local matches are coalesced into global inter- 
pretations. The SME algorithm combines structurally consistent combina- 
tions of match hypotheses (i.e., sets with consistent object bindings and 
consistent relational argument assignments). For instance, in Figure 4 there 
are two match hypotheses involving Grant, one which places him in cor- 
respondence with Jack because PERSON is true of both of them, and another 
match hypothesis which places Grant in correspondence with RobotJ, because 
both are agents of the same kind of action, repairing. No interpretation of 
this comparision can include both of these match hypotheses. Merging can 
be done exhaustively, producing all possible interpretations (as in Faulken- 
hainer et al., 1986, 1989); however, we normally use a more psychologically 
plausible greedy nzerge algorithm, which produceds only one or two inter- 
pretations and operates in linear time (Forbus, Ferguson, & Gentner, 1994; 
Forbus & Oblinger, 1990). 

4 We thank Arthur Markman for the drawings of Figure 2 and the corresponding representations. 



Jack's Robot Repair Service 

Figure 2. Two simple situations. 

The third phase is structural evaIuation. For simplicity, we describe this 
stage as conceptually distinct from the previous stage, although it is actually 
interleaved with building interpretations, because its results guide the greedy 
merge algorithm. To capture human preferences, the structural evaluation 
computation should favor interpretations with many matches over those 
with few matches and deep interpretations over shalfow interpretations, The 
first step is to assign an initial score to every match hypothesis. This helps 
enforce the size preference. The systematicity preference is implemented via 
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Figure 4. A match hypothesis forest. This picture illustrates the match hypotheses 

generated for a pair of simple descriptions. Match hypotheses ore shown OS triangles. 

Dashed lines indicate the base and target items each match hypothesis places in correspon- 

dence. The solid arrows leaving a match hypothesis indicates what others it relies upon to 

be structurally consistent. Notice that the one of the match hypotheses involving the occur- 

rence of CAUSE in the torget is structurally inconsistent, because its arguments cannot be 

aligned. 

a trickle-down method: Match hypothesis scores are passed down to incre- 
ment the scores of matching arguments.5 That is, if W (MH,) is the score 
associated with a match hypothesis MH,, MHz is a match hypothesis that 
applies to one of MH,‘s arguments, and 6 is the trickle-down factor, then 
W (MHz) is incremented as follows: 

W (MHz) - max {W (MH2) + 6W (MH,); 1.01 

This local computation causes scores to cascade downwards, providing 
higher values to those object correspondences which support the alignment 

S The systematicity preference could have been implemented by differentially weighting 
matches at different levels. This method would seem to require a computationally implausible 
“bird’s-eye” view of the representations. In a comparison of the two methods, the trickle- 
down method accounted for human soundness ratings better than treating weights directly as a 
function of order (Forbus & Gentner, 1989). 
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GMl: 10 correspondences, SES = 4.66 
Object mappings: 
DOORG <-> DOORJ 
ROBOTG <-> CAR54 
GRANT -=--> ROBOTJ 
HANDTOOLSG <-> HANDTOOLSJ 

No candidate inferences. 

Figure 5. Global interpretations for the example. Here is a summary of the best interpreta- 

tions for this match found by SME. SES refers to the structural evaluation of the interpretation. 

of large relational structures. The structural evaluation of a global interpre- 
tation is simply the sum of the scores of the match hypotheses which com- 
prise its correspondences. 

The final phase is the computation of candidate inferences. Computing 
candidate inferences requires knowing the set of correspondences, so this 
takes place after the merge operation. Candidate inferences are generated 
by finding noncorresponding relational structure in the base which can be 
conjectured to hold the target. The global interpretations built for the com- 
parison of Figure 3 are shown in Figure 5. In this simple example, there are 
no candidate inferences. 

It is important to note that the literal similarity computation can produce 
purely relational interpretations as well as overal similarity interpretations, 
and that it can produce purely surface interpretations as well. It is simply a 
question of which collection of local matches wins. This reflects the human 
ability to process a novel comparison and discover only after the fact that it 
is an analogy. We assume that this all-purpose literal similarity mode is the 
normal mode of similarity processing in the absence of specific instructions. 
Consequently, SME creates initial local matches for attribute statements as 
well as for relational statements. 

For SME to play a major role in a model of similarity-based retrieval, it 
should be consistent with psychological evidence. We have tested the psycho- 
logical validity of SME as a simulation of analogical processing in several 
ways. For instance, we compared SME’s structural evaluation scores with 
human soundness ratings for the “Karla the Hawk” stories discussed later 
(Gentner & Landers, 1985; Rattermann & Gentner, 1987). Like humans, 
SME rated analogical matches higher than surface matches (Skorstad, 
Falkenhainer, & Gentner, 1987). The patterns of preference were similar 
across story sets: There was a significant positive correlation between the 
difference scores for SME and those for human subjects, where the dif- 
ference score is the rating for analogy minus the rating for surface match 
within a given story set (Gentner, Rattermann, & Forbus, 1993). 

Because retrievals occur frequently, components in model of retrieval 
must be efficient. SME is quite efficient. The generation of match hypotheses 
is O(n*) on a serial machine, where n is the number of items in base or target 
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and should typically be better than O(Iog(n)) on data-parallel machines.6 
The generation of global interpretations is roughly O(log(n)) on a serial 
machine, using the greedy merge algorithm of Forbus and Oblinger (1990),’ 
and even faster parallel merge algorithms seem feasible. 

3.2 The FAC Stage 
The FAC stage is essentially a bank of SME matchers, all running in parallel 
in literal similarity mode.8 These take as input the memory descriptions that 
are passed forward by the MAC stage and compute a structural alignment 
between each of these descriptions and the probe. The other component of 
the FAC stage is a selector-currently a numerical threshold-which chooses 
some subset of these comparisons to be available as the output of the retrieval 
system (see Figure 1). 

The FAC stage acts as a structural filter. It captures the human sensitivity 
to structural alignment and inferential potential (subject to the limited and 
possibly surface-heavy set of candidates provided by the MAC stage, as 
described later). Several remarks on this algorithm’s role in retrieval are in 
order. We use the literal similarity algorithm, on the grounds that in remind- 
ing situations people can respond to and identify different kinds of similarity. 
(Recall that the literal similarity computation can compute relational simi- 
larity or object similarity as well as overall similarity). This choice seems 
ecologically sound because mundane matches are often reasonable guides to 
action; riding a new bicycle, for instance, is like riding other bicycles (Forbus 
& Gentner, 1986; Gentner, 1989; Medin & Ortony, 1989; Medin & Ross, 
1989). Finally, this choice is necessary to model the high observed frequency 
of surface remindings. These surface remindings would mostly be rejected if 
FAG were strictly an analogy matcher. The selector for the FAC stage must 
choose a small set of matches for subsequent processing. Currently we select 
as output the best match, based on its structural evaluation, and any others 
within 10% of it. We settled on the 10% criteria because it generally returns 
a single result, only producing multiple results when there are two extremely 
close candidates. However, other criteria are possible, and we have experi- 
mented with broadening the percentage, selecting a fixed number, selecting 
a maximum number (if capacity limits were assumed), and so forth. (One 
class of these experiments is described in Section 5.) We have also con- 
sidered adding a threshold to the selector, so that if the best outcome is too 
weak, the retrieval system returns nothing. 

6 The worst-case parallel time would be O[n), in degenerate cases where all but one of the 
local matches is proposed by matching arguments. 

7 The original exhaustive merge algorithm was worst-case factorial in the number of 
“clumps” of match hypotheses but, in practice was often quite efficient. See Falkenhainer et 
al. (1989) for details. 

* In our current implementation, SME is run sequentialIy on each candidate item in turn, 
but this is an artifact of the implementation. 
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3.3 The MAC Stage 
The MAC stage collects the initial set of matches between the probe and 
memory. Like the FAC stage, the MAC stage conceptually consists of a set 
of matchers and a selector that simply returns all items whose MAC score is 
within 10% of the best score given that probe. The challenge of the MAC 
stage is in the design of its matcher. It must allow quickly comparing, in 
parallel, the probe to a large pool of descriptions and passing only a few on 
to the more expensive FAC stage. The rest of this section describes the 
design and implementation of the MAC matcher. 

Let us start by examining in more detail the design criteria the MAC 
matcher must satisfy. Ideally, we would like the most similar or apt memory 
item for the given probe. Clearly, running SME on the probe and every item 
in memory would prove the most accurate result. Unfortunately, even though 
SME is very efficient, it isn’t efficient enough. SME operates by building in- 
termediate structure, in the form of the network of local matches. The idea 
of building such networks for a pair of items, or a small number of pairs of 
items, is psychologically plausible, because the size of the match hypothesis 
network is polynomial in the size of the descriptions being matched. This 
means, depending on one’s implementation assumptions, that a fixed-size 
piece of hardware could be built which could be dynamically reconfigured 
to represent any local match network for input descriptions of some bounded 
size. What is not plausible is that such networks could be built between a 
probe and every item in a large memory pool, and especially that this could 
happen quickly enough in neural architectures to account for observed 
retrieval times (cf. Minsky, 1981; Waltz, 1989). 

This architectural argument suggests that, while SME in literal similarity 
mode is fine for FAC, MAC must be made of simpler stuff. To escape having 
to suffer the complexity of the most accurate matcher in the “innermost 
loop” of retrieval, we must trade accuracy for efficiency. The MAC matcher 
must provide a crude, computationally cheap match process to pare down 
the vast set of memory items into a small set of candidates for more expensive 
processing. Ideally, MAC’s computations should be simple enough to admit 
plausible parallel and/or connectionist implementations for large-scale 
memory pools. 

What is the appropriate crude estimator of similarity? The most straight- 
forward method would be to count the number of match hypotheses that 
FAC would generate in comparing a probe to a memory item. Let us call 
this number the numerositv of a comparison. Numerosity bears a rough 
relation to the potential size of the global interpretation, because the more 
local matches there are, the larger the global interpretation could potentially 
be. However, a large number of match hypotheses does not guarantee a 
large global interpretation, for two reasons. First, many match hypotheses 
might be ungrounded (recall Section 3.1) and hence cannot be part of any 
global interpretation. Second, often many combinations of match hypotheses 
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are ruled out by the 1:l constraint, working against the formation of large 
global interpretations. Both reasons follow directly from the fact that 
numerosity is not structurally sensitive. However, something like numerosity 
is at least a crude estimate of similarity. 

One straightforward way to implement a rough similarity estimator 
would be to calculate numerosity by building the actual match hypothesis 
network (e.g., to carry out the first part of a full analogy process) for the 
probe and each memory item and then count the match hypotheses. This is 
what our original version of MAC/FAC did (Gentner, 1989a). It also is 
roughly what ARCS (Thagard, Holyoak, Nelson, & Gochfeld, 1990) does. 
ARCS models retrieval by building a network of connections similar to 
SME’s match hypothesis network between the probe and each item in the 
memory pool that shares a semantically similar predicate with it.y As just 
discussed, we view these solutions as psychologically and computationally 
implausible. Even with parallel and/or neural hardware, it is hard to see 
how to generate match hypothesis networks between a probe and everything 
in a large pool of memory, while still providing realistic response times. A 
cheaper method is required. 

We have developed a novel technique for estimating the degree of match 
in which structured representations are encoded as co~~e~~ vectors. Content 
vectors are flat summaries of the knowledge contained in complex relational 
structures. The content vector for a given description specifies which functors 
(i.e., relations, connectives, object attributes, functions, etc.) were used in 
that description and the number of times they occurred. Content vectors are 
assumed to arise automatically from structured representations and to remain 
associated with them. Content vectors are a special form of feature vectors. 

More precisely, let I!I be the set of functors used in the descriptions that 
constitute memory items and probes. We define the content vector of a 
structured description as follows. A content vector is an n-tuple of numbers, 
each component corresponding to a particular element of II. Given a descrip- 
tion #, the value of each component of its content vector indicates how many 
times the corresponding element of II occurs in 4. Components corresponding 
to elements of II which do not appear in statements of # have the value zero. 
One simple algorithm for computing content vectors is to count the number 
of occurrences of each functor in the description. Thus, if there were four 
occurrences of IMPlES in a story, the value for the 1MPLlES component of 
its content vector would be 4. (Figure 6 illustrates.) Thus, content vectors 
are easy to compute from a structured representation and can be stored 
economically (using sparse encoding, for instance, on serial machines). 

’ ARCS is based on Holyoak and Thagard’s (1989) ACME, an analogy matcher which uses 
a local& connectionist network similar to SME’s match hypothesis network to construct a 

single interpretation of a comparison via constraint satisfaction. 
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Sob System: Structured representation 

(CAUSE 

(GRAVITY MASS SUN) (MASS PLANET)) 
(ATTRACTS SUN PLANBT)) 

(GREATER (TEMPERATURE SUN1 
ITEKPERAl'URE PLANET)) 

(CAUSE (AND (GREATER WASS SVNf 
IMASS PLANET)) 

<ATTRACTS SUN PLANET) ) 
(REVOLVE-AROUND PLANET SUN)) 

Solar System: Content Vector 

WIND. 1) 
(ATTRACTS 1) 
iCAUSE . 2) 
(GRAVITY 11 
iGREATER . 2) 
(MASS 2) 
(OBJECTS 2) 
(REVOLVE-AROUND . 1) 
(TEMPERATURE 2) 

RutJ~erford Atom: Structmd represent$ion 

(CAUSE (OPPOSITE-SIGN (CHARGE NUCLEUS) 
(CHARGE ELECTRON)) 

(ATTRACTS NUCLEUS ELECTRON)) 
(REVOLVE-AROOND ELECTRON 

NUCLEUS1 

(GRSATBR WASS NGCLBUS) 
(MASS EZh'CTRON)~ 

Rutherford Atom: Content Vector 

(ATTRACTS . 1) 
(CAUSE 11 
(CHAral? 21 
(GREATER . 1) 
MASS . 2) 
(OEJECTS 2) 
(OPPOSITE-SIGN . 1) 
(REVOLVE-AROUND . 1) 

vectors. Here are some simple predicate Figure 6. Sample representations with content 

calculus representations and the corresponding content vectors. A simple counting algo- 

rithm is used here, in the simulation these are normalized to unit vectors. 

How good an approximation is the content vector dot product to what 
SME would produce? Suppose content vectors were generated using the 
simple counting algorithm described above. Then the product of each cor- 
responding component is an overestimate of the number of match hypotheses 
that would be created between functors of that type, because it does not 
take into account the cases when the arguments to the match hypotheses 
could not be aligned. There is also a possibility of underestimation, because 
the dot product does not take into account matches between nonidentical 
functions and entities, because discovering those matches requires tracing 
predicate bindings. However, in practice, the number of entity and non- 
identical function matches tends to be smaller than the number of ungrounded 
matches, so overall, the dot product tends to overestimate numerosity and 
hence will tend to be an overestimate of what SME would produce. 

The dot product of content vectors provides exactly the computational 
basis the MAC stage needs, It could be implemented efficiently for large 
memories using a variety of massively parallel computation schemes. For 
instance, connectionist memories can be built which find the closest feature 
vector to a probe (Hinton & Anderson, 1989). Therefore, the MAC stage 
can scale up. 

To summarize, the MAC matcher works as follows: Each memory item 
has a content vector stored with it.‘O When a probe enters, its content vector 

lo We normalize content vectors to unit vectors, both to reduce the sensitivity to overall size 
of the descriptions and because we assume that psychologically plausible implementation sub- 
strate for MAC/FAC (e.g., neural systems) will involve processing units of limited dynamic range. 
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TABLE 1 
Types of Stories Used in the “Korla the Hawk” Experiments 

Common Common Common 

First-Order Higher-Order Object 

Relations Relations Attributes 

LS Yes Yes Yes 

SF Yes No Yes 

AN Yes Yes No 

FOR Yes No No 

Nofe. LS=literal similarity; SF=surface similarity; AN= 
analogy: FOR=first-order relations. 

is computed. A score is computed for each item in the memory pool by taking 
the dot product of its content vector with the probe’s content vector. The 
MAC selector then produces as output the best match and everything within 
10% of it, as described previously. (As for the FAC stage, variants that 
could be considered include adding a bound on the number of items returned 
(to model capacity limitations) and implementing a threshold on the MAC 
selector so that if every match is too low MAC returns nothing.) 

Like other feature-vector schemes, the dot product of content vectors 
does not take the actual relational structure into account. It only calculates 
a numerical score and hence doesn’t produce the correspondences and candi- 
date inferences that provide the power of analogical reasoning and learning. 
But the output of MAC feeds to the FAC stage, which operates on structured 
representations. Thus, it is the FAC stage that both filters out structurally 
unsound remindings and produces the desired correspondences and candi- 
date inferences. We claim that the interplay of the cheap but dumb compu- 
tations of the MAC stage and the more expensive but structurally sensitive 
computations of the FAC stage explains the psychological phenomena of 
Section 2. As the first step in supporting this claim, we next demonstrate that 
MAC/FAC’s behavior provides a good approximation of psychological data. 

4. COGNITIVE SIMULATION EXPERIMENTS 

In this section, we compare the performance of MAC/FAC with that of 
humans, using the “Karla the Hawk” stories (Gentner, Rattermann, & 
Forbus, 1993; Rattermann & Gentner, 1987, Experiment 2). For these 
studies, we wrote sets of stories consisting of base stories plus four variants, 
created by systematically varying the kind of commonalities. All stories 
shared first-order relations (primarily events) but varied in which other 
commonalities were present, as shown in Table 1. The LS (literal similarity) 
stories shared both higher-order relational structure and object attributes. 
The AN (analogy) stories shared higher-order relational structure but con- 
tained different attributes, whereas the SF (surface similarity) stories shared 
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TABLE 1 
Proportion of Remindings for Diffarent Makh Types: 

Human Participants 

~t~ibutes but contained different h~ghe~-ord~~ relational structure. The 
FOR [first-order relations) stories differed both in attributes and higher- 
order relational structure. 

In this study, the subjects were first given 32 stories to remember, of 
which 20 were base stories and I2 were d&tractors. They were fatter pre- 
sented with 20 probe stories which marched the base stories as fo@nws: 5 LS 
matches, 5 AN matches, 5 SF matches, and 5 FOR matches. They were told 
to write down any prior stories of which they were reminded. (Which stories 
were in each similarity co~~d~tion was varied across subjects.) As shown in 
Tabfe 2, the proportions of recodings for different match types were ..% 
for LS, .53 for SF, .I2 for AN, and .03 for FOR. Tabk 2 also shows that 
this retrievability order has been stable across three variations crf this study: 
LS 2 SF > AN r FOK1 

As discussed above, this ret~~evabi~it~ order differs s~iki~g~y from the 
soundness ordering. When subjects were asked to rate how ~o~~the matches 
were-how well the inferences from one story would apply to the other- 
they rated analog (AN) and Ii&& similarity Q_S) as s~~~i~c~t~~ nzore 
sound than surface similarity (SF) and FOR matches {matches based only 
on common first-order relations, primariIy events). SME running in analogy 
mode on SF and AN matches correctly reflected human soundness rankings 
(Forbus 4 Gentnes, 1989; Gentner et af,, in press; Skorst~d et al., 1%8), 
Were we seek to capture human retrieval patterns: Does MAC&AC dupfi- 
c&e the human propensity for ~~~~~ev~ng SF and LS matches rather than AN 
and FOR matcb~s? The idea is to give MAC/FAG a memory set of stories, 
then probe with various new stories. To count as a retrieval, a story must 
make it through both MAC and FAC. We use replication of the orderi~ 
found in the psychoiog~ca~ data, rather than the exact ~er~~t~es, as our 
criterion for success because this measure Is more robust, being less sensitive 
to the detailed properties of the databases. 
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(FOLLOW 
(PROMISE MAN1 KARLA 

(NOT (ATTACK M&N1 KARLA))) 
(ATTACK MAN1 DEER)) 

(CAUSE 
(EQUALS (HAPPINESS MANl) HIGH) 
(PROMISE MAN1 KARLA 

(NOT (ATTACK MAN1 KARLA)))) 
(CAUSE 
(OBTAIN MAN1 FEATHERS) 
[EQUALS iHAPPINESS MAN11 HIGH)) 

(FOLLOW 
(OFFER KARLA FEATHERS MAN11 
(OBTAIN MANI. FEATHERS)) 

(CAUSE 
(REALIZE KARLA 

(DESIRE MAN1 FEATHERS)) 
(OFFER KARLA FEATHERS MANl)) 

(FOLLOW 
[EQUALS 
(SUCCESS 

(ATTACK MAN1 XARLA)) F) 
(REALIZE KARLA 

(DESIRE MAN1 FEATHERS) )) 
(CAUSE 
(NOT (USED-FOR 

FEATHERS CROSS-BOW)) 
(EQUALS (SUCCESS 

ATTACK MAN1 KARLA)) 

F)) 
(FOLLOW 
(ATTACK MANI KARLA) 
(EQUALS fSUCCESS 

(ATTACK r6Ar31 KARLAl) 
F)f 

(FOLLOW 
[SEE XARLA MANI) 
(ATTACK MANI KARLA)) 

(HAPPEN (SEE KARLA MAN111 
(LIVES XARLA LOCI) 
(POSSESS MAN1 CROSS-BOW) 
(POSSESS KARLA FEATHERS) 
(RUMINANT DEER) 
(ANTLERED DEER) 
(HOOFED DEER) 
(QUADRIPED DEER) 
(MAMMAL DEER) 
(THIN CROSS-BOW) 
(LARGE CROSS-BOW) 
(MEDIEVAL CROSS-Bow) 
(WOODEN CROSS-Bow) 
(WEAPON CROSS-BOW) 
(BLACK FEATHERS) 
(COVERING FEATHERS) 
[LONG FEATHERS) 
(SOFT FEATHERS) 
(ASSET FEATHERS) 
(VOCAL MANl) 
(BIPED MAN11 
(HUNTER MANl) 
(WARLIKE MANl) 
(HUMAN MANl) 
{MALE MAN11 
(PREDATORY RARLA) 
(BLACK XARLA) 
(POWERFUL XARLA) 
(LARGE XARLA) 
(HAWK KARLA) 

Figure 7. A representation from the Karla the Hawk story set. 

For the computational experiments, we encoded predicate calculus rep- 
resentations for 9 of the 20 story sets (45 stories). Figure 7 shows one of 
the story representations. These stories are used in all three of the following 
experiments. 

4.1 Cognitive Simulation Experiment 1 
In our first study, we put the nine basic stories in memory, along with the 
nine FOR stories which served as distracters. We then used each of the 
variants-IS, SF, and AN-as probes. This roughly resembles the original 
task, but MAC/FAC’s job is easier in that (a) it has only 18 stories in 
memory, whereas participants had 32, in addition to their vast background 
knowledge; and (b) participants were tested after a week’s delay, so that 
there could have been some degradation of the memory representations. 

Table 3 shows the proportion of times the base story made it through the 
MAC and (then) through FAC. The FAC output is what corresponds to 
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TABLE 3 

Proportion of Correct Retrievals 

Given Different Kinds of Probes 

Probes MAC FAC 

1s 
SF 

AN 

1.0 1 .o 
0.89 0.89 

0.67 0.67 

Note. LS=literol similarity; SF=surface similarity; AN== 
analogy; FOR=first-order reiotions. Memory contains 9 base 
stories ond 9 FOR matches; probes were the 9 LS, 9 SF, ond 9 

AN stories. The rows show proportion of times the correct 
bose story was retrieved for different probe types. 

TABLE 4 

Mean Numbers of Different Match Types Retrieved 

Per Probe When Bose Stories ore Used OS Probes 

Retrievols MAC FAC 

LS 0.78 0.78 

SF 0.78 0.44 

TA 0.33 0.22 

FOR 0.22 0.0 

Other 1.33 0.22 

Memory contains 36 bose stories (LS, SF, AN, ond FOR for 
9 story sets); the 9 bose stories used OS probes. Other=ony 
retrieval from a story set different from the one to which the 
base belongs. 

human retrievals. MAC/FAC’s performance is much better than that of the 
human participants, perhaps partly because of the differences noted above. 
However, the key point is that its results show the same ordering as those of 
humans: LS > SF > AN. 

4.2 Cognitive Simulation Experiment 2 
To give MAC/FAC a harder challenge, we put the four variants of each 
base story into memory. This made a larger memory set (36 stories) and also 
one with many competing similar choices. Each base story in turn was used 
as a probe. This is almost the reverse of the task participants faced and is 
more difficult. 

Table 4 shows the mean number of matches of different similarity types 
that succeed in getting through MAC and (then) through FAC. There are 
several interesting points to note here. First, the retrieval results (i.e., the 
number that make it through both stages) ordinally match the results for 
human participants: LS > SF > AN > FOR. This degree of fit is encour- 
aging, given the difference in task. Second, as expected, MAC produces 
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TABLE 5 

Mean Numbers of Different Match Types Retrieved Per Probe 

With Base Stories as Probes and No LS Stories in Memory 

Retrievals MAC FAC 

SF 0.88 0.78 

AN 0.56 0.56 

FOR 0.22 0.11 

Other 1.11 0.11 

Memory contains 27 stories (9 SF, 9 AN, 9 FOR): 9 base 
stores used CIS probes. 

some matches that are rejected by FAC. This number depends partly on the 
criteria for the two stages. Here, with MAC and FAC both set at lo%, the 
mean number of memory items produced by MAC is 3.4, and the mean 
number accepted by FAC is 1.6. Third, as expected, FAC succeeds in acting 
as a structural filter on the MAC matches. It accepts all of the LS matches 
MAC proposes and some of the partial matches (i.e., SF and AN), while 
rejecting most of the inappropriate matches (i.e., FOR and matches with 
stories from other sets). 

4.3 Cognitive Simulation Experiment 3 
In the prior simulations, LS matches were the resounding winner. Although 
this is reassuring, it is also interesting to know which matches would be 
retrieved if there were no perfect overall matches. Therefore, we removed 
the LS variants from memory and repeated the second simulation experi- 
ment, again probing with the base stories. AS Table 5 shows, SF matches 
are now the clear winners in both the MAC and FAC stages. Again, the 
ordinal results match well with those of subjects: SF > AN > FOR. 

4.4 Summary of Cognitive Simulation Experiments 
The results are encouraging. First, MAC/FAC’s retrieval results (i.e., the 
number that make it through both stages) ordinally match the results for 
human subjects: LS > SF > AN > FOR. Second, as expected, MAC pro- 
duces some matches that are rejected by FAC. The mean number of memory 
items produced by MAC is 3.4, and the mean number accepted by FAC is 
1.6. Third, FAC succeeds in its job as a structural filter on the MAC matches. 
It accepts all of the LS matches proposed by MAC and some of the partial 
matches (the SF, AN, and FOR matches) and rejects most of the inappro- 
priate matches (the “other” matches from different story sets). It might 
seem puzzling that FAC accepts more SF matches than AN matches, when 
it normally would prefer AN over SF. The reason is that it is not generally 
being offered this choice. Rather, it must choose the best from thematches 
passed on by MAC for a given probe (which might be AN and LS, or SF 
and LS, for example). 
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It is useful to compare MAC/FAC’s performance with that of Thagard 
et al’s (1990) ARCS model of similarity-based retrieval, the most comparable 
alternate model. Thagard et al. gave ARCS the “Karla the Hawk” story in 
memory along with 100 fables as distracters. When given the four similarity 
variants as probes, ARCS produced asymptotic activations as follows: LS 
(.67), FOR (- .I l), SF (- .17), AN ( - .27). ARCS thus exhibits at least two 
violations of the LS 2: SF > AN 5 FOR order found for human remindings. 
First, SF remindings, which should be about as likely as LS remindings, are 
quite infrequent in ARCS-less frequent than even the FOR matches. Second, 
AN matches are less frequent than FOR matches in ARCS, whereas for 
humans, AN was always ordinally greater than FOR and (in Experiment 1) 
significantly so. Thus, MAC/FAC explains the data better than ARCS. 
This is especially interesting because Thagard et al. argued that a complex 
localist connectionist network which integrates semantic, structural, and 
pragmatic constraints is required to model similarity-based remindings. 
Although such models are intriguing, MAC/FAC shows that a simpler 
model can provide a better account of the data. We compare MAUFAC 
with ARCS in more detail in Section 6. 

Finally, and most importantly, MAC/FAC’s overall pattern of behavior 
captures the motivating phenomena. It allows for structured representations 
and for processes of structural alignment and mapping over these represen- 
tations, thus satisfying the structural representation and structured map- 
pings criteria. It produces fewer analogical matches than literal similarity or 
surface matches, thus satifying the existence of rare insights criterion. The 
majority of its retrievals are LS matches, thus satisfying the primacy of the 
mundane criterion. It also produces a fairly large number of SF matches, 
thus satisfying the surface superiority criterion. Finally, its algorithms are 
simple enough to apply over large-scale memories, thus satisfying the scal- 
ability criterion. 

5. SENSITIVITY ANALYSES 

The experiments of the previous section show that the MAC/FAC model 
can account for psychological retrieval data. This section looks more closely 
into why it does, by seeing how sensitive the results are to different factors 
in the model. These analyses are similar in spirit to those carried out by Van 
Lehn (1989) in his SIERRA project. Van Lehn used his model to generate 
different possible learning sequences to see if these variations covered the 
space of observed mistakes made by human learners in subtraction pro- 
blems. Thus, variations in the model were used to generate hypotheses 
about the space of individual differences. Our methodology is quite similar, 
in that we vary aspects of our model in order to better understand how it 
accounts for data. The key difference is that we are not attempting to model 
individual differences but instead are investigating how our results depend 
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on different aspects of the theory. Such sensitivity analyses are routinely 
used in other areas of science and engineering; we believe they are also an 
important tool for cognitive modeling. 

Sensitivity analyses can provide insight into why a simulation works. 
Any working cognitive simulation rests on a large number of design choices. 
Examples of design choices include the setting of parameters, the kinds of 
data provided as input, and even the particular algorithms used. Some of 
these design choices are forced by the theory being tested, some choices are 
only weakly constrained by the theory, and others are irrelevant to the theory 
being tested but are necessary to create a working artifact. Sensitivity analyses 
can help verify that the source of a simulation’s performance rests with the 
theoretically important design choices. Varying theoretically forced choices 
should lead to a degradation of the simulation’s ability to replicate human 
performance. Otherwise, the source of the performance lies elsewhere. On 
the other hand, varying theoretically irrelevant choices should not affect the 
results, and if it does, it suggests that something other than the motivating 
theory is responsible for the simulator’s performance. Finally, seeing how 
the ability to match human performance varies with parameters that are only 
weakly constrained by theory can lead to insights about why the model works. 

In the rest of this section, we describe a series of sensitivity experiments 
on MAC/FAC. These experiments demonstrate that its ability to replicate 
human performance is robust, and that this ability depends crucially on the 
theoretically important design choices. We first describe the methodology 
used in these experiments in detail and then describe three sensitivity analyses. 

5.1 Method for Sensitivity Analyses 
A sensitivity analysis requires a standard of comparision, a baseline against 
which to judge the results of variations. We use as our baseline the simula- 
tion experiments described in Section 4. We say that a particular set of design 
choices satisfies the data if re-running the simulation experiments with that 
set of design choices yields results that match the human data. That is, the 
frequency of retrievals must follow the pattern LS > SF > AN > FOR. 

There are many design choices which could be explored via sensitivity 
analyses. Conceptually, one can think of sets of design choices as points in a 
high dimensional space. In essence, the simulation studies of Section 4 pro- 
vide information about one point in the design space. This metaphor is 
excellent for choices of numerical parameters, because these dimensions can 
be viewed as continuous. This metaphor is not as useful for other kinds of 
design choices, for example, algorithmic choices, because systematically 
enumerating the set of plausible algorithms for a task is quite difficult. To 
best visualize the results, choosing two numerical dimensions to vary allows 
patterns of satisfaction to be displayed as a table, whose entries represent 
measurements of the ability of the model to satisfy the data at sampled 
points in the design space. 
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The two most interesting numerical parameters with respect to sensitivity 
analyses on MACYFAC are the selector widths for the MAC and FAC stages, 
because these are only weakly constrained by the theory. They should be 
narrow, in order to reject inappropriate remindings, but we currently see no 
theoretically motivated method to calculate precise predictions for these 
parameters. Therefore, in these analyses we use an empirical approach. We 
vary the selector widths, using these variations as the axes of a subset of the 
design space. Recall that a selector of width W accepts all matches within 
W% of the largest input. That is, a selector with width 10% outputs the best 
match plus any other matches that are within 10% of the score of the best 
match, while a selector of width 100% will simply pass through all of its in- 
puts. In the experiments below, selector widths for both MAC and FAC are 
varied from I to IOO%, in 10% increments. Each entry in the table indicates 
whether that pair of width settings, combined with the other design choices, 
satisfied the data. When the pattern of retrieval is violated, the table entry 
contains information about the particular kind of violation. 

Viewed as a map, the table of results from the sensitivity analysis can be 
divided into viable regions, subspaces of design choices which allow the 
model to satisfy the data, and nonviable regions, where they do not. The 
existence of viable regions is of course critical for a successful simulation. 
However, the nature of the nonviable regions is also interesting, because 
they provide a source of insight into why the model works. Seeing how a 
bridge collapses after replacing a particular strut with a weaker material 
(preferably via simulation) supports the conclusion that the strength of that 
strut was a factor in preventing collapse. 

It should be noted that the computations costs of these experiments is 
large but not horrendous. Essentialfy, the cognitive simufation experiments 
of Sections 4.1 and 4.2 were replicated for each pair of selector widths, that 
is, 121 times. Each repetition required running the MAC matcher 810 times,‘* 
for a total of 98,010 times. The number of FAC executions varies with the 
size of the set output from MAC, of course, and varies substanti~Iy accord- 
ing to the particular design choices made (as shown later). A reasonably 
accurate estimate for the lower bound of FAC executions for each experiment 
is 900, and a reasonable upper bound is 1,600. The MAC matcher takes 
roughly 0.002 s for each pair of content vectors, and the FAC matcher (i.e., 
SME) takes between 1 .O and 11 s for each pair of structured representations, 
with an average time of roughly 4 s. I3 Thus, the time to run MACYFAC for 
each probe typically ranges from 3 to 10 s. A naive system for doing sensitivity 

I2 The first experiment involves 486 MAC executions because there are 18 stories in memory 
and 27 probes. The second experiment involves 324 MAC executions because there are 36 
stories in memory and 9 probes. 

I3 These times are for an IBM RS&OOO Model 350, SME3b, which was used in all experi- 
ments in this section. An earfier version of SME was used in Forbus and Gentner (1989) and in 
the experiments in Section 6. 
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Rows: MAC widths. Columns: FAC widths. 

Legend 
Y = Satisfies the data 
4 = No analogies 
64=SF<_AN 
80= LSLAN, SF<AN 
112= LSSAN, SFSAN, LS<FOR 
368= LSSAN. SF<AN, LSSFOR. LS<DT 

Rows are the width of the MAC selector, Columns correspond to the width of the FAC selector. The 
codes describe whether that combination of selector widths allows MAC/FAC to account for the human 
data, and if not. what criteria were violated. 

Table 6. Sensitivity to selector width, normolizerd content vectors. 

analyses could use as much as 5 h per analysis (14,000 s for MAC, 4,000 s for 
FAC). However, we found that by caching the results of matches in a simple 
database, we could cut the CPU requirements for these analyses considerably. 

5.2 Sensitivity Analysis One: Robustness 
In this experiment, we tested the robustness of MAC/FAC’s ability to satisfy 
the data by varying the selector widths. Table 6 shows the results. Notice 
that there is one region that satisfies the data: When the MAC width is 
between 10% and 20% and FAC is at least 10%. The moderately large viable 
subspace indicates that MAC/FAC’s performance is robust and not hostage 
to a particular choice of selector width settings. 

As discussed previously, it is important to show that there are parameter 
settings that do not fit the human data, to establish that the theoretical vari- 
ables actually matter. When either MAC or FAC is too narrow (i.e., MAC 
of 1% or FAC of l%), analogies are never retrieved. This violates the rare 
insights criterion. When MAC is broad (30% or larger), making FAC too 
broad leads first to too many analogies, and then to junk remindings. The 
shape of the region of viability suggests that although FAC is necessary to 
provide structural matching and candidate inferences, MAC provides most 
of the filtering. Because that is MAC’s intended purpose, this provides fur- 
ther evidence that the simulation works according to the principles of its 
design, rather than some unknown factor. 
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The evidence that the results are not very sensitive to the particular choice 
of selector widths in the original experiments (i.e., 10% for both MAC and 
FAC) is reassuring. The next two sensitivity analyses explore other design 
choices, using the same methodology as this experiment. 

5.3 Sensitivity Analysis Two: Irrelevance of Normalization Details 
In other sensitivity experiments on analogical processing algorithms (Forbus 
& Gentner, 1989), we demonstrated that the choice of normalization algorithm 
could affect outcomes in simulations of structural evaluation in compari- 
sons. The purpose of this analysis is to determine if our design choice of using 
unit content vectors (see Section 3.3) was a significant factor in our results. 

To explore this question, we consider two variations on the content vector 
representation. The first variation is simply not to use any kind of normali- 
zation at all. That is, we simply use as the strength of each component of the 
content vector the number of statements and terms that contained the cor- 
responding predicate. (The computation of normalized content vectors 
involves an additional step-dividing each component by the total number 
of predicates in the description.) The results of this manipulation are illus- 
trated in Table 7. The key point to notice about this table is that the viable 
region is roughly the same size and shape as the viable region for normalized 
content vectors. This lends support to the claim that the outcome of the sim- 
ulation experiments is not heavily determined by the particular normaliza- 
tion algorithm chosen. 

The second variation we consider is to change what aspect of the overlap 
content vectors measure. Recall that the idea of content vectors is to com- 
pare the pattern of functors which appear in two structured descriptions. 
There are several ways to characterize such patterns. The MAUFAC design 
choice, normalized content vectors, estimates the overlap in terms of the 
relative frequency of functors in the two descriptions, independent of their 
sizes. The unnormalized content vectors just examined estimate the total 
size of the overlap. But is it the pattern of overlap that is relevant, or just 
how many functors two descriptions have in common? We can investigate 
this question by changing the structure of content vectors so that they rep- 
resent only the set of predicates that are used in the structured representa- 
tion, without regard to number of occurrences. We call this variation binary 
content vectors because each component is essentially a 1 bit answer to the 
question of whether the structured representation contains or does not con- 
tain a particular predicate. Thus, the dot product of two binary content vec- 
tors is a measure of the overlap in number of shared predicates. (Again, we 
normalize to unit vectors, both to avoid size biases and because we assume 
that psychologically plausible implementation substrates (e.g., neural sys- 
tems) will have limited dynamic range.) The results of this manipulation are 
shown in Table 8. 
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Rows: MAC widths. Columns: FAC widths. 

Legend 
4 = No analogies 
641SFSAN 
SO=I.S~AN, SFgAN 
~~~SS~~~AN,SF5AN 
112=LS<AN,LS5FA,SF<AN 
UO=LS~SF,LSSAN,LSsFA,SF~AN 
256=IS<DT 
336=LS5AN,SF$AN,LSsDT 
368=LSSAN,LSSFA,SFsAN,LSSDT 
376=LSi;SF,tSI;AN,LS~FA,SF4AN,LS5DT 

Rows are the width of the MAC selector, CoIumns correspond to the width of the FAC selector. l&e 
codes describe whether that combination of sekctor widths allows MACYFAC to account for the human 
data, and if not, what criteria were violated. 

Table 7. Sensitivity analysis, unnormalized content vectors. 

Again, the overall pattern of results is the same: With selector widths 
that are too narrow, no analogies are retrieved, and with selector widths 
that are too broad, too many analogies are retrieved, followed as widths in- 
crease by too many “junk” retrievals. The interesting difference is that the 
region for the selector widths has changed: The viable wide-FAC range lies 
with MAC between 30% and SOctlo, whereas it was between 10% and 20% 
for the original content vectors. Comparing the average number of repre- 
sentations output by MAC for these ranges provides some insight as to why 
this should be so: For binary content vectors, the average output size was 2; 
for standard content vectors, the average was 1.5. In both cases, the next 
step of MAC selector width allows, on the average, another representation 
to make it through the FAC. Yet one more step in MAC selector width 
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Rows: MAC widths. Coh~tnns: FAC widths. 
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1 1% 1 10% I 20% I 30% } 40% I 50% I 60% I 70% I 80% I 90% I 100% 
4 4 ‘4 ‘4 14 14 14 14 f4 14 14 
A d 4 4 14 j4 14 I4 14 14 14 I 
n A -A A la Id IA Id IA 14 14 I 

J”7” 1 , 1 Kl- ‘” ‘” ‘- ‘” ‘; ,; ,; ,; ; ; ,; 

10% zl ; 1; 164 
50% 4 64 IY 164 IY IY IY I Y Y Y IY I-- ,.._ I 
60% ( 4 64 64 ( 80 1 X0 [ 80 ( 112 I 112’ 112 1 112 i 112 

70% ] 4 64 64 I 
80% 14 64 64 180 / 80 180 1112-1368 r368 f 368 I368 

368 f 368 1 368 1 368 90% 1 4 1 64 ) 64 1 80 1 80 1 80 1 112 ] 
100% 14 164 164 IE 10 I80 IS0 (112 (368 136 8 1 368 1 368 j 

Legend 
Y = Sysiit predictions satisfied 
4 = No analogies 
44=SFSAN 
80=LSSAN,SF1;AN 
112=LS~AN,LSSFA,SFSAN 

Binary content vectors measure the size of overlap in predicates. As before, rows are the width of the 
MAC selector, Columns correspond to the width of the FAC selector. 7’he codes describe whether that 
combination of sektor widths aIfows MAWAC to account for the human data, and if not, what criteria 
were violated. 

Table 8. Sensitivity analysis for binary content vectors, 

allows many more representations to get through to FAC. Thus, measuring 
only the number of shared predicates shifts the viable region but does not 
substanti~ly change its character. 

From these two analyses, we conclude that the choice of normalization 
algorithm does not substantively affect the results. Because the normalization 
algorithm is not a theoretically determined choice, these analyses support 
the conclusion that the simulation works according to the theoretical account. 

5.4 Sensitivity Analysis Three: Attributes Versus Relations 
Content vectors homogenize structured representations. They unify infor- 
mation about attributes of objects, relationships between objects, and argu- 
ment structure. Is including every kind of information in content vectors 
necessary? Given the frequency of literal-similarity and surface feature 
matches, both of which share many attributes, a possible h~othesis is that 
content vectors could be built using attributes alone. On the other extreme, 
the approaches used in case-based reasoning tend to ignore attributes and 
use only relational information. To mimic these approaches in MAUFAC, 
we could use content vectors, which leave out attributes and include only 
relational predicates. This analysis explores both of these extreme hypotheses. 
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Rows: MAC widths. Columr~s: FAC widths. 

90% 1 64 1 112 1 368 1 368 368 ] 368 

100% 1 1 
1 

4 64 1 64 1 80 1 80 1 80 ] 112 1 368 1 368 1 368 1 368 

Y = Sysfit predictions satisfied 
4 - No anaIo&s 
64=SFSAN 
80=LS$AN,SF5AN 

120=LS5SF,LSsAN,LS~FA,SFSAFI 
ii0 = No anaiogies, LS d DT 3x) I SF 5 AN, L.S f DT 
322 = No surface matches, SF ZZ AN, LS S K?T 
325 = No surface matches, no analogies. SF S AN, LS 5 DT 
336=LS<AN,SF5AF&LS<DT 
344=LS~SF,LSs:AI\J,SF~AN,LSISDT 
368=LS~AN,LSSFA,SFdAN,LSsDT 
376=LS~SF,LS~~,LS5FA,SF~;AN,Ed~;dT 

These reds obtained am using content -=vxtors which onfy included attril.mtes~ kaving out relations aed 
logical comzectixs. As befm% rows are the width of dx MAC sefecux. Cokmms corrqxmd to the width 
of the F&Z sekctor. The codes describe wbsthar that pair of setector widths allows MAclFAC to account 
far the human data, and if not, what criteria were violated. 

‘fable 9. Sensitivity analysis of attribute-only content vectors. 

To explore the degree to which using attribute information only in con- 
tent vectors would allow MAC/FAC to satisfy the data, we modified the 
algorithm which computes content vectors to ignore anything other than 
attributes. The results of the sensitivity analysis are shown in Table 9. The 
pattern of results is dramatically different than in previous experiments. 
There is no viable region at ak This experiment provides strong evidence 
that using attribute information alone in content vectors cannot satisfy 
the data. 

The failure of attributes alone to provide adequate filtering may not be 
surprising. Is relational information alone enough? To explore this question 
we again modified the algorithm that computes content vectors, this time to 
not include attributes, These new content vectors, therefore, only contained 
relationships between objects and higher-order relations, such as logicd 
connectives. The same methodology for the sensitivity anaIysis was followed. 
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Rows: MAC widths. Columns: FAC widths. 

Legend 
Y = Satisfies the psychological data 
4 = No analogies 
#=SFsAN 
8O=LSr;AN, SFSAN 
llZ=LSs-AN, SFSAN, LSSFOR 
256 = LS < DT (260) = No analogies, LS < DT, LS < DT 
262 = No surface matches, no analogies, LS 5 DT, LS < DT 
264=LS<SF,LS<DT,LS5DT 
268 = No analogies. LS < SF, J_.S 5 DT, LS ZZ DT 
270 = No surface matches, no analogies. LS 5 SF, LS $ DT. LS rG DT 3 
36=LS<AN,SFSAN.LS<DT,LSSDT 
368=LS<AN, SF4AN, LSSFOR, LSSDT 
384=AN<FOR,LS<DT 

These results are obtained using content vectors which only included relations and logical conuectives. 
leaving out attributes. As before, rows are the width of the MAC selector, Columns correspond to the 
width of the FAC selector. ‘Ihe codes describe whether that pair of selector widths allows MAc/FAC to 
account for the human data, and if not, what criteria were violated. 

Table 10. Manipulation: Relation-only vectors. 

The results of the sensitivity analysis are shown in Table 10. Like the 
attribute-only content vectors, the relation-only content vectors also fail to 
satisfy the data in a pyschologically plausible manner, but for different 
reasons. Almost uniformly, that is, when either the MAC width is less than 
40% or when the FAC width is greater than 70070, more “junk” matches 
come through-stories from other sets, and FOR stories (i.e., those which 
match only in terms of first-order relations and not attributes or causal 
structure). The region where the data is not satisfied and the MAC width 
ranges between 20% and 70% is very much like the failures that occur for 
the attribute-only vectors (e.g., more analogies retrieved with narrow FAC 
than psychologically plausible). There is in fact a region in Table 10 where 
the pattern of results matches the human data, when the MAC width is 
between 40% and 50% and the FAC width ranges from 20% to either 60% 
or 70%. However, the size of the MAC output in this range is roughly one 
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Given a pool of memory items Il..In and a probe P: 
t . For each item Ii, include it in a matching network if there arc? any predicates in Ii that are 

sernant~~~~y similar to a predicate in P. The mafching netxvork impimnts semantic and strucmral 
constrainrs. 

2, Create inhibitory links between units rqwwwting competing Wrieval hypotheses, SO ensure 
combative retrieval. 

3. Install pragmatic constants by creating excitatory links between a special pragmatic node and every 
predicate marked by the user as important. 

3, Run the network until it settles. 

I 
~i~~e~.~~~~~~~a~~ 

1 J 

half of the totai size of the memory pool. Consequently, this is not a viable 
region, because it demands far too much of FAC. 

These experiments provide evidence that neither attribute information 
nor relational structure, by themselves, provide the right kind of information 
to aflow the MAC/FAC model to pfausibiy satisfy the psy~hologj~a~ data. 
Aithough such g~~er~izations must be viewed with caution, the analysis of 
why these alternatives fail may be applied to any retrieval model, not just 
MAC/‘FAC, Using attribute information alone does not allow a retrieval 
system to satisfy the rare insights criterion, because the r~lationai informa- 
tion is not used as a cue in retrieval. Using relational information alone 
tends to violate the scaiabiiity criterion, because large fractions of memory 
must be searched when the discrimination provided by the relational vocab- 
ulary is inadequate. 

As mentioned earlier, the model of simii~it~bas~d retrieval that is closest 
to MAC/FAC is ARCS (Thagard et al., 1990). The ARCS algorithm is 
shown in Figure 8, ARCS uses a localist connection&t network to apply 
semantic, structural, and pragmatic constraints to sdecting items from 
memory. Most of the work in ARCS is carried out by the constraint satis- 
faction network, which provides an elegant mechanism for integrating the 
disparate constructs that Thagard et al. postuIat~~ as important to retrieval. 
The use of competition in retrieval is designed to reduce the number of can- 
didates retrieved_ Using pragmatic ~nfo~ation provides a means for the 
system’s goals to affect the retrieval process. 

After the network settfes, an ordering can be placed on nodes re~reseut~ng 
retrieval hypotheses based on their activation. Unfortunately, no formal 
criterion was ever specified by which a subset of these retrieval h~othes~s is 
selected to be considered as what is retrieved by ARCS. Consequently, in 
the foi~owing experiments, we mainly focus on the subset of retrieval nodes 
mentioned by Thagard et al. jf990) in their article. 
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6.1 Theoretical Trade-Offs 
Both models have their appeals and drawbacks. Here we briefly examine 
several of each. 

Pragmatic effects: In MAC/FAC, it is assumed that pragmatics and 
context affect retrieval according to what is encoded in the probe. That 
is, we assume that plans and goals are important enough to be explicitly 
represented and hence will affect retrieval. In ARCS, additional influ- 
ence can be placed on particular subsets of such information by the user 
marking it as important. The trade-off between these alternatives will 
best be explored by embedding them in larger, task-oriented simulations, 
so we do not consider effects of pragmatics further in this article. 
Utility of results: Because MAC/FAC uses SME in the FAC stage, the 
result of retrieval can include novel candidate inferences. Because the 
purpose of retrieval is to find new knowledge to apply to the probe, this 
is a substantial advantage. ARCS could close this gap somewhat by 
using ACME (Holyoak & Thagard, 1989) as a postprocessor. 
Initial filtering: MAC/FAC’s content vectors represent the overall pat- 
tern of predicates occurring in a structured description, so that the dot 
product cheaply estimates overlap. ARCS’ commitment to creating a 
network if there is any predicate overlap places more of the retrieval 
burden on the expensive process of setting up networks. The inclusive 
rather than exclusive nature of ARCS’ initial stage leads to the para- 
doxical fact that a system in which pragmatic constraints are central 
must ignore CAUSE, IF, and other inferentially important predicates 
to be tractable. 
Modeling inter-item effects: Wharton et al. (1994) have shown that 
ARCS can model effects of competition between memory items in 
heightening the relative effect of structural similarity to the probe. 

Perhaps the most important issue is the notion of semantic similarity. 
A key issue in analogical processing is what criterion should be used to 
decide if two elements can be placed into correspondence. The FAC stage of 
MAC/FAC follows the standard structure-mapping position that analogy is 
concerned with discovering identical relational systems. Thus, other elements 
can be matched flexibly in service of relational matching: Any two entities 
can be placed in correspondence, and functions can be matched nonidenti- 
cally if doing so enables a larger structure to match. But relations have only 
three choices: They can match identically, as in (a); they can fail to match, 
as in (b); if the surrounding structural match warrants it, they can be re- 
represented in such a way that part of their representation now matches 
identically, as in the shift from (c) to (d). 

(a) HEAVIER [camel, cow]-HEAVIER [giraffe, donkey] 
(b) HEAVIER [camel, cow]-BITE [dromedary, calf] 
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(c) HEAVIER [camel, cowl-TALLER [giraffe, donkey] 
(d) GREATER [WEIGHT(camel), WEIGHT(cow)J- 

GREATER [HEIGHT(c~el), HEIGHT(cow)] . 

ACME and ARCS also share the intuition that analogy is a kind of com- 
promise between similarity of larger structures and similarity of individual 
elements--semantic similarity, in Holyoak and Thagard’s (1989) terms. 
But the total similarity metric is different. These systems use graded similar- 
ity at all levels and for all kinds of predicates; relations have no special 
status. Thus, ARCS and ACME might find pair (b) above more similar than 
pair (a), because of the object similarity. This would not be true for SME 
and MACYFAC, 

In ACME, semantic similarity was operationalized using similarity 
tables. For any potential matching term, a similarity table was used to assign 
a similarity rating, which was then combined with other evidence to decide 
whether the two predicates could match. Thus, in the examples above, both 
pair (b) and pair (c) stand a good chance of being matched, depending on 
the stored similarities between TALLER, HEAVIER, and BITE, camel, 
dromedary and giraffe, and so on. 

In ARCS, an augmented subset of WordNet (Miller, Fellbaum, Kegl, & 
Miller, 1988) was used to make semantic similarity decisions. WordNet is a 
psycholinguistic database describing reiationships between words. Two 
predicates in ARCS are considered semantically similar if their correspond- 
ing lexical concepts in WordNet are connected via links that denote partic- 
ular relationships. The use of WordNet as a database for simple lexical 
inferences is an appealing idea. The lexical connections found in this way 
should have wee-founded motivations. Nevertheless, it is important to re- 
member that WordNet was intended as a lexicon, not a language of thought. 
Using the lexical concepts of WordNet as a predicate vocabulary requires 
assuming that there exist conceptual representations that correspond to 
these lexical concepts. That does not seem an implausible assumption. 
However, assail that relationships between words, such as synonym or 
antonym, are used in the cognitive processing of internal representations 
seems implausible. 

We prefer our tiered identicality account, which uses inexpensive inference 
techniques to suggest ways to re-represent nonidentical relations into a 
canonical representation language. Such canonicalization has many advan- 
tages for complex, rich knowledge systems, where meaning arises from the 
axioms in which predicates participate. When mismatches occur in a context 
where it is desirable to make the match, we assume that people make use of 
techniques of re-representation. An example of an inexpensive inference 
technique to suggest re-representation is Falkenhainer’s (1987, 1990a) mini- 
mal ascension method, which looks for common superordinates when con- 
text suggests that two predicates should match, The use of pure identica~ty 
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augmented by minimal ascension allowed Falkenhainer’s PHINEAS system 
to model the discovery of a variety of physical theories by analogy. We 
believe that WordNet could be used in a similar fashion, because it has 
superordinate information. 

Holyoak and Thagard (1989) have argued that broader (i.e., weaker) no- 
tions of semantic similarity are crucial in retrieval, for otherwise we would 
suffer from too many missed retrivals. Although this at first sounds 
reasonable, there is a ~ounter~gument based on memory size. Human 
memories are far larger than any cognitive simulation yet constructed. In 
such a case, the problem of false positives (i.e., too many irrelevant retrievals) 
becomes critical. False negatives are of course a problem, but they can be 
overcome to some extent by reformulating and re-representing the probe, 
treating memory access as an iterative process interleaved with other forms of 
reasoning (as in Lange & Warton’s, 1992, 1993, REMIND model). Thus, it 
could be argued that strong semantic similarity constraints, combined with 
re-representation, are crucial in retrieval as well as in mapping. 

How do these different accounts of semantic similarity fare in predicting 
patterns of retrival? In the rest of this section, we tackle this question by com- 
paring the performance of MAC/FAC and ARCS on a variety of examples. 

6.2 Computational Experiments Comparing MAWFAC and ARCS 

6.2.1 Methods 
Each experiment below has a similar structure. First, each simulation is 
given a memory, consisting of one or more database drawn from the ARCS 
repr~entations.14 Then retrieval is tested with probes drawn from a small 
predefined set of stories, replicating Thagard et *al’s (1990) experiments. 
The memory a simulation operates over consists of one or more databases. 
In some cases, the memory is augmented by a particular story: for example, 
when probing with variant Hawk stories, the Thagard et al. encoding of the 
“Karla the Hawk” story is added to memory. (This is done to see if the 
retrieval system is able to find the base story amidst the distracters, given 
variations on the story as probes.) 

For brevity, we specify the probe set and memory contents symbolically, 
using “1” to distingush probe set from memory and “ + ” to indicate set 
union. Thus, HAWK/(PLAYS + Karla Base) indicates an experiment where 
the database of plays was probed with the Hawk stories. A description of 
the data sets is used and these conventions is summarized in Figure 9. 

Both MAG’FAC and ARCS take propositional representations as inputs, 
but their representation conventions are quite different. The most crucial 

I4 To date we have been unsuccessful in getting ARCS to run on many of the representa- 
tions we used in Sections 4 and 5. In some cases, ARCS’ network does not settle after even 
1,ooO iterations, and run times of up to 12 h have been required. 
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Databases: 
FABLES = 100 encodings of Aesop’s fables, encoded by Thagard et.al. 
PLAYS = 25 encodings of Shakespeare’s plays, encoded by Thagard etaI. 
Story sets used as probes and memory items: 
HAWK = Thagard et.ai.‘s encoding of the “Karla the Hawk” story set, i.e., original story, analog, 
appearance match, false analogy, and literal similarity versions. Databases using these probes have the 
original story added to memory, except when the original story itself is used as a probe. 
SG = Thagard et.al.‘s encoding of the Sour Grapes fable plus variations, i.e., original story, analog, 
appearance, and literal similarity versions. Databases using these probes have the original story added to 
memory, except when the original story itself is used as a probe. 
H&WSS = Thagard e&al’s encoding of Hamlet and West Side Story. When Hamlet is used as a probe it is 
removed from memory. West Side Story is never placed in memory. 
Convention: For convenience, we refer to an experimental setup by the probe stories followed by the 
database used, e.g., SG/(FABLES+PLAYS) means that the Sour Grapes fables were used as probes with a 
memory consisting of both plays and fables. When a story is used as a probe, it is removed from memory 
first. 

Figure 9. Databases and experimental stories used in the experiments 

difference is that structure-mapping treats attributes, relations, and func- 
tions differently, whereas ARCS does not distinguish them. We used the 
following rules in translation: (a) One-place predicates were classified as 
attributes, (b) multi-~gument predicates were classified as relations, and (c) 
because the arguments to CAUSE could be either events or modal proposi- 
tions, we treated predicates used as arguments to a CAUSE statement either 
as modal relations (e.g., BECOMING-TRUE) or functions (e.g., MARRIED, 
KILLED). Because functions can be substituted under structure-mapping’s 
identicality criterion, we ran these experiments on representations 
translated both with and without rule (c), that is, with and without func- 
tions. With one exception, noted later, the results were essentially identical 
with either translation scheme. 

All run times are measured according to the Lucid Common Lisp inter- 
nal clock. A single computerls was used for both simulations, so that run 
times would be comparable. 

Replication of computational experiments is still something of a novelty, 
and standards for ensuring that reported simulation results are repeatable 
have not yet been established in cognitive science. Nevertheless, we have 
taken many precautions to ensure that we have run ARCS correctly. Where 
numerical information was available, for instance, we matched numerical 
results reported by them to several decimal places. One concern was what 
should count as a retrival in ARCS. Neither the original ARCS paper nor 
the code defines a criterion for distinguishing when an item is actually re- 
trieved (indeed, stories with negative activations were sometimes considered 
retrievals). In reporting ARCS results, we cut off the list of retrieved results 
where Thagard et al. (1990) did. In some cases (e.g., fables), this repre- 
sented a sharp boundary, in other cases (e.g., plays), it did not. 

I’ An IBM RS/6000 Model 530, with 128MB of RAM using Lucid Common Lisp 4.01. 
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ARCS results. Numbers in parantheses represent the level of activation 
computed by ARCS 

Probe Results Seconds 

Sour Grapes appearance Sour Grapes (0.28) 120 

Sour Grapes, analog Sour Grapes (0.21) 8 1 

Sour Grapes, literal 
similarity 

Sour Grapes (0.25) 123 

MACYFAC Results. Numbers in parentheses represent the scores for that story. 

Probe 

Sour Grapes appearance 

Sour Grapes analog 

Sour Grapes literal 
similarity 

Results Seconds 

FAC: Sour Grapes (0.53) 0.3 
MAC: Sour Grapes (0.56) 

FAC: Sour Grapes (2.03) 0.2 
MAC: Sour Grapes (0.62) 

FAC: Sour Grapes (2.03) 0.2 
MAC: Sour Grapes (0.62) 

Table 11. Results for SG/Fables experiment. 

6.3 Experiment 1: 
Sour Grapes Comparison 

In the first study, the memory set consists of the fables, including the Sour 
Grapes fable, and the probes are variants of Sour Grapes. Table 11 shows 
the results. The results for ARCS match those reported for the simulation 
by Thagard et al. (1990). The MAC/FAC results are quite similar. Thus, 
both systems successfully retrieve Sour Grapes from a database of fables 
when given variations of it. However, MAC/FAC is substantially faster. 
The run-time difference is fairly typical; MAC/FAC tends to be two orders 
of magnitude faster than ARCS when tested with identical data on the same 
computer. 

6.4 Experiment 2: 
Effects of Additional Memory Items on Retrieval (Soup Grapes) 

To check the stability of results under changes in memory contents, we 
reran Experiment 1, adding the database of 25 Shakespeare plays encoded 
by Thagard et al. (1990) to the fables database. We then tested the simula- 
tions to see if they would retrieve Sour Grapes from the database of 125 
fables and plays when probed with variations of Sour Grapes. The results 
are shown in Table 12. MAUFAC’s results remain unchanged, except for a 
small increase in processing time. ARCS, on the other hand, is distracted by 
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ARCS Results 

Probe. 
Sour Grapes appearance 
Sour Grapes, analog 

Sour Grapes, literal 
similarity 

Results Seconds 
Sour Grapes (0.28) 327 
The Taming of the Shrew (0.22), Merry Wives 251 
(0. w, 

[11 
Sour Grapes (0.25) 373 

MAUFAC Results 

probe Results Seconds 
Sour Grapes appearance FAC: Sour Grapes (0.53) 0.4 

MAC: Sour Grapes (0.56) 
Sour Grapes analog FAC: Sour Grapes (2.03) 0.3 

MAC: Sour Grapes (0.62) 
Sour Grapes, literal FAC: Sour Grapes (2.03) 0.3 
Similarity MAC: Sour Grapes (0.62) 

Table 12. Results of SG probes, database= Fables+Plays. 

the plays in one of the probe conditions. Increasing the memory by 25 Vo has 
led to different results with ARCS. The results also hint at a possible size 
bias in ARCS: It appears to prefer larger descriptions in retrieval, at the cost 
of correct matches. 

6.5 Experiment 3: 
Larger Probe Sizes 

The results for MAC/FAC in Experiment 2 are satisfactory, however, 
ARCS’ seemingly poor performance requires further investigation. Does 
the relative size of the probe matter in the memory swamping effect? To find 
this out, we again ran both simulations, first with the plays’ database as 
memory, then with the 25 plays and 100 fables as memory, this time using as 
probes the Hamlet and West Side Story encodings, as represented by 
Thagard et al. (1990). Given Hamlet as a probe, the question is whether the 
systems can retrieve a tragedy, or at least another Shakespeare play. Given 
West Side Story as a probe, the challenge is more specific: to retrieve Romeo 
& Juliet, the analogous play. 

Table 13 shows the results for plays only in memory, and Table 14 shows 
the results with both plays and fables in memory. The good news for ARCS 
is that the fables have only minimally intruded on the activation for the top- 
ranked retrieved plays. A Midsummer Night’s Dream is ARCS’ top-ranked 
retrieval for West Side Story, but it did also, as stated by Thagard et al. 
(1990), retrieve Romeo & Juliet. 

MAC/FAC, on the other hand, only retrieves Romeo 8z Juliet with either 
probe. For West Side Story this is indeed the expected result (and we believe 
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ARCS results. Numbers in parentheses represent levels of activation for that item. 

Romeo & Juliet (0.54), King Lear (0.53). Othello 

Midsummer Night’s Dream (0..58), Romeo & Juliet 

MAUFAC results. Numbers in parentheses represent scores for that item. 

pr0l.X 

Hamlet 

West Side 
story 

Results Seconds 
FAC: Romeo & Juliet (6.79) 22 
MAC: Othello (0.86), Macbeth (0.85). Romeo & Juliet (0.83), 
Julius Caeser (0.81) 
FAC: Romeo & Juliet (16.51) 13 
MAC: Romeo & Juliet (0.88) 

Table 13. Results for Hamlet, West Side Story as probes, Ploys database. 

ARCS Results. 

probe 

Hamlet 
Results 
Romeo & Juliet (0.531). King Lear (0.528). Othello 
(0.45), 

Seconds 
4112 

Cymbeline (0.41), Macbeth (0.40). Julius Caesar (0.37) 
West Side Story Midsummer Night’s Dream (0.58). Romeo & Juliet (0.57) 5133 

MAUFAC Results 

I Probe 
Hamlet 

Results 
FAC: Romeo & Juliet (6.79) 
MAC: Othello (0.86), Macbeth (0.85), Romeo & Juliet 
(0.83), 

Seconds 
26 

Julius Caesar (0.81), Fable52 (0.80) 
West Side StoIy FAC: Romeo & Juliet (16.51) 8 

MAC: Romeo & Juliet (0.88) 

Table 14. Results for Hamlet, West Side Story OS probes, Plays+Fables database. 

more intuitive than ARCS’ result), but what is happening with Hamlet? 
Examining the structural evaluation scores (e.g., the FAC scores) reveals 
that FAC considers the match between West Side Story and Romeo & Juliet 
to be excellent (16.51), which makes sense because the encodings of West 
Side Story and Romeo & Juliet have almost isomorphic structure. When 
Hamlet is the probe, FAC is relatively indifferent; the FAC scores were: 
Romeo & Juliet (6.79), Julius Caesar (S.49), Macbeth (3.72), Othello (2.67). 
The drop-off from Romeo & Juliet is 20%, which is below MACYFAC’s 
default cutoff of 10%. 
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ARCS Results 

Probe Results 
Karl, literal similarity “Karla” base (0.67) 
Karla appearance Fable55 (0.4), [7 fables], “Karla” base (-0.17) 
Karla, analogy Fable23 (0.33), (7 fables], “Karla” base (-0.27) 
Karla, first-order Fable23 (0.0907), Fable55 (0.0903), [13 fables], 
overlap “Karla” base (-0.11) 

Seconds 
315 
176 
127 
17 

MAUFAC Results. 

Probe Results Seconds 
Kmla, Literal Similarity FAC: “Karla” (16.07) 6 

MAC: “Karla” (0.81), Fable71 (0.74) 

Karla, apperance FAC: “Karla” (7.92) 7 
MAC: “Karla” (0.7 l), Fable52 (0.7 l), 
Fable71(0.66), 

Karla, analog 

Karla, First-order 
overlap 

Fable27(0.65), Fable5(0.64) 
FAC: “Karla” (8.57) 14 
MAC: “Karla”(O.Bl), Fable52 (0.77), Fable5 (0.77). 
Fable71(0.76), Fable45(0.75), Fable59(0.75), 
Fable27(0.75) 
FAC: “Karla” (5.33), Fable5 (5.33) 7 
MAC: “Karla” (0.73), Fable71(0.71), 
Fable52(0.71), 
Fable5(0.71), Fable45(0.69), 
Fable59(0.68),Fable27(0.68) 

Table 15. Results for HAWK probes, database=Fables+“Karla” base story. 

6.6 Experiment 4: 
Hawk Stories 

The goal of encoding the Hawk stories was to replicate the results of Karla 
the Hawk studies described in Section 2.1.1. Thagard et al. (1990) encoded 
one story set and used the relative activation levels of the stories computed 
by ARCS as relative retrieval probabilities for human subjects. As Section 
4.4 pointed out, ARCS’ order of retrieval was as follows: literal similarity, 
first-order overlap, appearance, analogy, which is not a close match to the 
observed human ordering of literal similarity, appearance, analogy, first- 
order overlap. By contrast, MAC/FAC matched the human ordinal results 
in our simulation of this experiment. 

However, our purpose in this experiment was to pursue the question of 
stability of results under different distracters. We asked two questions: (a) 
Does MAC/FAC, using Thagard et al.‘s (1990) encodings, perform appro- 
priately, and (b) does changing the database used as ARCS’ memory change 
its predicted outcomes? Both simulations were run with the Hawk stories as 
probes, with the fables (plus Karla story) as memory and with both fables 
and plays (plus the Karla story) as memory. The results are shown in Table 
15 and Table 16, respectively. 
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ARCS Resuks. 

Probe Results Seconds 

“Karla”, literal “Karla” base (0.67) 614 
similarity 
“Karla”, appearance Fable55 (0.40),[16 stories], “Karla” base (- 408 

0.018) 
“Karla”, analogy Pericles (0.60), [17 stories], “Karla” base (-0.32) 244 
“Karla”, false analogy Pericles (0.58), [22 stories], “Karla” base (-0.38) 45 

MACIFAC Results. 

Probe 
Karla, Literal 
Similarity 
Karla, apperance 

Results Seconds 
FAC: “Karla”( 16.07) 7 
MAC: “Karla”(0.8 I), Fable71 (0.74) 
FAC: “Karla” (7.92), 21 
MAC: “Karla” (0.71), Fable52(0.71), Julius Caesar 

(0.6% 
Othello (0.68), Macbeth (0.67), Fable71(0.66), 
Two Gentlemen of Verona (0.65). Fable27(0.65). 

Karla, analog 
) Hamlet (0.65), Fable5(0.64) ‘. . ” ) 
1 FAC:“Karla”(8.57) 1 37 

Karla, First-order 
overlap 

MAC: “Karla” (0.81), Julius Caesar (0.78), 
Two Gentlemen of Verona (0.78). Fable52(0.77), 
Fable5(0.77), Macbeth (0.76),As You Like It(0.76). 
Fable71(0.76), Fable45(0.75), Fable59(0.75), 
Fable27(0.75), 0thello(0.75) 
FAC: “Karla”(5.33). Fable5(5.33) 23 
MAC: “Karla”(0.73), Juilius Caesar(O.72), 
Two Gentlemen of Verona (0.72). Fable7 l(0.7 1 ), 

Fable52(0.71), Fable5 (0.71), Macbeth(0.70), 
As You Like It (0.70), Othello (0.69), Fable45 
(0.69), Hamlet(0.68) I 

Table 16. Results for HAWK probes, with database=Fables+Plays+“Karla” base story. 

No matter which database is used, MAC/FAC always retrieves the Karla 
story, irrespective of which variant story is used as a probe. The MAC 
scores explain why: In each case, the Karla story is at the top of the ranking, 
indicating that the pattern of identical predicates overlapping is greater for 
Karla and variant than for any other story. The fact that the Karla base 
story is retrieved for the literal similarity and appearance variants is ex- 
pected. Its retrieval when the analogy is used as a probe is also reasonable 
(although if ARCS always retrieved analogs successfully it would be an im- 
plausible model). Retrieving the base story when the first-order overlap 
story is used as a probe is not so reasonable. We believe this occurs because 
the Thagard et al. (1990) representations are rather sparse and include 
almost no surface information and, thus, are less natural than might be 
desired (cf. the specificity conjecture of Forbus & Gentner, 1989). 
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Interestingly, this experiment marks the only place where the decision to 
use functions in encoding made any real difference in the results. If no func- 
tions were used in translating the ARCS representations, the MAC results 
remained the same (because content vectors are based strictly on identical 
predicates), but the Karla base story would be knocked out of the FAC out- 
put by other stories that had more overlapping structure, because the causal 
structure in the Karla story could not be consistently mapped due to non- 
identical relations. The fact that this problem only shows up with this one 
probe set, out of all the representations made by Thagard et al. (1990), sug- 
gests that this is not a serious problem. 

As was suggested by Experiments 1 and 2, the ARCS results vary consider- 
ably with different distractor sets. This means that the use of relative activa- 
tions to estimate relative frequencies is not a stable measure. Specifically, 
the relative ordering of first-order overlap and analogy reverses when the 
database of fables is augmented with the plays. The position of the Karla 
story in the activation rankings is also alarming. The appearance story, 
which should retrieve the base almost as often as the literal similarity story, 
has dropped from the 9th in the ranking to 18th. Depending on where the 
retrieval cutoff is placed, the conclusion might be that ARCS fails to 
retrieve the Karla story given the very cfose surface match. 

6.7 Experiment 5: 
ARCS Using Simple Identicality 

The results so far indicate that MACYFAC is far more immune to false posi- 
tives than ARCS. What is responsible for this difference? Is it MACIFAC’s 
use of a separate stage that performs structural filtering? The use of content 
vectors versus parallel constraint satisfaction to generate an initial set of 
retrieval candidates? MAC/FAC’s identicality constraint versus ARCS’ 
weaker semantic constraint? A complete answer to this question will require 
much more empirical and theoretical work, but we can gain some insight by 
a simple experiment. We ran ARCS again, but without the WordNet-inspire 
similarity network. Under such conditions, ARCS only creates local matches 
between identical predicates, and the initial candidate set is much smaller, 
because the semantic similarity constraint has been greatly tightened. 

The results of this experiment are shown in Tables 17 through 19. Table 
17 shows that the rest&s on Sour Grapes have improved substantialiy; 
ARCS is no longer tempted by plays. Table 18 shows that, although a Mid- 
summer Night’s Dream is high on ARCS’ hst, it no longer prefers it to 
Romeo & Juliet when West Side Story is used as a probe. The Hawk results 
show the least improvement; the estimated retrieval order again does not 
match that of human participants, and there are still many fables and plays 
ahead of what should be very close matches to the Karla base story. 
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ARCS w/identicaIity, SGIFABLES 

Probe Results Seconds 

Sour Grapes literal Sour GrapestO. 18) 1.3 

Sibley 
Sour Grapes appearance Sour Grapes (0.28) 23 

Sour Grapes analogy Sour Grapes (0.18) 1.1 

ARCS w/identicality, SG/(FABLES+PLAYS) 

Probe 1 Results 1 Seconds 

Sour Grapes literal 
similarity 

Sour Grapes (0.19) 4 

Sour Grapes appearance 1 Sour Grapes (0.28) ] 34 
Sour Grapes analogy 1 Sour Grapes (0.19) 1 4 

Tobie 17. ARCS w/identicality on Sour Grapes with Fobles ond Fables+Ploys. 

ARCS w/identicality, database = plays 

189 

Romeo & Juliet (0.59), Midsummer Night’s Dream (0.52) 

ARCS w~d~~~li~, database = plays+Fabks 

Probe 1 Result ) Second / 
S 

Hamlet King Lear (0.55), Romeo & Juliet (OSl), Othello (0.46), 1108 
Cymbeline (0.49), Macbeth (0.39), Julius Caesar (0.37) 

West Side Romeo & Juliet (0.59), Midsummer Night’s Dream (0.52) 3014 

Table ‘18. ARCS w/identicality, probed with Flays. 

6.8 Conclusions from Computational Comparison Experiments 
The results of cognitive simulation experiments must always be interpreted 
with care. In this case, we believe our experiments provide evidence that 
MAUFAC, using structure-mapping’s identicality constraint, better models 
retrieval than ARCS, which uses Thagard et al.‘s (1990) notion of semantic 
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ARCS w/identicality, HAWK/FABLES 

Probe 
Karla, Literal Similarity 
Karla, Appearance 
Karla, True Analogy 

Karla, First-Order 
overlap 

Results Seconds 
Fable23(0.261),Fable55(0.258),Karla story (-0.1) 73 
Fable55(0.4),[8 fables],Karla story (-0.23) 114 
Fable23(0.26),Fable55(0.26),[5 fables], Karla story 12 
(-0.23) 
Fable23(0.087),Fable55(0.087) 5 

ARCS w/identicality, HAWIU(FABLES+PLAYS) 

Probe Results Seconds 
Karla, Literal Fable23(0.26),Fable55(0.26),Karla story(-0.014) 74 
Similarity 
Karla, Appearance Fable55(0.25),Hamlet(0.17),Fable23(0.067),[17 plays & 154 

fables],Karla story(-0.22) 
Karla, True Pericles(0.55),[3 plays],Fable23(-O.l3),Fable55(-0.13), 29 
Analogy [8 plays & fables],Karla story (-0.30) 
Karla, First-Order Pericles(0.59),[6 fables & plays],Fable23(-0.25), 18 
overlap Fable55(-0.25) 

Table 19. ARCS w/identicality, HAWK probes. 

similarity. In retrieval, the special demands of large memories argue for 
simpler algorithms, simply because the cost of false positives is much 
higher. If retrieval were a one-shot, all-or-nothing operation, the cost of 
false negatives would be higher. But that is not the case. In normal situa- 
tions, retrieval is an iterative process, interleaved with the construction of 
the representations being used. Thus, the cost of false negatives is reduced 
by the chance that reformulation of the probe, due to re-representation and 
inference, will substantially catch a relevant memory that slipped by once. 

Overall, although both MAC/FAC and ACME are designed to allow 
parallel implementations, MAC/FAC’s speed advantage (roughly two 
orders of magnitude) would suggest that it is the more practical choice for 
cognitive simulation experiments. Finally, we note that although ARCS’ use 
of a localist connectionist network to implement constrain satisfaction is in 
many ways intuitively appealing, it is by no means clear that such implemen- 
tations are neurally plausible. On the other hand, we believe the evidence 
suggests that MACYFAC captures similarity-based retrieval phenomena 
better than ARCS does. 

7. DISCUSSION 

To understand the role of similarity in transfer requires making fine 
distinctions both about similarity and about transfer. The psychological 
evidence indicates that the accessibility of matches from memory is strongly 
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influenced by surface commonalities and weakly influenced by structural 
commonalities, whereas the rated inferential soundness of comparisons is 
strongly in~uenced by structural commonalities and is little, if at all, in- 
fluenced by surface commonalities. An account of similarity in transfer 
must deal with the dissociation between retrieval and structural alignment: 
between the matches people get from memory and the matches they want. 

The MAC/FAC model of similarity-based retrieval captures both the 
fact that humans successfully store and retrieve intricate relational structures 
and the fact that access to these stored structures is heavily (though not 
entirely) surface driven. The first stage is attentive to content and blind to 
structure, and the second stage is attentive to both content and structure. 
The MAC stage uses content vectors, a novel summary of structured repre- 
sentations, to provide an inexpensive “wide net” search of memory, whose 
results are pruned by the more expensive literal similarity matcher of the 
FAC stage to arrive at useful, structurally sound matches. 

The simulation results presented here demonstrate that MACYFAC can 
simulate the patterns of access exhibited by humans. It displays the appro- 
priate preponderance of literal similarity and surface matches, and it occa- 
sionally retrieves purely relational matches (Section 4). Our sensitivity 
studies suggest that these results are a consequence of our theory and are 
not hostage to nontheoretically motivated parameters or algorithmic choices 
(Section 5). Our computational experiments comparing MAC/FAC and 
ARCS (Section 6) suggests that MAUFAC accounts for the psychological 
results more accurately and more robustly than ARCS. In addition to the 
experiments reported here, we have tested MAG’FAC on a variety of other 
data sets, including relational metaphors (30 descriptions, average of 12 
propositions each) and attribute-rich descriptions of physical situations as 
might be found in commonsense reasoning (12 descriptions, averaging 42 
propositions each). We have also tried various combinations of these data- 
bases with the Karla the Hawk data set (45 descriptions, averaging 67 prop- 
ositions each). In all cases to date, MAUFAC’s performance has been 
satisfactory and consistent with the overall pattern of findings regarding 
human retrieval. We conclude that MAC/FAC’s two-stage retrieval process 
is a promising model of human retrieval. 

7.1 Li~tatians and Open Questions 

7.1.1 Retrieval Failure 
Sometimes a probe reminds us of nothing. Currently the only way this can 
happen in the MAC/FAC model is for FAC to reject every candidate pro- 
vided by MAC. This can happen if no structurally sound match hypotheses 
can be generated between the probe and the descriptions output by MAC. 
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(Without any local correspondences there can be no interpretation of the 
comparison.) This can happen, albeit rarely. A variant of MAC/FAC with 
thresholds on the output of either or both MAC or FAC stages-so that the 
system would return nothing if the best match were below criterion-would 
show more nonremindings. 

7.1.2 Focused Remindings and Penetrability 
Many AI retrieval programs and cognitive simulations elevate the reasoner’s 
current goals to a central role in their theoretical accounts (e.g., Burstein, 
1989; Hammond, 1986; 1989; Keane, 1988a, 1989b; Kolodner, 1984, 1989; 
R&beck & Shank, 1989; Thagard et al., 1990). Although we agree with the 
claim that goal structures are important, MACYFAC does not give goals a 
separate status in retrieval. Rather, we assume that the person’s current 
goals are represented as part of the higher-order structure of the probe. The 
assumption is that goals are embedded in a relational structure linking them 
to the rest of the situation; they play a role in retrieval, but the rest of the 
situational factors must participate as well. When one is hungry, for in- 
stance, presumably the ways of getting food that come to mind are different 
if one is standing in a restaurant, a supermarket, or in the middle of a 
forest. The inclusion of current goals as part of the representation of the 
probe is consistent with the finding of Read and Cesa (1991) that asking 
subjects for explanations of current scenarios leads to a relatively high rate 
of analogical reminding. However, we see no reason to elevate goals above 
other kinds of higher-order structure. By treating goals as just one of many 
kinds of higher-order structures, we escape making the erroneous prediction 
of many case-based reasoning systems: that retrieval requires common goals. 
People can retrieve information that was originally stored under different 
goal structures. (See Goldstein, Kedar, & Bareiss, 1993, for a discussion of 
this point .) 

A related question concerns the degree to which the results of each stage 
are inspectable and tunable. We assume that the results of the FAC stage are 
inspectable, but that explicit awareness of the results of the MAC stage is 
lacking. We conjecture that one can get a sense that there are possible matches 
in the MAC output, and perhaps some impression of how strong the matches 
are, but not what those items are. The feeling of being reminded without 
being able to remember the actual item might correspond to having candi- 
dates generated by MAC that are all either too weak to pass on or are rejected 
by the FAC stage. Some support for this two-stage account comes from 
Metcalfe’s (1993) findings on feeling-of-knowing. She found that subjects 
report a general sense of feeling-of-knowing befare they can report a partic- 
ular retrieval. Reder (1988) suggests that this preretrieval sense of feeling- 
of-knowing might provide the basis for deciding whether to pursue and 
expect retrieval. 
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This raises the question of how much MAC and FAC can be affected by 
the subject? There is psychological evidence that people cannot directly con- 
trol the kinds of matches they retrieve. Sch~a~her and Gentner (in press) 
investigated this by varying the test instructions given to subjects. They gave 
subjects lists of proverbs to read, followed by test proverbs which were 
either structurally similar or surface-similar to proverbs studied previously. 
Subjects who were told to write any prior proverbs that they were reminded 
of while reading the test proverbs recalled about twice as many surface 
matches as analogies. Another group of subjects was told to write only 
structural remindings and to strive for as many of these as possible. Al- 
though these subjects indeed wrote many fewer surface matches than the 
first group, they recalled only the same low number of analogies. The goal 
to seek relational matches apparently led people to filter nonrelational 
matches, but not to find more relational matches. This suggests that the 
FAC matcher may be tunable (in that subjects were able to filter out the sur- 
face matches) but not the MAC matcher (in that subjects were not able to 
produce more analogies on demand). 

The idea that FAC, though not MAC, is tunable is consistent with evi- 
dence that people can be selective in similarity matching once both members 
of a pair are present. For example, in a triads task, matching XX to 00 or 
X0, subjects can readily choose either only reiational matches (XX-00) 
or only surface matches (XX-X0) (Gentner & Markman, 19994a, 1994b; 
Goldstone et al., 1991; Medin et al., 1993). This kind of structural selectiv- 
ity in the similarity processor is readily modeled in SME (by assuming that 
we select the interpretation that fits the task constraints), but not in ACME 
(Iiolyoak & Thagard, 1989). ACME produces one best output that is its 
best compromise among the current constraints. It can be induced to pro- 
duce different preferred mappings by inputting different pragmatic activa- 
tions, but not by inviting different structural preferences (Spellman & 
Holyoak, 1992). 

7.1.3 Size of Content Vectors 
One potential problem with scaling up with MAUFAC is the potential 
growth in the size of content vectors. Our current descriptions use a vocabu- 
lary of only a few hundred distinct predicates. We implement content vectors 
via sparse encoding tech~ques, analogous to those used in computations 
matrix algebra, for efficiency. However, a psychologi~y plausible repre- 
sentation vocabulary may have hundreds of thousands of predicates. It is 
not obvious that our sparse encoding techniques will suffice for 
vocabularies that large, nor does this implementation address the question 
of how systems with limited “hardware bandwidth,” such as connectionist 
implementations, could serve as a substrate for this model. 
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This scale problem is mitigated partly by MAC/FAC’s basic architecture 
with its cheap initial filter. However, there are at least two further possible 
ways to address the potential scale problem in the size of content vectors. 
The first is abstraction. In symbolic knowledge representations, predicates 
and functions are often arranged in hierarchies. For example, a complex 
concept such as bequeath might be stored as a specialization of the concept 
of giving, which might in turn be a specialization of the concept of transfer. 
Let us view the set of specializations between predicates as a lattice. Any set 
of predicates that partitions the lattice can be used to formulate a seman- 
tically compressed content vector as follows: The weight of a component of 
the compressed content vector is a function of the number of occurrences of 
that predicate-and all predicates below it in the partition-in the descrip- 
tion. In effect, predicates below the selected subsets are replaced with more 
abstract versions. Another possible solution for the scale problem is fac- 
torization: The predicates could be partitioned into subsets that are tightly 
interrelated, and separate content vectors could be computed for each 
subset. This organization presumes that there is some fixed size bound on 
processing modules, but that several processing modules can be synchronized 
well enough to accumulate results across them. 

7.1.4 Combining Similarity Effects Across Items 
MACYFAC is currently a purely exemplar-based memory system. The 
memory items can be highly situation-specific encodings of perceptual 
stimuli, abstract mathematical descriptions, causal scenarios, and so forth. 
MAC/FAC lacks the capacity to model inter-item effects. For example, 
MAC/FAC does not capture competition among items. Wharton, Holyoak, 
Downing, Lange, and Wickens (1991, 1992) and Wharton et al. (1994) have 
shown an intriguing effect where competition between exemplars heightens 
the relative effect of structural similarity in retrieval. MAC/FAC also does 
not average across several items at retrieval (Medin & Schaffer, 1978) or 
derive a global sense of familarity by combining the activations of multiple 
retrievals (Gillund & Shiffrin, 1984; Hintzman, 1986, 1988). An interesting 
extension of MAC/FAC would be to include this kind of between-item pro- 
cessing upon retrieval. 

If such inter-item averaging occurs, it could provide a route to the in- 
cremental construction of abstractions and indexing information in memory. 
We see three plausible ways to do this. First, as above, the descriptions out- 
put by the MAC stage could be compared. Second, the access system might 
incrementally build up something like Minsky’s (1981) similarity network, 
using the history of retrievals to encode difference descriptions to simplify 
future access. Third, the descriptions output by the FAC stage could be 
compared: SME could be used to carry out structural abstraction across 
several descriptions (as in Skorstad et al., 1988) to produce a combined 
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description as the FAC output. The first and third models are both forms of 
“iate averaging” accounts, and it would be interesting to compare these 
techniques with other models that account for prototype effects by combin- 
ing exemplars at retrieval (Hintzman, 1986, f988; Medin & Shaffer, 1978). 

7,1.5 Iterative Access 
Keane (1988c, 1991; Keane & Brayshaw, 1988) and Burstein (l983a, 1983b) 
have proposed incremental mapping processes. We suggest that simifarity- 
based retrieval may also be an iterative process. In particular, in active 
retrieval (as opposed to spontaneous remindings), we conjecture that MAC/ 
FAC may be used iteratively, each time modifying the probe in response to 
the previous match (cf. Falkenhainer, 1987, 1990a; Gentner, 1989). Sup- 
pose, for example, a probe yielded several partial remindings. The system of 
matches could provide clues as to which aspects of the probe are more or 
less relevant and, thus, should be highlighted or suppressed on the next 
iteration. MAC should respond to this altered vector by returning more 
relevant items, and FAC can then select the best of these. 

Another advantage of such incremental reminding is that it might help 
explain how we derive new relational categories. Barsalou’s (1982, 1987) ad 
hoc categories, such as “things to take on a picnic*’ and Glucksberg and 
Keysar’s (1990) metaphorically based categories, such as ‘*jail” as a proto- 
typical confining institution, are examples of the kinds of abstract. relational 
commonalities that might be highlighted during a process of incremental 
retrieval and mapping. 

MAC/FAC is not itself a complete analogical processing system. For exam- 
ple, both constructing a model from multiple analogs (e.g., Burstein, 1983a, 
1983b) and learning a domain theory by analogy (e.g., Falkenhainer, 1987, 
1988, 1990b) require multiple iterations of accessing, mapping, and evaluat- 
ing descriptions. Several psychological questions about access cannot be 
studied ~thout ~~dd~~ MAC/FAC in a more comprehensive model of 
analogical processing (Forbus & Gentner, 1991). First, as discussed pre- 
viously, there is ample evidence that subjects can choose to focus on different 
kinds of similarity when the items being compared are both already in work- 
ing memory. Embedding MACYFAC in a larger system should help make 
clear whether this penetrability should be modeled as applying to the FAC 
system or to a separate similarity engine. (Order effects in analogical problem 
solving [Keane, 19901 suggest the latter.) 

A second issue that requires a larger, performance-oriented model to 
explore via simulation is when and how pragmatic constraints should be in- 
corporated (cf. Wolyoak & Thagard, 1989; Thagard & Holyoak, 1989,199O). 
Because we assume that goals, plans, and similar control knowledge is expii- 
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citly represented in working memory, the MAC stage will include such pred- 
icates in the content vector for the probe and hence will be influenced by 
pragmatic concerns. There are two ways to model the effects of pragmatics 
on the FAC stage. The first is to use the SME pragmatic marking algorith 
(Forbus & Oblinger, 1990) as a relevance filter. The second is to use incre- 
mental mapping, as in Keane and Brayshaw’s (1988) Incremental Analogy 
Machine (IAM). This technique permits the selection and grouping of sets 
of correspondences to be influenced by the task at hand (Forbus et al., 1994). 

A recent simulation by Lange and Wharton (1992, 1993), REMIND, 
models retrieval in the context of natural language processing, using spread- 
ing activation in a connectionist network both to construct a conceptual 
representation from textual input and to find the most similar story in its 
episodic memory. REMIND is an intriguing model, and the attempt to inte- 
grate multiple cognitive processes into larger models is an important activity. 
However, it is difficult to compare this model with MACYFAC and other 
retrieval models. First, REMIND only models a specific retrieval task, 
namely retrieval in the service of understanding stories, and thus does not 
attempt to cover as wide a span of phenomena as MAC/FAC. Second, 
when REMIND retrieves a story, it does not appear to create correspondences 
between the understanding of its input and the previous story, nor does it 
generate novel candidate inferences, and thus does not satisfy the structured 
mappings criterion for retrieval. Third, REMIND has only been tested on a 
corpus involving a handful of short (i.e., two sentence) stories. To our 
knowledge, it has never been tested either on a corpus as large as those used 
with MAC/FAC and ARCS or on a corpus that includes examples as large 
as those used with MAUFAC. Even their current small databases stretch 
the limits of a Connection Machine,16 which makes it difficult to evaluate 
their model thoroughly. 

7.1.7 Expertise and Relational Access 
Despite the gloomy picture painted in this research and in most of the 
problem-solving research, there is evidence of considerable relational access 
(a) for experts in a domain and (b) when intial encoding of the study set is 
relatively intensive. Novick (1988a, 1988b) studied remindings for mathe- 
matics problems using novice and expert mathematics students. She found 
that experts were more likely than novices to retrieve a structurally similar 
prior problem, and when they did retrieve a surface-similar problem, they 
were quicker to reject it than were novices. Faries and Reiser (1988) taught 
participants LISP in a series of intensive training sessions and then gave 
them target problems that were superfically similar to one prior problem 
and structurally similar to another. Given this intensive training, Faries and 

I6 Trent Lange, personal communication, IJCAI-93. 
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Reiser’s subjects were able to access structurally similar problems despite 
the competing superficial similarities. 

The second contributor to relational retrieval, almost certainly related to 
the first, is intensive encoding. Gick and Holyoak (1983) and Catrambone 
and Holyoak (1987, 1989) found that subjects exhibited increased rela- 
tional retrieval when they were required to compare two prior analogs, but 
not when they were simply given two prior analogs to read. Schumacher and 
Gentner (1987) found increased relational retrieval of proverbs when sub- 
jects wrote out the meaning of each proverb on the study list, as opposed 
to simply reading it or rating its cleverness. Seifert, McKoon, Abelson, and 
Ratcliff (1986) investigated priming effects in a sentence verification task 
between thematically similar (analogical) stories. They obtained priming 
when subjects first studied a list of themes and then judged the thematic 
similarity of pairs of stories, but not when subjects simply read the stories. 

The increase of relational reminding with expertise and with intensive 
encoding can be accommodated in the MAC’FAC model. First, we assume 
that experts have richer and better structured representations of the rela- 
tions in the content domain than do novices (Carey, 1985; Chi, 1978; Reed, 
Ackinclose, & Voss, 1990). This fits with developmental evidence that as chil- 
dren come to notice and encode higher-order relations such as ~y~~~~~y and 
monotonicity, their appreciation of abstract similarity increases (Gentner 
& Rattermann, 1991; Kotovsky & Gentner, 1990). Second, in particular we 
speculate that experts may have a more uniform internal relational vocabu- 
lary within the domain of expertise than do novices (Clement, Mawby, & 
Giies, 1994; Gentner 8r Rattermann, 1991; Gentner, Rattermann, Kotovsky, 
et al., in press). The idea is that experts tend to have relatively comprehen- 
sive theories in a domain and that this promotes canonical relational encod- 
ings within the domain. 

To the extent that a given higher-order relational pattern is used to en- 
code a given situation, it will of course be automatically incorporated into 
MACIFAC’s content vector. This means that any higher-order relational 
concept that is widely used in a domain will tend to increase the uniformity 
of the representations in memory. This increased uniformity should increase 
the mutual accessibility of situations within the domains. Thus, as experts 
come to encode a domain according to a uniform set of principles, the 
likelihood of appropriate relational remindings increases. That is, under the 
MAC’FAC model, the differences in retrieval patterns for novices and ex- 
perts are explained in terms of differences in knowledge, rather than by the 
construction of explicit indices. 

Bossok has made an interesting argument that indirectly supports this 

claim of greater relational uniformity for experts than for novices (Bassok 
& Wu, in press). Noting prior findings that in forming representations of 
novel texts people’s interpretations of verbs depend on the nouns attached 
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to them (Gentner, 1981; Gentner &France, 1988), Bassok suggests that par- 
ticular representations of the relational structure may thus be idiosyncrat- 
ically related to the surface content, and that this is one contributor to the 
poor relational access. If this is true, and if we are correct in our supposition 
that experts tend to have a relatively uniform relational vocabulary, then an 
advantage for experts in relational access would be predicted. 

As domain expertise increases, MAC/FAC’s activity may come to 
resemble a multigoal case-based reasoning model with complex indices (e.g., 
Birnbaum & Collins, 1989; King & Bareiss, 1989; Martin, 1989; Pazzani, 
1989; Porter, 1989). We can think of its content vectors as indices with the 
property that they change automatically with any change in the representa- 
tion of domain exemplars. Thus, as domain knowledge-particularly the 
higher-order relational vocabulary-increases, MAUFAC may come to 
have sufficiently elaborated representations to permit a fairly high propor- 
tion of relational remindings. The case-based reasoning emphasis on 
retrieving prior examples and generalizations that are inferentially useful 
may thus be a reasonable approximation to the way experts retrieve 
knowledge. 

Although MAC/FAC’s two-stage operation is not generally shared by 
case-based models, it is shared by one case-based reasoning system that 
uses a two-stage model, the CaPER system (Kettler, Hendler, & Anderson, 
1992). CaPER is designed to retrieve all sufficiently similar plans from an 
unindexed case base, beginning with a massively parallel stage which does a 
simple, nonstructural match between a query and the contents of memory. 
It would be very interesting to see how well the parallel techniques used in 
CaPER could be applied to MAC/FAC. 

7.2 The Decomposition of Similarity 
The dissociation between surface similarity and structural similarity across 
different processes has broader implications for cognition and is related to 
several recent discussions. Medin et al. (1993) and Gentner (1989) have 
argued that similarity is pluralistic, in the sense that there are multiple 
subclasses of similarity and multiple influences on how it is computed. Rips 
(1989) demonstrated a dissociation between similarity, typicality, and 
categorization. Murphy and Medin (1985) and Keil (1989) have commented 
on the limited usefulness of simple similarity and pointed out that physical 
resemblance does not provide a sufficient basis for determining conceptual 
groupings. As discussed above, there is a relational shift in development 
(Gentner & Rattermann, 1991; Halford, 1992). Finally, local object matches 
appear to be processed faster by adults than structural commonalities. 
Goldstone and Medin (1994a, 1994b) found that local similarities have their 
effects on mapping earlier than global relational similarities in a timed 
mapping task, and Ratcliff and McKoon (1989) found convergent results in 
a sentence-matching task: Subjects could discriminate new from old 
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sentences faster if the the new sentences contained all new words (e.g., 
“Helen attracted Jeff.” vs. “Andrew accosted Mary.“) than if the 
sentences differed only in relational structure (e.g., “Helen attracted Jeff.” 
vs. “Jeff attracted Helen.“). In pilot experiments using perceptual stimuli, 
in which subjects were timed under different kinds of mapping instructions, 
Markman and Gentner (in press) found that subjects are faster to choose on 
the basis of similar objects than on the basis of similar relations, even when 
the two rules dictate the same response. 

These kinds of results render less plausible the notion of a unitary 
similarity that governs retrieval, evaluation, and inference. Instead, they 
suggest a more complex, pluralistic view of similarity. MACYFAC provides 
an architecture that demonstrates how such a pluralistic notion of similarity 
can be organized to account for psychological data on retrieval. 
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