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a b s t r a c t

A prevailing theory regarding the evolution of language implicates a gestural stage prior to
the emergence of speech. In support of a transition of human language from a gestural to a
vocal system, articulation of the hands and the tongue are underpinned by overlapping left
hemisphere dominant neural regions. Behavioral studies demonstrate that human adults
perform sympathetic mouth actions in imitative synchrony with manual actions.
Additionally, right-handedness for precision manual actions in children has been corre-
lated with the typical development of language, while a lack of hand bias has been associ-
ated with psychopathology. It therefore stands to reason that sympathetic mouth actions
during fine precision motor action of the hands may be lateralized. We employed a
fine-grained behavioral coding paradigm to provide the first investigation of tongue pro-
trusions in typically developing 4-year old children. Tongue protrusions were investigated
across a range of cognitive tasks that required varying degrees of manual action: precision
motor action, gross motor action and no motor actions. The rate of tongue protrusions was
influenced by the motor requirements of the task and tongue protrusions were signifi-
cantly right-biased for only precision manual motor action (p < .001). From an evolutionary
perspective, tongue protrusions can drive new investigations regarding how an early
human communication system transitioned from hand to mouth. From a developmental
perspective, the present study may serve to reveal patterns of tongue protrusions during
the motor development of typically developing children.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

The tongue is one of the largest muscles in the human
body, controlled by the hypoglossal nerve (twelfth cranial
nerve). Following brain injury, tongue protrusions can be
used as a diagnostic tool to determine the anatomical level
of damage (Riggs, 1984). Patients are asked to stick their
tongue out straight. Damage to tongue muscles or the
hypoglossal nerve can result in tongue weakness, causing
the tongue to deviate toward the weak side (ipsilateral).
Conversely, lesions originating from the motor cortex will
cause contralateral tongue weakness. Such anatomical
organization suggests contralateral hemispheric motor
control of articulatory left and right tongue actions.
Although the primary roles of the tongue are to aid masti-
cation, swallowing and gustation, a secondary, but critical
role of the tongue is phonetic articulation. Additionally, the
tongue becomes active in nonverbal synchrony with man-
ual motor tasks. For example, have you ever noticed that
whilst performing a manual task, your tongue is pressed
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between your lips with the tip protruding from the mouth?
This behavior is commonly observed in young children
(Mason & Proffit, 1974) and may be noticeable in adults
when pursuing high precision manual dexterity that
requires focused attention, like threading a needle
(Givens, 2002). However, the origin of this motor action
and the basis of its functionality, has yet to be formally
investigated.

To date, the literature concerning tongue protrusions
concentrates on involuntary tongue protrusion, also called
‘tongue thrust’, ‘reverse swallow’ or ‘immature swallow’.
Tongue thrust is typically associated with psychopathology
and is considered to be an orofacial muscular imbalance
whereby the tongue ‘‘protrudes through the anterior inci-
sors during swallowing, speech production, and while the
tongue is at rest’’ (Council on children with disabilities,
2006). Tongue thrust has been documented in patients
with Dystonia (Schneider et al., 2006), Down’s syndrome
(Limbrock, Fischer-Brandies, & Avalle, 1991), Rett syn-
drome (Einspieler, Kerr, & Prechtl, 2005), Tourette’s syn-
drome (Strassnig, Hugo, & Muëller, 2004), Angelman
syndrome (Williams et al., 2006) and in children with
non-organic failure to thrive (Mathisen, Skuse, Wolke, &
Reilly, 1989). Tongue thrust has also been reported in
67–95% of typically developing children aged 5–8 years.
For most children, the behaviour extinguishes by the age
of six as typical swallowing motor action matures
(Mason & Proffit, 1974). However, involuntary tongue
thrust relating to reflexive swallowing actions may funda-
mentally differ in function and neural origin from the ton-
gue protrusions produced by typically developing
individuals during tasks of high concentration.

Theories regarding the evolutionary and developmental
basis of tongue protrusions during tasks of concentration
range from: motor overflow during attentional processes
(e.g. Waber, Mann, & Merola, 1985) to the physical rejec-
tion of the bottle or breast by infants to indicate satiation
(e.g. Morris, 1978). While the former has not been formally
investigated, in the latter scenario, it has been hypothe-
sized that the tongue protrusion action is retained
throughout development as a symbol of rejection, imply-
ing: ‘back off’ or ‘leave me in peace‘ (e.g. Ingram, 1990).
Anecdotal evidence of such an interpretation can be found
in Western culture where tongue protrusions have become
a popular symbol utilized by celebrities to ward off
unwanted public attention. However, if a protruded tongue
results from an involuntary, innate behavior to indicate
satiation, one should find evidence of this symbolic defi-
ance gesture across cultures. While there is a paucity of
empirical data to consider, contrary to the above hypothe-
sis, in Tibet, the protrusion of the tongue is considered to
be a greeting (Tsering, 2008).

A more compelling theory regarding the origin of non-
verbal mouth actions (not specific to tongue protrusions)
is rooted in the evolution and development of language
processes. A gestural origins theory supports the premise
that human speech evolved from a communication system
based on hand gestures (Armstrong, Stokoe, & Wilcox,
1995), underpinned by the properties of a ‘mirror’ neuron
system (Rizzolatti & Arbib, 1998). This system serves both
the production and perception of actions, potentially
making a critical contribution to the emergence and devel-
opment of motor skills for willed communication (Gallese,
Fadiga, Fogassi, & Rizzolatti, 1996).

Behavioral evidence from chimpanzee and human stud-
ies supports such a synergy. For example, chimpanzees
generated sympathetic mouth movements significantly
more often during tasks requiring fine motor manipulation
compared with tasks requiring gross motor actions
(Waters & Fouts, 2002). In humans, Gentilucci,
Benuzzi, Gangitano, and Grimaldi (2001) demonstrated
that the pronunciation of a syllable could be selectively
disrupted when producing a simultaneous grasping action
for target objects of a non-congruent size to that of the
mouth vocalization. The finding suggests that the fine
motor articulation required for grasping is processed sim-
ilarly by both hand and mouth in humans, thus they tend
to complement each other. In fact, so tightly are the two
motor systems entwined that when either gesture or
speech is disrupted the other becomes delayed (Chu &
Hagoort, 2014).

Neuroimaging findings indicate close links between the
brain regions related to speech production and those con-
trolling movement of the hands and arms (Erhard et al.,
1996; Rizzolatti & Arbib, 1998; Rizzolatti & Craighero,
2004). Specifically, Broca’s area is activated when imitating
hand movements and preparing grasps (Iacoboni, Woods,
& Mazziotta, 1998) in addition to actual or internal speech
(Hinke et al., 2003), supporting the notion of a common
neural substrate for hand and mouth articulation. Thus,
in modern humans, there exists an association between
speech and gesture that ‘‘transcends the intentions of the
speaker to communicate’’, whereby the mutual activities
remain inextricably intertwined throughout life (Iverson
& Thelen, 1999).

In humans, the observation of grasp alone can activate
preparation of the same motor act (Fadiga, Fogassi,
Pavesi, & Rizzolatti, 1995). These findings are reminiscent
of the observed and actual grasping behaviors discovered
in monkeys (Rizzolatti et al., 1988), underpinned by a mir-
ror neuron system. Broca’s region in humans and the anal-
ogous neural region in the monkey brain (F5) may act as a
supramodal processor for planned, structured action
sequences represented by both the hands and the mouth
(e.g. Petersson, Folia, & Hagoort, 2012; Pulvermüller &
Fadiga, 2010). This sort of system supports perception–
action coupling and may have acted as a catalyst for the
emergence of syntactic processes found in modern human
language (e.g. Forrester, Leavens, Quaresmini, &
Vallortigara, 2011; Forrester, Quaresmini, Leavens,
Spiezio, & Vallortigara, 2012; Tabiowo & Forrester, 2013).
Such a processor also may have given rise to human
population-level right-handedness (Annett, 2002), sup-
ported by the left hemisphere’s dominance for guiding
sequences of structured motor actions (e.g. Forrester,
Quaresmini, Leavens, Mareschal, & Thomas, 2013).

Modern humans demonstrate population-level
right-handedness for both object manipulation and gesture
(Marchant, McGrew, & Eibl-Eibesfeldt, 1995). Recent stud-
ies of child handedness indicate that right-handedness is
correlated with typical language development
(Kastner-Koller, Deimann, & Bruckner, 2007) and that
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consistent hand dominance in early infancy (6–14 months)
is associated with subsequent advanced language skills
(18–24 months) (Nelson, Campbell, & Michel, 2014).
Moreover, a lack of hand dominance (e.g. mixed-handed,
ambi-preference) may indicate disruption to the cerebral
lateralization of language function (e.g. Crow, Crow,
Done, & Leask, 1998; Delcato, 1966; Orton, 1937;
Rodriguez et al., 2010; Yeo, Gangestad, & Thoma, 2007;
Yeo, Gangestad, Thoma, Shaw, & Repa, 1997). Thus,
strength of handedness may act as a useful behavioral
marker of children at risk for dysfunction of subsequent
language processes long before language develops (e.g.
Forrester, Pegler, Thomas, & Mareschal, 2014). Although
it has never been systematically investigated, one may
hypothesize that tongue protrusions produced during
manual actions may comprise a lateralized component,
consistent with a left hemisphere dominant neural
generator.

The present study investigated the frequency and later-
ality of tongue protrusions in order to provide the first
empirical dataset reflecting tongue protrusions in typically
developing four year-old children. Tongue protrusions
were assessed during six tasks of high concentration
requiring: fine motor object manipulation, gross motor
object manipulation or no object manipulation. Based on
limited existing evidence, we hypothesized increasing fre-
quency of tongue protrusions during tasks requiring pre-
hension. Additionally, we hypothesized a left hemisphere
(right side) bias in the direction of protrusion. Findings
are discussed in light of both developmental and evolu-
tionary theories.
2. Material and methods

2.1. Participants

Fourteen typically developing male (n = 8) and female
(n = 6) children (age range: 53–56 months; mean
age = 54.21 months) were randomly sampled from a previ-
ously recorded cohort of 150 children during their partici-
pation in a neuropsychological battery of cognitive tasks
(see Rodriguez & Waldenström, 2008). Rationale for the
age range was predicated by a previous report of tongue
thrust identified in 67–95% of typically developing children
aged 5–8 years, but tending to extinguish by the age of six
(Mason & Proffit, 1974). Importantly, participants were
considered to have reached an age by which any concerns
regarding delayed language development would have been
identified. Children participating in the study were
reported to have no symptoms of language dysfunction.
All children were right-handed as deemed by maternal
and self-reports. All children came from two-parent homes
with an average disposable monthly income of 25,000
Swedish Crowns, which corresponds to Swedish national
average representing 5th–8th income deciles (Swedish
Statistical Central Bureau).

All behavior was digitally recorded in the home of the
individual participants with the participant’s mother close
by. The procedures for this study involving human partic-
ipants were in accordance with ethical standards of the
responsible committee on human experimentation (insti-
tutional and national) and with the spirit of the Helsinki
Declaration of 1975, as revised in 2000.

2.2. Data collection

Tongue protrusion behaviors were observed during a
subset of the original neuropsychological test battery
(Small World, Board Game, Lock and Key, Knock and Tap,
Picture Block, Story Recall) conducted to assess cognitive,
behavioral, and emotional development (see Rodriguez &
Waldenström, 2008). The Small World and Board Game
tasks were performed with the child’s mother and were
designed to assess the mother–child relationship during
free-play (Small World) and structured-play (Board
Game). All other tasks were performed with a female
experimenter. All tasks were conducted on a table surface
in the home of the child. All tasks except one (Story Recall)
required an element of object manipulation (fine motor or
gross motor action) as defined by the instructions. For the
purposes of the present study, we were interested in the
duration of the task for each individual, the motor require-
ment of the task and the frequency and laterality of spon-
taneous tongue protrusions produced by the child.

2.2.1. Fine motor action
Small World: Participants were provided with a small

amount of Small World play toys such as miniature dolls,
porcelain tea set, and furniture packed into a miniature
suitcase. Participants were observed during independent
play and/or interaction with the mother for 5 min. All
objects were small and some objects had small moving
parts, requiring fine coordinated manipulation.

Board Game: A challenging game was presented to both
child and mother. Turn-taking was required and a roll of
the die determined a destination based on a combination
of a color and a picture. If the picture was present in the
column of the given color, a small playing chip was placed
on this space on their own board. The object of the game
was to complete a full row or column before the other
player. The time to complete the task varied across partic-
ipants. The collection of cards and the movement of play-
ing chips across the spaces of the board required fine
motor coordination.

Lock and Key: Participants were provided with 4 locked
metal padlocks, ranging in shape and size, and a set of five
keys on a single ring. Each key opened one lock. The pro-
cess for opening a lock was demonstrated by the experi-
menter. The child was given 5 min to open all the locks.
This task required fine motor coordination to manipulate
both keys and locks.

2.2.2. Gross motor action
Knock and Tap: This task was taken from the NEPSY neu-

ropsychological test battery (Kemp, Kirk, & Korkman,
2001; Korkman, Kirk, & Kemp, 2000) to assess attention
and effortful control in four-year-olds. The experimenter
engaged the child in the manual motor sequence task.
The experimenter sat opposite the child with hands laid
flat on the table. The child was asked to mirror the posi-
tion. The child indicated which hand s/he used most often.
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The experimenter explained that whenever she knocked
(closed fist) on the table, the child was to tap (opened palm
down, e.g. slap) on the table. In contrast, whenever the
experimenter tapped (opened palm down) on the table
the child was to knock. Several practice trials were given
to make sure that the child understood the task instruc-
tions. Fifteen test trials followed. This task required gross
motor movements, and did not require any object manip-
ulation. This task required inhibition of the prepotent
action, i.e. imitation of the experimenter’s hand movement
and was not timed.

Picture Block: The experimenter presented the child
with a small, 2D square picture of a bear with a ball. The
experimenter and child talked about the distinctive fea-
tures of the picture. The child was then presented with
nine approximately 1.5 in. square blocks. Each block por-
trayed a small segment, i.e. 1/9th of the 2D picture on
the top surface. The cubes were presented in mixed order,
but all correct picture segments were always oriented fac-
ing up. The child was tasked with rearranging the nine
blocks to match the 2D picture. The time taken to complete
the task varied for each child. This task required the spatial
rotation of blocks into position in accordance with the
defined picture.

2.2.3. No motor action
Story Recall: The experimenter read the Narrative

Memory story from the NEPSY neuropsychological test
battery (47, 48) suitable for four-year-olds. The story was
comprised of a complex plot involving several characters
and events. Children were asked to listen to the story
and then were asked to recall information under free and
cued-recall conditions. This task did not require any fine
or gross manual motor actions and was not timed.

2.3. Data coding

Videos were viewed on Windows Movie Media Player
providing a resolution of 30 frames per second. A tongue
protrusion was defined as any visible protrusion of the ton-
gue from or within the mouth. Under these criteria, protru-
sions could be internal or external. Although the duration
of protrusions was not calculated, the start of a protrusion
was identified by a visible distortion of the cheek or lip, or
by the visible appearance of the tongue through the lips.
Only the starting point of the protrusion was considered.
While some children performed tongue sweeps, beginning
with a protrusion and sweeping to the left or right, there
were too few of these events to be considered for further
analysis. Viewing of the fine resolution video footage
allowed for frame-by-frame analysis of protrusions.
Tongue protrusions were assessed for frequency and lat-
eral position, i.e. directed the tip toward the left or the
right of the individual. When a lateral position was unclear
(e.g. central), a protrusion was only considered for tests of
frequency. It is possible that central protrusions were lat-
eralized, but not to an identifiable extent by the coder.
Any instance where one side of the mouth was otherwise
engaged was not considered for further analysis. For exam-
ple, if a participant was chewing something (e.g. their
sleeve, a toy) and produced a tongue protrusion, the event
was excluded from the coded data set. Tongue protrusions
were calculated as events rather than bouts (e.g. quick suc-
cessive repetitions of the same action) and were analyzed
accordingly. All participant footage was observed for as
long as it took to reach the end of all tasks, which was on
average 50 min (±10 min).

2.4. Data analysis

Analyses of variance and appropriate post-hoc tests
were used to assess frequencies, rates and lateral
biases of group-level tongue protrusions. Laterality Index
scores (LI) were calculated using the formula
[LI = (R � L)/(R + L)], with R and L being the frequency
counts for right and left tongue protrusions. LI values vary
on a continuum between �1.0 and +1.0, where the sign
indicates the direction of tongue protrusion preference.
When R = L, then LI is zero, i.e. no lateral bias. Positive val-
ues reflect a right bias while negative values reflect a left
bias. In order to assess differences in the frequencies of
tongue protrusions across tasks, rates were calculated.
Rates were equal to the frequency of tongue protrusions
for a given task for a specific individual divided by the
duration in minutes to complete the task. Rate = (seconds
to complete task/# of tongue protrusions)/60. All statistical
tests were two-tailed (alpha < .05).
3. Results

Raw frequencies of tongue protrusions for each individ-
ual by task are presented in Table 1. Tongue protrusions
frequencies are divided into left, right and central direc-
tions. For ANOVA tests, where sphericity was not assumed,
Greenhouse–Geisser correction was used. Non-parametric
Wilcoxon signed-rank tests were used for all post-hoc
analyses.

3.1. General description of tongue protrusions

Across participants, the frequency of tongue protrusions
ranged between 16 and 49, (M = 30; SD = 9.89). On average,
the group elicited significantly more detectable external
(frequencies: M = 16.79, SE = 1.62; proportions: M = 0.562,
SE = 0.027) versus internal tongue protrusions (frequen-
cies: M = 13.21, SE = 1.395; proportions: M = 0.438,
SE = 0.027) collapsed across all tasks (frequencies:
t(13) = 2.417, p = 0.031; proportions: t(13) = 2.314,
p = 0.038). A 1-way ANOVA indicated no significant differ-
ence in the frequency of tongue protrusions across tasks:
Small World (M = 5.23, SE = 3.07); Board Game (M = 5.50,
SE = 2.07); Lock and Key (M = 4.29, SE = 3.34); Knock and
Tap (M = 4.14 SE = 3.44); Picture Block (M = 5.50,
SE = 3.39); Story Recall (M = 5.29, SE = 4.75) [F(5,
65) = 5.812, p = 0.277]. However, as tasks varied in dura-
tion or time to completion (see Table 2), rates of tongue
protrusions per minute were also calculated to equalize
the weighting that each task contributed to the dataset
(see Table 3).



Table 1
Left, right and central tongue protrusion frequencies by task and motor condition.

P Fine motor Gross motor No motor

SW
(L)

SW
(R)

SW
(C)

BG
(L)

BG
(R)

BG
(C)

LK
(L)

LK
(R)

LK
(C)

KT
(L)

KT
(R)

KT
(C)

BL
(L)

BL
(R)

BL
(C)

SR
(L)

SR
(R)

SR
(C)

1 3 3 0 1 6 3 2 6 2 0 4 1 4 3 2 0 2 0
2 0 0 2 0 1 4 0 3 1 0 0 0 5 2 3 0 0 0
3 0 4 2 0 5 3 0 2 2 0 5 5 2 6 2 2 0 1
4 0 1 2 0 1 4 0 3 2 0 0 2 0 0 1 0 0 5
5 0 2 5 0 0 4 0 3 3 0 0 1 2 0 1 1 0 0
6 1 2 2 0 2 4 0 1 1 0 0 2 0 0 0 5 2 8
7 3 1 4 0 2 2 2 2 0 0 2 3 1 0 3 1 9 3
8 0 1 3 2 0 2 0 0 4 0 0 3 3 0 1 1 0 5
9 0 1 3 1 4 1 1 0 0 3 1 0 1 4 2 3 4 2

10 1 4 4 1 5 2 0 4 7 1 2 8 5 0 4 0 0 1
11 3 4 5 0 2 3 0 0 1 0 0 2 3 1 4 1 0 3
12 0 0 0 0 2 2 0 0 0 1 2 3 0 4 2 0 0 0
13 0 2 1 0 1 1 0 1 0 0 0 0 2 2 0 2 1 6
14 2 1 2 0 4 2 1 4 2 0 3 4 2 0 0 3 2 1

M 0.93 1.86 2.50 0.36 2.50 2.64 0.43 2.07 1.79 0.36 1.36 2.43 2.14 1.57 1.79 1.36 1.43 2.50
SD 1.27 1.41 1.61 0.63 1.95 1.08 0.76 1.86 1.93 0.84 1.69 2.21 1.70 1.99 1.37 1.50 2.50 2.59

P = participant, SW = Small World, BG = Board Game, LK = Lock and Key, KT = Knock and Tap, PB = Picture Block, SR = Story Recall; (l) = left, (r) = right,
(c) = central, M = mean, SD = standard deviation.

Table 2
Time to complete task in seconds.

P SW BG LK KT PB SR

1 380 540 410 97 335 354
2 355 531 423 105 174 338
3 319 699 383 125 356 330
4 360 552 393 116 412 333
5 359 422 240 73 224 365
6 342 471 400 131 420 444
7 401 565 376 151 250 442
8 545 863 415 133 334 407
9 334 344 421 86 406 460

10 335 346 411 206 229 334
11 336 180 423 123 209 391
12 318 456 424 207 398 367
13 331 472 391 124 224 400
14 290 418 384 140 160 377

M 357.50 489.93 392.43 129.79 295.07 381.57
SD 60.53 163.20 46.88 38.69 94.39 44.05

P = participant, SW = Small World, BG = Board Game, LK = Lock and Key,
KT = Knock and Tap, PB = Picture Block, SR = Story Recall, M = mean,
SD = standard deviation.

Table 3
The rate of tongue protrusions by motor condition and task.

P Fine motor Gross motor No motor

SW BG LK KT PB SR

1 0.95 1.11 1.46 3.09 1.61 0.34
2 0.34 0.56 0.57 0.00 3.45 0.00
3 1.13 0.69 0.63 4.80 1.69 0.55
4 0.50 0.54 0.76 1.03 0.15 0.90
5 1.17 0.57 1.50 0.82 0.80 0.16
6 0.88 0.76 0.30 0.92 0.00 2.03
7 1.20 0.42 0.64 1.99 0.96 1.76
8 0.44 0.28 0.58 1.35 0.72 0.88
9 0.72 1.05 0.14 2.79 1.03 1.17

10 1.61 1.39 1.61 3.20 2.36 0.18
11 2.14 1.67 0.14 0.98 2.30 0.61
12 0.00 0.53 0.00 1.74 0.90 0.00
13 0.54 0.25 0.15 0.00 1.07 1.35
14 1.03 0.86 1.09 3.00 0.75 0.95

M 0.90 0.76 0.68 1.84 1.27 0.80
SD 0.14 0.11 0.14 0.37 0.25 0.16

P = participant, SW = Small World, BG = Board Game, LK = Lock and Key,
KT = Knock and Tap, PB = Picture Block, SR = Story Recall, M = mean,
SD = standard deviation.

G.S. Forrester, A. Rodriguez / Cognition 141 (2015) 103–111 107
A 1-way ANOVA indicated a significant difference in
rates across tasks [Small World (M = 0.90, SE ± 0.15);
Board Game (M = 0.76, SE ± 0.11); Lock and Key (M = 0.68,
SE ± 0.14); Knock and Tap (M = 1.84 SE ± 0.37);
Picture Block (M = 1.27, SE ± 0.25); Story Recall (M = 0.77,
SE ± 0.17) [F(2.72, 35.41) = 4.52, p = 0.011]. Additionally, a
1-way ANOVA revealed a significant difference in task
motor requirement (fine motor, gross motor and no motor)
[F(2, 26) = 6.67, p = 0.005] (see Fig. 1).

Post-hoc analyses revealed that tongue protrusion rates
for tasks requiring gross motor actions (M = 1.55, SE ± 0.23)
elicited a significantly greater rate of tongue protrusions
than tasks requiring fine motor action (M = 0.78,
SE ± 0.08) (Z = �3.42; p = .001), or no motor action
(M = 0.77, SE ± 0.17), (Z = �2.27; p = .023).
3.2. Lateralized tongue protrusions

Frequency of left and right tongue protrusions revealed
that participants demonstrated a significant bias for right
tongue protrusions (frequencies: M = 10.79, SE ± 1.82) ver-
sus left tongue protrusions (frequencies: M = 5.57,
SE ± 0.78) collapsed across all tasks (Z = �2.76; p = .006)
(see Fig. 2).

Further analyses of lateral tongue protrusion biases
were conducted employing LI scores. LI scores ensure equal
weighting of participant contribution to the analysis (see
Table 4).

A 1-way ANOVA of laterality index scores of tongue pro-
trusions was calculated by motor condition (fine motor,
gross motor and no motor), resulting in a significant



Fig. 1. Mean rates of tongue protrusions across motor conditions.

Fig. 2. Right and left tongue protrusions collapsed across all tasks.

Table 4
Laterality index scores by motor condition.

P Fine motor Gross motor No motor

1 0.43 0.27 1.00
2 1.00 �0.43 0.00
3 1.00 0.69 �1.00
4 1.00 0.00 0.00
5 1.00 �1.00 �1.00
6 0.67 0.00 �0.43
7 0.00 0.33 0.80
8 �0.33 �1.00 �1.00
9 0.43 0.11 0.14

10 0.73 �0.50 0.00
11 0.33 �0.50 �1.00
12 1.00 0.71 0.00
13 1.00 0.00 �0.33
14 0.50 0.20 �0.20

M 0.63 �0.08 �0.22
SD 0.42 0.54 0.64

P = participant, M = mean, SD = standard deviation.

Fig. 3. Tongue protrusion mean laterality index scores across motor
conditions.
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difference for mean LI scores across motor conditions [F(2,
26) = 12.36, p < 0.001] (see Fig. 3).
Post-hoc analyses by motor condition showed that fine
motor condition (M = 0.63, SE ± 0.11) elicited significantly
more right-biased tongue protrusions compared with the
gross motor condition (M = �0.08, SE ± 0.15) (Z = �2.91;
p = .003) and the no motor condition (M = �0.22,
SE ± 0.17) (Z = �2.80; p = .005). Additionally, mean LI
scores for each task were as follows: Small World = .45,
Board Game = .71, Lock and Key = .51, Knock and
Tap = .30, Picture Block = �.28, Story Recall = �.22.
4. Discussion

4.1. Rates of tongue protrusions

The findings from this investigation demonstrated that
tongue protrusions commonly occur in typically develop-
ing 4-year old children. Although the literature is sparse,
the result is consistent with an earlier report of the inci-
dence of tongue thrust in typically developing children
aged 5–8 years (Mason & Proffit, 1974). In the present
study, fourteen participants exhibited tongue protrusions
while engaging in a range of cognitive tasks requiring fine
motor action, gross motor action, or no motor action. There
were significantly more external tongue protrusions,
where the tongue breached the lips, compared with inter-
nal tongue protrusions, where the tongue created a visible
distortion of the the cheek or lips but was not externally
visible. However, this result could be due to the fact that
internal tongue protrusions may not always be visually
detectable and our findings represent a subset of all
non-verbal tongue actions.

Tasks of fine and gross manual motor action elicited
tongue protrusions, consistent with the theory that hand
and mouth actions sympathize with one another as a result
of a single, modality independent, system of communica-
tion (McNeill, 1992). The motor coupling is believed to
occur due to shared neural resources for hand actions
(Iacoboni et al., 1998) and actual or internal speech
(Hinke et al., 2003) and is further supported by behavioral
evidence demonstrating selective disruption of speech syl-
lables when the hands are required to perform
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non-congruent articulations (Gentilucci et al., 2001).
However, tongue protrusions were also reported during
the Story Recall task that had no manual motor require-
ment. This additional finding supports the position that
the hands need not be active to elicit tongue protrusions.
It is possible that tongue protrusions, like hand actions,
will be elicited if a task involves active actual or internal
speech (Hinke et al., 2003).

The rates of tongue protrusions differed significantly
across tasks. Rates were calculated to account for the vary-
ing task durations and time to completion per participant.
While all tasks elicited tongue protrusions in most chil-
dren, gross motor tasks elicited significantly more tongue
protrusions than fine motor and no motor tasks. This find-
ing is not inconsistent with the prediction that there would
be more frequent tongue protrusions in tasks of requiring
prehension. However, this finding is contrary to
non-human primate research reporting that chimpanzees
generated sympathetic mouth actions at a significantly
higher frequency during tasks of fine motor manipulation
compared with tasks requiring gross motor manual actions
(Waters & Fouts, 2002). However, Waters and Fouts (2002)
considered mouth actions that were not specific to tongue
protrusions. It is possible that gross motor tasks in the pre-
sent study required a greater rate of grasping-type hand
actions in comparison to fine motor tasks. Additionally,
we consider that gross motor tasks were of significant dif-
ficulty. The Knock and Tap and Picture Block tasks were
both effortful tasks, requiring inhibition of prepotent
responses and spatial manipulations, respectively. Future
studies may consider how grasping rate and task difficulty
influences tongue protrusions in typically developing
children.

The gross motor condition included the Knock and Tap
and the Picture Block tasks. Although the Picture Block task
did not elicit a significantly greater tongue protrusion rate
than other tasks (aside from the Board Game task), the
Knock and Tap task, did elicit significantly more tongue
protrusions than all fine motor and no motor tasks. It is
possible that the opening and closing actions of the hand
required by the fifteen trials were sufficient to elicit sym-
pathetic tongue protrusions. Alternatively, we consider
the structure of the Knock and Tap task. In addition to mea-
suring effortful control, the task possessed structured
rules, rapid turn-taking and hand gesturing performed
with only the dominant right hand. Participants were
asked to respond with the opposite hand position to that
of the experimenter. The task may have also required an
element of symbolic representation. Additionally, the task
was likely to involve internal speech rehearsal of the task
rules to accurately guide hand actions. One interpretation
of the finding is that the Knock and Tap task required foun-
dational components of the communication system,
engaging both symbolic hand gestures and the internal
rehearsal of the verbal instructions. The task elements
may even resemble components of proto language pro-
cesses with respect to turn-taking sequences and symbolic
representation of manual gestures. While structured
sequences are known to be a distinctive component of lan-
guage (e.g. Hauser, Chomsky, & Fitch, 2002), it has been
suggested that they also appear in nonlinguistic domains
such as object manipulation and gesture (for a review
see, Tettamanti, 2003). The rule-based motor activity
required by the Knock and Tap task may be likened to
sequences of behavioral units, possessing the properties
of an action-based proto-syntax prior to the emergence
of speech (Corballis, 2009). One hypothesis is that sympa-
thetic tongue protrusions increased with tasks demand for
rule-based structured sequences of action (e.g. Gentilucci
et al., 2001). Based on evolutionary theory, goal directed
sequences of actions are predicted to have been founda-
tional components of an early human communication dri-
ven system controlled by left hemisphere dominant
processes that manifest as right-lateralized motor action
(MacNeilage, Rogers, & Vallortigara, 2009).

4.2. Laterality of tongue protrusions

A significant group-level right side bias was revealed
for the frequency of tongue protrusions. The motor-level
analysis demonstrated that fine motor tasks revealed
right-biased tongue protrusions. Laterality was next
explored using laterality index (LI) scores across fine
motor, gross motor and no motor task groups. Unlike tests
of frequency, LI scores ensured equal weighting of each
task to the analysis. The fine motor action condition
revealed significantly right-lateralized tongue protrusions
compared with the gross motor action condition and the
no motor action condition. Additionally, all three tasks
revealed mean LI scores consistent with strong
right-sided tongue protrusion biases (e.g. Oldfield, 1971).

We considered that all fine motor tasks required preci-
sion grasp and was likely to be conducted by the dominant
right hand and left hemisphere. The Small World task
included a variety of small dollhouse toys and dolls with
manipulable limbs. The Board Game task required moving
a token across a board and the manipulation of small flat
disks that required precision grasp to collect. The Key
and Lock task required bimanual coordinated action (e.g.
McGrew & Marchant, 1997) to open pad locks. One hand
(non-dominant) held a lock in a power grip while the other
hand (dominant) used a precision grasp to manipulate a
key. One interpretation of this finding is that fine motor
tasks precipitate use of the dominant hand because it is
more dexterous for operations involving sequences of fine
manipulation. Studies of cerebral lateralization implicate
the left hemisphere and the right hand as dominant for
such processes in the majority of the population (e.g.
MacNeilage et al., 2009). We propose that the dominant
hand elicited lateralized sympathetic tongue action driven
by a common left hemisphere dominant neural system for
hand and mouth motor articulation (McNeill, 1992).

Gross motor tasks did not reveal a lateral tongue pro-
trusion bias. Although the Knock and Tap task did not
require precision grip, it did demonstrated a weak right
biased LI score, possibly due to the fact that it required
the use of the dominant hand. The Picture Block task con-
versely, demonstrated a weak left biased LI score. A poten-
tial reason this task did not reveal a lateral bias may have
been because it did not require a dominant hand. Blocks
were easily slid across the surface of the table and did
not require turning, as the correct pictures were already
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oriented face-up for the participant. Studies of primate
manual laterality have found that gross motor actions
(e.g. reaching) can often fail to exhibit a significant hand
preference as actions lack the precision motor skill
required for grasping. As a result, both hands may be
equally adept at performing these actions (for a review
see: Hopkins, 2006).

The present study offers the first investigation of tongue
protrusions during cognitive tasks requiring varying
degrees of motor precision. We report on spontaneous ton-
gue protrusions in a population of typically developing,
right-handed children and suggest that tongue protrusions
are a commonly exhibited behavior. Tongue protrusions
were detected both internally and externally to the mouth
suggesting that this behavior may not cease in adulthood,
but conscious awareness of one’s physical actions may
cause tongue actions to become less detectable in order
to conform with social norms. Our findings support an
intrinsic connection between actions of the mouth and
hands that is consistent with behavioral studies indicating
that vocalizations are accompanied by spontaneous and
synchronous rhythmic hand movements, visible from early
infancy (e.g. Masataka, 2001). Our findings suggest that
hand and tongue actions possess a reciprocal relationship
such that when structured sequences of hand actions are
performed they are accompanied by spontaneous and syn-
chronous tongue action. The detection of lateralized ton-
gue protrusions is consistent with a left hemisphere
dominant unified communication system involving both
the hands and the mouth (McNeill, 1992) and additionally
is consistent with a gestural origin of language position
(Armstrong et al., 1995; Corballis, 2002). To further explore
the evolution of speech and gesture, future research may
consider whether tongue protrusions increases in rate,
strength of laterality and temporal synchrony during man-
ual motor tasks that possess foundational structured com-
ponents of communication (e.g. hierarchical sequences of
actions). Due to the overlapping neural resources under-
pinning hand and mouth motor capabilities, the derivation
of motor action patterns provides a novel method to draw
inference about the evolution of different cognitive
abilities.
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