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This on-line version contains a proof of the extended omitting
types theorem which is omitted (Ha!) from the published version

We start by recapitulating Yablo’s paradox from [1].
We have infinitely many assertions {pi : ∈ IN} and each pi is equivalent to

the assertion that all subsequent pj are false. A contradiction follows.
There is a wealth of literature on this delightful puzzle, and I have been guilty

of a minor contribution to it myself. This literature places Yablo’s paradox in
the semantical column of Ramsey’s division of the paradoxes into semantical
versus logical paradoxes. However—as I hope to show below—there is merit to
be gained by regarding it as a purely logical puzzle.

Yablo’s Paradox in Propositional Logic

If we are to treat Yablo’s paradox as a purely logical puzzle we should try to
capture it entirely within a first-order language with no special predicates. In
fact we can even make progress while using nothing more than a propositional
language; the obvious language L to use has infinitely many propositional letters
{pi : i ∈ IN}. Next we want a propositional theory with axioms

pi ↔
∧
j>i

¬pj (1)

for each i ∈ IN,

. . . but of course we cannot do this in a finitary language. However, one
thing we can do in a finitary language is capture the left-to-right direction of
these biconditionals, and we do that with the simple scheme

pi → ¬pj (2)

for all i < j ∈ IN.

It can be seen that this is equivalent to the even simpler scheme
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¬pi ∨ ¬pj (3)

for all i 6= j ∈ IN.
Let us call this theory Y . Y says that at most one pi can be true.

It is the right-to-left direction of the biconditionals that gives us trouble . . .

(
∧
j>i

¬pj)→ pi (4)

for each i ∈ IN.

For each i the right-to-left direction of the ith biconditional (4) asserts that
at least one of the formulæ in the set Σ(i) is false:

{¬pj : j ≥ i} (Σ(i))

Σ(i) is an example of what model theorists call a 0-type, a type being nothing
more than a set of formulæ1. The ‘0’ means that the formulæ in the type have no
free variables. Our desire that at least one thing in a type should be false is—in
the terminology of model theory—a desire to omit that type. What we need is a
theorem that tells us that a theory can have models that omit a specified type.
There is a such a theorem, and it is known as the Omitting Types Theorem. We
say a theory T in a language L locally omits a type Σ if, whenever φ ∈ L is a
formula such that T proves φ→ σ for every σ ∈ Σ, then T ` ¬φ. The omitting
types theorem for propositional languages now says:

Theorem 1:

Let T be a consistent theory in a propositional language L. If T
locally omits a type Σ then there is an L-valuation v that satisfies
every theorem of T but falsifies at least one σ in Σ.

We say in these circumstances that v omits Σ.
However, what we need here is the slightly stronger:

Theorem 2: (Extended Omitting Types Theorem)

Let T be a consistent theory in a propositional language L. If T
locally omits each type Σ in a countable class S of types then there
is an L-valuation that satisfies every theorem of T but, for each
Σ ∈ S, falsifies at least one σ in Σ.

I will omit a proof of this result, since it is standard in the model-theoretic
literature.

1A countably infinite set unless otherwise specified.
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In asserting the right-to-left directions (4) of the biconditionals we are re-
stricting ourselves to L-valuations that omit all the types Σ(i). There are count-
ably many of these types so it would be natural to reach for the extended omit-
ting types theorem, theorem 2. Now if we are to exploit theorem 2 we want
our theory Y to locally omit each Σ(i). But it doesn’t. The formula p0, in con-
junction with the axioms of Y , implies ¬pi for every i > 0 and thereby implies
everything in Σ(1). If Y were to locally omit Σ(1) as we desire then we would
have to have Y ` ¬p0. But Y clearly does not prove ¬p0. If we were to add
¬p0 as part of a project of adding axioms to Y to obtain a theory that did omit
Σ(1) we would find by the same token that we would have to add ¬pi for all
other i ∈ IN as well, and then we end up realising all the Σ(i).

Thus Y does not locally omit even one of the Σ(i), let alone all of them. So
we cannot invoke theorem 2. However, for each i the valuation that makes pi
true and everything else false satisfies Y all right, and it omits all Σ(j) for all
j < i. This illustrates how a theory T can sometimes have a model that omits
a type Σ even though T does not locally omit Σ.

Very well: for each i there is an L-valuation that satisfies Y and omits
Σ(j) for all j < i. Can we find a L-valuation that satisfies Y and omits all
the Σ(i)? No! Such a valuation would satisfy all the right-to-left directions of
the biconditionals in (1), namely the conditionals in (4) and thereby manifest
Yablo’s paradox!

Conclusion

Yablo’s paradox provides us with an illustration of a setting where there is a
theory Y and an infinite family {Σ(i) : i ∈ IN} of types where, although Y
does not locally omit any of the Σ(i), it nevertheless has valuations that omit
any finite set of them. Further, it has no valuation that omits them all. That
last fact illustrates how the condition in theorem 2—namely that T locally omit
every Σ ∈ S—really is necessary, so the extended omitting types theorem for
propositional logic really is best possible.

For T to have a model omitting all the Σi it is not sufficient for it to have
models omitting any given finite family of them; we really do need the stronger
condition that T should locally omit every finite subset of Σi.

It illustrates that for T to have a model that omits a type Σ is is sufficient
but not necessary for T to locally omit Σ.

This is pædogogically quite instructive!
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Appendix: A Proof of the Extended Omitting
Types theorem for Propositional Logic

I supply a proof of this fact in this on-line version of the paper because—despite
the cheerful observation above that the result is standard in the literature—I
cannot actually find a proof anywhere!

A 0-type (Hereafter merely ‘type’: the ‘0’ means that the formulæ in the
type have no free variables) in a propositional language L is a set of formulæ (a
countably infinite set unless otherwise specified).

For T an L-theory a T -valuation is an L-valuation that satisfies T . A valu-
ation v realises a type Σ if v(σ) = true for every σ ∈ Σ. Otherwise v omits Σ.
We say a theory T locally omits a type Σ if, whenever φ is a formula such that
T proves φ→ σ for every σ ∈ Σ, then T ` ¬φ.

THEOREM 1 The Omitting Types Theorem for Propositional Logic
Let T be a propositional theory, and Σ ⊆ L(T ) a type. If T locally omits Σ

then there is a T -valuation omitting Σ

Proof:
By contraposition. Suppose there is no T -valuation omitting Σ. Then every

formula in Σ is a theorem of T so there is an expression φ (namely ‘>’) such
that T ` φ → σ for every σ ∈ Σ but T 6` ¬φ. Contraposing, we infer that
if T ` ¬φ for every φ such that T ` φ → σ for every σ ∈ Σ then there is a
T -valuation omitting Σ.

However, we can prove something stronger.

THEOREM 2 The Extended Omitting Types Theorem for Propositional Logic
Let T be a propositional theory and, for each i ∈ IN, let Σi ⊆ L(T ) be a type.

If T locally omits every Σi then there is a T -valuation omitting all of the Σi.

Proof:
We will show that whenever T ∪{¬φ1, . . .¬φi} is consistent, where φn ∈ Σn

for each n ≤ i, then we can find φi+1 ∈ Σi+1 such that T ∪{¬φ1, . . .¬φi,¬φi+1}
is consistent.

Suppose not, then T ` (
∧

1≤j≤i

¬φj)→ φi+1 for every φi+1 ∈ Σi+1. But, by

assumption, T locally omits Σi+1, so we would have T ` ¬
∧

1≤j≤i

¬φj contradict-

ing the assumption that T ∪ {¬φ1, . . .¬φi} is consistent.
Now, as long as there is an enumeration of the formulæ in L(T ), we can run

an iterative process where at each stage we pick for φi+1 the first formula in
Σi+1 such that T ∪ {¬φ1, . . .¬φi,¬φi+1} is consistent. This gives us a theory
T ∪{¬φi : i ∈ IN} which is consistent by compactness. Any model of T ∪{¬φi :
i ∈ IN} is a model of T that omits each Σi.
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Obseve that in this above result we do not construct an actual valuation
of T . What we construct is an extension T ′ of T with the property that any
valuation makes T ′ true must omit all the types Σi. This sounds less useful but
it is actually more, for it means that we have actually proved the omitting types
theorem for 1-types in LPC as well. The enhancements that follow (using the
concept of “locally-∞-omits) are not knwn to generalise to first-order logic.

If Σ = {σi : i ∈ IN} is a [countable] type, then, for each n ∈ IN, the type
{σj : j > i} is a terminal segment of Σ.

We say a theory T locally-∞-omits a type Σ if, whenever φ is a formula
such that T proves φ → σ for all but finitely many σ ∈ Σ, then T ` ¬φ. If a
valuation v omits every terminal segment of Σ we say v inf-omits Σ.

COROLLARY 1 Let T be a propositional theory, and Σ ⊆ L(T ) a type. If T
locally-∞-omits Σ then there is a T -valuation ∞-omitting Σ.

Proof:
We obtain this from the extended omitting types theorem by thinking of

the family of terminal segments of Σ as the family Σn in the statement of the
extended omitting types theorem.

I am skiving out of proving this since there is something stronger that I
really am going to prove. . .

THEOREM 3 Let T be a propositional theory and, for each i ∈ IN, let Σi ⊆
L(T ) be a type. If T inf-locally-omits every Σi then there is a T -valuation
-omitting all of the Σi.

Proof: The reader should rehearse the proof of the extended omitting types
theorem, and think of it as a construction that, at stage n, picks a representative
from Σn, negates it and adds it to the theory we are building. The proof of
the theorem before us now is obtained from this construction by modifying it
to exploit zigzagging.

We need a pairing function (pair(x, y) = ( (i+j)·(i+j+1)
2 + i) = i will do)

that admits two unpairing functions, so that fst( (x+y)·(x+y+1)
2 + x) = x and

snd( (x+y)·(x+y+1)
2 + x) = y.

We have countably many program variables, ∆n, n ∈ IN, and ∆n is initiated
to Σn. As in the earlier construction, at each stage we add precisely one formula
to a set Φ of formmulæ that we are building (and which is initially empty). At
the end of the construction T ∪ Φ will be a theory any valuation for which will
∞-omit every Σn.

At stage i we decode i as an ordered pair and look at the first component
fst(i), which we will call i′. At this stage we will have already picked i − 1
formulæ {φ0 . . . φi−1} for our set in such a way that T ∪ {¬φ0 . . .¬φi−1} is
consistent. We want to pick an element φi of ∆i′ in such a way that T ∪
{¬φ0 . . .¬φi}, too, is consistent. If we can find such a φi we add ¬φi to Φ, and
we delete φi from ∆i′ to obtain the new value of ∆i′ .
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How can we be sure that such a φi can always be found? Here we argue much
as in the case of the original extended omitting types theorem. Suppose at stage
i we could not find a φi such that T ∪ {¬φ0 . . .¬φi} is consistent, and let i be

minimal with this undesirable feature. Then T ` (
∧

1≤j≤i−1

¬φj)→ φi for every

candidate φi ∈ ∆i. Now ∆i is a cofinite subset of Σi and, by assumption, T inf-

locally omits Σi, so we would have T ` ¬
∧

1≤j≤i

¬φj contradicting the assumption

that T ∪ {¬φ1, . . .¬φi} is consistent.
This gives us a theory T ∪{¬φi : i ∈ IN} which is consistent by compactness.

Any model of T ∪ {¬φi : i ∈ IN} is a model of T that ∞-omits each Σi.

E D I T B E L O W H E R E

Now, as long as there is an enumeration of the formulæ in L(T ), we can run
an iterative process where at each stage we pick for φi+1 the first formula in
Σi+1 such that T ∪ {¬φ1, . . .¬φi,¬φi+1} is consistent.

Coda

Since I wrote out this proof some of my enquiries have borne fruit, and I am
much endebted to Oren Kolmen for directing me to pp 118–9 of [?].
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