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Abstract. Functional analysis works with TVS (Topological Vector Spaces),
classically over archimedean fields like R and C.Canonical non-Archimedean
functional analysis, where alternative but equally valid number systems such as
p-adic numbers Q, etc. are fundamental, is a fast-growing discipline.

This paper deals with TVS over non-classical non-Archimedean fields *R# ,:ﬂi%
and*C%, i@.

Definitions and theorems related to non-Archimedean functional analysis on
non-Archemedean field :ﬂi% and on complex field :E% = :ﬂi% + i’*-ﬂi%are

considered.

Applications to constructive quantum field theory also are considered

[6] https://doi.org/10.1063/5.0162832

[12] https://iopscience.iop.org/article/10.1088/1742-6596/2701/1/012113

[notice in [6] and [12] we abbreviate *R% instead ?@E for the sake of brevity].
Definitions and theorems appropriate to analysis on non-Archemedean
field *R% and on complex field *C% = *R% + i*R¥are given in [1]-[2].
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Introduction

The incompleteness of set theory ZFC leads one to look for natural nonconservative
extensions of ZFC in which one can prove statements independent of ZFC which
appear to be “true”. One approach has been to add large cardinal axioms.

Or, one can investigate second-order expansions like Kelley-Morse class theory,
KM or Tarski-Grothendieck set theory TG or It is a nonconservative extension of
ZFC and is obtained from other axiomatic set theories by the inclusion of Tarski’s
axiom which implies the existence of inaccessible cardinals. See also related set
theory with a filter quantifier ZF(aa). In this paper we look at a set theory NC*,[18],
based on bivalent gyper infinitary logic with restricted Modus Ponens Rule [18].
Nonconservative extension namely IST# of the canonical internal set theory IST was
presented in [18].

§1.Bivalent hyper Infinitary first-order logic 2L*, with

restricted rules of conclusion.Generalized Deduction

Theorem.

Hyper infinitary language L”, are defined according to the length of hyper infinitary
conjunctions/disjunctions as well as quantification it allows. In that way, assuming a
supply of k < 8% = card(N*) variables to be interpreted as ranging over a nonempty
domain, one includes in the inductive definition of formulas an infinitary clause for
conjunctions and disjunctions, namely, whenever the hypernaturals indexed hyper
infinite sequence {A;} ;.+ Of formulas has length less than «, one can form the
hyperfinite conjunction/disjunction of them to produce a formula. Analogously, whenever
an hypernaturals indexed sequence of variables has length less than A, one can
introduce one of the quantifiers v or 3 together with the sequence of variables in front of
a formula to produce a new formula. One also stipulates that the length of any
well-formed formula is less than X itself.

The syntax of bivalent hyper infinitary first-order logics 2L*, consists of a (ordered) set
of

sorts and a set of function and relation symbols, these latter together with the

corresponding type, which is a subset with less than X} = card(N*) many sorts.
Therefore, we assume that our signature may contain relation and function symbols on
y < X% many variables, and we suppose there is a supply of x < X3 many fresh
variables of each sort. Terms and atomic formulas are defined as usual, and general



formulas are defined inductively according to the following rules.
If ¢,y,{d. : a < y} (for each y < k) are formulas of L?,, the following are also

formulas:
(l) /\a<y ¢“’ /\aiy ¢“’
() Vaey 20 V sy S
(“l) ¢ - V/!¢ A V/!¢ V V/!_‘¢
(V) VaeyXq¢ (also written VX, ¢ if X, = {X, : @ < 7}),
(V) JaeyXa¢ (also written 3x, ¢ if X, = {X, @ a < y}),
(vi) the statement /\M ¢, holds if and only if for any a such that < y

the statement holds ¢,,
(vii) the statement \/m ¢ holds if and only if there exist a such that a < y

the statement holds ¢,.

Definition 1.1.A valuation of a syntactic system is a function that as signs T (true)

to some of its sentences, and/or 1 (false) to some of its sentences.Precisely, a

valuation maps a nonempty subset of the set of sentences into the set {1, 1}.

We call a valuation bivalent iff it maps all the sentences into {T,1}.

Definition 1.2.Let L be a propositional language. L is a classical bivalent propositional

language iff its admissible valuations are the functions v such that for all sentences
AB

of L the following properties hold

(@) v(A) € {T,1}

(b) v(—A) = Tiff v(A) = L

(c) v(AAB) = Tiff v(A) =v(B) = T.

(d) by definition of the classical implication A = B the following truth table holds

V(A) v(B) V(A= B)

v T T T
2 T 1L 1L
@ 1L T T
4 1L 1 T

Truth table 1.

(e) vi(A) e {1, 1}

) v¥(=A) = Tiff v:(A) = L

(@) v*(AAB) = Tiff v*(A) = v*(B) = T.

(h) by definition of the nonclassical implication A = B the following truth table holds

Vi(A) v*(B) V*(A = B)

(1) T T T
(2) T 1 T
3) 1 T T
(4) 1 1 T

Truth table 2.

Remark 1.1.Note that in the case (2) of the truth table 2
T=V*(A=B)#v(A= B) = L

In this case we call implication A = B a weak implication and abbreviate



A=, B (1.1)

We call a statement (1.1) as a weak statement and often abbreviate v(A = B) = Ty
instead (1).
Definition 1.3.[7-8]. Ais a valid (logically valid) sentence (in symbols, + A) in L iff
every admissible valuation of L satisfies A.
The axioms of hyper infinitary first-order logic ?L*, consist of the following schemata:
I. Logical axiom
Al.A- [B- A]
A2.[A-[B~-C]~[[A-B]~>[A-C]]
A3.[-B - —-A] - [A - B]
A4 [N JA- AT - [A-> A\ AlaeN
A5. [/\i<aAi] - Aj,a e N*
A 6. [VX[A - B] » [A - VXB]]
provided no variable in x occurs free in A,
A 7. VXA(X) - S(A),
where $(A) is a substitution based on a function f from x to the terms of the
language; in particular:
AT VX[AX)] = A(t) is a wff of 2L7, and t is a term of 2L”, that is free for x;
in A(xi). Note here that t may be identical with x;; so that all wffs Vx;A = A
are axioms by virtue of axiom (7),see [8].
A 8.Gen (Generalization).
VxiB follows from B.
II.Restricted rules of conclusion.
Let Fwir be a set of the all closed wffs of L%,.
R1.RMP (Restricted Modus Ponens).
There exist subsets A1,A, < F s such that the following rules are satisfied.
From Aand A = B, conclude Biff A ¢ A; and (A = B) ¢ Aj,where A1,Ay < F .
In particular for any A,B € F i : A = B € Aa.
If A ¢ A and (A = B) ¢ A, we also abbraviate by A,A =5 B +rwvp B.
R2.RMT (Restricted Modus Tollens)
There exist subsets A},A, — F s such that the following rules are satisfied.
P= Q—-Qrgrur —Piff P ¢ Aland (P = Q) & Aj,where A},A, < F .
Remark 1.2.Note that RMP and RMT easily prevent any paradoxes of naive Cantor
set theory (NC), see [1],[9].
lll.Additional derived rule of conclusion.
Particularization rule (RPR)
Remind that canonical unrestricted particularization rule (UPR) reads
UPR: If t is free for x in B(x), then VX[B(x)] + B(t),see [8].
Proof.From Vx[B(x)] and the instance Vx[B(x)] = B(t) of axiom (A7), we obtain B(t)
by unrestricted modus ponens rule.Since x is free for x in B(X), a special case of
unrestricted particularization rule is:vxB + B.
Definition 1.4.Any formal theory L with a hyper infinitary lenguage L* is defined
when the following conditions are satisfied:
1. A hyper infinite set of symbols is given as the symbols of L. A finite or hyperfinite
sequence of symbols of L is called an expression of L.



2. There is a subset of the set of expressions of L called the set of well formed
formulas (wffs) of L. There is usually an effective procedure to determine whether a
given expression is a wff.

3. There is a set of wfs called the set of axioms of L. Most often, one can
effectively decide whether a given wff is an axiom; in such a case, L is

called an axiomatic theory.

4. There is a finite set Ry, ... Ry, of relations among wffs, called rules of
conclusion. For each R;, there is a unique positive integer j such that, for
every set of j wfs and each wif B, one can effectively decide whether the
given j wifs are in the relation R; to B, and, if so, B is said to follow from

or to be a direct consequence of the given wifs by virtue of R;.

Definition 1.5.A proof in L is a finite or hyperfinite sequence By, ...,Bx, k € N*

of wifs such that for each i, either B; is an axiom of L or B; is a direct
consequence of some of the preceding wffs in the sequence by virtue of one

of the rules of inference of L.

Definition 1.6. A theorem of L is a wff B of Y such that B is the last wff of some
proof in L. Such a proof is called a proof of B in L.

Definition 1.7. A wff E is said to be a consequence in L of a set of I" of wiffs if and
only if there is a finite or hyperfinite sequence By, ... Bk k € N* of wffs such that

E is Bk and, for each i, either B; is an axiom or B; is in I, or B; is a direct
consequence by some rule of inference of some of the preceding wffs in the
sequence. Such a sequence is colled a proof (or deduction) E from I'. The
members of T" are called the hypotheses or premisses of the proof.

We use I" + E as an abbreviation for E as a consequence of I'.

In order to avoid confusion when dealing with more than one theory, we write

I' . E, adding the subscript L to indicate the theory in question.

If I is a finite or hyperfinite set {H;},_,_,.,m € N* we write Hi,...,Hn - E instead
of {Hi}lgism + E.

Lemma 1.1.[18]. + B = B for all wifs B.

Theorem 1.1.(Generalized Deduction Theorem1l). If I' is a set of wifs and B and E
are wffs, and I',B + E, thenT" - B = E. In pticular, if B - Ethen+ B = E.
Proof. Let Ey,...,En,n € N be a proof of E form I U {B}, where E, is E.

Let us prove, by hyperfinite induction on j, thatI' + B =5 Ejfor1 <j < n.

First of all, E; must be either in I" or an axiom of L or B itself.

By axiom schema Al, E; =s (B =5 E1) is an axiom. Hence, in the first two cases,
by MP, I + B = E; For the third case, when E; is B, we have - B =5 E; by
Lemma 1, and, therefore, I' - B =5 E1. This takes care of the case j = 1.
Assume now that: - B = Ey for all k < j,j € N*. Either E;j is an axiom, or Ej is in
I', or Ej is B, or Ej follows by modus ponens from some E, and En, where | < j,

m < j, and Em has the form E; =5 Ej. In the first three cases, I' - B = E; as in the
case j = 1 above. In the last case, we have, by inductive hypothesis, I' + B = E,
and I' - B =5 (Ei =5 Ej) But, by axiom schema (A2),

FB=s(El =sE) =s((B=sE)=s(B=sE))

Hence, by MP, T + (B =5 E|) =5 (B =5 Ej) and, again by MP, " + B =5 E;.
Thus, the proof by hyperfinite induction is complete.



The case j = n € N* is the desired result. Notice that, given a deduction of E from

I and B, the proof just given enables us to construct a deduction of B =5 E

from I'. Also note that axiom schema A3 was not used in proving the

generalized deduction theorem.

Remark 1.3.For the remainder of the chapter, unless something is said to the
contrary,

we shall omit the subscript L in +. . In addition, we shall use I',B + E to stand for

I'U{B} + E. Ingeneral, we letI',By,...,Bn + E stand for ' U {Bi} ., - E.

Remark 1.4.We shall use the terminology proof, theorem, consequence, axiomatic,

etc. and notation I" + E introduced above.

Proposition 1.1. Every wiff B of K that is an instance of a tautology is a theorem of

K, and it may be proved using only axioms A1-A3 and MP.

Proposition 1.2.1f E does not depend upon B in a deduction showing that

B+ E, thenT + E.

Proof.Let Dy,...,D, be a deduction of E from I" and B, in which E does not

depend upon B.In this deduction, D, is E. As an inductive hypothesis, let

us assume that the proposition is true for all deductions of length less than n € N*

If E belongs to I or is an axiom, then I"  E. If E is a direct consequence of

one or two preceding wiffs by Gen or MP, then, since E does not depend

upon B, neither do these preceding wfs. By the inductive hypothesis, these

preceding wfs are deducible from I" alone. Consequently, so is E .

Theorem 1.2.(Generalized Deduction Theorem 2).Assume that, in some deduction

showing that ', B + E, no application of Gen to a wff that depends upon B has as

its quantified variable a free variable of B. ThenT" - B = E.

Proof.Let D4,...,D, be a deduction of E from I'" and B satisfying the assumption

of this theorem. In this deduction, Dy, is E. Let us show by hyperfinite induction

thatI' - B =5 D; for each i < n e N#. If D is an axiom or belongs to I, then

I' - B=¢ Dj, since D; =5 (B = D;) is an axiom. If D; is B, then

I' - B=5 D, since, by Proposition 1, - B = B.- If there existj and k less

than i such that D¢ is + D; =5 Dj, then, by inductive hypothesis, I' - B =5 D;

and I' - B =s (Dj =5 Di). Now, by axiom A2,

B =s (D; =s Di) =s ((B =s Dj) =s (B =5 Di)).Hence, by MP twice,

I' - B =5 Di. Finally, suppose that there is some j < i such that D; is VxkD;.

By the inductive hypothesis, ' - B =5 Dj, and, by the hypothesis of the theorem,

either D; does not depend upon B or X is not a free variable of B. If D; does not

depend upon B,then, by Proposition 2, I' + D; and, consequently, by

Gen, I' - VxDj. Thus, I' + Di. Now, by axiom Al, + D; =5 (B =5 Di).

So, I' - B =5 Di by MP. If, on the other hand, xx is not a free variable of B,

then, by axiom A5, + Vx(B =s Dj) =s (B =s VxkD;) SinceI' - B =5 Dj,

we have, by Gen,I' - Vx(B =5 Dj) , and so, by MP,I" - B =5 VXD

thatis, I' - B = D;. This completes the induction, and our proposition is

just the special case i = n..

§2.Set theory NC¥,.

Set theory NC? is formulated as a system of axioms based on bivalent hyper
infinitary logic 2L*, with restricted modus ponens rule [1],[18]. The language of set



theory NC?, is a first-order hyper infinitary language L#, with equality =, which
includes a binary symbol €. We write x # yfor - (x =y) and x ¢ yfor —(x € y).
Individual variables x,y,z,...,and x™,y*,z", ... of L¥, will be understood as ranging
over classical sets. The unique existential quantifier 3! is introduced by writing, for any
formula ¢(x),3'xp(x) as an abbreviation of the formula Ix[p(X) & Vy(p(y) =s X =VY)].
The language L*, will also contains the formation of terms of the form {x|p(x)}N°t, for
any formula ¢(x) containing the free variable x.

Such terms are called non-classical sets; we shall use upper case letters A,B, ...,

and ANCL BNCL  for such sets. For each non-classical set A = {X|p(x)}"°" the

formulas

VX[X € A <=sw 0(X)] and VXX € A <=sw ¢(X,A)] is called the defining axioms for the
non-classical set A.

Remark 2.1.Remind that in logic 2L*, with restricted modus ponens rule the statement
a A (¢ = pB) does not always guarantee that

a,a = P +rup B (2.1
since for some a and f possible

a,a = P #rup B (2.2)
even if the statement a A (¢ = f) holds.

Abbreviation 2.1.We shall write for the sake of brevity instead (2.1) by

a =s f (2.3
and we shall write instead (2.2) by

a =w p. (2.4

Remark 2.2.Let A be an nonclassical set.Note that in set theory NC* ,the following
true formula

JAVYX[X € A = p(X,A)] (2.5)
does not always guarantee that
xe Axe A= o(X,A) Frvp @(X,A) (2.6)
even if X € A holds and (or)
o(XA),p(X,A) = X € Arrup X € A (2.7)
even ¢(x,A) holds, since for nonclassical set A for some y possible
yeAyeA= oy.A) #rupr 0(¥,A) (2.8
and (or)
o(Y,A), o(Y,A) =y e Arrup Y € A. (2.9
Remark 2.3.Note that in this paper the formulas
Javx[x € a <= p(X) AX € U] (2.10)
and more general formulas
Javx[x € a < ¢o(x,a) A X € U] (2.13)

is considered as the defining axioms for the classical set a.
Remark 2.4.Let a be a classical set. Note that in NC*,: (i) the following true formula



Javx[x € a < o(x,a) AX € U] (2.12
always guarantee that
X € aXea= ¢(Xa) —rup ¢(X) (2.13)
if x € a holds and
0(X),p(X) = X € atrup X € (2.19
if p(x) holds;

In order to emphasize this fact mentioned above in Remark 2.1-2.3,

we rewrite the defining axioms in general case for the nonclassical sets in the
following

form

JAVX{[X € A =5 p(X,A)]V [X € A =w p(X,A)]} (2.15

and similarly we rewrite the defining axioms in general case for the classical sets in
the
following form

Javx[x € a =s (X)) A (X € U)]. (2.16)
Abbreviation 2.2.We write instead (2.15):
Vx{[X € A =sw o(X,A)]} (2.17)

Definition 2.1. (1) Let A be a nonclassical set defined by formula (2.17).

Assum that: (i) for some y statement ¢(y) and statement ¢(y) = y € A holds and

(i) (), o(y) =y Arrr Y € ALy € Ay € A= o(y) #rur @(Y).

Then we say that y is a weak member of non-classical set A and abbreviate y €, A.

Abbreviation 2.3. Let A be a nonclassical set defined by formula (2.17) We
abbreviate x esy Alif the following statement x es AV X €y, A holds, i.e.

X ES,W A “>def (X ES AV X EW A). (2. 18)

Definition 2.2.(1) Two nonclassical sets A, B are defined to be equal and we write

A = Bif VX[X esw A <5 X €sw B]. (2) Alis a subset of B, and we often write A csy B, if
VXX €sw A =s X sy B].(3) We also write CL. Set(a) for the formula

Juvx[Xx € a <= X € UA p(X)]. (4) We also write NCL. Set(A) for the formulas

VXX €sy A <=5y p(X)] and VXX €sy A <=5y 0(X,A)].

Remark 2.5.CL. Set(u) asserts that the set u is a classical set. For any classical set u,
it follows from the defining axiom for the classical set u = {x|x €s UA @(X)} that
CL.Set({x|x €s UA p(X)}).

We shall identify {x|x €s u} with u, so that sets may be considered as (special sorts of)
nonclassical sets and we may introduce assertions such as u cs A,u S A, etc.
Abbreviation 2.4.Let ¢(t) be a formula of NC¥,.

(i) Vxp(x) and V<t xp(x) abbreviates Vx(CL.Set(x) = ¢(X))

(ii) Ixp(x) and It xp(x) abbreviates Ix(CL.Set(x) = ¢(X))

(i) VXo(X) and VNCL Xo(X) abbreviates VX(NCL.Set(X) = ¢(X))

(iv) IXe(X) and INCL X (X) abbreviates IX(NCL.Set(X) = ¢(X))

Remark 2.6.1f Ais a nonclassical set, we write 3x € A p(X,A) for Ix[x € AA p(X,A)]
and vx € Ap(x,A) for Vx[x € A = ¢o(X,A)].

We define now the following sets:



1.{ug,Uz,...,.Un} = XX =U1 VX = U2 V...VX = Un}.2. {A1,A2,...,An} =
={XX=A1VX=A2V...VX=An}.3.UA = {X|Ayly € AAX € ¥]}.

4NA = {XVylye A= xey]}.5,AUB={xx e AV X € B}.

S5ANB={xxe AAXe B}).6,A-B={Xxe AAX ¢ B}.7.u" = uU {u}.
8.P(A) = {x]x € A}.9.{x € Alp(X,A)} = {XIx € AA p(X,A)}.10.V = {X|X = X}.
11.9 = {X]x # X}.

The system NC?, of set theory is based on the following axioms:
Extensionalityl: YUVV[VX(X € U< X € V) = U = V]

Extensionality2: VAVB[VX(X € A <sw X € B) = A = B]

Universal Set: NCL. Set(V)

Empty Set: CL.Set(9)

Pairingl: Yuvv CL.Set({u,v})

Pairing2: VAVB NCL. Set({A,B})

Unionl: Yu CL.Set(Uu)

Union2: VA NCL. Set(UA)

Powersetl: Yu CL.Set(P(u))

Powerset2: VA NCL.Set(P(A))

Infinity Ja[& € a A VX € a(x* € a)]

Separation1vVu;Vuy,...Vu,vVaiCL. Set({X €s alp(X,u1,Uz,...,Un)})
Separation 2 Yu;VUua,...Vu,NCI. Set({x esw Alp(X,A; U1, Uz,...,Un)})
Comprehension1vu;Vuy,...VUydAVX[X €sw A <sw ¢(X;U1,Uz,...,Un)]
Comprehension 2 Yu;Vuy,...VUydAVYX[X €sw A < sw ¢(X,A; U1, Uz, ...,Un)]
Comprehension 3 Yu;Vuy,...Vuydavx[X €s a <s (a < u1) A ¢(X,a;us, Uy, ...,Un)]
In particular:

Comprehension 3' Yudavx[x €s a <5 (a < U) A ¢(X,a;u)]

Hyperinfinity: see subsection 2.1.

Remark 2.7.Note that the axiom of hyper infinity follows from the schemata
Comprehension 3.

Definition 2.3. The ordered pair of two sets u,v is defined as usual by

(u,v) = {{u},{u,v}}. (2.19
Definition 2.4. We define the Cartesian product of two nonclassical sets A and B
as usual by

AxgwB = {XY)X €sw AAY Esw B} (2.20)

Definition 2.5. A binary relation between two nonclassical sets A,B is a subset
R Csw A xsw B. We also write aRsyb for < a,b >e5,v R. The doman dom(R) and the
range ran(R) of R are defined by

dom(R) = {X3y(XRswy)},ran(R) = {y : IX(xRswy)}. (2.21)

Definition 2.6.A relation Fs,, is a function, or map, written Fun(Fs,), if for each

a sy dom(F) there is a unique b for which aFswb. This unique b is written F(a) or Fa.
We write Fsy : A — B for the assertion that Fs,, s a function with dom(Fs,) = A and
ran(Fsw) = B.In this case we write a » Fsy(a) for Fsya.

Definition 2.7.The identity map 14 on A is the map A - Agiven by a » a.

If X Ssw A, the map x » x : X > Alis called the insertion map of X into A.

Definition 2.8.If Fsy : A > Band X Ssw A, the restriction Fsy[X of Fsy to X is the



map X - Agiven by x » Fsw(X). If Y Ssw B, the inverse image of Y under Fsy is the
set

FulY] = {X €sw A : Fsw(X) €sw Y} (2.22)
Given two functions Fsy : A - B,Gsw : B - C, we define the composite function

Gsw © Fsw : A - Cto be the function a » Gsw(Fsw(@)). If Fsw : A > A, we write F2,,

for Fsw o Fsw, F2y for Fsw o Fsw o Fsw €tc.

Definition 2.9.A function Fsy : A - B is said to be monic if for all

XY €sw A Fsw(X) = Fsw(y) implies x =y, epi if for any b esy B there is a esy A for
which b = Fsyw(a), and bijective, or a bijection, if it is both monic and epi. It is easily
shown that

Fsw is bijective if and only if Fsy has an inverse, that is, a map Gsw : B - A such that

st o GS,W =15 and Gsw o Fs,w = 1a.

Definition 2.10.Two sets X and Y are said to be equipollent, and we write X ~gsy Y,

if there is a bijection between them.

Definition 2.11.Suppose we are given two sets I,A and an epi map Fsw : | - A

Then A = {Fsw(i)|i € I} and so, if, for each i esy |, we write a; for Fsy(i), then A can

be presented in the form of an indexed set {a; : i esw I}. If Ais presented as an

indexed set of sets {Xi|i esw I}, then we write | J,_, Xi and [),_, Xi for UA and NA,

respectively.

Definition 2.12.The projection maps 71 : Axsw B - Aand 72 : Axsw B > Bare

defined to be the maps < a,b >~ a and < a,b >~ b respectively.

Definition 2.13.For sets A, B, the exponential BA is defined to be the set of all

functions from A to B.

Axiom of nonregularity
Remind that a non-empty set u is called regular iff YX[x # & - (Ay € X)(xNy = D)].
Let’s investigate what it says: suppose there were a non-empty x such that
(Vy e X)(xNy = ). For any z; € x we would be able to get z; € z; N x. Since z; € X
we would be able to get z; € z N x. The process continues forever:
...€ Zni1 € Zn...€ s € Z3 € Zp € 71 € X. Thus if we don’t wish to rule out such an
infinite regress we forced accept the following statement:

XX+ I - (Vy e x)(xNy = 9)]. (2.23

Axiom of hyperinfinity.
Definition 2.14.(i) A non-empty transitive non regular set u is a well formed non

regular set iff:
(i) there is unique countable sequence {u,}, such that

...€ Upt1 € Up...€ Ug € U3 € Up € U1 € U, (2.29)
(if) forany n e N and any Up1 € Uy :
Un = Uﬁ+1, (225)

where a* = aU {a}.
(ii) we define a function a*™® inductively by a1 = (a*k)",
Definition 2.15. Let u and w are well formed non regular sets. We write w < u iff



foranyn e N
W € Up. (2.26)

Definition 2.16. We say that an well formed non regular set u is infinite

(or hyperfinite) hypernatural number iff:

(I) For any member w € u one and only one of the following conditions are

satified:

()w e Nor

(i) w = u, for some n € N or

(i) w < u.

(I1) Let <u be a set <u = {7z < u},then by relation (- < -) a set -u is densely ordered
with no first element.

(I N < u.

Definition 2.17. Assume u € N* then uis infinite (hypernatural) number if u € NN,
Axiom of hyperinfinity

There exists a set N* such that:

()N < N,

(ii) if u € N*\N then there exists infinite (hypernatural) number v such that v < u,

(iii) if u € NA\N then there exists infinite (hypernatural) number w such that for any
neN:ul<w,

(iv) set N\N is patially ordered by relation (- < ) with no first and no last element.

Axiom of existence the nonclassical truth predicate
Let A, B be a closed wff's of NC*, (NC? ,-sentences).There is truth predicate T*[A]
satisfies the following T#-schemas:
LYXYY{T?[X = y] =sw (X =Y)}
2.VXVY{T x e y] ©sw X y)}
3.THTHA]] = THA]
4. TH-TY[A]] <=s TH-A]

(2.27)
5.T#—A] =s -T*A]
6.T*[——A] <= T*[A]
7.T#*[AAB] <=s T [A] A T#[B]
8.T*[AV B] <s T#[A]V T#[B]
and
9.T*[A] =sw A. (2.28)

Definition 2.18.(i) We say that a NC”,-sentence is a SNC? ,-sentence (strong
NC?.-sentence relative to Frup ) if

T*A] =5 A (2.29)

(i) We say that a NC*,-sentence is a w-NC* .-sentence (weak NC*,-sentence
relative to Frmp ) if

THA] =w A. (2.30)
Notations 2.1.(i) We write X =s Y if T[x = y] =5 (X = Y).



(i) We write x = yand if T*[x = y] &w (X =Y).

Notations 2.2.(i) We write x €5 y and will be say that a setif T [x e y] <5 (X € V).
(i) We write x €, y and will be say that if T#[x € y] <w (X € V).

Definition 2.19.(i) We will be say that a sety is a s-set if

VX[X ey <=sXesy] (2.31)
(i) We will be say that a set y is a w-set if

VXX ey =sXesY] (2.32
(iif) We will be say that a sety is a s,w-set if

VXX €Y <=sXeEsw Y] (2.33

Remark 2.8.For any model M in a first-order language, the definition of the truth
predicate of M is the same - we define the elementary diagram of M as the set of all
sentences with parameters from M that are true in M, using Tarski’'s recursive
definition of truth, using the T schema. This is the same for a model of ZFC as for
any other model in first-order logic. Symbolically

T[A] = M ¢ A, (2.34)

where M ¢ A stands to A true in model M.
Remark 2.9. Remind that classical truth predicate T[A] unrestrictedly satisfies the
following T-schema [25-27]:

T[A] & A, (2.35)

i.e., the sentence A < T[A] is true for every sentence A of language L, where T[A]

stands for "the sentence (denoted by) A is true". Unfortunately T-schema incorrect

by well known Curry’s paradox.

Assume, too, that we have the principle called Assertion (also known as pseudo

modus ponens): (AA (A = B)) = B.By diagonalization, self-reference we can get a

sentence C such that C < (T[C] = F) where F is anything you like. (For effect,

though, make F something obviously false, e.g. F =1= 0 = 1) By an instance of the

T-schema: T[C] < C we immediately get:T[C] < (T[C] = F).Again, using the
same

instance of the T-schema, we can substitute C[T,F] for :T[C] in the above to get (1).

Q)+ C[T,F] & (C[T,F] = F) [by T-schema and substitution]

(2)+ (C[T,F]A(C[T,F] = F)) = F [by assertion]

(3) + (C[T,F]ACI[T,F]) = F [by substitution, from (2)]

(4) - C[T,F] = F [by equivalence of C and C A C, from (3)]

(5) + C[T,F] [by unrestricted Modus Ponens, from (1) and (4)]

(6) - F [by unrestricted Modus Ponens, from (4) and (5)]

Letting F be anything entailing triviality Curry’s paradox quickly 'shows’ that the

world is trivial.

Remark 2.10.Curry’s paradox easily avoided by restricted MP such that:

1.C[T,F]=F, (C[T,F] = F) = C[T,F] w#rwp C[T,F]and

2.C[T,F],C[T,F] = F #rmp F,

Remark 2.11.The set of all T-sentences T[¢] < ¢, where ¢ is any sentence of the

language L, that is, where ¢ may contain T, is inconsistent with PA (or any theory

that proves the diagonal lemma) because of the Liar paradox [28].

In formal languages, self-reference is also very easy to come by. Any language



capable of expressing some basic syntax can generate self-referential sentences via
so-called diagonalization (or more properly, any language together with an appropriate
theory of syntax or arithmetic). A language containing a truth predicate and this basic
syntax will thus have a sentence L such that

L < —Tr[L] (2.39

This is a ‘fixed point’ of (the compound predicate) —Tr, and is, in effect, our
simple-untruth Liar.

Other conspicuous ingredients in common Liar paradoxes concern logical behavior
of basic connectives or features of implication. A few of the relevant principles are:
Modus ponens (MP): AA=B+B

Excluded middle (LEM): - AV —A

Explosion (EFQ): A—-A + B

Disjunction principle (DP): If A+ Cand B+~ CthenAVvB+ C

Adjunction: If A+ Band A+ Cthen A+ BAC.

An argument that Liar sentence L implies a contradiction runs as follows.
1. Tr[L]V —=Tr[L] [LEM]

2.Case One:

aTr[L]

b L [2a: release by MP from T schema (2.35)]

c —Tr[L] [2b: definition of L]

d —Tr[L] A Tr[L] [2a, 2c: adjunction]

Case Two:

a-—Tr[L]

b L [3a: definition of L by MP]

c Tr[L] [3b: by MP from T schema (2.35)]

d —Tr[L] A Tr[L] [3a, 3c: adjunction]

4. —Tr[L]ATr[L] [1-3: DP]

Remark 2.12. Liar easily avoided by restricted MP such that:

1. TF[L] #rmp L

2. L HRrRMP TI'[L]

3. —.Tr[L] #rmp L

4. L HRrRMP —|Tr[L]

83.Nonconservative extension of the model theoretical
NSA based on bivalent hyper Infinitary first-order logic L%,

with restricted canonical rules of conclusion.

Extending the classical real numbers R to include infinite and infinitesimal quantities
originally enabled D. Laugwitz [1] to view the delta distribution J(x) as a nonstandard
point function. Independently A. Robinson [2] demonstrated that distributions could be
viewed as generalized polynomials. Luxemburg [3] and Sloan [4] presented an alternate
representative of distributions as internal functions within the context of canonical
Robinson’s theory of nonstandard analysis. For further information on classical
nonstandard real analysis, we refer to [8]-[11].

Abbreviation 3.1.In this paper we adopt the following notations. For a standard set E



we often write E4. For a set E« let “Eg be a set ’Eg = {*X|x € Eg«}. We identify zwith

’zi.e.,z=" zforallze C. Hence, ‘Egs = Ex IfE< C, e.g.,’C=C, °R =R, P = P,

’L{ = L{, etc. Let *R., "R+, *Rfin ,*Ro, and *N,, denote the sets of infinitesimal

hyper-real numbers, positive infinitesimal hyper-real numbers, finite hyper-real

numbers, infinite hyper-real numbers and infinite hyper natural numbers, respectively.

Note that “Ryin = *R/*R, , *C = *R +i*R, *Csin = *Rin + i *Riin.

Remind that Robinson nonstandard analysis (RNA) many developed using set-

theoretical objects called superstructures [8]-[11]. A superstructure V(S) over a set S

is defined in the following way

Vo(S) = SVna(S = Va(9 U (P(Va(9), V(9 = [ JVn(S. 3.1

neN

Superstructures of the empty set consist of sets of infinite rank in the cumulative

hierarchy and therefore do not satisfy the in...nity axiom. Making S = R will suffice for

virtually any construction necessary in analysis.

Bounded formulas are formulas where all quantifiers occur in the form

UX(XEY = ¢+¢),IX(XEY = ). 3.2

A nonstandard embedding is a mapping
x: V(X) - V(Y)
from a superstructure V(X) called the standard universum, into another superstructure

V(Y), called nonstandard universum, satisfying the following postulates:
1.Y=*X
2.Transfer Principle.For every bounded formula ®(x,...,X,) and elements
ai,...,an € V(X),the property @ is true for as, ...,an in the standard universum if and
only if it is true for *ay,...,*a, in the nonstandard universum:
(V(X),e) E ®(ag,...,an) = (V(Y),e) = O(*a1,...,*an).
3.Non-triviality.For every infinite set A in the standard universum, the set
{*ala € A} is a proper subset of *A.
Definition 3.1.[10].A set x is internal if and only if x is an element of *A for some
element A of V(R). Let X be a set with A = {A;},_, a family of subsets of X. Then
the collection A has the infinite intersection property, if any infinite subcollection
J < | has non-empty intersection. Nonstandard universum is x-saturated if whenever
{Ai},,is a collection of internal sets with the infinite intersection property and the
cardinality of | is less than or equal to K,nAi + J.
iel
Remark 3.1.Remind that: (i) for each standard universum U = V(X) there exists
canonical language £ = Ly, (ii) for each nonstandard universum W = V(Y) there
exists corresponding canonical nonstandard language *£ = £w [10].
3*.The restricted rules of conclusion.
If Wi Athen —-A i+ B,whereBe L AB € *£L.
Thus if A holds in W we cannot obtain from —A any formula B whatsoever.
Remark 3.2. We write * = Ainstead W = A.
In this paper we apply the following hyper inductive definitions of a sets [18]

ISVB(P € *N)|:ﬁe Sos AN(@eS=sa’e S):|.

0<a<p



Definition 3.2.[18].A set S c *Nis a hyper inductive if the following statement
holds

N\ (@eS=sa’ €9, 3.3
acs*N
where a* £ o + 1.0Obviously a set *N is a hyper inductive.As we see later there is
just one hyper inductive subset of *N,namely *Nitself.
We extend up Robinson nonstandard analysis (RNA) by adding the following
postulate:
4.Any hyper inductive set Sis internal.
Remark 3.3.The statement 4 is not provable in ZFC but provable in set theory NC#,
see [2]-[3].Thus postulates 1-4 gives an nonconservative extension of RNA and we
denote such extension by NERNA.
Remark 3.4.Note that NERNA of course based on the same gyper infinitary logic with
Restricted Modus Ponens Rule as set theory NC# [1]-[3].
Remind that in RNA the following induction principle holds.
Theorem 3.1.[6]. Assume that S — *N is internal set, then

(leSAVXxe S= x+1] = S=*N. (3.4

In NERNA Theorem 1.1also holds.

Remark 3.5.It follows from postulate 4 and Theorem 1.1 that any hyper inductive
set Sis equivalent to *N : S= *N.

Remark 3.6. Note that the following statements are provable in NC# [2]-[3]:

5 Axiom of w-induction

V(S cs N){Vﬂ(ﬁ €s N)|: N\ (@ €sS=sa’ &s S):| =5 S= N}. (3.5

O0<a<p

6 Axiom of hyper infinite induction

VSSc *N){V,B(/} € *N)|: N\ (@€ S=sa* e S):| =5 S= *N}. (3.6)

0<a<p

Thus postulate 5 of the theory NERNA is provable in NC*,.

Rules of conclusion

(1) Restricted Modus Ponens Rule (denoted by -rup ) the same as in set

theory NC*,.

(2) Restricted Modus Tollens Rule (denoted by +rumt ) the same as in set

theory NC*,.

(3) MRR1 (1.Main Restricted rule of conclusion)

Let p(x) be a wff with one free variable x and such that 3n(n € *N\W) A V(Y) &= ¢(n),
then foralln > n: —p(n) #rvpe B,i.e., if statement ¢(N) holds in V(Y) we cannot obtain
from —¢p(n),with n > n any formula B whatsoever.

(4) MRR2 (2.Main Restricted rule of conclusion)

Let p(x) be a wff with one free variable x and such that 3n(n € *N) A V(Y) & ¢(n),
thenforalln > n: —p(n) #rvpe B,i.e., if statement ¢(N) holds in V(Y) we cannot obtain
from —¢p(n),with n > n any formula B whatsoever.

Remark 3.5.The MRR1,2 is necessarily in natural way, since by assumption —¢(n)
one obtains directly the apparent contradiction ¢(n) A —¢(n) from which by
unrestricted modus ponens rule (UMPR) one obtains ¢(n) A —¢(n) Fumpr B.



Example 3.1. Remind the proof of the following statement:

Theorem 3.2. The structure (N,<) is a well-ordered set.

Proof.Let X be a nonempty subset of N. Suppose X does not have a < -least element.

Then consider the set N\X.

Case (1) N\\X = . Then X = N and so Ois a < -least element. Contradiction.

Case (2) N\\X += @.Then 1 € N\X otherwise 1 is a < -least element. Contradiction.

Case (3) N\\X = &. Assume now that there exists an n € N\X such that n # 1.

Since we have supposed that X does not have a least element, thusn+1 ¢ X

Thus we see that for all n : n e N\X implies that n+ 1 € N\X. We can

conclude by induction that n € N\X for all n € N. Thus N\X =N implies X = &.

This is a contradiction to X being a nonempty subset of N.

Remark 3.6.(i) The proof of the Theorem 3.2 is an example proof by a contradiction.

Remind that a mathematical proof employing proof by contradiction usually proceeds

as follows:

1.The proposition to be proved is P.

2.We assume P to be false, i.e., we assume = —P.

3.1t is then shown that —P implies falsehood. This is typically accomplished by
deriving two mutually contradictory assertions, Q and —Q, and appealing to the
law of noncontradiction.

4.Since assuming P to be false leads to a contradiction, it is concluded that P is in
fact true.

(i) The statement of the Theorem 3.2 obviously is unprovable by a contradiction under

MRRZ2. Note that in the Case (3) thereisann + 1,n € Xand h ¢ N\X. Thus

induction hypothesis = 1 € N\X is not holds since n ¢ N\XX A N € N\X is a contradiction

and by MRR2

ne N\X #rmp N+ 1 € N\X.

(i) Note that proof of the Theorem 3.2 mentioned above completely abnormal in fact
even in point view of classical proof theory, since basic assuption n ¢ N\X which is
employed in proof by contradiction, contradicts with induction hypothesis = n € N\X.
Example 3.2. (i) We set now X; = *N\WN, thus *N\X; = N.In contrast with a set X
mentioned in Example 3.1, the assumption n € *N\X; implies that n+ 1 € *N\X;

if and only if n is finite, since for any infinite n € *N\N the assumption n € *N\X;
contradicts with a true statement V(Y) = n ¢ *N\X; = N and therefore in

accordance with MRR we cannot obtain for any infinite n from formula n € *N\X;

any formula B whatsoever.

Remark 3.7.Notice in order to prove an statement G = Vn(n € *N)P(n) by induction
one needs to proof that: P(n) Frmp P(n+ 1),i.e. by assuming that P(n) is true and then
by RMP proving P(n+ 1). Thus:

(i) any proof by hyperinfinite induction bused on additional assumption that

Frvp 3N(N €s *N)[=P(N)]. 3.7
(if) any proof by w-induction bused on additional assumption that
Frvp IN(N s N)[=P(N)]. (3.8)

Definition 3.3.x is a natural number if x €s X for every set X such that 0 €5 X and, for
any 4, if 1 es Xthen A+ 1 €5 X,i.e. L €s X Frup 4+ 1 s X.



We remind now some basic theorem and definitions related to classical
naturals.

Definition 3.4. [20]. x is a natural number if x belongs to every set X such that

Oe Xand, forany 4, if A € Xtheni1+1 e X

(As usual, j,k,...,nwill denote natural numbers.)

Remark 3.8.[20].If the set of all natural numbers exists, we call it N. But it is not
necessary for us to assume now that N exists. The assumption that N exists is a form

what is called the Axiom of Infinity.
Proposition 3.1.[20] For any «, {A}1 < k} exists.
Proof. Let A = k. The desired set is {§|B €s P(A)} , which exists by the Axiom of

Replacement.

Theorem 3.3.[20].

(a) Ois a natural number, 0 < k

(b) If kis a natural number so is k+ 1,if k < A then k+ 1 < A.

(c) (Induction) Suppose that P(0) (P holds for 0'); and that, for any natural

number n, P(n) = P(n+ 1) holds. Then for every n, P(n) holds.

Proof [20] (a) and (b) are very easy. For (c), suppose that the whole

hypothesis of (c) holds, but that, for some particular n, P(n) fails,i.e. =P(n) holds.Put

X = {m < n[P(m)} (3.9)

X exists since X = {14 < 5 and 1 is a natural number

and P(4)} , which exists by Proposition 3.1 and the Separation Axiom. Obviously,

0 € X by Theorem 3.3 (a). It will be enough to show that: 1 + 1 € X whenever 1 € X-
as then Xis 'an X' as in Definition 3.3, so, by Definition 3.3, the natural numbern e X,
and so P(n) holds, a contradiction. Suppose then that 1 € X, so that 1 < n,4

is a natural number, and P(1).By our hypothesis (in (c)), P(A+1). By (b), 1+ 1

is a natural number. Also, A <n, as P(n) fails. Hence 4 + 1 < n, by Theorem 3.3 (b).
Sol+1e X, as desired.

Remark 3.9.Note that proof of the Theorem 3.3 mentioned above completely
abnormal sinse definition (3.9) incorrect. Correct definition reads

X ={m< n[T[P(m)] A P(M)} (3.10

where T[A] is a truth predicate such that for any well formed closed formula A of
ZFC [24]

T[A] < A (3.11)
However as well known such truth predicate is not exists by Curry’s paradox. Thus
a set X is not exists in general case.
Definition 3.5. An element x is said to be a first element of the linearly ordered
set A (with respect to the relation R) if xRyfor all y € A. On the other hand, if yRx
for all y, then x is said to be a last element of
A (with respect to R). Generally speaking, not every set has a first or
last element; but if such an element exists, then it is uniquely determined.
Theorem 3.4.[20]-[22]. In a finite non-empty subset X of a linearly ordered set A
there is a first element and a last element of X.
Proof. The proof is by induction on the number of elements of X. If X has only one



element, then the theorem is obvious. Suppose that the theorem holds for subsets
with n elements. Let X = YU {a} where a ¢ Y and Y has n elements. Let b; be the
first and b, the last element of Y. Since Ais linearly ordered, either a precedes b or
b1 precedes a. That element which precedes the other is clearly the first element of Y.
Similarly we show that one of the elements a and b, is the last element of X.
Corollary 3.1. Every finite subset A of N has a first element and also a last element.
Proof. From Theorem 3.4 by definitions.

Theorem 3.5.[20]. (a) (The least element principle). If for some n,P(n), then there
is a minimal (which is here the same as minimum) n such that P(n).

(b) (Course-of-values induction). If, for any n,if Q(m) holds for all m < n,

then Q(n); then, for all n,Q(n).

Proof of (a). Suppose P(n). If (P(m) for no m < n, then n is minimal as desired.
Otherwise {k € W(N)|P(k)} (W(n) = {mjm < n} ) is non-empty, and so, being finite,
has a least element m, by Corollary 3.1. It is easy to see that mis the least number
with the property P, as desired.

Proof of (b). Assume the hypothesis of (b) holds and that, for some n, Q(n). fails.

By (a) let k be the least such n. Thus Q(m) holds for all m < k, so by our hypothesis,
Q(k) holds, a contradiction.

Theorem 3.6.(s-Induction) Let P(x) be wff of NC# with a free variable x. Suppose that

T*IP(0)] A T*[P(0)] (3.12
('P holds for 0');T*[P(0)] <s P(0),and that, for any natural number n,

P(n) =s P(n+1) (3.13
and for every n,

T*P(n)] s P(n), (3.149)

i.e.or every given n,P(n) is s-sentence.Then for every n € N, P(n) holds, i.e.
Vn{T#*[P(n)] <s P(n)}.

Proof. Suppose that the whole hypothesis mentioned above holds, but that, for some
particular n,P(n) fails,i.e. —P(n) holds.Put

X = {m < n[T*[P(m)] A P(m)} (3.19

X exists since X = {41 < # and 1 is a natural number and T*[P(m)] A P(1)} , which

exists by Proposition 3.1 and the Separation Axiom. Obviously, 0 € X by

Theorem 3.3 (a). It will be enough to show that: 1 + 1 s X whenever 4 €5 X -

as then Xis 'an X' as in Definition 3.3, so, by Definition 3.3, the natural number
nes X,

and so P(n) holds, a contradiction. Suppose then that 1 s X, so that 2 < n,4

is a natural number, and P(4).By our hypothesis (in (3.13)), P(A1+1). By (b), A+ 1

is a natural number. Also, A <n, as P(n) fails. Hence 4 + 1 < n, by Theorem 3.3 (b).

Sol+1es X, as desired.

Theorem 3.7.[23] Any finite nonempty subset X of N has minimal and maximal

members.

Proof [23].Let X, consist Of X, ..., Xn. Define m; = x; and my as xy if xx < my_1 and

M1 otherwise. Then my will be minimal. Similarly, X has a maximal element.

Remark 3.7.This proof in fact based on assumption ( the induction hypothesis) that

the theorem holds for X1 consist of X1, ... ,Xk-1,I.8. M1 = MIN{Xq,...,Xk-1},then it



follows m1 = min{Xy, ..., Xk1} = Mg = mMin{Xy, ..., Xk} and by induction we conclude
that for all n € N,m, = min{xq, ... Xn}.

Definition 3.6. An element x is said to be a first element of the linearly

s-ordered set A (with respect to the s-relation R) if xRyfor ally es A. On

the other hand, if yRxfor all y €s A, then x is said to be a last element of

A (with respect to R). Generally speaking, not every set has a first or

last element; but if such an element exists, then it is uniquely determined.
Abbreviation 3.2 Let Xn(A), Xn(A) = n be sfinite non-empty subset of a linearly
s-ordered set A suth that there is a first element and a last element of X,. We shall
abbreviated: [Xa(A), (Xa(A) = n) is a sinite non-empty subset of a linearly s-ordered

set A suth that there is a first element and a last element of X,(A)] < f(n(A).
Under assumption

rvp IM(M € N)axm(A)[ﬁ(m(A)] (3.16)

by axiom of w-induction we obtain

VXn(A)[ A (>A<n(A) = >A<n+1(A)) } s anxn(A)[?n(A)] (3.17)

neN

In particular for A = N under assumption
vrvp IM(M €5 N)axm(N)[ﬁ(m(N)] (3.18)

by axiom of w-induction we obtain

VXn(N)|: A ()Zn(N) = >A<n+1(N)) } s anxn(A)[?n(N)] (3.19

neN

7 Axiom of existence non well-ordered sfinite subset of N.

Im(m es N)axm(N)[ﬁ(m(N)] (3.20)

84.Internal Set Theory IST.

The axiomatics IST (Internal Set Theory) was presented in 1977 [19] and in a

sense formulates within first-order language the behaviour of standard and internal
sets of a nonstandard model of ZFC. This were done by adding the unary
standardness predicate "st" to the language of ZFC as well as adding to the axioms
of ZFC three new axiom schemes involving the predicate "st": Idealization,
Standardization and Transfer.

Remark 4.1.Formulas which do not use the predicate st are called internal formulas
(or e-formulas) and formulas that use this new predicate are called external formulas

(or st-e-formulas).A formula ¢ is standard if only standard constants occur in ¢.
Abbreviaion 4.1.We denote a set of the all naturals by N*and a set of the all finite
naturals by N.

Abbreviaion 4.2.We write fin(x) meaning X is finite’. Let ¢(x) be a &t- € -formula:
1.V xp(x) abbreviates Vx(st(x) = ¢(X)).2.3% xp(x) abbreviates Ix(st(x) A @(X)).
3.Vfi"xp(x) abbreviates Vx(fin(x)) = ¢(x)).4.31" xp(x) abbreviates Ix(fin(x) A (X)).
5.vin xp(x) abbreviates vx(st(x) A fin(x)) = ¢(X)).

6.3%1" xp(x) abbreviates Ix(st(x) A fin(x) A @(X)).

The fundamental axioms of IST :




() Idealization

VINEIYYX € FIR(X,Y) < FbVIXR(X,b)] 4.1
for any internal relation R.
Remark 4.2.The idealization axiom obviously states that saying that for any fixed
finite set F there is a y such that R(x,y) holds for all x € F is the same as saying that
there is a b such that for all fixed x the relation R(x, b) holds.
(I) Standardization

VEATFIBYSX(X € B &= X € AA ¢o(X)) (4.2

for every st-e-formula ¢ with arbitrary (internal) parameters.
(1IN Transfer

VY, Y Y IX[0(X, Y, -, Yn) ] = VX (X, Y1, ..., Yn) (4.3
for all internal ¢(X,y1,...,Yn).
Remark 5.3. An importent consequence of (l) is the principle of External Induction,
which states that for any (external or internal) formula ¢,one has

@(0) A[VEN(p(n) = o(n+1))] = VInp(n). (4.9
Boundedness
vx3dy(x € y) (4.5)

and since (2.5) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization
For every e-formula R :

VY[VHINFIy € Y(Vx € FR(X,Y) < 3b(b € Y)VIXR(x,b))]. (4.6)
This gives a subsystem BST, which corresponds to the bounded sets of IST.

§5.Internal Set Theory IST#

The axiomatics | ST# formulates within infinitary first-order language the behaviour
of standard and internal sets of a nonstandard model of NC*,. This done by adding
the unary standardness predicate "st" to the language of NC*, as well as adding to
the axioms of NC*, three new axiom schemes involving the predicate "st":
Idealization, Standardization,Transfer and Axiom of internal hyper infinite
induction.

Remark 5.1.Formulas which do not use the predicate st are called internal formulas
(or esw -formulas) and formulas that use this new predicate are called external
formulas (or st-esy -formulas).A formula ¢ is standard if only standard constants
occur in ¢.

Abbreviaion 5.1.We write fin(x) meaning X is finite’. Let ¢(x) be a st- sy -formula:
1.VE xp(x) abbreviates Vx(st(x) =s ¢(X)).

2.V, xp(x) abbreviates Vx(st(x) =sw ¢(X)).

3.3% xp(x) abbreviates Ix(st(x) A ¢(X)).

4.¥¥"xp(x) abbreviates Vx(fin(x)) =s @(x)).

5.Vixe(x) abbreviates VYx(fin(x)) =sw @(X)).

6.3 xp(x) abbreviates Ix(fin(x) A p(X)).

7.y &n Xp(X) abbreviates Vx(st(x) A fin(x)) =s @(X)).




8.VI" xo(x) abbreviates VYx(st(X) A fin(x)) =sw @(X)).
9.3%in xp(x) abbreviates Ix(st(x) A fin(x) A @(X)).

The fundamental axioms of IST# :

(I) Idealization for classical sets

v?””FCLayCLvXCL es F[RCL(X,y) < IbCLVEXRCL (x,b)] (5.1

for any internal classical relation R (x,y).

Remark 5.2.The idealization axiom obviously states that saying that for any fixed
classical finite set F there is a classical y such that RC-(x,y) holds for all classical

X €s F is the same as saying that there is a classical b such that for all fixed classical
X the classical relation RCt (x, b) holds.

(Il) Standardization for classical sets

VSACLISBCLYSXCL(x € B <=5 X € A A (X)) (5.2)
for every st-e-formula ¢ with arbitrary (internal) parameters.
(M) Transfer for classical sets
VYL, YR YIX [p(X Y1, - Yn)] =s VX o(X Y1, Yn) (5.3
for all internal (X, y1,-..,Yn)-
Boundedness
VXCLISYCL(x es y) (5.9

and since (5.4) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization for classical sets
For every e-formula R :

VSYCL[SINECLIyCL e Y(VXCH (X € F)R(X,Y) <5 3bC (b € Y)VIXR(x,b))]. (5.5
(V) Idealization for nonclassical sets
VEIMENCLYNCLyXNCL e FIRNCE (X,y) <>gw TDNCLVE, XRNCE (x,b) ] (5.6)

for any internal nonclassical relation RNCL (x,y).
Remark 5.3.The idealization axiom obviously states that saying that for any fixed
nonclassical finite set F there is a classical y such that RNC-(x,y) holds for all classical
X €s F is the same as saying that there is a classical b such that for all fixed classical
x the nonclassical relation RNt (x, b) holds.
(VI) Standardization for nonclassical sets
VEANCLISBNCL S SNCL (% eqw B < sw X €sw A A 9(X)) (5.7)

for every st-esy -formula ¢ with arbitrary (internal) parameters.
(VIl) Transfer for nonclassical sets

VENE, YR VIXNC [p(X Y1, Yn) ] = sw VXN o(X Y, ... Yn) (5.8)

for all internal ¢(X,y1,...,Yn).
Boundedness for nonclassical sets

V swXNCLISYNCL (x e ) (5.9)
and since (5.9) contradicts idealization the following (bounded) form is taken instead:

(VIIl) Bounded ldealization for nonclassical sets
For every esy -formula R :



vgwyNCLI:vgunFNCLHyNCL esw Y(VswXNCL (x € F)R(X,Y) < sw

(5.10
3FbNCt (b € Y)VEXR(X,b))].
(IX) Internal Hyper Infinite Induction
V(S cq N#){Vﬁ(ﬁ € N#)|: N\ (@ €s S=sat & S):| = S=¢ N#}. (5.11
0<a<p

The main restricted rules of conclusion.

If IST# - Athen —A i B,where B € £*.

Thus if statement A holds in I1ST# we cannot obtain from —A any formula B
whatsoever.

Abbreviation 5.2 Let Xn(A),Xn(A) = n be a s-finite non-empty subset of a linearly

s-ordered set A suth that there is a first element and a last element of X,.We shall

abbreviated: [Xa(A), (Xa(A) = n) is a s-finite non-empty subset of a linearly s-ordered

set A suth that there is a first element and a last element of X,(A)] < f(n(A).
(X) Axiom of existence non well-ordered s-finite subset of N.

Im(m es N)axm(N)[ﬁ(m(N)] (5.12)

§6.Hypernaturals N*. Axiom of hyperinfinity

Definition 6.1.(i) A non-empty transitive non regular set u is a well formed non
regular set iff:
(i) there is unique countable sequence {u,}, such that

...€ Upt1 € Up...€ Ug € U3 € Up € U1 € U, (6.1
(if) forany n e N and any up1 € Uy :
Un = Up,1 (6.2
where a* = aU {a}.
(ii) we define a function a*™® inductively by a1 = (a*k)",

Definition 6.2. Let u and w are well formed non regular sets. We write w < u iff
foranyn e N

W € Un. (6.3)

Definition 6.3. We say that an well formed non regular set u is infinite

(or hyperfinite) hypernatural number iff:

(I) For any member w € u one and only one of the following conditions are
satified:

()w e Nor

(i) w = u, for some n € N or

(i) w < u.

(I1) Let <u be a set <u = {7z < u},then by relation (- < -) a set -u is densely ordered
with no first element.

(I N < u.

Definition 6.4. Assume u € N# then u is infinite (hypernatural) number if u € NAN.

Axiom of hyperinfinity



There exists a set N* such that:

()N < N,

(ii) if u € N*\N then there exists infinite (hypernatural) number v such that v < u,
(iii) if u € NA\N then there exists infinite (hypernatural) number w such that for any
neN:ul<w,

(iv) set N\N is patially ordered by relation (- < ) with no first and no last element.

§7.Axioms of the nonstandard arithmetic A*.

Axioms of the nonstandard arithmetic A* are:

Axiom of hyperinfinity

There exists a set N* such that:

()N < N*

(i) if uis infinite (hypernatural) number then there exists infinite (hypernatural)
number v such that v < u

(iii) if u is infinite hypernatural number then there exists infinite (hypernatural)
number w such that u < w

(iv) set N\N is patially ordered by relation (- < ) with no first and no last element.

Axioms of infite w-induction

(i)
VS(SCN){[/\(nest n*eS):| :>SS=N}. (7.1)

new

(i) Let F(x) be a wiff of the set theory NC¥,, then

|:/\(F(n) =5 F(n+)):| =s Vn(n € o)F(n). (7.2

New

Definition 7.1.(i) Let B be a hypernatural such that g € N*\N. Let [0,8] < N* be a
set such that Vx[x € [0,8] < 0 < x < ] and let [0,) be a set [0,8) = [0,B8]\{B}.

(i) Let B € NN and let B, < N*be a set such that
VX{X € B < Tk(k > 0)[0 < x < B} (7.3)

Definition 7.2.Let F(x) be a wff of NC* ,with unique free variable x. We will say that
a wff F(x) is restricted on a classical set Ssuch that S &5 N* iff the following condition
is satisfied

Vala € NA\S =5 —F(a)]. (7.9

Definition 7.3.Let F(x) be a wff of NC* ,with unique free variable x. We will say that

a wif F(x) is strictly restricted on a set Ssuch that S &s N* iff there is no proper subset
S < Ssuch that a wff F(x) is restricted on a set S.

Example 7.1.(i)Let fin(a),a € N*be a wff formula such that fin(a) <s a € N.
Obviously wff fin(a) is strictly restricted on a set N since Va[a € NN =g —fin(a)].
Let hfin(a),a € N*be a wif formula such that hfin(a) << a € N¥\N since

Va[a € N =¢ —hfin(a)].

Definition 7.4. Let F(x) be a wff of NC?.with unique free variable x. We will say that a
wif F(x) is unrestricted if wff F(x) is not restricted on any set Ssuch that S & N,




Axiom of hyperfinite induction 1

V(S s [0, BDVB(B €s N) N\

(7.5)
{‘v’a(a €s [O,ﬁ))|: N\ (@ €sS= a" & S):| = S= [O,B]}.
0<a<p
Axiom of hyperfinite induction 1’
V(S Ss [0,8-1)VB(B € N) N\,
{‘v’a(a € [O,ﬁw])|: A (@eS=a' e S):| = S= [O,ﬁw]}. (7-8)
0<a<Bow

Axiom of hyper infinite induction 1

V(S cs N#){V/}(,B € N#)|: N\ (@ esS= a" es S):| =5 S=¢ N#}. (7.7

O<a<p
Definition 7.5.A set S cs N¥is a hyper inductive if the following statement holds
N\ (@ esS=sa" e 9). (7.8)

aeN#
Obviously a set N* is a hyper inductive. Thus axiom of hyper infinite induction 1
asserts that a set N* this is the smallest hyper inductive set.
Axioms of hyperfinite induction 2
Let F(x) be a wff of the set theory NC*, strictly restricted on a set [0, 3] then

[Vﬁ(ﬂ € [O,ﬁ])[o!\ﬁ(lz(a) =s F(a")) | | =s Va(a € [0,]))F(a). (7.9)

Let F(x) be a wff of the set theory NC*, strictly restricted on a set [0,8..] then

[Vﬁ(ﬁ € [O,ﬁw])[ A (F(a) =sF(a*)) | | =s Va(a € [0,])F(a).  (7.10)

0§a<ﬁw

Axiom of hyper infinite induction 2
Let F(x) be anrestricted wff of the set theory NC*, then

[Vﬁ(ﬁ € N#)[ /\ﬁ(F(a) =s F(d*))}} =s VB(B € N )F(B). (7.11)

0<a<

The main restricted rules of conclusion.
If A* - Athen —A i+ B,where B € £,
Thus if statement A holds in A* we cannot obtain from —A any formula B whatsoever.

88.The Generalized Recursion Theorem.

Theorem 1. Let Sbe a set, c € Sand G : S— Sis any function with dom(G) = Sand
range(G) < S Let WG] € N* x Sbhe a binary relation such that:

(@) (1,c) e WG] and

(b) if (x,y) € W[G] then (Sc(x),G(y)) € WG].

Then there exists a function F : N* » Ssuch that:

(i) dom(F) = N*and range(F) < S

(i) F(Q) =¢;



(iii) for all x e N*, F(Sc(x)) = G(F (X)).

1.The desired function & is a certain hyper inductive relation W < N* x S it is to have
the properties:

(i) (1,¢) e W;

(ii") if (x,y) € W then (Sc(x),G(y)) € W.

Remark 1. The latter is just another way of expressing (iii), that if

FX) =y 1)
then
F(Sc(x)) = G(y). (2)

Remark 2.Note that any relation W mentioned above is hyper inductive relation
since the hyper inductivity conditions (ii')-(iii') are satisfied.
However there are many hyper inductive relations which satisfy the conditions
(ii")-(iii"); on such is N* x S What distinguishes the desired function from all
these other relations is that we want (a, b) to be on it only as required by (ii") and
(iii"). In other words, it is to be the smallest relation satisfying
(ii")-(iii"). This can be expressed precisely as follows:
(1) Let M be a set of the relations W satisfying the conditions (ii’) and (iii’);
then we define

F=[W.

WeM

Hence
(2) whenever W € M then & < W.
We shall now show that we can derived from (1) that & is also one relation in M.
(3) (1,c) e F.
This follows immediately from the definition of n and the fact that (1,c) € W for

WeM
allw € M.

(4) If (x,y) € F then (Sc(x),G(y)) € F.

Forif (x,y) € & then (x,y) € W for all W € M;hence by (iii')

(Sc(x),G(y)) € W for all W € M so that (Sc(x),G(y)) € F by (1).

We must now verify that & is actually a function, i,e., we wish to show

that for any x,z1,z> € N#, if (x,z1) € F and (x,22) € F, then z; = z,.

We shall prove this by hyper infinite induction on x. Let

(5) A = {x}x e N* and for all z;,z; € N*, if (x,z1) € F and (x,z2) € F

then z; = zo}.

We shall show A = N* by applying hyper infinite induction. First we have

(6) 1€ A

To prove (6), it suffices to show that for any z, if (1,2) € & thenz = c.

We prove this by contradiction; in other words, suppose to tbe contrary that there

is some zwith (1,2) € F but z + c. Consider the relation W = #\{(1,2)}. Since

(1,c) e F and (1,c) # (1,2), it follows that (1,c) € W. Moreover, whenever (u,y) € W
then (u,y) € F and hence (Sc(u),G(y)) € F but Sc(u) # 1, so (Sc(u),G(y)) * (1,2),
and hence (Sc(u),G(y)) € W. Thus W satisfies both conditions (ii") and (iii'); in other
words, W € M. But then it follows from (2) that # < W however this

is elearly false sinee (1,2) € F and (1,z) ¢ W. Thus our hypothesis has led us to a



contradiction, and henee (6) is proved. Next we show that

(7) for any x € N* if x € Athen Sc(x) € A.

Suppose that x € A, so that whenever (x,z1) € F and (x,z2) € F then

z1 = 2. We must show that whenever (Sc(x),w1) € Fand (Sc(x),wz) € F

then wy; = w,. To prove this, it suffices to show that

(8) whenever (Sc(x),w) € F then there exists a zwith w = G(2) and (x,2) € &F.

For if (8) ia true, we would have for the given w1,w, some z; = z, with

w1 = G(z1), We = G(22), (X,z1) € F and (x,22) € F. Then, sincex e A,z = 2,

and henee G(z;) = G(z2) , that is, w1 = Ws.

Now to prove (8) suppose, to the contrary, that it is not true; in other words,
suppose that we have some w with (Sc(x),w) € & but such that for all

zwhich (x,2) € F we have w # G(2). Consider the relation W = F\{(Sc(x),w)}.
We shall show that W € M. First of all (1,¢) € Fand (1,c) # (Sc(x),w); hence
(1,c) € W. Suppose tbat (u,y) € W;then (u,y) € F and (Sc(u),G(y)) € F.

Clearly if u = x then (Sc(u),G(y)) * (Sc(x),w),so that in this case (Squ),G(y)) € W.
On the other hand, if u = x and (Sc(u), G(y)) = (Sc(x),w), then w = G(y), where
(x,y) € F, contrary to the choice of w henee (Sc(u),G(y)) # (Sc(x),w)), SO again
(Sc(u),G(y)) € W. Thus whenever (u,y) € W, also (Sc(u),G(y)) € W. Now that we
have shown W € M we see by (2) that F < W but this is false since (Sc(x),w) € F
and (Sc(x),w) ¢ W. Thus our hypothesis that (8) is incorrect has led to a
contradiction, and now (8) is proved. Sinee (7) follows from (8), we have

by hyper infinite induction from (6) that A = N*. Hence

(9) F is a function.

We have still to prove that & satisfies,condition (i); we must show that

for each x e N* there- is ay with (x,y) € F. Since F < N* x S, it will

then follow that dom(F) = N* and range(¥) < S Let B = dom(¥), that is,

(10) B = {x|x € N* and for some y, (x,y) € F}.

We prove now by hyper infinite induction that B = N*. First, 1 € B, since (1,c) € &
by (3). Next, if x € B, pick some y with (x,y) € &F; then by (4), (Sc(x),G(y)) € F,
and henee Sc(x) € B.

Thus concludes the first part of the proof, that there is at least one function &
satisfying conditions (i)-(iii).

Part 2. We prove that there cannot be more than one such function.

Suppose that &1 and &, both satisfy the conditions (i)-(iii) we wish to show
F1=F, i.e., that for all x e N¥, F1(x) = F2(x). Thus

is proved by hyper infinite induction on X. By (ii), #1(1) = cand F2(1) = ¢, so
F1(1) = F2(1). Suppose that F1(x) = F2(x); then F1(Sc(x)) = G(F1(X))

and F5(Sc(x) = G(F2(0), S0 F1(Se(0) = F2(Sc(9).

Theorem 2. Let She a set, c € Sand G : SxN* - Sis a binary function with
dom(G) = SxN* and range(G) < S.

Then there exists a function & : N* » Ssuch that:

(i) dom(F) = N*and range(F) < S

(i) F) =c;

(iii) for all x e N*, F(Sc(x)) = G(F (X),X).

We omit the proof of the Theorem 3.4.2 since it can be given by simple modification
of the proof to Theorem 3.4.1.



89.General associative and commutative laws.

Definition C.1. Suppose that Sis a set on which a binary operation + is defined and
under which Sis closed. Let {x«}..+ be any hyper infinite sequence of terms of S For
n
every n € N* we denote by Ext-)_ Xk the element of Suniquely determined by the
k=1

following conditions:
1 n

1
(i) ExtD_xk = Xq; (i) EXtD_ Xk = EXtD_ Xk + Xni1 for all n € N#,
k1 kel kel

Remark 9.1.This definition is justified on the following grounds. The sequence
{Xk}#iS @ given external function H with domain N*,H(xx) = x« for every k. We seek
n
a function F with domain N* whose value F(n) is to be Ext-)_ xx. Then the conditions
k=1
(1), (ii) above correspond to the following conditions on F :
(i") F(1) = H(Q); (i") F(n+ 1) = F(n) + H(n+ 1), for all n € N*.
Let (1) c = H(1);(2) G(n,z) = z+ H(n+ 1).
Thus the conditions (i') and (ii’') are equivalent to
(")F@) =c¢
(i") F(n+1) = G(n,F(n)) for all n € N*,
Given the function H, the element c of Sand the function G are well-defined by (1)-(2).
Then by Theorem B.1 we see that there is a unique function F satisfying (1)-(2) with
dom(F) = N* and range(F) < S Thus (i')-(ii’) is just another form of recursive
definition.
n
(Hence it should be expected that various properties of Ext-)_ xx will have to be
k=1
verified
by hyper infinite induction on n e N*.)
Definition 9.2. Suppose that Sis a set on which a binary operation x is defined and
under which Sis dosed. Let {x«} .+ be an hyper infinite sequence of terms of S For
n

every n € N* we denote by Ext[ [ x« the element of Suniquely determined by the
k=1
following conditions:

n n+l n
(i) Ext] [ xx = xa; (i) Ext[ [ x« = (Ext—]_[xk) x Xns1 for all n e N#,
k1 k1 k1

Theorem 1.(1) Suppose that Sis a set closed under a binary operation + and that
+is associative on § i.e.,for all x,y,ze Sx+ (y+2) = (X+Y) +z Let {X}, .+ be any
hyper infinite sequence of terms in S. Then for any n,m € N*. we have

nH+m

n m
Ext > X¢ = (Ext—Zxk) + (Ext—mek) (9.1
=) kel P

(2) Suppose that Sis a set closed under a binary operation x and that x is associative
onS§ ie,forallx,y,ze Sxx(yx2z) = (XxYy) xz Let {Xk} .+ be any hyper infinite
sequence of terms in S, Then for any n,m e N*, we have



nH+m

n m
Ext [ x« = (Ext— ]_[xk) x EXt [ [ Xnik- 9.2
k=1 k=1 k=1

Proof. We prove (3.5.1); the proof of (2) is completely similar. Let n be fixed; we
proceed by hyper infinite induction on m.For m = 1 from Eq.(3.8.1) we get

n+1 n 1
Ext Y Xk = (Ext—ZxQ + (Ext—mek). (9.3
kel k1 k1

By Definition 3.8.1(i) we obtain
1

EXt D Xnik = Xns1- (9.4
k=1
Suppose Eq.(3.8.1) is true for m € N*.We show that is true for m+ 1,i.e.,that
n+(m4+-1) n m+1
Ext Y X = (Ext—ZxQ + (Ext— mek). (9.4)
k=1 k=1 k=1
By associativity + on N* we get
nH+(m4+-1) (n+m)+1
Ext D> X«=Ext > X (9.6)
k1 k=1
From Eq.(3.8.6) by Definition 3.8.1(ii) we obtain
(n+m)+1 n+m n+m
Ext D Xc = EXt D X+ Xnimys1 = EXE D Xic + Xne(me1)- (9.7)
k=1 k=1 k=1
From EQq.(3.8.7) by induction hypothesis we obtain
nH+m n m
EXt D Xk + Xns(me1) = (Ext— > Xk + Ext Zxk> + Xn(me)- (9.8
k=1 k=1 k=n

From Eq.(3.8.8) by associativity + on Swe get

n m n m
(Ext— D Xk + Ext Zxk) + Xnemi1) = EXE Y X+ (Ext— D X+ xn+(ml)>. (9.9
P

k=1 k=n k=n
From Eq.(3.8.9) by Definition 3.8.1(ii) we obtain

n m n m+1
Ext ) Xk + (Ext— D Xk + Xn+(m+1)> = EXt Y Xk + Ext D Xk. (9.10)
k=1 k=n k=1 k=n

This equality completes the inductive step and hence the proof of the theorem.
Definition 9 3. Let (X1, ...,Xn),n € NN be an hyperfinite sequence of elements of RZ.

Then Ext Zxk and Ext ka are defined for any n,m € N* by the recursions
k=m k=m

(i) Ethxk =0 and Ext]_[xk =1lifn<m

k=m

n-1
(ii) Ext—Z Xk = (Ext—Zxk> +Xn and
k=m k=m
n n-1
(iii) Ext] [ Xk = %n x (Ext—]_[xk> if m<n.
k=m

k=m
The condition (ii) of the above definition is justified by recursive definition, see
Appendix B.
Definition 9.4. Let (x1,....Xj,...),j € N be a countable sequence of elements of R%.



Then w-sum Ext)_ xx and o-product Ext-| [ x« are defined for any m € N by

j=m j=m
® n
(iv) Ext)_x = Ext—Zyj,where (Y1,---,Yjr---¥n), N € NN is a hyperfinite sequence
j=m j=m
such that X; =y; for aIIJ e Nandy; = Ofor allj e NAN;
(v) Ext—]_[ Xj = Ext]_[y,,where Y1,-.-,Yj,---¥n), N € N\ is a hyperfinite sequence
j=m j=m
suchthatx; = y; forallj e Nandy; = 1 for allj e NN,
Theorem 9.2.Let (x,...,Xn),n € NN be an hyperfinite sequence of elements of RZ.
Then we have

n-miq
Ext—Zxk = EXt D Ximg (9.11)
k=m k=m
and
n n
X (Ext—Zxk> = Ext- ) Zx X, (9.12
k=m k=m
z e R%.

Proof.Let (X1,...,Xn),n € NY\N be an hyperfinite sequence of elements of R%.
Consider now any hyperfinite nonnegative integers

Ny, N2,..,Ni,....NNie NN, 1< i <t,

and set

Nn=n1+nNy+...+n. (9.13
Given x4, ...,Xn, We can group these as:
X1, .. ,an; Xn1+1, e ,Xn1+n2; Xn1+n2+l, e ,Xn1+n2+n3; e -Xn1+n2+...ni+1, e ,Xn1+n2+...ni+1; e (9 14)
Here, if nj = 0, the corresponding subsequence is regarded as being empty.

Theorem 9.3. Let (X1, ...,X, ...) be an hyper infinite sequence of elements of R.

Let (n1,...,n;) be a sequence of nonnegalive integers. For eachi = 1,...t € N¥
i-1

let m = Y njand letn = m; + n.. Then
-1

n t nj
Ext ) Xk = Z(Ext—mei+k> (9.15
kel i—1 kel
and
n t nj
Ext[[x« = H(Ext— mei+k>. (9.16)
kel i=1 k=1

Proof. By hyper infinite induction.

Definition 9.5. A function F is said to be a permutation of a set Sif it is one-to-one
and dom(F) = range(F) = S

Definition 9.6. Let [1,n] a set {kk e N A (1L <k < n)}

Theorem 9.4.Let (x,...,X),n € NN be an hyperfinite external sequence of elements
of R% Then for any n e N* and any permutalion F of [1,n] following holds

n n
EXt D Xk = EXt D Xpg- (9.17)
P P

The same holds if we replace Ext-)_ by Ext] |.



Proof. The proof is by hyper infinite induction on n € N*. For n = 1t is trivial.
Suppose that it is true for n. Let G be a permutation of [1,n+ 1].Then G(m) = n+1
for a uniqgue m, such that1 < m< n+ 1. Then by Eq.(3.5.15)

n+l n+l
Ext ZXG(k) Ext 2 XGk) + Xn+1 + Ext Z XG(k) (9 18)
k=1 k=1 k=m+1
and by Eq.(3.8.18)
m-1 1 m-1
Ext- Z XG(k) + Xni1 + EXt Z Xek = EXt Z Xek + EXt Z XG(kt1) + Xnil. (9.19
k=m+1
Thus by Eq.(3.8.11) we obtain
1 m-1
Ext Z XGk) = Ext 2 Xek) + Ext- Z XGk+1) + Xn+1- (9 20)
k=1

To reduce this to the inductive hypothesis, we wish to rewrite the external sum of the
first

n
two terms as Ext-)_ Xg«, for suitable F. Define F by
k=1

G(k) if 1<k<m
F(k) = (9.21)
Gk+1) if m<k<n

Since all valucs of G(k) for k + m, we have for allk < n
1<Fk)<n (9.22
Now we claim that
F is a permutation of [1,n]. (9.23

By (3.8.21) and (3.8.22) we need only check that F is one-to one. Suppose that
F(k1) = F(k2).

If both ki, k2 are < mor both are > m, it lollows from (3.8.21) and the fact that G is a
permutation that k; = ko.If, say, ki < m < kz, we have G(k1) = G(kz + 1), hence

ki = ko + 1, which contradicts our assumption. Thus neither this case: nor, by
symmetry, the case ko < m < k; can occur. We have from (3.8.20) and (3.8.21) that

m-1

m+1
Ext- Z Xk = Ext Z Xr) + EXt Z XF@ + Xni1 = EXt Z XF(k) + Xni1 (9.29
k=1

by (3.8.23) and inductive hypothesis

n+1

Ext—ZxF(k) + X1 = Ext—Zx|< + Xnu1 = EXt D] Xk (9.25
=] P

This equality completes the inductive step and hence the proof of the theorem.

§10.Hyperrationals Q¥

Now that we have the hypernatural numbers N*, defining hyperintegers and
hyperrational numbers is well within reach [2].

Definition 10.1. Let Z¥ = N* x N*. We can define an equivalence relation ~ on Z*

by (a,b) ~ (c,d) if and only if a+ d = b+ c. Then we denote the set of all hyperintegers
by 7% = Z¥| ~ (The set of all equivalence classes of Z¥ modulo =).



Definition 10.2. Let Q¥ = 7# x (z# - {0}) = {(a,b) € 7* x 7¥|b # O}. We can define an

equivalence relation ~ on Q¥ by (a,b) ~ (c,d) if and only if ax d = b x c. Then we
denote

the set of all hyperrational numbers by Q* = Q'/ ~ (The set of all equivalence classes
of

Q'modulo ).

Definition 10.3. A linearly ordered set (P,<) is called dense if for any a,b € P such
that

a < b, there exists ze Psuchthata< z< b.

Lemma 10.1. (Q¥, <) is dense.

Proof. Let x = (a,b),y = (c,d) € @* be such that x < y.Consider z = (ad+ bc, 2bd) e
Q.

It is easily shown thatx < z< y.

11.External Cauchy hyperreals R% via Cauchy

completion.

Definition 11.1. A hyper infinite sequence of hyperrational numbers (or for the sake of

brevity simply hyperrational sequence) is a function from the hypernatural numbers N*

into the hyperrational numbers Q*. We usually denote such a function by n - an,or by

a: n - ap,so the terms in the sequence are written {a;,az,as,...,an...y. To referto

the whole hyper infinite sequence, we will write {an}*",,0r {an} . or for the sake of

brevity simply {an}.

Definition 11.2. Let {a,} be a hyperrational sequence. Say that {a,} #tends to O if,

given any ¢ > 0,¢ ~ 0,there is a hypernatural number N € NAN, N = N(¢) such that,

after N (i.e.for all n > N), [an|< €. We often denote this symbolically by a, -4 O.

We can also, at this point, define what it means for a hyperrational sequence #-tends

to any given number q € Q* : {a,} #tends to qif the hyperrational sequence {a, - q}

#tendstoOi.e.,an—q -# 0.

Definition 11.3. Let {a,} be a hyper infinite hyperrational sequence. We call {a,} a

Cauchy hyperrational sequence if the difference between its terms #-tends to O.

To be precise: given any hyperrational number ¢ > 0, = 0,there is a hypernatural

number N = N(¢g) such that for any m,n > N, Ja, — am< &.

Theorem 11.1. If {a,} is a #-convergent hyperrational sequence (that is, a, —# q for

some hyperrational number g € Q¥), then {an} is a Cauchy hyperrational sequence.

Proof.We know that a, —# g.Here is a ubiquitous trick: instead of using ¢ in the

definition, start with an arbitrary small ¢ > 0,& ~ 0 and then choose N € N*/N so that

lan — gl< ¢/2when n > N. Then if m,n > N, we have

[an — am= |[(an — ) — (am— Q) |an — gH+|lam — gl €/2+ /2 = ¢.

This shows that {a,} is a Cauchy hyper infinite sequence.

Theorem 11.2. If {a,} is a Cauchy hyperrational sequence, then it is bounded or
hyper

bounded; that is, there is some M e Q finite or hyperfinite such that |a,|< M for alll

n e N*.

Proof.Since {an} is Cauchy, setting ¢ = 1 we know that there is some N € N*/N such

that |am — anl< 1 whenever m,n > N. Thus, |an:1 — anl< 1 for n > N. We can rewrite this

as an+1 — 1 < an < ans1 + 1.This means that |ay| is less than the maximum of |an.: — 1|



and Jans1 + 1. So, set M equal to the maximum number in the following list:

{laol, 1|, - - -, &n|, BNt — 1], Bne1 + 1[F. Then for any term ayp, if n < N, then |a,| appears in
the list and so |an|< M; if n > N, then (as shown above) |a,| is less than at least one of
the last two entries in the list, and so |an|< M.Hence, M is a bound for the sequence.
Definition 11.4. Let Sbe a set . A relation x ~y among pairs of elements of S

is said to be an equivalence relation if the following three properties hold:
Reflexivity: for any s € S s~s.

Symmetry: for any st € S if s~t then t~s.

Transitivity: for any s,t,r € § if s~t and t~r, then s-~r.

Theorem 11.3. Let Sbe a set, with an equivalence relation (-~ +) on pairs of elements.
For s € S denote by cl[s] the set of all elements in Sthat are related to s. Then for
any s,t € Seither cl[s] = cl[t] or cl[s] and cl[t] are disjoint.

The hyperreal numbers R% will be constructed as equivalence classes of Cauchy
hyperrational sequences. Let & 4+ denote the set of all Cauchy hyperrational
sequences of hyperrational numbers. We define the equivalence relation on & g«.
Definition 11.5. Let {a,} and {b,} be in F 4+. Say they are #-equivalent if

an—bn—-# Oi.e., if and only if the hyperrational sequence {a, — b,} tends to 0.
Theorem 11.4.Definition 11.4 yields an equivalence relation on & .

Proof. We need to show that this relation is reflexive, symmetric, and transitive.
Reflexive: a, — an = 0, and the sequence all of whose terms are 0 clearly
#-converges to 0. So {an} is related to {an}.

Symmetric: Suppose {an} is related to {b,}, so an — b, -4 O.

But b, — an = —(an — bn),and since only the absolute value |a, — bn|= |bn — an| comes
into play in Definition 11.2, it follows that b, — a, -4 0 as well. Hence, {b,} is related
to {an}.

Transitive: Here we will use the ¢/2 trick we applied to prove Theorem 11.1. Suppose
{an} is related to {b,}, and {b,} is related to {c,}. This means that a, — b, -4 0 and
bn — cn »# 0.To be fully precise, let us fix ¢ > 0, ~ O; then there exists an N € N*
such that for all n > N, Ja, — bn|< £/2; also, there exists an M e N* such that for all

n > M, |bn — cnlk /2. Well, then, as long as n is bigger than both N and M, we have
that [an — cnl= |[(@n — bn) + (bn — Cn)I |an — bnl+|bn — Cnl< €/2 + /2 = &,

So, choosing L equal to the max of N, M, we see that given ¢ > 0 we can always
choose L so that for n > L, [an — Cn|< €. This means that a, — ¢, »# 0—i.e. {a,} is
related to {cn}.

Definition 11.6. The hyperreal numbers R¥ are the equivalence classes cl[{an}] of
Cauchy sequences of hyperrational numbers, as per Definition 11.5. That is, each
such equivalence class is a hyperreal number.

Definition 11.7. Given any hyperrational number g € Q¥ define a hyperreal number
g* to be the equivalence class of the sequence g* = (q,0,0,, ...) consisting entirely
of g. So we view Q* as being inside R¥ by thinking of each hyperrational number

q € Q* as its associated equivalence class g*. It is standard to abuse this notation,
and simply refer to the equivalence class as q as well.

Definition 11.8. Let s,t € R¥, so there are Cauchy sequences {an},{bn} of
hyperrational numbers with s = cl[{an}] and t = cl[{bn}].

(a) Define s+t to be the equivalence class of the sequence {a, + bn}.

(b) Define sx t to be the equivalence class of the sequence {a, x bn}.



Theorem 11.5.The operations +, x in Definition 8.8 (a),(b) are well-defined.

Proof. Suppose that cl[{an}] = cl[{cn}] and cl[{bn}] = cl[{dn}]. Thus means that
an—Cn - 0and by, —dy »# 0. Then (a, + bn) — (ch +dn) = (an—Cn) + (bn — dp).
Now, using the familiar /2 trick, you can construct a proof that this tends to 0, and
so cl[{an+bn}] = cl[{ch +dn}].

Multiplication is a little trickier; this is where we will use Theorem 11.2. We will also
use another ubiquitous technique: adding 0 in the form of s—s. Again, suppose that
cl[(an) =cl[(cn)] and cl[{bn}] = cl[{dn}]; we wish to show that

cl[{an x bn}] = cl[{cn x dn}], Or, in other words, that a, x b, — ¢, - dn »# 0.Well, we
add and subtract one of the other cross terms, say

anCn:anxbn_Cnan:anan+(anCn_anCn)_Cnxdn:
:(anan_anCn)+(anCn_Cnan):bnx(an_Cn)+Cnx(bn_dn).

Hence, we have |an x by — €y x dp|< |bn|x|an — CnlHcnlx|bn — dn|. Now, from
Theorem 11.2, there are numbers M and L such that |b,|< M and [c,[< L for all
n € N¥, Taking some number K which is bigger than both, we have

lan % bn— € x dnl< [onf Jan — CaltlCal [on — dnl& K(|an — Cal+bn — da]).

Now, noting that both a, — ¢, and b, — d, tend to 0 and using the &/2 trick (actually, this
time we’ll want to use ¢/2K), we see that a, x b, —c, x dn -# O.

Theorem 11.6. Given any hyperreal number s # 0, there is a hyperreal number t such
thatsxt = 1.

Proof. First we must properly understand what the theorem says. The premise is that
S is nonzero, which means that s is not in the equivalence class of {0,0,0,0,..}. In
other words, s = cl[{an}] where a, — 0 does not #-converge to 0. From this, we are to
deduce the existence of a hyperreal number t = cl[{b,}] such that sx t = cl[{an x bn}]
is the same equivalence class as cl[{1,1,1,1,..}]. Doing so is actually an easy
consequence of the fact that nonzero rational numbers have multiplicative inverses,
but there is a subtle difficulty. Just because s is nonzero (i.e. {a,} does not tend to 0),
there’s no reason any number of the terms in {a,} can’t equal 0. However, it turns out
that eventually, a, = O.

That is,

Lemma 11.1. If {a,} is a Cauchy hyper infinite sequence which does not #-tend to 0,
then there is an N e N*/N such that, for n > N,a, # O.

We will now use Lemma 11.1 to complete the proof of Theorem 11.7.

Let N be such that a, + 0 for n > N. Define a hyper infinite sequence b, of
hyperrational numbers as follows:

forn < N,b, = 0, and for n > N,by = 1/ay; {bn} = (0,0,...,0, 14N,1, Lan.2, . . .).

This makes sense since, for n > N, an is a nonzero hyperrational number, so 1/a,
exists. Then a, -byisequaltoa, -0 =0forn <N, and equalsa,-by, =a,-1/ap =1
for n > N. Well, then, if we

look at the hyper infinite sequence (1,1,1,1,..), we have (1,1,1,1,..) —(an-bp) is

the

hyper infinite sequence whichis1-0= 1forn < Nandequals1-1=0forn> N.
Since this sequence is eventually equal to 0, it #-converges to 0, and so
c[{an-bn}] =cl[(1,1,1,1,..)] =1 eRE This shows thatt = cl[{b,}] is a



multiplicative inverse to s = cl[{an}].

Definition 11.9. Let s € R%. Say that s is positive if s # 0, and if s = cl[{a,}] for some
Cauchy sequence of hyperrational numbers such that for some N € N* a, > 0 for all
n > N. Given two hyperreal numbers s, t, say that s > t if s—t is positive.

Theorem 11.7. Let s,t be hyperreal numbers such that s > t, and let r € R%Z. Then
S+r >t+r.

Proof. Let s = cl[{an}],t = cl[{bn}], and r = cl[{cn}]. Since s> ti.e.,s—t> 0, we
know that there is an N € N* such that, for n > N, a, — b, > 0. So a, > b, for n > N.
Now, adding cn to both sides of this inequality (as we know we can do for
hyperrational numbers), we have a, + ¢, > b, + ¢, for

n> N, or (a, + cn) — (bn + cy) > O for n > N. Note also that

(an + ¢n) — (bn + cn) = an — by does not #-converge to 0, by the assumption that

s—t > 0. Thus, by Definition 11.8, this means that

s+r=cl[{an+cn}] > cl[{bn+cCn}] =t+r.

Theorem 11.8. (Generalized Archimedean property)Let s,t > 0 be hyperreal numbers.
Then there is m e N* such that mx s > t.

Proof. Let s,t > 0 be hyperreal numbers. We need to find a hypernatural number m so
that mx s > t. First, recall that, by min this context, we mean cl[{m,m,m,m,...}]. So,
letting s = cl[{an}] and t = cl[{b,}],what we need to show is that there exists m e N*
with

cdl{mmmm,...}] x cl[{ai,az,a3,a4,...}] = cl[{mxai;,mxa,mxas,mxaa,...}] >

> Cl[{bl, b2, b3, b4, . }]

Now, to say that cl[{mx an}] > cl[{bn}], or cl[{mx a, — by }] is positive, is, by
Definition 11.9, just to say that there is N € N* such that mx a, — b, > Ofor all n > N,
while mx a, — b, »4 0. To be precise, the first statement is:

There exist m,N € N* so that mx an > by for all n > N.

To produce a contradiction, we assume this is not the case; assume that

(#) for every mand N, there exists an n > N so that mx a, < by.

Now, since {b,} is a Cauchy sequence, by Theorem 11.2 it is hyperbounded — there
is a hyperrational number M € Q* such that b, < M for all n. Now, by the properties for
the hyperrational numbers Q#, given any hyperrational number ¢ > 0,¢ = 0, there is an
m € N* such that M/m < &/2. Fix such an m. Then if mx a, < b,, we have

an < bp/m < M/m < ¢/2.

Now, {a,} is a Cauchy sequence, and so there exists N so that for

k> N, |an —ak< €/2.

By Asumption (#), we also have an n > N such that mx a, < bn, which means that
an < ¢/2. But then for every k > N, we have that ax — a, < &/2, so

ax<an+el2< €l2+¢€l2 =¢. Hence, ax < ¢ for all k > N. This proves that ax »# O,
which by Definition 11.9 contradicts the fact that cl[{a,}] = s> 0.

Thus, there is indeed some m € N so that mx a, — b, > 0 for all sufficiently infinite
large n € NA\N. To conclude the proof, we must also show that mx a, — b, » 0.
Actually, it is possible that mx a, — b, - 0 (for example if {a,} =<1,1,1,...} and

{bn} = {mm,m,...}). But that's okay: then we can simply choose a larger m. That is:
let m be a hypernatural number constructed as above, so that mx a, — b, > 0

for all sufficiently large € N*N. If it happens to be true that mx a, — b, » 0, then the
proof is complete.



If, on the other hand, it turned out that mx a, — b, — 0, then take instead the integer
m+ 1.Since s = cl[{an}] > 0, we have a n > O for all infinite large n, so
(m+1) xan— by = mx a,—bn+an > a, > 0for all infinite large n, so m+ 1 works just
as
well as mdid in this regard; and since mx a, — b, - 0, we have
(m+1) xan—by = (Mmxa,—by)+an » 0since s= cl[{a,}] > 0(so a, » 0).
It will be handy to have one more Theorem about how the hyperrationals Q* and
hyperreals R#% compare before we proceed. This theorem is known as the density of
Q*in
R#, and it follows almost immediately from the construction of the R from Q.
Theorem 11.9. Given any hyperreal number r € R%, and any hyperrational number
£>0, ¢=0,thereis a hyperrational number q € Q* such that |r — g< «.
Proof. The hyperreal number r is represented by a Cauchy hyperrational sequence
{an}.
Since this sequence is Cauchy, given ¢ > 0,¢ = 0, there is N € N#so that for alll
m,n > N,
lan — aml< €.Picking some fixed | > N, we can take the hyperrational number q given by
q = cl[{a,a,a,...}]. Then we haver —-q = cl[{an — a/} ], and
q-r = cl[{a — an} ol
Now, since | > N, we see that for n > N,a, —a < ¢ and a — a, < &, which means by
Definition 11.9thatr—g< eand q—r < ¢; hence, |r — gk ¢.
Definition 11.10.Let S & R% be a non-empty set of hyperreal numbers.
A hyperreal number x € R% is called an upper bound for Sif x > sforallse S
A hyperreal number x is the least upper bound (or supremum supS) for Sif x is an
upper bound for Sand x <y for every upper bound y of S
Remark 11.1.The order < given by Definition 11.9 obviously is <-incomplete.
Definition 11.11. Let S < R¥ be a nonempty subset of RZ. We we will say that:
(1) Sis <-admissible above if the following conditions are satisfied:
(i) Sbounded above;
(ii) let A(S) be a set Vx[x € A(S) < x> S]then for any ¢ > 0,6 = Othere exsta € S
and g € A(S) suchthat f—a < e~ 0.
(2) Sis <-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L(S) be a set VX[x € L(S) < x < §]then forany ¢ > 0,6 ~ Othere exsta € S
and € L(S suchthata—-p < ¢ =0.
Theorem 11.10. (i) Any <-admissible above subset S — R% has the least upper
bound property.(ii) Any <-admissible below subset S — R# has the greatest lower
bound property.
Proof. Let S < R¥ be a nonempty subset, and let M be an upper bound for S. We are
going to construct two sequences of hyperreal numbers, {u,} and {l,}. First, since S
is nonempty, there is some element sp € S Now, we go through the following
hyperinductive procedure to produce numbers up,us, Uy, ...,Un,... and l1,l2,13,...,In,...
(i) Setup=Mandlp =s.
(i) Suppose that we have already defined u, and I,,. Consider the number
m, = (un + |1n)/2,the average between u, and .
(1) If my is an upper bound for S define un1 = My and I = In.



(2) If my is not an upper bound for S, define up.1 = Uy and I = M.

Since s < M, it is easy to prove by hyper infinite induction that (i) {u,} is a
non-increasing sequence: un.1 < Un,n € N¥(ii) {I,} is a non-decreasing sequence

Ini1 > In,n e N*and (i) up — In = 2"(M - ).

This gives us the following lemma.

Lemma 11.2. {un} and {l,} are Cauchy sequences of hyperreal numbers.

Proof. Note that each |, < M for all n € N*. Since {l,} is non-decreasing and

Un—ln = 27"(M —s)., it follows directly that {l,} is Cauchy.

For {un}, we have u, > so for all n e N, and so —un < —so. Since {un}

is non-increasing, {—un} is non-decreasing, and so as above, {-u,} is Cauchy. It is
easy to verify that, therefore, {un} is Cauchy.

The following Lemma shows that {u,} does tend to a hyperreal number.

Lemma 11.3. There is a hyperreal number u such that u, —# u.

Proof. Fix a term u, in the sequence {u,}. By Theorem 11.9, there is a hyperrational
number g, such that |u, — gnl< 1/n. Consider the sequence {Qqi1,092,093, - -,dn, ...} Of
hyperrational numbers. We will show this hypersequence is Cauchy. Fix € > 0, = 0.
By the Theorem 11.8, we can choose N € N* so that 1/N < &/3. We know, since {un}
is Cauchy, that there is an M € N* such that for n,m> M, |u, — Um|< &/3. Then, so long

as n,m> maxN,M}, we have

|0n = dml= [(dn — Un) + (Un = Um) + (Um — qm) <
< |0n = UnjHun — UnpHum — gml< &/3+ &/3+ /3 = &.

Thus, {gn} is a Cauchy sequence of hyperrational numbers, and so it represents a

hyperreal number u = cl[{gn}]. We must show that u, — u -4 0, but this is practically

built into the definition of u. To be precise, letting qg;, be the hyperreal number

cl[{qn,;qn,qn, - - - ], we see immediately that g;, — u —# O (this is precisely

equivalent to the statement that {q,} is Cauchy). But u, — g;; < 1/n by construction;

it is easily verify that the assertion that if a sequence gy, - uand u, — g5, -# 0, then

Un »# U.So {un}, a non-increasing sequence of upper bounds for S tends to a
hyperreal

number u. As you've guessed, u is the least upper bound of our set S. To prove this,
we

need one more lemma.

Lemma 11.4. |, -4 u.

Proof. First, note in the first case above, we have that

Un + | Un — |
Uit —lnr =M —lg= ntin | _ UYn—=In
n+1 n+1 n n 2 n 2
In the second case, we also have
Un + In Un —In
Upi— i1 = Un— My = Un — = )
n+1 n+1 n n n 2 2

Now, this means that u; —l1 = 2 (M-s), andsouz -l = S (u1—11) = 2—12(M -9),
and in general by hyperinfinite induction, u, — I, = 2"(M - s). Since M > sso0
L-s> 0, and since 2™ < 1/n, by the Theorem 11.8, we have for any ¢ > 0 that
2(L —s) < ¢ for all sufficiently large n € N*/N. Thus, u, — I, = 2™"(L - s) < ¢ as well,
and so u, — I, »# 0. Again, it is easily verify that, since u, -4 u, we have I, -4 u

as well.

Proof of Theorem 11.10. First, we show that u is an upper bound. Well, suppose



it is not, so that u < sfor some se S Thene=s-uis > 0, and since u, - uand is
non-increasing, there must be an n so that u, — u < ¢, meaning that

Uh < U+¢&=U+(S—U) =S Since u, is an upper bound for S however, this is a
contradiction. Hence, u is an upper bound for S

Now, we also know that, for each n,l,, is not an upper bound, meaning that for each n,
thereis an s, € Sso that I, < sp. Lemma 11.4 tells us that |, —# u, and since the
sequence {l,} is non-decreasing, this means that for each ¢ > 0, there is an N e N*/N
so that for n > N,l, > u—&.Hence, for n > N,s, > |, > u— ¢ as well. In particular, for
each ¢ > 0, there is an element s € Ssuch that s > u— ¢. This means that no number
smaller than u can be an upper bound for S Hence, u is the least upper bound for S
Remark 11.2.Note that assumption in Theorem 11.10 that Sis < -admissible above
subset of R¥ is necessarily, othervice Theorem 11.10 is not holds. For example let

A = {¢le > 0 A ¢ = 0}.Obviously a set A is not < -admissible above subset of R%.

Itis clear that Theorem 11.10 is not holds for a set A.

Theorem 11.11.(Generalized Nested Intervals Theorem)

Let {In} ¢ = {[@n bn]} o [@n,bn] < RE be a hyper infinite sequence of closed
intervals satisfying each of the following conditions:

Nh=2h2l32.21h2...,

(i) bh —an, -4 0as n » ¥,

Then N, 1, consists of exactly one hyperreal number x € R%. Moreover both
sequences {an} and {b,} #-converge to x.

Proof.Note that: (a) the set A = {as|n € N*} is bounded or hyperbouded above by b;
and (b) the set A = {an|n € N*} is < -admissible above subset of R%.

By Theorem 11.10 there exists supA. Let & = supA.

Since |, are nested,for any positive hyperintegers mand n we have

am < @min < bmin < by, so that & < by, for each n € N*. Since we obviously have a, < &
for each n € N*,we have a, < & < b, for all n € N*, which implies & € N 1. Finally, if
&m e NZy In, with & < 1, then we get 0 < i — & < b, — an, for all n e N¥, so that
0<n-¢&<infg¢lbn—an| =0.

Theorem 11.12.(Generalized Squeeze Theorem)

Let {an}, {cn} be two hyper infinite sequences #-converging to L,and {b,} a hyper
infinite sequence. If vn > K,K € N we have a, < by < ¢y, then {b,} also
#-converges to L.

Proof. Choose an ¢ > 0,¢ = 0. By definition of the #limit,there is an N; € N* such
that for all n > N1 we have |a, — L|< ¢, in other words L — ¢ < an < L + &.Similarly, there
is an N2 € N* such that for all n > N, we have L —¢ < ¢, < L +¢. Denote

N = max(N1,N2,K). Thenforn > N,L —¢ < an < bn < ¢h < L +¢, in other words

[bn — L|< &.Since ¢ > 0,6 = 0 was arbitrary, by definition of the #-limit this says

that #lim,__«bn = L.

Theorem 11.13.(Corollary of the Generalized Squeeze Theorem).

If #lim __+|an= O then #Ilim_ +a, = 0.

Proof.We know that —|an|< an < |an|.We want to apply the Generalized Squeeze
Theorem.We are given that #-lim__«|an|= 0.This also implies that

#-lim__+(—Jan) = 0.So by the Generalized Squeeze Theorem, #-lim,__+an = 0.
Theorem 11.14. (Generalized Bolzano-Weierstrass Theorem)

Every hyperbounded hyperinfinite sequence has a #-convergent hyper infinite



subsequence.
Proof. Let {wn}, .+ be a hyperbounded hyper infinite sequence. Then, there exists an
interval [az,b;1] such that a; < wy < by for all n e N*,

Either [a, 242 | or [ 242 by | contains hyper infinitely many terms of {wj}. That

is, there exists hyperinfinitely many nin N* such that a, is in |:a1, al%bl] or there exists

hyper infinitely many nin N* such that a, is in [ 2424, by ]. If [ @z, 22 ] contains
hyper infinitely many terms of {w,}, let [az,b2] = |:a1, al%bl :| Otherwise, let
[az,bz] = [ 242 by |. Either [ az, 2% ] or [ 242, b, ] contains hyper infinitely many
terms of {Wn} . If [ @2, 252
[as,bs] = [ a2, 252 |.Otherwise, let [as, bs] = [ 222, b, |. By hyper infinite induction,
we can continue this construction and obtain hyper infinite sequence of intervals
{[@an,bn]}# such that:

(i) for each n € N*,[an,b,] contains hyper infinitely many terms of {wn} .+,

(ii) for each n € N* [an;1,bni1] < [an,bn] and

(iii) for each n € N*,by1 — ansa = 5 (bn — an).

Then generalized nested intervals theorem implies that the intersection of all of the
intervals [an,bn] is a single point w. We will now construct a hyper infinite
subsequence of {wn} .+ Which will #-converge to w.

Since [a1,b1] contains hyper infinitely many terms of {wn} ..+, there exists k; € N*
such that wy, is in [ai1,b1]. Since [az,b2] contains hyper infinitely many terms of
{Wn} > there exists ko € N# ko > ki, such that wy, is in [az,bz]. Since [as, bs]
contains hyper infinitely many terms of {wy}, .+, there exists ks € N* ks > kz, such
that wy, is in [as, bs]. Continuing this process by hyper infinite induction, we obtain
hyper infinite sequence {wj,} .+ such that w, € [an,bn] for each n € N*.The
sequence {W, ;. IS @ subsequence of {wn} . Since kn.1 > ky for each n e N#,
Since an »# W, and a, < w, < by, for each n € N¥, the squeeze theorem implies that
Wk, —# W.

Definition 11.12. Let {a,} be a RZ-valued hyper infinite sequence i.e.,a, € R%,n e N*,
Say that {a,} #tends to O if, given any ¢ > 0,& = O,there is a hypernatural number

N € NN, N = N(¢) such that,for all n > N, Jan[< €. We often denote this symbolically
by an —# 0.

We can also, at this point, define what it means for a hyperreal sequence #-tends to
a given number g € R% : {a,} #tends to q if the hyperreal sequence {a, — q}
#tendstoOi.e.,,an—q -# 0.

Definition 11.13. Let {an},n € N* be a hyperreal sequence. We call {a,} a Cauchy
hyperreal sequence if the difference between its terms #-tends to 0. To be precise:
given any hyperreal number ¢ > 0,¢ = O,there is a hypernatural number N = N(g)
such that for any m,n > N, [a, — am< ¢.

Theorem 11.15. If {a,} is a #convergent hyperreal sequence (that is, a, -4 b for
some hyperreal number b € R¥), then {a,} is a Cauchy hyperreal sequence.
Theorem 11.16. If {a,} is a Cauchy hyperreal sequence, then it is bounded or hyper
bounded; that is, there is some M € R% such that |a,|[< M for all n € N*,

Theorem 11.17. Any Cauchy hyperreal sequence {a,} has a #limit in R% i.e.,there
exists b € R¥ such that a, —»4 b.

:| contains hyper infinitely many terms of {w,}, let



Proof.By Definition 11.13 given ¢ > 0,¢ ~ 0O,there is a hypernatural number N = N(¢)
such that for any n,n" > N,

lan —a, < e. (11.1
From (11.1) for any n,n" > N we get
a,—&<ap<an+e. (11.2

The generalized Bolzano-Weierstrass theorem implies there is a #-convergent
hyper infinite subsequence {a,, } < {an} such that a,, -4 b for some hyperreal
number b € R%. Let us show that the sequence {a,} also #-convergent to this b € R%,
We can choose k € N* so large that ng > N and

lan, — b| < €. (11.3
We choose now in (11.1) n" = nx and therefore
lan — anJ< &. (11.9
From (11.3) and (11.4) for any n > N we get
|(@n, — b) + (an — an,)| = Jan — b| < 2e. (11.5

Thus a, —»# b as well.

12.The Extended Hyperreal Number System [IA%@’"

Definition 12.1.(a) A set S < N is hyperfinite if card(S) = card({x|0 < x < n}),

where n € NN, (b) A set S < N* is hyper infinite if card(S) = card(N*)

Notation 12.1. If F is an arbitrary collection of sets, then U{SS € F}is the set of all
elements that are members of at least one of the sets in F, and N{SS € F} is the set
of all elements that are members of every set in F. The union and intersection of
finitely or hyper finitely many sets S,,0 < k < n € N* are also written as U, S and
Nio S The union and intersection of an hyperinfinite sequence S, k € N* of sets are
written as U, Sor U, Sand N&y Sor N,y Scorrespondingly.

A nonempty set Sof hyperreal numbers R# is unbounded above if it has no hyperfinite
upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient
to adjoin to the hyperreal number system two points, +oo* (Which we also write more
simply as «*) and —eo#,and to define the order relationships between them and any
hyperreal number x € R% by —o < x < oo,

We call —o* and «* points at hyperinfinity. If Sis a nonempty set of hyperreals, we
write supS = o«* to indicate that Sis hyper unbounded above, and infS = —o to
indicate that Sis hyper unbounded below.

12.1.#-Open and #-Closed Sets on [ﬁiﬁ.

Definition 12.2.1f aand b are in the extended hyperreals and a < b, then the #-open
interval (a,b) is defined by (a,b) £ {xjJa < x < b}.

The #-open intervals (a,%) and (-oo#,b) are semi-hyper infinite if a and b are finite
or hyperfinite, and (—oo#,o#) is the entire hyperreal line.

If —o* < a < b < o the set [a,b] £ {x|Ja < x < b} is #-closed, since its complement
is the union of the #-open sets (—o* a) and (b,»*) . We say that [a,b] is a #-closed
interval. Semi-hyper infinite #-closed intervals are sets of the form [a,») = {X]a < X}
and (—*,a] = {xjx < a},where ais finite or hyperfinite. They are #-closed sets,



since their complements are the #-open intervals (—o*,a) and (a, o), respectively.

Definition 12.3.If xo € R% is a hyperreal number and ¢ > 0,¢ ~ 0 then the #-open
interval

(Xo — €,Xo + ¢) is an #neighborhood of x,. If a set S R# contains an #-neighborhood

of Xo,then Sis a #-neighborhood of xo, and xo is an #-interior point of S The set of

#-interior points of Sis the #-interior of S denoted by #Int(S).

(i) If every point of Sis an #-interior point (that is, S = #Int(S) ), then Sis #-open.

(i) A set Sis #-closed if §¢ = R#\Sis #-open.

Example 12.1. An open interval (a,b) is an #-open set, because if Xo € (a,b) and

e <min {Xo —a;b - Xo}, then (Xo — &,X0 + &) < (a,b).

Remark 12.1.The entire hyperline R% = (—o*, %) is #-open, and therefore & is

#-closed.However, & is also #-open, for to deny this is to say that & contains a point

that is not an #interior point, which is absurd because & contains no points. Since &

is #-open, IR# Is #-closed. Thus, IR# and ¢ are both #-open and #-closed.

Remark 12.2.They are not the only subsets of lRﬁ* with this property mentioned above.

Definition 12.4.A deleted #-neighborhood of a point xo is a set that contains every

point of some #-neighborhood of xo except for xo itself. For example,

S={X0< [x—Xo| < €},where ¢ = 0, is a deleted #neighborhood of x,. We also say

that it is a deleted &-#-neighborhood of xo.

Theorem 12.1.(a) The union of #-open sets is #-open:

(b) The #-intersection of #-closed sets is #-closed:

These statements apply to arbitrary collections, hyperfinite or hyperinfinite, of #-open

and #-closed sets.

Proof (a) Let L be a collection of #-open sets and S= U {G|G € L}.

If Xo € S, then xo € Gp for some Gy in L, and since Gq is #-open, it contains some

e-#-neighborhood of xo. Since Gy — § this e-#-neighborhood is in S which is

consequently a #neighborhood of xo. Thus, Sis a #neighborhood of each of its points,

and therefore #-open, by definition.

(b) Let F be a collection of #-closed sets and T = N{H[H € F}. Then T¢ = U{H°|H € F}

and, since each H¢ is #-open, T¢ is #-open, from (a). Therefore, T is #-closed, by

definition.

Example 12.2. If —o* < a < b < o, the set [a,b] = {x]a < x < b} is #-closed, since

its complement is the union of the #-open sets (—o*a) and (b,*). We say that [a,b]

is a #-closed interval. The set [a,b) = {X|a < x < b} is a half-#-closed or half-#-open

interval if —o* < a < b < o asis (a,b] = {XJa < x < b} however, neither of these sets

is #-open or #-closed. Semi-infinite #-closed intervals are sets of the form

[a,00%) = {X|]a < x} and (-»*,a] = {X|x < a},where a is hyperfinite. They are #-closed

sets, since their complements are the #-open intervals (—oo* a) and
(a,0o*),respectively.

Definition 12.5. Let Sbe a subset of Iﬁ{ﬁ = (—o*,00%). Then

(a) xo is a #limit point of Sif every deleted #-neighborhood of x, contains a point of S,

(b) %o is a boundary point of Sif every #-neighborhood of x, contains at least one point

in Sand one not in S. The set of #boundary points of S is the #-boundary of S
denoted

by #-0S. The #-closure of S, denoted by #S, is SU #-0S.

(c) xo is an #-isolated point of Sif xo € Sand there is a #-neighborhood of xo that



contains no other point of S

(d) xo is #-exterior to Sif Xo is in the #-interior of S¢. The collection of such points is the
#-exterior of S

Theorem 12.2. A set Sis #-closed if and only if no point of S° is a #-limit point of S
Proof. Suppose that Sis #-closed and xo € S. Since S is #-open, there is a
#-neighborhood of xo that is contained in S° and therefore contains no points of S
Hence, Xo cannot be a #-limit point of S. For the converse, if no point of &

is a #limit point of Sthen every point in S* must have a #-neighborhood contained

in S°. Therefore, S° is #-open and Sis #-closed.

Corollary 12.1.A set Sis #-closed if and only if it contains all its #-limit points.

If Sis #-closed and hyper bounded, then inf(S) and sup(S) are both in S

Proposition 12.1. If Sis #-closed and hyper bounded, then inf(S) and sup(S) are both
inS

12.2. #Open Coverings

Definition 12.6.A collection H of #-open sets of R is an #-open covering of a set Sif
every point in Sis contained in a set H belonging to H; that is, if S U{F|F € H}.
Definition 12.7.A set S c R# is called #-compact (or hyper compact) if each of its
#-open covers has a finite or hyperfinite subcover.

Theorem 12.3.(Generalized Heine—Borel Theorem) If H is an #-open covering of a
#-closed and hyper bounded subset Sof the hyperreal line R% (or of the R#",n e N¥)

then Shas an #-open covering H consisting of hyper finite many #-open sets belonging
to H.
Proof. If a set Sin R" is hyper bounded, then it can be enclosed within an n-box
To =[-a,a]" where a > 0. By the property above, it is enough to show that Ty is
#-compact.
Assume, by way of contradiction, that Ty is not #-compact. Then there exists an hyper
infinite open cover C_: of Ty that does not admit any hyperfinite subcover. Through
bisection of each of the sides of Ty, the box Ty can be broken up into 2n sub n-boxes,
each of which has diameter equal to half the diameter of To. Then at least one of the
2n sections of To must require an hyper infinite subcover of C_+, otherwise C_: itself
would have a hyperfinite subcover, by uniting together the hyperfinite covers of the
sections. Call this section T;.Likewise, the sides of T1 can be bisected, yielding 2"
sections of T, at least one of which must require an hyper infinite subcover of C_:.
Continuing in like manner yields a decreasing hyper infinite sequence of nested
n-boxes:
To > T1 D T2 o...o Tk o...,k e N¥, where the side length of Ty is (2a)/2¥, which
#-converges to 0 as k tends to hyper infinity, k - «*. Let us define a hyper infinite
sequence {Xk} .+ such that each xx : Xk € Tk. This hyper infinite sequence is
Cauchy, so it must #converge to some #-limit L. Since each Tiis #-closed, and for
each k the sequence {xx} .+ is eventually always inside Ty, we see that L e T for
each k e N*. Since C_+ covers Ty, then it has some member U € C_+ such that
LeU.
Since U is open, there is an n-ball B(L) < U. For large enough k, one has
Tk < B(L) < U, but then the infinite number of members of C_» needed to cover Tk
can be replaced by just one: U, a contradiction.Thus, To is #-compact. Since Sis



#-closed and a subset of the #-compact set To, then Sis also #compact.

As an application of the Generalized Heine—Borel theorem, we give a short proof of
the Generalized Bolzano—Weierstrass Theorem.

Theorem 12.4.(Generalized Bolzano—Weierstrass Theorem) Every hyper bounded
hyper infinite set S c R¥ has at least one #-limit point.

Proof. We will show that a hyper bounded nonempty set without a #-limit point can
contain only finite or a hyper finite number of points. If Shas no #-limit points, then Sis
#-closed and every point x € Shas an w-#-open neighborhood Ny that

contains no point of Sother than x. The collection H = {Nx|x € S} is an w-#-open
covering for S Since Sis also hyper bounded, Theorem 12.3 implies that Scan be
covered by finite or a hyper finite collection of sets from H, say Ny,,...,Nx,,n € N*,
Since these sets contain only xi, ... X, from § it follows that S = {Xx} ;.. N € N*.

13.External non-Archimedean field *RZ.

via Cauchy completion of internal non-Archimedean field

“R.
Definition 13.1. A hyper infinite sequence of hyperreal numbers from *R is a function
a : N* » *Rfrom hypernatural numbers N* into the hyperreal numbers *R.
We usually denote such a function by n » an,or by a : n - a,,so the terms in the
sequence are written  {aj,az,as,...,an...;. 10 refer to the whole hyper infinite
sequence, we will write {an}jfjl,or {@n} jot» OF for the sake of brevity simply {an}.
Definition 13.2. Let {a,} be a hyper infinite *R-valued sequence mentioned above.
Say that {a,} #-tends to O if, given any ¢ > 0,e ~ O,there is a hypernatural number
N € NIN, N = N(¢) such that, after N (i.e.for all n > N), Jan|< £. We denote this
symbolically by a, —»# 0.
We can also, at this point, define what it means for a hyper infinite *R-valued
sequence #-tends to any given number q € *R : {a,} #tends to q if the hyper
infinite sequence {a, — g} #tendstoOi.e.,, an—q —# 0.
Definition 13.3. Let {a,} be a hyper infinite *R-valued sequence. We call {a,} a
Cauchy hyper infinite *R-valued sequence if the difference between its terms #-tends
to 0. To be precise: given any hyperreal number such that ¢ > 0,6 = O,there is a
hypernatural number N = N(¢g) such that for any m,n > N, Ja, — aml< &.
Theorem 13.1.If {a,} is a #-convergent hyper infinite *R-valued sequence (that is,
an —#  for some hyperreal number q € *R), then {a,} is a Cauchy hyper infinite
*R-valued sequence.
Proof. We know that a, —# . Here is a ubiquitous trick: instead of using ¢ in the
definition Definition 13.3, start with an arbitrary infinite small ¢ > 0,6 » 0 and then
choose N € NN so that [a, — gl< ¢/2when n > N. Then if m,n > N, we have
[an — aml= |[(an — ) — (am — Q)I£ |an — gH+|lam — gl &/2 + /2 = €. This shows that
{an} o+ IS @ Cauchy sequence.
Theorem 13.2. If {a,} is a Cauchy hyper infinite *R-valued sequence, then it is
bounded or hyper bounded,; that is, there is some finite or hyperfinite M € *R such
that |an|< M for all n € N*,
Proof.Since {a,} is Cauchy, setting ¢ = 1 we know that there is some N € N* such
that |am — anl< 1whenever m,n > N. Thus, |an:1 — anl< 1 for n > N. We can rewrite



this as an:1 — 1 < an < ans1 + 1. This means that [ay| is less than the maximum of

lan+1 — 1] and |an:a + 1]. So, set M equal to the maximum number in the following list:
{laol, 1], - - -, &n|, BN — 1], Bne1 + 1[F. Then for any term ay, if n < N, then [a,| appears
in the list and so |an|< M; if n > N, then

(as shown above) |an| is less than at least one of the last two entries in the list, and so
lan< M.Hence, M € *R is a bound for the sequence {an}.

Definition 13.4. Let Sbe a set. A relation x ~y among pairs of elements of S

is said to be an equivalence relation if the following three properties hold:

Reflexivity: for any s € S s~s.

Symmetry: for any st € S if s~t then t~s.

Transitivity: for any s,t,r € § if s~t and t~r, then s-~r.

Theorem 13.3. Let Sbe a set, with an equivalence relation (-~ +) on pairs of elements.
For s € S denote by cl[s] the set of all elements in Sthat are related to s. Then for
any s,t € Seither cl[s] = cl[t] or cl[s] and cl[t] are disjoint.

The hyperreal numbers *R# will be constructed as equivalence classes of Cauchy
hyper infinite *R-valued sequences. Let F -z denote the set of all Cauchy hyper infinite
*R-valued sequences of hyperreal numbers. We define the equivalence relation on
F +g.

Definition 13.5. Let {a,} and {b,} be in F -zx. Say they are #-equivalent if

an—bn—-# Oi.e., if and only if the hyper infinite *R-valued sequence a, — b, #tends
to O.

Theorem 13.4.Definition 13.5 yields an equivalence relation on F «x.

Proof. We need to show that this relation is reflexive, symmetric, and transitive.
Reflexive: a, — an, = 0, and the hyper infinite sequence all of whose terms are 0

clearly #-converges to 0. So {a,} is related to {an}.

Symmetric: Suppose {a,} is related to {b,}, so a, — b, -4 0.

But b, — an = —(an — bn),and since only the absolute value |a, — bn|= |bn — an| comes
into play in Definition 13.2, it follows that b, — a, -4 0 as well. Hence, {b,} is related
to {an}.

Transitive: Here we will use the ¢/2 trick we applied to prove Theorem 10.1. Suppose
{an} is related to {b,}, and {b,} is related to {c,}. This means that a, — b, -4 0 and
bn — ch —# 0.To be fully precise, let us fix ¢ > 0, = O; then there exists an N € N*
such that for all n > N, Ja, — bn< €/2; also, there exists an M such that for all n > M,

[bn — cnl< /2. Well, then, as long as n is bigger than both N and M, we have that

[an — cnl= |(@n — bn) + (bn — Ccn)[< |an — baj+|bn — Cnl< /2 + €2 = &.

So, choosing L equal to the max of N, M, we see that given ¢ > 0 we can always
choose L so that for n > L, Ja, — Cn|< €. This means that a, — ¢, »# 0—i.e. {an} IS
related to {cn}.

Definition 13.6. The external hyperreal numbers *R% are the equivalence classes
cl[{an}] of Cauchy hyper infinite *R-valued sequences of hyperreal numbers, as per
Definition 13.5. That is, each such equivalence class is an external hyperreal number.
Definition 13.7. Given any hyperreal number g € *R, define a hyperreal number g*
to be the equivalence class of the hyper infinite *R-valued sequence g = (q,9,9,9,...)
consisting entirely of g.So we view *R as being inside *R# by thinking of each
hyperreal number q as its associated equivalence class g*. It is standard to abuse this
notation, and simply refer to the equivalence class as g as well.



S

Definition 13.8. Let s,t € *R¥, so there are Cauchy hyper infinite *R-valued
sequences {an},{bn} of hyperreal numbers with s = cl[{a,}] and t = cl[{bn}].

(a) Define s+t to be the equivalence class of the sequence {a, + by }.

(b) Define sx t to be the equivalence class of the sequence {a, x by}.

Theorem 13.5.The operations +, x in Definition 13.8 (a),(b) are well-defined.

Proof. Suppose that cl[{an}] = cl[{cn}] and cl[{bn}] = cl[{dn}]. Thus means that
an—Cn »# 0and by, —dn »# 0. Then (a, + by) — (ch + dn) = (an —Cn) + (bp — dp).
Now, using the familiar /2 trick, you can construct a proof that this tends to 0, and
so cl[{an + bn}] = cl[{cn + dn}].

Multiplication is a little trickier; this is where we will use Theorem 13.3. We will also
use another ubiquitous technique: adding 0 in the form of s— s. Again, suppose that
cl{(an)] =cl[(cn)] and cl[{bn}] = cl[{dn}]; we wish to show that

cl[{an x bn}] = cl[{cn x dn}], Or, in other words, that a, x b, — ¢, - dn »# 0.Well, we
add and subtract one of the other cross terms, say
bhnxch:anxby—Chxdy=anxby+(bpxch—bnxcp)—cChxdy=

= (apnxbp—bpxcn) +(bnxch—cChxdn) =bpx(@n—cn)+Chx (bp—dn).

Hence, we have |an x by — €y x dp|< |bn|x|an — CnlHcnlx|bn — dn|. Now, from

Theorem 13.2, there are numbers M and L such that |by|< M and [ca< L for all n e N*,
Taking some number K which is bigger than both, we have

[an x bn—cn x dnl< [bn]x [an — CalHlCnlx [on — dnl< K(|an — CnlHbn — dnl).

Now, noting that both a, — ¢, and b, — d, tend to 0 and using the &/2 trick (actually,
this time we’ll want to use ¢/2K), we see that a, x by, —cn x dn -4 O.

Theorem 13.6. Given any hyperreal number s € *R%, s+ 0, there is a hyperreal
number t € *R% such thatsxt = 1.

Proof. First we must properly understand what the theorem says. The premise is that

is nonzero, which means that s is not in the equivalence class of {0,0,0,0,..}. In

other

words, s = cl[{an}] where a, — 0 does not #-converge to 0. From this, we are to

deduce

the existence of a hyperreal number t = cl[{bn}] such that sx t = cl[{an x by }] is the
same equivalence class as cl[{1,1,1,1,..}]. Doing so is actually an easy

consequence

of the fact that nonzero hyperreal numbers have multiplicative inverses, but there is a
subtle difficulty. Just because s is nonzero (i.e. {an} does not tend to 0), there’s no
reason any number of the terms in {a,} can’'t equal 0. However, it turns out that
eventually, a, # 0.

That is:

Lemma 13.1. If {a,} is a Cauchy sequence which does not #tend to O, then there is
an N € N* such that, for n > N,a, # 0.

Definition 13.9. Let s € *R¥. Say that s is positive if s # 0, and if s = cl[{an}] for
some Cauchy sequence of hyperreal numbers such that for some N € N# a, > 0 for
all n > N. Given two hyperreal numbers s, t, say that s > t if s—t is positive.
Theorem 13.7. Let st € *R¥ be hyperreal numbers such that s > t, and let

re *Rf. Thens+r > t+r.

Proof. Let s = cl[{an}],t = cl[{bn}], and r = cl[{cn}]. Sinces>ti.e.,s—t> 0, we



know that there is an N € N* such that, for n > N, a, — b, > 0. So a, > b, for n > N.
Now, adding cn to both sides of this inequality (as we know we can do for

hyperreal numbers *R), we have a, + ¢, > by + ¢, forn > N, or

(an+cn) — (bp +cn) > 0for n > N. Note also that (a, + cn) — (bn + Cn) = a, — b, does
not #-converge to 0, by the assumption that s—t > 0. Thus, by Definition 13.8, this
means that s+r = cl[{an + cn}] > cl[{bn+Cn}] = t+T.

Theorem 13.8. Let s,t € *R% s,t > 0 be hyperreal numbers.Then there is m e N*
such that mx s > t.

Proof. Let s,t > 0 be hyperreal numbers. We need to find a natural number m so that
mx s > t. First, recall that, by min this context, we mean cl[{m;m,mm,...}]. So,
letting s = cl[{an}] and t = cl[{bs}],what we need to show is that there exists m with

cd[{mmmm,...}] x cl[{a1,az,a3,a4,...}] =
c[{mxa;,mxaz,mxaz,mx as,...}] >
> C|[{b1,b2,b3,b4,...}].

Now, to say that cl[{mx an}] > cl[{bn}], or cl[{mx a, — by }] iS positive, is, by
Definition 13.9, just to say that there is N € N* such that mx a, — b, > O for all n > N,
while mx a, — b, »# 0. To be precise, the first statement is:

There exist m,N € N* so that mx a, > b, for alln > N.

To produce a contradiction, we assume this is not the case; assume that

(#) for every mand N, there exists an n > N so that mx a, < b.

Now, since {b,} is a Cauchy sequence, by Theorem 13.2 it is hyperbounded - there
is a hyperreal number M € *R such that b, < M for all n € N¥. Now, by the
properties for the hyperreal numbers *R, given any hyperreal number such that

¢ > 0, = 0, there is an m € N* such that M/m < ¢/2. Fix such an m. Then if

mx a, < bn, we have a, < by/m < M/m < &/2.

Now, {an} is a Cauchy sequence, and so there exists N so that for

k> N, |an — ak< &/2.

By Asumption (#), we also have an n > N such that mx a, < b,, which means that
an < ¢/2. But then for every k > N, we have that ax — a, < ¢/2, so

ax<ant+el2< €l2+¢€l2 =¢. Hence, ax < ¢ for all k > N. This proves that ax »# 0,
which by Definition 13.9 contradicts the fact that cl[{a,}] = s> 0.

Thus, there is indeed some m € N so that mx a, — b, > 0 for all sufficiently infinite
large n € N*\N. To conclude the proof, we must also show that mx an — b, »4 0.
Actually, it is possible that mx a, — b, —»# O (for example if {a,} =<{1,1,1,..} and
{bn} = {mm;m,...}). But that's okay: then we can simply choose a larger m. That is:
let m be a hypernatural number constructed as above, so that mx a, —b, > 0

for all sufficiently large € N*N. If it happens to be true that mx a, — b, »# 0, then the
proof is complete.

If, on the other hand, it turned out that mx a, — b, -4 0, then take instead the integer
m+ 1.Since s = cl[{an}] > 0, we have a n > 0 for all infinite large n, so

(m+1) xan—by, = mxa,—by+an > a, > 0for all infinite large n, so m+ 1 works just
as well as mdid in this regard; and since mx a, — b, —» 0, we have

(m+1) xan—by, = (Mxa,—bn) +an, »# 0since s = cl[{an}] > 0(so a, »4 0).

It will be handy to have one more Theorem about how the hyperreals *R and
hyperreals *R% compare before we proceed. This theorem is known as the density



of *R in *R¥, and it follows almost immediately from the construction of the *R¥
from *R.
Theorem 13.9. Given any hyperreal number r € *R%, and any hyperreal number
e >0, ¢ = 0, there is a hyperreal number q € *R such that |r — gk &.
Proof. The hyperreal number r is represented by a Cauchy *R-valued sequence {a,}.
Since this sequence is Cauchy, given ¢ > 0, ~ 0, there is N € N* so that for all
m,n > N,
lan — am|< €.Picking some fixed | > N, we can take the hyperreal number q given by
q = cl[{a,a,a,...}]. Then we haver —q = cl[{an — &}, ], and
g-r = cl[{a — an} +]-
Now, since | > N, we see that for n > N,a, —a, < ¢ and a — a, < &, which means by
Definition 13.9thatr —q < ¢and q-r < g; hence, |r — gk e.
Definition 13.10.Let S *R% be a non-empty set of hyperreal numbers.
A hyperreal number x € *R% is called an upper bound for Sif x > sforalls e S
A hyperreal number x is the least upper bound (or supremum supS) for Sif x is an
upper
bound for Sand x < y for every upper bound y of S
Remark 13.1.The order < given by Definition 10.9 obviously is < -incomplete.
Definition 13.11. Let S& *R% be a nonempty subset of *R%.We we will say that:
(1) Sis < -admissible above if the following conditions are satisfied:
(i) Sbounded or hyperbounded above;
(ii) let A(S) be a set Vx[x € A(S) < x> S]then for any ¢ > 0,6 ~ Othere exsta € S
and g € A(S) suchthat f—a <& ~ 0.
(2) Sis <-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L(S) be a set Vx[x € L(S) & x < S]thenforany ¢ > 0,6 = Othereexsta € S
and g € L(S suchthata - < ¢~ 0.
Theorem 13.10. (i) Any <-admissible above subset S — *R¥ has the least upper
bound property.(ii) Any <-admissible below subset S — *R¥ has the greatest lower
bound property.
Proof. Let S < *R% be a nonempty subset, and let M be an upper bound for S. We are
going to construct two sequences of hyperreal numbers, {u,} and {l,}. First, since S
is nonempty, there is some element s, € S Now, we go through the following
hyperinductive procedure to produce numbers up,Us, Uy, ...,Un,... and l1,l2,13,...,In,...
(i) Setup =Mandlp = s.
(if) Suppose that we have already defined u, and |,. Consider the number
my = (Un + 1n)/2,the average between u, and .
(2) If my is an upper bound for S, define up.a = My and lny = I,
(2) If my is not an upper bound for S define un1 = up and 1 = In.
Remark 13.1.Since s < M, it is easy to prove by hyper infinite induction that
(i) {un} is a non-increasing sequence: un.1 < Un,n € N*and {l,} is a non-decreasing
sequence lna > In,n € N# (i) up is an upper bound for Sfor all n e N*
and |, is never an upper bound for Sfor any n € N* (i) uy — I, = 2™"(M - 9).
This gives us the following lemma.
Lemma 13.2. {u,} and {l,} are Cauchy *R-valued sequences of hyperreal numbers.




Un—ln = 27(M —s), it follows directly that {I,} is Cauchy.

For {un}, we have u, > so for all n e N*, and so —up < —so.

Since {un} is non-increasing, {-un} is non-decreasing, and so as above, {-up} IS
Cauchy. It is easy to verify that, therefore, {u,} is Cauchy.

The following Lemma shows that {u,} does #-tend to a hyperreal number u € *R%.
Lemma 13.3. There is a hyperreal number u € *R# such that u, —# u.

Proof. Fix a term u, in the sequence {u,}. By Theorem 13.9, there is a hyperreal
number g, € *R,n € N* such that |u, — gn|< 1/n. Consider the sequence

{91,92,Q3, - - -,qn, - - . } Of hyperreal numbers. We will show this sequence is Cauchy.
Fix ¢ > 0, ~ 0. By the Theorem 13.8, we can choose N € N* so that 1/N < /3. We
know, since {u,} is Cauchy, that there is an M € N* such that for n,m> M,

[un — uml< €/3. Then, so long as n,m > maxN, M}, we have

Proof. Note that each |, < M for all n € N*. Since {l,} is non-decreasing and

[an — dml= 1(An — Un) + (Un — Um) + (Um — qm)[<
< |gn = Un[HUn — UmpHum — gml< &/3+ &/3+ /3 = &.

Thus, {qgn} is a Cauchy sequence of internal hyperreal numbers, and so it represents

the external hyperreal number u = cl[{qs}]. We must show that u, — u -4 0, but this is

practically built into the definition of u. To be precise, letting q;, be the hyperreal
number

cl{{gn,dn,qn, - - . }], We see immediately that g, — u —# O (this is precisely

equivalent to the statement that {qn} is Cauchy). But u, — g;; < 1/n by construction;

it is easily verify that the assertion that if a sequence g}, > uand u, — q;; - 0, then

Un —# U.So {un}, @ non-increasing sequence of upper bounds for S tends to a
hyperreal

number u. As you've guessed, u is the least upper bound of our set S To prove this,
we

need one more lemma.

Lemma 13.4. | -4 u.

Proof. First, note in the first case above, we have that

Un + | Un — |
Un+1—|n+1:mn—|n:%—|n: n2 o,

In the second case, we also have

Un + | Un — |
U1 — 1 = Un—Mp = Up — n2 L = n2 o,

Now, this means thatu; — 11 = 2 (M—s), andsouz — 2 = S (U1 —11) = 2—12(L— S),
and in general by hyperinfinite induction, u, — I, = 2"(M - s). Since M > sso

M —s> 0, and since 2™ < 1/n, by the Theorem 13.8, we have for any ¢ > 0 that
2-"(M —s) < ¢ for all sufficiently large n € N*. Thus, uy — I, = 2" (M -5) < ¢ as well,
and so u, — I, -4 0. Again, it is easily verify that, since u, -4 u, we have I, -4 u
as well.

Remark 13.2.Note that assumption in Theorem 13.10 that Sis <-admissible above
subset of R is necessarily, othervice Theorem 13.10 is not holds.

Theorem 13.11.(Generalized Nested Intervals Theorem)

Let {In} e = {[@n,bn]} s [@n, bn] = RE be a hyper infinite sequence of closed
intervals satisfying each of the following conditions:



Mh=2l2132..21h2...,

(i) bh —an »# 0as n » o,

Then N%; I, consists of exactly one hyperreal number x € R%. Moreover both
sequences {an} and {b,} #-converge to x.

Proof.Note that: (a) the set A = {as|n € N*} is hyperbouded above by b;and

(b) the set A = {an|n € N*} is <-admissible above subset of R%.

By Theorem 13.10 there exists supA. Let & = supA.

Since |, are nested,for any positive hyperintegers mand n we have

am < amin < bmen < bp,so that & < by, for each n € N*. Since we obviously have a, < &
for each n € N*,we have a, < & < b, for all n € N*, which implies & € N, I.. Finally, if
&n e NZ 1y, with & < 7, then we get 0 < 7 — & < b, — an,for all n e N*,so that
0<n-¢& <infg¢lbn—an| =0.

Theorem 13.12.(Generalized Squeeze Theorem)

Let {an},{cn} be two hyper infinite sequences #-converging to L,and {b,} a hyper
infinite sequence. If Vn > K,K € N* we have a, < b, < ¢y, then {b,} also
#-converges to L.

Proof. Choose an ¢ > 0,s =~ 0. By definition of the #limit,there is an N; € N* such
that for all n > N; we have |a, — L< ¢, in other words L — ¢ < a, < L + &.Similarly, there
is an N2 € N* such that for all n > N, we have L —¢ < ¢, < L +¢. Denote

N = max(N1,N2,K). Thenforn > N,L —¢ < a, < by < ¢, < L +¢, in other words

[bn — Lk &.Since ¢ > 0,6 = 0 was arbitrary, by definition of the #-limit this says

that #-lim b, = L.

Theorem 13.13.(Corollary of the Generalized Squeeze Theorem).

If #lim . +«|an|= O then #Ilim__+a, = O.

Proof.We know that —|a,|< an < |an|.We want to apply the Generalized Squeeze
Theorem.We are given that #lim,,__+|an|= 0.This also implies that

#lim . «(—ljan)) = 0.So by the Generalized Squeeze Theorem, #lim,_+«an = 0.
Theorem 13.14. (Generalized Bolzano-Weierstrass Theorem)

Every hyperbounded hyper infinite *R%-valued sequence has a #-convergent hyper
infinite subsequence.

Proof. Let {wn} .+ be a hyperbounded hyper infinite sequence. Then, there exists an
interval [a;,b;] such that a; < wy < by for all n e N*,

Either [ a1, 242 | or [ 222 b; | contains hyper infinitely many terms of {wy}. That
is, there exists hyper infinitely many nin N* such that a, is in |:a1, ""1%'01] or there
exists hyper infinitely many nin N* such that a, is in [ 252, by ]. If [ &y, 252 ]
contains hyper infinitely many terms of {w,}, let [az,b2] = [al,%bl]. Otherwise, let
[a2,b2] = [ 257, by |.

Either [ a,, 222 | or [ 2222 b, | contains hyper infinitely many terms of {wn} . If
[ @2, 222 | contains hyper infinitely many terms of {wy}, let [as,bs] = [az, 252 ].
Otherwise, let [az,bs] = [”%t’z,bz] By hyper infinite induction, we can continue this
construction and obtain hyper infinite sequence of intervals {[an, bn]}, .+ such that:
(i) for each n € N*,[an, b,] contains hyper infinitely many terms of {wn} .+,

(ii) for each n € N* [ans1,bni1] < [an,bn] and

(iii) for each n € N*,by1 — ansa = 5 (bn — an).

neN



Then generalized nested intervals theorem implies that the intersection of all of the
intervals [an,bn] is a single point w. We will now construct a hyper infinite
subsequence of {wn} . Which will #converge to w.

Since [az,b1] contains hyper infinitely many terms of {wn} ., there exists k; € N*
such that wy, is in [ai,b1]. Since [az,bz] contains hyper infinitely many terms of
{Wn} o there exists kz € N# kz > ki, such that w, is in [az,b2]. Since [as, bs] contains
hyper infinitely many terms of {wn} .+, there exists ks € N* k3 > k», such that w, is in
[as,bs]. Continuing this process by hyper infinite induction, we obtain hyper infinite
sequence {W, ;. such that wg, € [an,bn] for each n € N¥. The sequence {w,} .+ IS
a subsequence of {wn} .+ since kn1 > kn for each n € N*. Since a, »# w, and

an < Wy < by, for each n e N#, the squeeze theorem implies that wy, —»» w.

Definition 13.12. Let {a,} be a hyperreal sequence i.e.,a, € *R,n € N*. Say that
{an} #-tends to 0 if, given any ¢ > 0,¢ ~ 0,there is a hypernatural number N € NAN,

N = N(¢) such that,for all n > N, |an|< &. We often denote this symbolically by a, —# 0.
We can also, at this point, define what it means for a hyperreal sequence #-tends to
a given number g € *R% : {an} #tends to q if the hyperreal sequence {a, — q}
#tendstoOi.e.,,an,—q -# 0.

Definition 13.13. Let {an},n € N* be a hyperreal sequence. We call {a,} a Cauchy
hyperreal sequence if the difference between its terms #-tends to 0. To be precise:
given any hyperreal number ¢ > 0,¢ = O,there is a hypernatural number N = N(g)
such that for any m,n > N, [a, — am< ¢.

Theorem 13.15. If {a,} is a #convergent hyperreal sequence (that is, a, -4 b for
some hyperreal number b € R¥), then {a,} is a Cauchy hyperreal sequence.
Theorem 13.16. If {a,} is a Cauchy hyperreal sequence, then it is hyper bounded;
that is, there is some M e R¥ such that |a,< M for all n € N*.

Theorem 13.17. Any Cauchy hyperreal sequence {a,} has a #limit in *R% i.e.,

there exists b € *R¥ such that a, - b.

Proof.By Definition 13.13 given ¢ > 0,¢ ~ 0,there is a hypernatural number N = N(¢g)
such that for any n,n" > N,

lan —a, < e. (13.1)

From (13.1) for any n,n" > N we get

a,—€<ap<an+e. (13.2
The generalized Bolzano-Weierstrass theorem implies there is a #-convergent
hyper infinite subsequence {a,, } < {an} such that a,, -4 b for some hyperreal
number b € *R%.Let us show that the sequence {a,} also #convergent to this
b e *R%.
We can choose k € N* so large that ng > N and

lan, — b| < €. (13.3
We choose now in (13.1) n' = nk and therefore
lan — anJ< €. (13.49)
From (13.3) and (13.4) for any n > N we get
|(@n, — b) + (an — an,)| = Jan — b| < 2e. (13.5

Thus a, —»# b as well.



Remark 13.3.Note that there exist canonical natural embedings
R < *R < *R¥, (13.6)

13.1.The Extended Hyperreal Number System *[IAR?

Definition 13.14.(a) A set S — N* is hyperfinite if card(S) = card({x|0 < x < n}),

n € NN, (b) A set S = N is hyper infinite if card(S) = card(\¥).

Notation 13.2. If F is an arbitrary collection of subsets of *R¥, then U{SS € F}is the

set of all elements that are members of at least one of the setsin F, and N{§S e F}

is the set of all elements that are members of every set in F. The union and

intersection of finitely or hyperfinitely many sets S,0 < k < n € N* are also written as

URo S and NRy Sk The union and intersection of an hyperinfinite sequence S,k € N*

of sets are written as U, Sor U, Sand Ngy Sor N, Scorrespondingly.

A nonempty set Sof hyperreal numbers *R# is unbounded above if it has no
hyperfinite

upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient

to adjoin to the hyperreal number system two points, +oo* (Which we also write more

simply as «*) and —eo#,and to define the order relationships between them and any

hyperreal number x € *R% by —o# < x < oo,

We call —o* and «* points at hyperinfinity. If Sis a nonempty set of hyperreals, we

write supS = o«* to indicate that Sis unbounded above, and infS = —o” to indicate that

Sis unbounded below.

13.2. #-Open and #-Closed Sets on *[Iii?f.

Definition 13.15.1f aand b are in the extended hyperreals and a < b, then the open

interval (a,b) is defined by (a,b) = {xjJa < x < b}.

The open intervals (a,+*) and (-«*,b) are semi-hyperinfinite if a and b are

finite or hyperfinite, and (—o*, %) is the entire hyperreal line.

If —0* < a < b < ¥, the set [a,b] £ {X|Ja < x < b} is #-closed, since its complement

is the union of the #-open sets (—o” a) and (b,«") . We say that [a,b] is a #-closed

interval. Semi-hyper infinite #-closed intervals are sets of the form [a,») = {x|Ja < X}

and (—o*,a] = {x|]x < a},where a s finite or hyperfinite. They are #-closed sets,

since their complements are the #-open intervals (—o*,a) and (a,«*), respectively.

Definition 13.16.1f xo € R¥ is a hyperreal number and ¢ > 0,¢ ~ 0 then the open
interval

(Xo — €,Xo + ¢) is an #neighborhood of xo. If a set S *R# contains an

#-neighborhood of xo, then Sis a #-neighborhood of xo, and X is an #-interior point of
S

The set of #interior points of Sis the #-interior of S denoted by #-Int(S).

(i) If every point of Sis an #-interior point (that is, S = #-Int(S) ), then Sis #-open.

(i) A set Sis #-closed if S = *R#\Sis #-open.

Example 13.1. An open interval (a,b) is an #-open set, because if Xo € (a,b) and

€ <min {xo —a;b—Xo}, then (Xo — &,X0 + &) < (a,b)

Remark 13.4.The entire hyperline *R% = (—o#,o*) is #-open, and therefore & is
#-closed.

However, & is also #-open, for to deny this is to say that & contains a point that is not



an #-interior point, which is absurd because & contains no points. Since & is #-open,

*R% is #-closed. Thus, *R# and & are both #-open and #-closed.

Remark 13.5.They are not the only subsets of *R¥ with this property.

Definition 13.17.A deleted #-neighborhood of a point Xo is a set that contains every
point

of some #-neighborhood of xo except for X itself. For example, S= {x|0 < [X—Xo| < &},

where ¢ =~ 0, is a deleted #-neighborhood of xo. We also say that it is a deleted

&-#-neighborhood of Xo.

Theorem 13.18.(a) The union of #-open sets is #-open:

(b) The #-intersection of #-closed sets is #-closed:

These statements apply to arbitrary collections, hyperfinite or hyperinfinite, of #-open

and #-closed sets.

Proof (a) Let L be a collection of #-open sets and S= U {G|G € L}.

If Xo € S, then xo € Gp for some Gg in L, and since G is #-open, it contains some

e-#-neighborhood of xo. Since Gy — § this e-#-neighborhood is in S which is

consequently a #neighborhood of x. Thus, Sis a #neighborhood of each of its points,

and therefore #-open, by definition.

(b) Let F be a collection of #-closed sets and T = N{H[|H € F}. Then T¢ = U{H°|H € F}

and, since each H¢ is #-open, T¢ is #-open, from (a). Therefore, T is #-closed, by

definition.

Example 13.2. If —o* < a < b < o, the set [a,b] = {x]a < x < b} is #-closed, since

its complement is the union of the #-open sets (—o*a) and (b,*). We say that [a,b]

is a #-closed interval. The set [a,b) = {X|a < x < b} is a half-#-closed or half-#-open

interval if —o* < a < b < o asis (a,b] = {XJa < x < b} however, neither of these sets

is #-open or #-closed. Semi-infinite #-closed intervals are sets of the form

[a,00%) = {X|]a < x} and (-»*,a] = {X|x < a},where a is hyperfinite. They are #-closed

sets, since their complements are the #-open intervals (—oo* a) and
(a,0o*),respectively.

Definition 13.18. Let She a subset of R¥ = (—o*,00%). Then

(a) xo is a #limit point of Sif every deleted #-neighborhood of x, contains a point of S,

(b) %o is a boundary point of Sif every #-neighborhood of x, contains at least one point

in Sand one not in S. The set of #boundary points of S is the #-boundary of S
denoted

by #-0S. The #-closure of S, denoted by #S, is SU #-0S.

(c) xo is an #-isolated point of Sif xo € Sand there is a #-neighborhood of X that
contains

no other point of S

(d) xo is #-exterior to Sif Xg is in the #-interior of S°. The collection of such points is the

#-exterior of S

Theorem 13.19. A set Sis #-closed if and only if no point of S is a #-limit point of S

Proof. Suppose that Sis #-closed and xo € S°. Since S is #-open, there is a

#-neighborhood of X that is contained in S* and therefore contains no points of S

Hence, xo cannot be a #-limit point of S For the converse, if no point of S

is a #-limit point of Sthen every point in S* must have a #-neighborhood contained

in S°. Therefore, S° is #-open and Sis #-closed.

Corollary 13.1.A set Sis #-closed if and only if it contains all its #-limit points.



If S is #-closed and hyper bounded, then inf(S) and sup(S) are both in S
Proposition 13.1. If Sis #-closed and hyper bounded, then inf(S) and sup(S) are both
inS

13.3. #Open Coverings

Definition 13.19.A collection H of #-open sets of R% is an #-open covering of a set Sif
every point in Sis contained in a set H belonging to H; that is, if S U{F|F € H}.
Definition 13.20.A set S c R¥ is called #-compact (or hyper compact) if each of its
#-open covers has a hyperfinite subcover.

Theorem 13.20.(Generalized Heine—Borel Theorem) If H is an #-open covering of a
#-closed and hyper bounded subset Sof the hyperreal line *R% (or of the *R#",n € N¥)
then Shas an #-open covering H consisting of hyper finite many #-open sets belonging
to H.

Proof. If a set Sin *R#" is hyper bounded, then it can be enclosed within an n-box

To =[-a,a]" where a > 0. By the property above, it is enough to show that Ty is
#-compact.

Assume, by way of contradiction, that Ty is not #-compact. Then there exists an hyper
infinite open cover C_: of Ty that does not admit any hyperfinite subcover. Through
bisection of each of the sides of Tp, the box Ty can be broken up into 2n sub n-boxes,
each of which has diameter equal to half the diameter of To. Then at least one of the
2n sections of To must require an hyper infinite subcover of C_+, otherwise C_ itself
would have a hyperfinite subcover, by uniting together the hyperfinite covers of the
sections. Call this section T;.Likewise, the sides of T1 can be bisected, yielding 2"
sections of T, at least one of which must require an hyper infinite subcover of C_:.
Continuing in like manner yields a decreasing hyper infinite sequence of nested
n-boxes: To o T1 © T2 o...D Tk D...,k € N#, where the side length of Ty is (2a)/2k,
which #-converges to 0 as k tends to hyper infinity, k > o«*. Let us define a hyper
infinite sequence {x} .+ such that each xx : xx € Tk. This hyper infinite sequence
is Cauchy, so it must #-converge to some #-limit L. Since each T.is #-closed, and
for each k the sequence {xx} .+ is eventually always inside Ty, we see that L € Tk
for each k e N*. Since C_+ covers Ty, then it has some member U € C_: such that
L € U. Since Uis open, there is an n-ball B(L) < U. For large enough k, one has
Tk € B(L) < U, but then the hyper infinite number of members of C_+ needed to
cover Ti can be replaced by just one: U, a contradiction.Thus, Ty is #-compact. Since
Sis #-closed and a subset of the #-compact set Ty, then Sis also #-compact.

As an application of the Generalized Heine—Borel theorem, we give a short proof of
the Generalized Bolzano—Weierstrass Theorem.

Theorem 13.21.(Generalized Bolzano—Weierstrass Theorem) Every hyper bounded
hyper infinite set S c *R% has at least one #-limit point.

Proof. We will show that a hyper bounded nonempty set without a #-limit point can
contain only finite or a hyper finite number of points. If Shas no #-limit points, then S
is #-closed and every point x € Shas an #-open neighborhood Ny that

contains no point of Sother than x. The collection H = {Ny|x € S} is an #-open
covering for S. Since Sis also hyper bounded, Theorem 13.20 implies that Scan be
covered by finite or a hyper finite collection of sets from H, say Ny,,...,Nx,,n € N*,
Since these sets contain only xy, ... X, from § it follows that S = {Xk} ;.. N € N*.



13.External Cauchy hyperreals R? and *R¥ axiomatically.

A model for the Cauchy hyperreal number system consists of a set R¥, two distinct

elements 0 and 1 of R, two binary operations + and x on R* (called addition and

multiplication, respectively), and a binary relation < on R#, satisfying the following

properties.

Axioms:

I.(R%,+,x) forms a field i.e.,

(i) Forall x,y, and zin R¥, x + (y+2) = (Xx+y) +zand xx (yx 2) = (Xx Y) x Z

(associativity of addition and multiplication)

(i) Forall xand yin R*, x+y =y+xand Xxxy = y x X.

(commutativity of addition and multiplication)

(ii)For all x,y, and zin R* xx (y+2) = (Xx y) + (X x 2).

(distributivity of multiplication over addition)

(iv)For all xin R*, x+ 0 = x.

(existence of additive identity)

O is not equal to 1, and for all xin R#, xx 1 = x.

(existence of multiplicative identity)

(v) For every xin R#, there exists an element —x in R#, such that x + (-x) = 0.

(existence of additive inverses)

(vi)For every x # 0 in R#, there exists an element x— 1 in R# such that xx x—1 = 1.

(existence of multiplicative inverses)

II.(R# <) forms a totally ordered set. In other words,

(i) For all xin R#, x < x. (reflexivity)

(i) For all xand y in R*, if x < yand y < x, then x = y. (antisymmetry)

(iii)For all x,y, and zin R*, if x < yand y < z then x < z (transitivity)

(iv)For all xand y in R*, x < yory < x. (totality)

The field operations + and x on R# are compatible with the order <. In other words,

(V)For all x,y and zin R#, if x <y, then x+z < y+ z (preservation of order under
addition)

(vi) For all xand y in R*, if 0 < xand 0 <y, then 0 < x x y (preservation of order under

multiplication)

[1I.Non-Archimedean property

Q* c R*i.e.,R* is non-Archimedean ordered field.

Remark 13.1.Here a hyperrational is by definition a ratio of two hyperintegers.
Consider

the ring Qf,, of all limited (i.e. finite) elements in Q*. Then Qf,, has a unique maximal

ideal 1%, the infinitesimals or infinitesimal numbers are quantities that are closer to
zero

than any real number from the field R, but are not zero.The quotient ring Qf /1% gives
the

field R of real numbers.

Definition 13.1. An element x € R* is called finite if [x] < r for somer € Q, r > 0.

As we shall see in a moment in bivalent case,

Theorem 13.1.Every finite x € R* is infinitely close to some (unique) r € R in the sense
that [x — r| is either O or positively infinitesimal in R¥. This unique r is called the




standard

of

a

part of x and is denoted by st(x).
Proof. Let x € R¥ be finite. Let D1, be the set of r € R such that r < x and D, the set

r' € R such that x < r’. The pair (D1,D;) forms a Dedekind cut in R, hence determines

unique ro € R. A simple argument shows that |[x — ro| is infinitesimal, i.e., st(x) = ro.
Notation 13.1.We usually write x ~ 0 iff x € I%.

Definition 13.2. A hypersequence of hyperreal numbers is any function a : N* - R¥,
Often hypersequences such as these are called hyperreal hypersequences,
hypersequences of hyperreal numbers or hypersequences in R* to make it clear that

the

elements of the sequence are hyperreal numbers. Analogous definitions can be given

for

sequences of hypernatural numbers, hyperintegers, etc.
Notation 13.2.However, we usually write a, for the image of n € N* under a, rather

than

a(n).The values a, are often called the elements of the hypersequence (Xn) pey#-
Definition 13.3. We call x € R* the limit of the hypersequence (Xn) . if the following
condition holds: for each hyperreal number ¢ € R* such that ¢ ~ 0,¢ > 0, there exists a
hypernatural number N € N* such that, for every hypernatural number n > N, we have
Xn — X< €.

Definition 13.4.The hypersequence (Xn) .« IS Said to #-converge to the #limit x,
written X, — X,n — o or lim,__+(Xn) = Xx. Symbolically, this reads:

Ve[(e = 0) A (¢ > 0)][IN € N¥(Vn e N*(n > N = [xn — X< &))]. (13.1)

If a hypersequence (xn) ¢ CONverges to some limit, then it is convergent; otherwise it
is #-divergent. A hypersequence that has zero as a #-limit is sometimes called a null
hypersequence.

Limits of hypersequences behave well with respect to the usual arithmetic operations.
If an - a,n » «o* and by » b,n > «* , then a, + by, > a+b,n - «* and

an x by » ax b,n - «* if neither b, or any by, is zero, a, x by, - ax b,n » oo,

The following properties of limits of real hypersequences provided, in each equation
below, that the limits on the right exist.

The limit of a hypersequence is unique.

1.#lim +(an £ bp) = #lim_+an £ #lim by

2.#Ilim+«(Cxan) = cx#lim,_ _ +an

3.#-lim,#(@an x bn) = (#lim . #) x (#lim,_.»bn)

4.#lim,_ +«(an/bn) = #lim_ +an/#lim .« by provided #lim__«b, = 0

5.4lim,,+ah = [#lim_+an]?

6. If an < b, where n greater than some N, then #lim__+«an < #lim .+ by

7. (Squeeze theorem) If a5 < ¢, < by, and #lim .+ a, = #lim__+ by = L, then
#lim,_,.«Cn = L.

Definition 13.5.A hyper infinite sequence (X,) is said to tend to hyperinfinity, written
Xn = oo or #-lim .« X, = oo, if for every K € R¥, there is an N € N* such that for every
n > N; that is, the hypersequence terms are eventually larger than any fixed K.



Similarly, x, - —oo* if for every K € R#, there is an N € N* such that for every n > N,
Xn < K. If a hypersequence tends to infinity or minus infinity, then it is divergent.
However, a divergent hypersequence need not tend to plus or minus hyperinfinity
Definition 13.6.A hypersequence (Xn),+Of hyperreal numbers is called a Cauchy
hypersequence if for every positive hyperreal number ¢, there is a positive
hyperinteger
N e N* such that for all hypernatural numbers m,n > N : [xn — Xn|l< &, where the vertical
bars denote the absolute value. In a similar way one can define
Cauchy hypersequences
of hyperrational numbers,etc. Cauchy formulated such a condition by requiring
[Xm — Xn| = 0 i.e., to be infinite small for every pair of infinite large m,n € N*,
Definition 13.7.Let R% be the set of Cauchy hypersequences of hyperrational
numbers.
That is, hypersequences (xn),.+ Of hyperrational numbers such that for every
hyperrational ¢ > 0O, there exists an hyperinteger N € N*\N such that for all hypernatural
numbers m,n > N, [xm — Xn|< &. Here the vertical bars as usial denote the absolute
value.
Definition 13.8. A standard procedure to force all Cauchy hypersequences in a metric
space to converge is adding new points to the metric space in a process called
completion. R% is defined as the completion of Q* with respect to the metric [x —y|, as
will be detailed below.
Definition 13.9. Cauchy hypersequences (Xn) v+ and (Yn),# Can be added and
multiplied as follows:

(Xn) nen# + (Yn) nent = (Xn + Yn) nents (13.2
and

(Xn) nent X (Yn)nent = (Xn X Yn) pet- (13.3

Definition 13.10. Two Cauchy hypersequences are called equivalent if and only if the

difference between them tends to zero. This defines an equivalence relation that is

compatible with the operations (16.2)-(16.3) defined above, and the set R% of alll

equivalence classes cl[(xn) ] can be shown to satisfy all axioms of the hyperreal

numbers.

We can embed Q¥ into RZ by identifying the rational number r € Q* with the
equivalence

class of the hypersequence  (rn)p With rp = r for all n e N*,

Remark 13.2.Comparison between hyperreal numbers is obtained by defining the

following comparison between Cauchy hypersequences:

(Xn)nen# = (Yn) nent (13.4
if and only if x is equivalent to y or there exists an hyperinteger N € N such that
Xn 2 Yn
foralln > N.

Remark 13.3.By construction, every hyperreal number x € R¥ is represented by a
Cauchy hyper infinite sequence of hyperrational numbers. This representation is far
from unique; every hyperrational hypersequence that converges to x is a
representation of x. This reflects the observation that one can often use different



hypersequences to approximate the same hyperreal number.The equation
0.999.. = 1 states that the hyper infinite sequences
(0,0.9,0.99,0.999,.).and (1,1,1,1,..) are equivalent, i.e., their difference
#-converges to 0.
IV.The field R* is complete in the following sense:
Definition 13.11.Let S & R% be a non-empty set of hyperreal numbers.
A hyperreal number x € R% is called an upper bound for Sif x > sforallse S
A hyperreal number x is the least upper bound (or supremum supS) for Sif x is an
upper
bound for Sand x < y for every upper bound y of S
Remark 13.4.The order < given by Eq.(14.4) obviously is <-incomplete.
Definition 13.12. Let S ¢ R¥ be a nonempty subset of RZ. We we will say that:
(1) Sis <-admissible above if the following conditions are satisfied:
(i) Sbounded above;
(ii) let A(S) be a set Vx[x € A(S) < x> S]then for any ¢ > 0,6 = Othere exsta € S
and g € A(S) suchthat f—a < e~ 0.
(2) Sis <-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L(S) be a set VX[x € L(S) < x < §] then for any ¢ > 0,6 ~ Othere exsta € S
and € L(S suchthata - < ¢ = 0.
Theorem 13.2.(i) Every <-admissible above subset S & R% has a supremum supS.
(i) Every <-admissible belov subset S ¢ R¥ has infinum infS,
Proof.Let S ¢ R¥ be a nonempty subset of R%, and let M € Q¥ be an hyperrational
upper bound for S. We are going to construct two hypersequences of hyperrational
numbers, (Un) #and (In) . First, since Sis nonempty, there is some element
S € S
We can choose a hyperrational number L € Q* such that L < so. Now, we go through
the following hyperinductive procedure to produce hyperrational numbers up,us, Uz, ...
and |o,|1, |2,|3,... .
(i) Setupo =Mandlg = L.
(i) Suppose that we have already defined u, and I, n € N*,
Consider the number m, = (u, + 11)/2,i.e.,the average between u, and .
() If my is an upper bound for S define un1 = My and I = In.
(2) If my is not an upper bound for S, define up.1 = Uy and I = M.
Since lp < M, it is easy to prove by hyperinfinite induction that (un) o IS @
non-increasing hypersequence, i.e.un1 < U, and (In) ¢ IS @ non-decreasing
hypersequence, i.e. |1 > |n.
Remark 13.5. Note that in the first case above, we have that

Un + | Up — |
Un+1—|n+1:mn—|n:%—|n: n2 . (13.9

In the second case, we also have that

Un+1_|n+1ZUn_ngUn_ ungln = ungln. (136)

Now, this means thatu; —l; = 2(M-L)andsouz -l = 3 (u1—l1) = 2—12(M L),
and in general by hyperinfinite induction one obtains



Up—lp = 2"(M = L). (13.7)

Since M > Lso M- L > 0, and since 2™ < n~! we have for any ¢ > 0,¢ ~ 0 that
2"(M - L) < ¢ for all sufficiently large n e NAN. Thus, u, — I, < ¢ as well, and so
#-1im,_«(un—1,) = 0. (13.8
This defines two hypersequences of hyperrationals, and so we have hyperreal
numbers
I = (In)hen# @nd U = (Un) po#- It is €asy to prove, by induction on n € N* that:
(i) un is an upper bound for Sfor all n € N*and
(ii) In is never an upper bound for Sfor any n € N*,
Thus u is an upper bound for S To see that it is a least upper bound, notice that the
#-limit of (Un — In)pen# 1S 0, @and so | = u. Now suppose b < u = | is a smaller upper
bound
for S Since (In) n# 1S MoONotonic increasing it is easy to see that b < |, for some
n e N*,
But |, is not an upper bound for Sand so neither is b. Hence u is a least upper bound
for S

14.814.1.External non-Archimedean field @ﬁ via special

extension of external non-Archimedean field R%.

Notation 14.1.3. Let A  R¥ and A = {0}.Then we write A > Oiffae A = a > 0.
Definition 14.1.13. Let A < RZand A > 0.Assume that: a,b € A = a+b € A. Then
we say that A is a positive idempotent in RZ.

Notation 14.1.4. We will denote by R, ;. a set of the all positive finite number in Rf
except infinitesimals in R%.

Remark 14.1.6.Note that a set Rf, ;;,\{Oz:} < R¥ is a positive idempotent in R.
Proposition 14.1.1. Let A c R% is a positive idempotent in RZ. Then the following are
equivalent.[In what follows assume a,b > Og:].

(lae A= 2acA,

(i) a € A = na € A for all standard integers n € N,

(i) a € A = ra € A for all finite r € RZ.

Proof. All parts are immediate from the Definition 14.1.13.

Notation 14.1.4. A%t £ {§ € R¥|5 > 0,6 ~ O},i.e. A" is a set of the all positive
infinitesimals in RY; AL £ {6 € RES < 0,6 = Ogs},i.e. AZ is a set of the all

negative infinitesimals in R%. Note that A%* = —A%F,

Remark 14.1.7.Note that a set A#" < R¥ is a positive idempotent in R% and A%

is a negative idempotent in R%.

Definition 14.1.14. Let {aq}, , be R%, ;- valued countable sequence

a: N - RE g such that:

(i) there is M e N such that {as},,, is monotonically decreasing R%, - valued
countable sequence a : N —» R¥,  \{Og+}

(i) there is M e N such that for all n > M,an # Og; [it follows from (ii)]

(iii) for all n € N,a, # Ogy and for any € > 0,e # Ogs,€ € R% ¢ there is N € N such



thatforalln > N : a, < € and we denote a set of the all these sequences by AP,

We define a set Az by cn € AG® < {—cn}?, € AL Note that A = —AL°.
Remark 14.1.8.Note that a set As” is a positive idempotent in R% and a set AP is a
negative idempotent in R%.

Proposition 14.1.2.(1) Let {an}, € AS° and {bn}*, € AL then:

() {@n} o+ {bn}rio £ {an+ bnky € AL

(ii) {an}7o— {Pnbio 2 {an—bn}iy € AL U AL UAF UAE U {0k}

where {O[Rg}:zo is a countable Og;- valued sequence.

(iii) {@n}7 o x {bn}? o 2 {an x ba}?, € AL,

(2) Let {an}”, € A and {bn}”, € A" then we define

() {an} o+ {Bn}iro 2 {an+bn}ii, € AL

(ii) {an} o — {bn} o ﬁ<an—bwﬁoezA“°UA3°

(iii) {@n} "y x {bn}7 4 2 {an x bab? o € AL

(3) Let{an};, € AR U AG and x,y € R¥ then we define

(V) X+ Y{an} o 2 {X+Yan}i

Proof. Immediately by definitions and by Definition 14.1.14.

Definition 14.1.15. We define the relation (- < -) on a set A5 by:

let {an}”, € A and {bn}7, € A then {an}”, < {bn}=, iff there is N e N such
that for all n > N : a, < b, and similarly we define the relation (- < ) on a set AP by:
let {an}?, € As° and {bn}7, € A then {an}”, < {bn}=, iff there is N € N such
thatforalln > N : a, < by

Definition 14.1.16. (1) We define the relation (- < +) on a set Ay} x RZ, ¢in DY:

let {an}, € Ai® and x € RZ in then {an}, < xiff there is N e N such that for all
n>N:an<X

(2) We define the relation (- < -) on a set A*" x Al by: let {an}”, € A0 and x € A#
then x < {an},, iff there is N € N such that foralln > N : x < a.

(3) Let {an}, , be AZ*- valued countable sequence a : N - AZ*, and we denote a set
of the all these sequences by A%,

We define the relation (- < -) on a set A%, x A by: let {an}7, € A%, and x € A
then {an} , < xiff there is N e N such thatforalln > N: a, < x.

Proposition 14.1.2.Let {an}, , € AG° {an} o * Ogz then there is N € N such that
O[R# <AF < {an}n o< Rc+f|n\{oﬂ?.§}-

Proof. Immediately by definitions and by Definition 14.1.15.

Remark 14.1.9.Note that it follows from Proposition 14.1.2 that

Opg < A% < AL < R (\{Ogy ). (14.1.9

Definition 14.1.17. Let {an},, be monotonically increasing R, ;.- valued countable
sequence a : N - R¥ ; \AZ such that:

(i) there is M e N such that for all n > M,an # Og;

(ii) there is N € N such that for all n > Nand for any & > Og#,& € RE, , an > & and we
denote a set of the all these sequences by A;”.We define a set Az by

Ch € A" = {- Cnpig € A Note that Ag” = —AH”.

Proposition 14.1.3.(1) Let {an}*, € A%” and {by}7, € AZ” then:



() {@n} o + {Dn} o £ {an+ b} 1o € AL

(il) {an} 7o — {bn} g 2 {an —bn} 7o € Al U AL UAH UAS UAS UAS {0}
where {O[R#}f’o is a countable Og:- valued sequence.

(iii) {an} 7y x {bn}7, 2 {anx bn}7, € AL

(2) Let {an}, € A‘“” and {bn}7, € Aa” then we define

(i) {@n}no+ {bnyno = {@n+bn}ro € Au”

(i) {an} o — {Pn} o = {@n —bn}iy € AT U A"

(ii)) {an} o X {bn} o = {an x bn}r g € b

(3) Let {an}2, € Ao’ and x,y € R% then we define

(V) Xn + Yn{an} o = {Xn + Ynan}, o, and we denote a set of the all these sequences
by {Aﬂw {Xn} nos {yn}::o}-

Proof. Immediately by definitions and by Definition 14.1.16.

Remark 14.1.10.Note that {an} 7, € Au”™ < {ail}7, € A,

Definition 14.1.18.(1) Let {an}, € A+ and let {An}n o = {an},o be a hyper infinite
sequence

{An}n_ {an}n_ (80,81,...,8k, ... ,{@nfpor---), (14.1.10
i.e. for any infinite m € NN, A = {an},,. We will denote a set of the all these hyper

+¢O

infinite sequences by A, and a set of the all hyper infinite sequences {-an}/ ,

by A2°.(2) Let (o + ynda g  {AH, (Xabig, Wb oy and let

D+ YnAnF T = Dtn + Ynant g
(Xo + Yoo, X1 + Y181, .. .,{Xk + Yk8k}, . - -,{Xn +n Yan} 1 os - --),

(14.1.13

i.e. for any infinite m € N\N,Am = {Xn + Ynan},,. We will denote a set of the all these

hyper infinite sequences by {A“O X} mor {Ynt o -

Definition 14.1.19.Let {A,}*" = {an} = and {Bn}=" = {ba} =, be in AR,
Then we define:

() {An} 2 + {Bn}n_ 25,?}?_’0+§BE°_’ = Tan 4 bny g = {An+ B} € AP
(ii) {An}n:o {Bn}n 0= {an}n 0 {bn}n 0= {@n—bn}, =

= {An—Bubily € A UL U {00} 7,

(i) {An} 7o B} ilo = {anrro x{bn}n o 2 anx Buyig = {Anx Brh 2o € AP
Let {An}n = {ant’, and {Bn}= = {batr, be in{ A, (X1} 70r Yan}ror paNd
Ba}?" = (b}, be in{AG°, {Xan} 70, Y2n} o - Then we define:

(iv) {An}n ot {Bn}n o = {Xun +Y1n@n}, o +{Xon + Y2nbn} ;o =

2 {Xin+Xon + Yinan FY2nbn} o = {Xin + +Xon + Y1nAn + yZan}n 0

Definition 14.1.20.Let {¥,}~", be in AL®, i.e. for all n € N¥, ¥, € AL Say
{‘Pn}n=o #tends to Ogzas n — oo” iff for any given ¢ > Ogs,& ~ Og: there is a

hypernatural number N € N\N,N = N(¢) such that for any n > N, [¥ < «.
Definition 14.1.21. Let {¥»}", be a hyper infinite sequence such that for all




ne N, ¥, e AH%. We call {‘Pn}ﬁo a Cauchy hyper infinite sequence if the

difference between its terms #tends to Og;. To be precise: given any & > Ogg,& = Ogy
there is a hypernatural number N € N¥\,N = N(¢) such that for any

m,n > N, |¥, - ¥ &.

A~

Theorem 14.1.3.Let {\Pn}ﬁo be in AL If {‘Pn};‘fo is a #-convergent hyper infinite

A~

sequence (that is, ¥n »» @ as n - «* for some ® € Z,io), then {‘Pn};‘fo is a Cauchy
hyper infinite sequence.

Proof.We know that ¥, —»» ®. Here is a ubiquitous trick: instead of using ¢ in the
definition, start with an arbitrary infinitesimall ¢ > 0, ~ Og: and then choose N so that
[Ph—®| < e/2when n > N. Then if mn > N, we have

[Pn—¥Ym|=|(¥n—@)— (Ym—D)K [Pn— Q| +H¥Ym—D| < &l2+¢l2 = ¢.

This shows that {‘Pn}ﬁo is a Cauchy hyper infinite sequence.

Theorem 14.1.4.1f {‘Pn}ﬁo is a Cauchy hyper infinite sequence, then it is bounded

in R%; that is, there is some number M e R¥ such that [{¥,}*",l< M for all n e N,

Proof. Since {‘Pn}ﬁo is Cauchy, setting ¢ = 1 we know that there is some N such
that [¥m — Wnl< 1 whenever mn > N. Thus, [Ynia — Wal< 1 forn > N. We can rewrite
thisas Wni1 — 1 < Wn < Wnia + 1.This means that |¥,| is less than the maximum of
[¥ni1 — 1] and [P + 1. So, set M e RE larger than any number in the following list:
{Wol, Wal, ..., N[, W'ne2 — 1], Wna + 15

Then for any term ¥, if n < N, then |¥,| appears in the list and so [¥n|< M;if n > N,
then (as shown above) |V, is less than at least one of the last two entries in the list,
and so [¥n< M. Hence, M is a bound for the sequence.

Let E denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on E.

Definition 14.1.22. Let S be a set of objects. A relation among pairs of

elements of Sis said to be an equivalence relation if the following three properties
hold:

Reflexivity: for any s € S, sis related to s.

Symmetry: for any s,;t € S, if s is related to t then t is related to s.

Transitivity: for any s,t,r € S, if sis related to t and t is related to r, then sis

related to r.

The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.

Theorem 14.1.5. Let S be a set, with an equivalence relation on pairs of elements.
For s € S, denote by [s] the set of all elements in Sthat are related to s. Then for
any s,;t € S either [s] = [t] or [s] and [t] are disjoint.

The sets [s] for s € Sare called the equivalence classes, and they are the bins.
Corollary 14.1.1. If Sis a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.1.23.Let {‘Pl,n}ﬁo and {‘Pz,n}ﬁo be in AL°. Say they are equivalent
(i.e. related) if [¥10 — W2n| =4 Ogz @as n —» o, i.e. if the sequence {|¥1n - ¥2n |};°jo
#-tends to Og;.

Proposition 14.1.4.Definition 4.1.23 yields an equivalence relation on =.



Proof. we need to show that this relation is reflexive, symmetric, and transitive.

* Reflexive: Wn -V = Ogs, and the sequence all of whose terms are O clearly
converges to Ogs.S0 {¥n} 7, is related to {¥n} 7.

« Symmetric: Suppose {‘Pl,n}ffjo is related to {‘Pz,n}fjo, SO Win— Won —# Ogs.

But Waon — Win = —(W1n — Y2n),and since only the absolute value |Y1, — Wanl|=

= |¥2n — ¥1n| comes into play in Definition 14.1.23,it follows that W2n — W1n —# Ogg
as well. Hence, {‘Pz,n};‘fo is related to {‘Pl,n};‘fo.

* Transitive: Here we will use the &/2 trick we applied to prove Theorem 14.1.4.
Suppose {‘Pl,n};‘fo is related to {‘Pz,n};‘fo, and {‘Pg,n}ﬁo is related to {\Pg,n}ﬁo. This
means that Win — Won »# Ogz and Wan — ¥3an —# Og:.

To be fully precise, let us fix infinite small & > Og; then there exists an N € N*\N
such that for all n > N, [¥1, — Wanlk €/2; also, there exists an M such that for all
n> M, [¥2n— Wanl /2. Well, then, as long as n > max(N,M) , we have that
[Won—Wanl= [(Win—Won) + (Won — Vap)IE [Win — Yonk|Yon — Wanlk €2+ 62 = ¢.
So, choosing L equal to the max of N,M , we see that given ¢ > 0 we can always
choose L so that forn > L,[¥1n — W3nlk €. This means that W1 — W3n >4 Opz —i.€.
{‘I’l,n}fjo is related to {‘Pg,n}fjo.

So, we really have equivalence relation, and so by Corollary 14.1.1, the set = is
partitioned into disjoint subsets (equivalence classes).

Definition 14.1.24. The hyperreal numbers @% are the equivalence classes
[{‘Pl,n}fjo] of Cauchy hyper infinite sequences of, as per Definition 14.1.23.

That is, each such equivalence class is a hyperreal number in R%.

Definition 14.1.25.Let st € @%, so there are Cauchy hyper infinite sequences
{Wn}rloand {@n}7o with s = [{Wn}rlo | and t = [ {@n}7 |-

(a) Define s+t to be the equivalence class of the hyper infinite sequence

IR WS

(b) Define sx t to be the equivalence class of the hyper infinite sequence

{\Pn X q)n};cjo-

Proposition 14.1.5.The operations +, - in Definition 14.1.25 (a),(b) are well-defined.
Proof. Suppose that [{‘Pn};‘fo] = [{‘Pl,n}ﬁo] and [{@n}ﬁjo] = [{CDl,n};‘fo].
Thus means that ¥n — W1n »# Ogz and @ — @1 >4 Ogg. Then

(Wn+®n) — (Win+D1pn) = (Wn—Yip) + (On— P1p).Now, using the familiar /2
trick, you can construct a proof that this tends to Og:, and so

[(Wn+@n)] = [(W1n+ DP1p)].

Multiplication is a little trickier; this is where we will use Theorem 14.1.4. We will
also use another ubiquitous technique: adding O in the form of s—s. Again,

suppose that

[{‘Pn};‘fo] = [{‘Pl,n}ﬁo] and [{@n}ﬁjo] = [{CDl,n};‘fo]; we wish to show that
[{‘I’n X d)n}ﬁo] = [{‘Pl,n X Gbl,n}fjo], or, in other words, that

Wn x O —WYip x O1p —# Ogsz. Well, we add and subtract one of the other cross

terms, say ®@n x W1, :
WYnx On—WYinx Orp=¥nx O+ ((Dn X Win—DOp x \Pl,n) —WYinx O1p =



= (Whx ®y— Dy x \Pl,n) + (P x WYWin—YWip x (Dl,n) =

= O, x (\Pn - \Plyn) + \Pl,n X (CDn - (Dl,n).

Hence, we have |¥n x Op—W1ipx Q1< [On|x [Wn— VinH|Yin| |@n— DP1pl.
Now, from Theorem 14.1.4, there are numbers M and L such that |®,< M and
[¥1n< L for all n e N#, Taking some number R (for example R = M + L) which is
bigger than both, we have

|\Pn x Op—Wipx (I)l,nlf |(I)n|>< I\Pn — \Pl,nl‘f‘l\yl,nlx |(Dn - (I)l,nlf

< R(¥n— Yin|lH®Pn — P1pl).

Now, noting that both an - cn and ®, — ®;, #tend to Og; and using the &/2 trick
(actually, this time we’ll want to use /2R, we see that

‘Pn X ®n — lPJ_J-. X @Ln —>H# Oﬂgg

Theorem 14.1.6. Given any hyperreal number

seRY s+ O = [0x2 | = [z, Oz, Oy, Oc . )],

there is a hyperreal numbert e ﬁi% such that
Sx t= 1 = [Iﬁ.ﬂ = [(Lgs, Lag, Ins Lasr - )],

Proof. First we must properly understand what the theorem says. The premise is

that s is nonzero, which means that sis not in the equivalence class of

O = (On, Op, Ope, Oz, ..). In other words, s = [{¥n}7o | where W, — Oz, does not

#-converge to Ogzas n — «*. From this, we are to deduce the existence of a hyperreal

number

t= [{q)n}ffjo] suchthatsx t = [{‘Pn X CDn}ffjo] is the same equivalence class as

1@ = [(Ir#, Irg, Lrg, 1ge, - - -)]. Doing so is actually an easy consequence of the fact
that

nonzero hyperreal numbers from R% have multiplicative inverses, but there is a subtle

difficulty. Just because sis nonzero (i.e. {‘Pn};‘fo does not #tend to Ogy), there’'s no

reason any number of the terms in {‘Pn};‘fo can’t equal Ogz. However, it turns out that

eventually, ¥ # Ogs.

That is,

Lemma 14.1.1. If {‘I’n}fjo is a Cauchy hyper infinite sequence which does not #-tend

to Ogs, then there is an N € N* such that, for n > N, ¥y, # Ogs.

We will now use it to complete the proof of Theorem 14.1.6.
Let N € N* be such that ¥, + Og: for n > N. Define hyper infinite sequence @, of

hyperreal numbers from @% as follows:

forn < N,®, = Og#, and forn > N, &, = 1/¥ :

{00} = (Oe, Opss - - -, Qo Lp/ rvit, L w2, - . ).

This makes sense since, for n > N, an is a nonzero hyperreal number, so

1ps/'¥'n exists.

Then ¥y x @y is equal to Wy x0g# = Ogs for n < N, and equals

Wn x Op=Wnx lgg/¥n=1gs forn>N

Well, then, if we look at the hyper infinite sequence 1@ = (Ips, Iggs Lpsy Lggy oo n), WeE

have (1g#, 1z#, 1g#, 1ps,...) — (Wn x @p) is the sequence which is 1@; - 0@; = 1@



for n < N and equals 1~ -1 = Og: for n > N. Since this hyper infinite sequence is
eventually equal to Ogs, it #-converges to Ogx as n - «o*, and so

[0 x @0} ] = [(Lre Tng Tnps D )] = 1 € R%. This shows that t = [{@n}is]

is a multiplicative inverse to s = [{‘Pn}fjo].

Definition 14.1.26. Lets € ﬁg% . Say that sis positive if s # 0@, and if s = [{‘Pn}ﬁjo]
for some Cauchy hyper infinite sequence such that for some N, ¥ > Og: for all n > N.
Given two hyperreal numbers st, say that s > t if s—t is positive.

Theorem 14.1.7. Let st € FR? be hyperreal numbers such thats > t, and letr e ﬁi%.
Thens+r >t+r.

Proof. Lets = [{‘Pn}ﬁo],t = [{d)n}ﬁo], andr = [{@n}ﬁo]. Since s> t, i.e.

s—t > 0, we know that there is an N such that, for n > N,¥, - ®, > 0.So ¥, > @,
for n > N. Now, adding ®, to both sides of this inequality , we have

Wn +On > ®n+ On forn > N, or (¥n+0pn) — (On + On) > Ogs for n > N. Note also that
(Pn+On) — (Pn + On) = ¥y — @, does not #-converge to Og+ as n - «*, by the
assumption that s—t > O@. Thus, by Definition 14.1.26, this means that:

Definition 14.1.27. There is canonical imbeding

R# & RE (14.1.14
defined by
a— [a] (14.1.15

where & is hyper infinite sequence a = (a,a,....),a € R

Notation 14.1.5.4 = (a,a,....) € @%,a € ﬁi%.

Remark 14.1.11.1fa e ﬁiﬁ we will identify hyperreal a with hyper infinite sequence
{ant™, = ap,a1,...,an1,an,N € N¥since a = #lim ,_«an.

Definition 14.1.28. (i) Let {an}LO,k € N be finite sequence in ﬁi%, {an}LO c @%.
,__\ —~
We define external hyper infinite sequence {an}LO c R% by

* k
{AniK} 2o = {@n}no = (14.1.16
= (a01a11 LR ’am1 LR ’ak—llaklak)
(ii) Let {an}, be countable sequence in @% c{anfno C ﬁi%.

. . . . # — —~
We define hyper infinite sequence {An}, = {an},, < R by
/. oo¥ 0
{An; 0} o = {@n}oo =

— (14.1.19
= (ao,al,,...,ak,...{an}ﬁzo,{an}ﬁzo) € [[{an}poll-

(iii) Let {an}r’\l‘zo,N e N*\N be external hyperfinite sequence in ﬁl@ X {an}r’\]l:o c EI-RE.
,_% S~
We define hyper infinite sequence {an}ﬁzo c R% by



* N
{An;N} %o = {anjno = (14.1.18
= (20,81, ---,am, - - -,aN-1, AN, AN).
Definition 14.1.29.(i) Let {a.}* .,k € N be finite sequence in @lﬁ, {an}f, ﬁi%.

A=k

We define external finite sum Ext) . a, by

~Nn=k

— ~
ExtY. . an={Cn}t o= (CoC1rooe, {CHND, o Chty- - CuCh) € [[C]]  (14.1.19
where Co = a0, = ExtY") an,0< n < k.
(i) Let {an} ., be countable sequence in @% c{anfn o C @%.We define external
A~ N=0

countable sum Ext)_  an by

~ =00

59
EXt_Zn:O an = {Cn}n=0 =

" (14.1.20
= (co,cl,...,ck,...,{cn}fzo,{cn}fzo) € [[{cn} o]l

where Co = a0,Ck = EXtY." s an k € N.
(iii) Let {an}"—,N € N*\N be external hyperfinite sequence in FR? S{ankN, ﬁi%.

~.n=N

We define external hyperfinite sum Ext)_ ., an by

~.n=N

=N
Ext) . , an = {cn}no = (Co,C1,...,Ck,...,CN-1,CN, CN) (14.1.2)
where Co = a0,Ck = EXtY_ san, 0 < k< N,cy = EXtX. ") an.

(iv) Let {an} ), N € NN be external hyperfinite sequence in ﬁiﬁ S{ank N, FR? such
that a, = O for all n e N*\N.We assume that

~.n=N A~N=0

EXtX. o an = EXtXS ) an. (14.1.22
Example 14.1.1.Consider the G.P: a,ar,ar?,....arN1,N e N*,q ﬁiﬁ,

re ﬁl@ be the first term and the ratio of the G.P respectively. Then for any

N € N* by Proposition 14.1.6 and Definition 14.1.29 one obtains that

~n=N-1 m /1@;\ /rN\
a -1 _ c _ g _
Extzn=l ar a gpom .alﬁ_r alﬁ_r. (14.1.23
and
s - <=
E t/Z\w g 2 14.1.2
X L —.alﬁ_r—a 1 1. (14.1.29
c C n=

Example 14.1.2.Consider the G.P: a,ar,ar?,....arN1,N € *N,a € ﬁ-@,r € ﬁ@,

r > 0,r # 1.Note that



[
1~ — N ~N=N-1
RE n-1
a = Ext E ar™ =
1[R# - n=
c
o~

T~
_ - n-1 % -1 _
Ext Zn=10‘r + Ext Z(neN#\N>A(nSN—1)ar

/\
1@ rn *® T N
=q ct _— —qo + Ext orm,
1~ -7 1~ —r1 Z(neN#\N) A(NSN-1)
RE RE n=1

From (14.1.25) we obtain

— L 12@ —rN 1’:’@; rn "
Ext ar™t = g——= -a f— t o T/ =
Z(ne*N\N)/\(nSN—l) lgg—r 1—-r 1— —r

Assume that: (i) r < 1@;,then from (14.1.26) we obtain

- n-1 L
Ext Z (e #\N>A(nSN_l)ar > O[R 7
@iyr> 1@;,then from (14.1.26) we obtain

—_—

P n o /N\
Ext ar™l = ¢ r +a—7F > O0~.
Z(neN#\N)/\(ngN—l) 1@ —-r r— 1@ R#
c n=1 c

Proposition 14.1.6.(i) Consider the G.P: a,ar,ar?,....arN1, N e N”.Let Sy,
a € R%,r € R¥ be the sum of N terms, first term and the ratio of the G.P
respectively. Then for any N € N*the statement @y holds

Dn o Ext TNV grrt — g 22 1
f=—g Xt ar - = oq—F—.
N S n=1 1[Rg -r

Proof.(i) Directly by hyperinfinite induction. Note that ®y =s On.a -

- N 1ps — I'N
S = Ext 3" Narml — Ext "N arml 4 grN = g e 4 orN =
n=1 n=1 1[R§ —r
Toe =t (Lge=r)rN 1, NNy
=a +a < =q—= =
1Rg—r 1Rg—r 1Rg—r
_ 1[R§ _ rN+1
1Rg -Tr
1ns + I'NJrl
Thus Sy.g = a”ic—r and therefore ®y,;1holds.
RE —

(i) Consider the G.P: a,ar,ar?,....arN1, N e N* Let Sy,
a € R% r € R¥ be the sum of N terms, first term and the ratio of the G.P

respectively. Then for any N € *Nthe statement @y holds

(14.1.25

(14.1.26

(14.1.27

(14.1.28

(14.1.29

(14.1.30



~N=N-1 1~ — N

Dy s Xty o= ot (14.1.3)

Notice that (i)=(ii) by definitions.
Definition 14.1.30. Let {an}fjo,n e N¥ be external hyperinfinite sequence in R% :

/\E’Q’qt

{an}fjo c @%.We define external hyperinfinite sum Ext-Zn=0 an by

/\OO# ~n=N
EXtY. oan = #-IimN%#(Ext-Zno an> (14.1.32

if #limit in (14.1.31) exists.
Example 14.1.3.Consider the G.P: a,ar,ar?,....ar™,n e N*,a € R% r € RE,
From (14.1.27) we obtain

A~ o ~.n=N 1@; — rN
EXt—anoar”‘l = #-lim Nooof (Ext-2n=0 ar”‘1> = #lim Nooof aﬁ =
RE (14.1.33
15
IRC
=0
1@-@; -r
since #limy_«rN = O~ if [r| < 1.From (14.1.33) and (14.1.25) we obtain
IRC
1@; & n-1 il n-1 S n-1
aw = EXt—anoar = EXt—anoar + EXt—ZneN#ar =
IRC
—]— - (14.1.39
RE n Fa
¢ 1~[Ri ro a{ 1~r —r } +EXtY o
RE RE n=1
From (14.1.34) we obtain
—_—
E t/\ n-1 _ @-g 1@ rn ) _
XED nepyn@T S PR [ P B P B
¢ RE RE n=1
(14.1.35

Definition 14.1.31. Let {an}, be R{- valued countable sequence

a: N - *R¥ such that:

(i) there is M € N such that for all n > M,an # 0.y,

we denote a set of the all these sequences by 257,

We define a set —Z570 by {cn} 7, € —E57° < {-cn}7, € E57°. Note that

=0 _ _=+20

By Craad

(ii) there is countable subsequence {an, ), < {an}, , such that an = Ogs, k> m
and an # Ogs iff an & {@n, )}y

we denote a set of the all these countable sequences by =50,

We define a set —E5*"=% by {cn}, € 2570 < {—cn}, € 257%°. Note that

=+#0v=0 _ _=+#0v=0
=) =) .



Definition 14.1.31.

(1) Let {an},, € E5*° and {bn},, € E5*° then we define
(i) {antro+ {bn}ry = {an+bn}i, € B0

(ii) {@n} o — {bn}no 2 {@n —bn};y € EG*°

(iii) {an} o x {bn}jro = {anxbn} ;€ Ejﬁo

(V) ({an}mo) " 2 @ity € S50

(2) Let {an}, o € E5*™Pand {bn}; , € 250 then we define
(i) {an} o+ {bn}no = {@n+bntn, € :ﬁov 0

(ii) {an} o — {bn}no = {an —bn}y € GV

(iii) {an}t o x {0n}Z o 2 {anx bo}?, € 2 500-0

(V) ({an}mo) ™ 2 {ak ), where

ast if an # O.pe
al- = o T TR (14.1.36
O*Rg |f an = O*Rg

Note that

H [¢'s} —Lx -1 o0

0) (@t ™) " = {anti,

(i) {anyiy x ({anyig) ™ = 1.5s where 1.gs = {an}7, is countable sequence
such that

1zs if an =0
an=4 0 TR (14.1.37
0[R§ if On = O[Rﬁ

Definition 14.1.32. We say that
({an}? )™ € 2500 s a quasi inverse of {a,}* .

Definition 14.1.33.(1) Let {an}5, € Z5*%0 and let {An}.%, = {an}n o be a hyper
infinite sequence

{An}n 0 {an}n 0 (aO!al!"'lak!"'l{an}:zoy"-) (14.1.38
i.e. for any infinite m € N*\N, Ay = {an},,,. We will denote a set of the all these

N+ #O\/—O
hyper infinite sequences by =,

(2) Let {Xn + Ynan}, € E5*%-0 and let

of T o w
{Xn+YnAn}no = {Xn+ Ynan}, o =
(Xo + Yo@0,X1 + Y181, . . - Xk + Yk, - - - ,{Xn +n Yan} 1 gs -+ ),

(14.1.39

i.e. for any infinite m € N\, A = {Xn + Ynan},,. We will denote a set of the all

these hyper infinite sequences by {250, {Xn} o {yn}ff of-
Definition 14.1.34.Let {An} = {an}>,and {Bn}, 5 = {bn}n_ be in :miov_o

Then we deflne
~+¢O\/ 0

() {An}n ot {Bn}n 0= {an}n 0 +{bn}n o= {an+bn} o= {An+ Bn}n 0 € 2o
(“) {An}n— {Bn}n— {an}n—o {bn}n— {an bn}n=0 =

~+ ,#0v=0
= {An n}n 0 (S o
+,#0v=0

(i) {An} 7o X {Bn}iro = {Bntro *{Dntpo = {@n X Bukrg = {Anx Ba}irg € E,,



Definition 14.1.35.Let {\Pn}ﬁo be in AE'TOVZO,i.e. foralln e N*, ¥, ¢ 25#0v=0,
Say {‘Pn};‘fo #tends to O+ as n - oo* iff for any given ¢ > Ogs,6 = Oy there is
a hypernatural number N € NAN,N = N(¢) such that for any n > N, |¥ < «.
Definition 14.1.36. Let {‘Pn};‘fo be a hyper infinite sequence such that for all

neN ¥, e gz’iovzo.We call {‘Pn}ﬁo a Cauchy hyper infinite sequence if the
difference between its terms #tends to Oz;. To be precise: given any & > Ogg,
¢ = Ogsthere is a hypernatural number N € N\N,N = N(¢) such that for any
m,n > N, [¥n - ¥ &.

Theorem 14.1.8.Let {\Pn}ﬁo be in AE'TOVZO. If {‘Pn};‘fo is a #-convergent hyper

~t,d:0\/=0

infinite sequence (that is, ¥, - ® as n » «” for some ® € =, ), then
{‘Pn};‘fo is a Cauchy hyper infinite sequence.

Proof.We know that ¥, —»» ®. Here is a ubiquitous trick: instead of using ¢ in the
definition, start with an arbitrary infinitesimall ¢ > Og:,& = Ogs and then choose

N so that [¥, — ®@| < e&/2when n > N. Then if m,n > N, we have
[Pn—¥m|=|¥n—D) - (Ym—D)|< [¥n—D|+H¥m—D| < el2+¢l2 =¢.

This shows that {‘Pn}ﬁo is a Cauchy hyper infinite sequence.

Theorem 14.1.9.If {‘Pn}ﬁo is a Cauchy hyper infinite sequence, then it is

bounded in R%; that is, there is some number M e R¥ such that

{¥n}<5l< M for all n e N,

Proof. Since {¥n},% is Cauchy, setting ¢ = 1 we know that there is some N such
that [¥m — Wnl< 1 whenever mn > N. Thus, [Ynia — Wal< 1 forn > N. We can rewrite
thisas Wni1 — 1 < Wn < Wnia + 1.This means that |¥,| is less than the maximum of
[¥ni1 — 1] and [P + 1. So, set M e R¥ larger than any number in the following

list: {l\Pol, H’ll, - ,H’NI, HJN+1 — 1|, H’N+l + 1|}

Then for any term ¥, if n < N, then |¥,| appears in the list and so [Vn[< M;if n > N,
then (as shown above) |V, is less than at least one of the last two entries in the list,
and so [¥n< M. Hence, M is a bound for the sequence.

~

Let = denote the set of all Cauchy hyper infinite sequences. We must define an

equivalence relation on Z.

Definition 14.1.37. Let S be a set of objects. A relation among pairs of

elements of Sis said to be an equivalence relation if the following three properties
hold:

Reflexivity: forany s € S, sis related to s.

Symmetry: for any s,;t € S, if s is related to t then t is related to s.

Transitivity: for any s,t,r € S, if sis related to t and t is related to r, then sis

related tor.

The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.

Theorem 14.1.5.10. Let S be a set, with an equivalence relation on pairs of elements.
For s € S, denote by [s] the set of all elements in Sthat are related to s. Then for
any s,;t € S either [s] = [t] or [s] and [t] are disjoint.

The sets [s] for s € Sare called the equivalence classes, and they are the bins.
Corollary 14.1.2. If Sis a set with an equivalence relation on pairs of elements, then



the equivalence classes are non-empty disjoint sets whose union is all of S.
At 20V=0

Definition 14.1.38.Let {‘Pl,n}ﬁo and {‘Pg,n}ﬁo be in Ewi . Say they are

equivalent (i.e. related) if [¥'1n — Wan| »# Oz @s n » «o”, i.e. if the hyper infinite

sequence {|¥Y1p — ‘Pz,n|}jfjo #-tends to Og;.

~x,#0v=0
Proposition 14.1.4. Definition 4.1.38 yields an equivalence relation on E(; !

Proof. We need to show that this relation is reflexive, symmetric, and transitive.
* Reflexive: Wn —¥n = Og¢, and the sequence all of whose terms are Oy clearly
#-converges to Og#.So {‘Pn};‘fo is related to {‘Pn};‘fo.
« Symmetric: Suppose {‘Pl,n};‘fo is related to {‘Pz,n};‘fo, SO Win — Wan —# Ops.
But Won — Win = —(W1n — ¥2n),and since only the absolute value W1, — Wanl|=
= [¥2n — W1n| comes into play in Definition 14.1.35,it follows that Wop — W1n —# Oy
as well. Hence, {‘I’z,n}fjo is related to {‘I’l,n}fjo.
» Transitive: Here we will use the &/2 trick we applied to prove Theorem 14.1.4.
Suppose {¥1,}~, is related to {25}, and {¥2,}*", is related to {¥zn} .
This means that W1 — W2n —# Ogz and Won — Wan —»# Ogs.
To be fully precise, let us fix infinite small ¢ > Ogs; then there exists an N € NN
such that for all n > N, Y1, — W2n| < €/2; also, there exists an M such that for all
n> M, V20— WVank €/2. Well, then, as long as n> max(N,M) , we have that
|\P2,n - \P3,n|: I(\Pl,n —WYon)+ (Wan - \P3,n)|§ |\P1,n — \Pz,nl-i-l\Pz,n — \P3,n|< el2+¢el2 = ¢.
So, choosing L equal to the max of N,M , we see that given ¢ > 0 we can always
choose L so that forn > L,[¥1n — W3nl< €. This means that W1n — W3n »# Oy,
i.e. {‘Pl,n}ﬁo is related to {\Pg,n}ﬁo.

~+,20V=0

So, we really have equivalence relation, and so by Corollary 14.1.2, the set £,
is partitioned into disjoint subsets (equivalence classes).

Definition 14.1.39. The hyperreal numbers R# contain: (1) all the equivalence
classes [{‘Pl,n};‘fo] of Cauchy hyper infinite sequences of, as per

Definition 14.1.38 and (2) the all gyperreals R% — ﬁiﬁ by canonical imbedding
R o RE (14.1.42)-(14.1.43).

That is, each such equivalence class is a hyperreal number in @% .

Definition 14.1.40. Let st ﬁ-@, so there are Cauchy hyper infinite

sequences {\Pn}‘,fjo and {CDn};‘fo with s = [{‘Pn};‘fo] andt = [{@n}fjo].

(a) Define s+t to be the equivalence class of the hyper infinite sequence

{¥n + O},

(b) Define sx t to be the equivalence class of the hyper infinite sequence

{¥n x q)n}::o-

Proposition 14.1.5.The operations +, x in Definition 14.1.25 (a),(b) are well-defined.
Proof. Suppose that [ {¥n}7 | = [{¥1n}7o | and [{@n}io | = [{@1a}7 .
Thus means that ¥ — W1p »# Ogz and @ — @1 -4 Ogz. Then

(Wn+®n) — (Wipn+ D1p) = (Wn—Yin) + (On — P1p).Now, using the familiar /2
trick, you can construct a proof that this tends to Og;, and so

[(Wn+ @n)] = [(W1n+ DP1p)].



Multiplication is a little trickier; this is where we will use Theorem 14.1.10. We will
also use another ubiquitous technique: adding O in the form of s—s. Again,
suppose that

[{‘Pn};‘fo] = [{‘Pl,n}ﬁo] and [{@n}ﬁjo] = [{CDl,n};‘fo]; we wish to show that
[{‘I’n X d)n}jfjo] = [{‘Pl,n X ®1,n};°jo], or, in other words, that

Wn x ®p —Wip x D1 -4 Ogsz. Well, we add and subtract one of the other cross
terms, say @, x Y1, :

WYnx On—WYinx Orp=¥nx O+ ((Dn X Win—DOp x \Pl,n) —WYinx O1p =

= (Whx ®y— Dy x \Pl,n) + (P x WYin—YWip x (Dl,n) =

= O, x (\Pn - \Pl,n) +Win x (P — (Dl,n)-

Hence, we have ¥ x Op—W1ipx Q1< [On|x [Wn— VinH|Yin| |@n— DP1pl.

Now, from Theorem 14.1.9, there are numbers M and L such that |®,< M and
[¥1n< L for all n e N#, Taking some number R (for example R = M + L) which is
bigger than both, we have

|\Pn x Op—Wipx (I)l,nlf |(I)n|>< I\Pn — \Pl,nl‘f‘l\yl,nlx |(Dn - (I)l,nlf

< R(¥n— YinlH®Pn — P1pl).

Now, noting that both ¥, —¥1, and @, — @, #-tend to Og; and using the /2 trick
(actually, this time we’ll want to use /2R, we see that

WnXx ®p—Wipx O1p—s O[Rg

Theorem 14.2.11. Given any hyperreal number s @%, s+ 0, thereis a

hyperreal numbert @% suchthatsx t=1~orsx t= i@.
Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that sis not in the equivalence class of
O@'g = (OR§1OR§10R§1OR§1"')' (14140

In other words, s = [{‘Pn}ﬁo] where ¥ — Oﬁ(g does not #-converge to Ogs.
From this, we are to deduce the existence of a hyperreal number t = [{q)n}ffjo]
such that sx t = [ {¥n x @y}, | is the same equivalence

class as 1@ = [(Ir# 1rss 1rg, 1gss ... )] OF @S some i@. Doing so is actually an
easy consequence of the fact that nonzero hyperreal numbers from R% have
multiplicative inverses, but there is a subtle difficulty. Just because sis nonzero
(i.e. {‘Pn}ﬁo does not #tend to Ogs as n — «*), there’s no reason any number
of the terms in {‘I’n}fjo can't equal O~. However, it turns out that eventually,
\I’n * Olﬁg'

That is,

Lemma 14.1.2. If {‘Pn};‘fo is a Cauchy hyper infinite sequence which does

not #tends to Ogs, then there is an N € N* such that, for n > N, Wp, # Ogs.

We will now use it to complete the proof of Theorem 14.2.11.

Let N € N* be such that ¥, # Oz« for n > N. Define hyper infinite sequence @, of
hyperreal numbers from ﬁl-@ as follows:

forn < N,®n = Ogg, and for n > N, @ = 1gs/Vh :

{@n}7o = (O Oggr -, O, Tpel¥her, Lpel Wi, - ).



This makes sense since, for n > N, an is a nonzero hyperreal number, so
1ps/'¥'n exists.
Then ¥, x @y is equal to Wn x0gy = Ogs for n < N, and equals
\I’n X ch = \Pn X 1Rg/\{’n = 1|Rg fOI’ n> N
Well, then, if we look at the hyper infinite sequence
16{5 = (1Rg11Rg’1Rg11Rg"")’ (1414])
we have (1gg, 1gg, Irss 1pss .- .) — (Pn x @n) is the hyper infinite sequence which
is 1@§ - O@ = 1@ for n < N and equals 1@ —1@ = O@ for n > N. Since this
hyper infinite sequence is eventually equal to O, it #converges to Ogs as n - o,
and so [{‘Pn X ch}ffjo] = [(Lrg: 1ty Lrgy Lgss - - )] = 1ﬁ € ﬁl@ and similarly
[{‘Pn x ch}ffjo] = iﬁ € @.This shows that t = [{q)n}ffjo] is a multiplicative
inverse (and similarly quasi inverse) to s = [{‘Pn}ﬁo].
Definition 14.2.41. Lets € ﬁiﬁ . Say that sis positive if s = 0, and if

S= [{‘Pn}ﬁo] for some Cauchy hyper infinite sequence such that for some N,

Wn > Oy for all n > N.Given two hyperreal numbers s,t € R, say that s > t if
s—tis positive.
Theorem 14.1.7. Let st € ﬁl-@ be hyperreal numbers such that s > t, and let
re :@%.Then S+r>t+r.
Proof. Let s = [{‘Pn}ﬁo],t = [{d)n}ﬁo], andr = [{@n}ﬁo]. Since s> t, i.e.
s—t > 0, we know that there is an N such that, forn > N,%¥, - ®, > 0.So ¥,, > @,
for n > N. Now, adding ®, to both sides of this inequality , we have
Wn +On > ®n+ On forn > N, or (¥n+0pn) — (On + On) > Ogs for n > N. Note also that
(Wn +On) — (Pn + On) = ¥n — @y does not #-converge to O.z; as n —» *oo, by the
assumption that s—t > O@. Thus, by Definition 14.2.41, this means that:
S+r = [{‘I’n+®n}fjo] > [{®n+®n}fjo] =t+r.
Definition 14.1.42. There is canonical imbeding

R# o RE (14.1.42
defined by

a— a (14.1.43

where @ is hyper infinite sequence @ = (a,a,....) € ﬁiﬁ,a e RZ
Notation 14.1.5.a = (a,a,....) € ﬁ@,a € ﬁ-@.

Definition 14.1.43. (i) Let {an}¥ ,,k € N be finite sequence in R, {an}k , < R
,_H S~
We define external hyper infinite sequence {an}ﬁzo c Riby

oo k
{An Ko = {@n}no = (14.1.44

PN
= (ao,al, <odmy . ,ak—l,ak,ak>-

(i) Let {an} ", be countable sequence in Rf : {a,}, < R



. . . . # —— ~
We define hyper infinite sequence {An}}, = {an},, < R by
! *o0 [e'e]
{An;0} 5 = {@n}po =

P (14.1.45
= (ﬁo,al, ey {8n Y g {an}jfzo).

(iii) Let {an}r’\l‘zo,N e N*\N be external hyperfinite sequence in @% X {an}r’\]l:o c EI-RE.
,_% S~
We define hyper infinite sequence {an}ﬁzo c R% by

* N
AniNF 7o = {@nfno = (14.1.46
= <a01 a‘l1 LR lam1 .. ’aN_laN’é‘N> .

Definition 14.1.44.(i) Let {an}ﬁzo,k € N be finite sequence in ﬁ@, {an}ﬁzo c ﬁ-@.
/\n:k

We define external finite sum Ext)_  an by

~.n=k

k
EXt o an = {Cn}no = (Co,C1,-..,Ck C) (14.1.47
where co = @0,¢ = ExtY [ a,,0<j <k
(ii) Let {an}_, be countable sequence in ﬁ@ cHanf o C @.We define external
A~N=x©

countable sum Ext)__ an by

~N=0

o0
EXtY . , @ = {Cn}po =

= (CO,Cl, RN o '{C”}::O’m) c [@} (14.1.48

where ¢ = ag,Ck = Ext—ZL‘ig an,k € N,
(iii) Let {an}ﬂjg‘, N € *N\N be external hyperfinite sequence in fﬂi% X {an}r’\]l:o c fﬂi%.

~=N

We define external hyperfinite sum Ext-Zn:0 an by

~Nn=N

=N
Ext-2n=0 an = {Cn}po = (Co,C1y...,Ck,--.,CN, CN) (14.1.49
where co = @0,Ck = EXtY " s an, 0< k < N,cy = Ext Y"1 an.

(iv) Let {an}ﬂjB‘,N e N* be external hyperfinite sequence in ﬁ@ : {an}ﬁzo c ﬁlif%
such that a, = 0 for all n € N\N.We assume that

~n=N A~ N=0

Ext—Zn=O an = Ext—Zn=0 an. (14.1.50
Example 14.1.3.Consider the G.P: a,ar,ar?,....arN1,N e N*,q @5,
r € R¥ be the first term and the ratio of the G.P respectively. Then for any

N € N* by Proposition 14.1.6 and Definition 14.1.44 one obtains that

/\ /\
~n=N-1 1@ —_ rN 1@ /rN\
Ext- ar™l = g—=¢ =q C g 14.1.5
Zn=l 1@—r 1@;—r 1@;—r ( :D
c c Cc

and



14— 7 3
_/\ n-1 _ E?R% _ r"
Ext) o™= — a{ - } . (14.1.52
RE RE n=1

Example 14.1.4.Consider the G.P: a,ar,ar?,....arN1,N e N¥,a ﬁiff,r € ﬁif%,
r < O, Ir| < 1.Note that

RE’

1@ —_ rN ~_h=N-1
P — - n-1 _
a - EXxt anl ar
_ - n-1 - -1 _
=Ext)  ar™+Ext) ey (14.1.53
1 g
_ RE _ rn _/\ n-1
=q 1@ - a{ 1@ — }nl + Ext Z<n€N#\\N>A(nSN_l)ar .
From (14.1.53) we obtain
—_— —_—
—~ L 1 — rN 1@; pn *
n-1 _ c C —
Ext Z(neN#\N)A(mN—l) - lps —1 1@ T e 1@ —r
c c n=1
- (14.1.59
(L) |
o o
1@ —Tr 1@ -Tr
n=1
Assume that: (i) r < O, Irl<1 then from (14.1.54) we obtain
N n-1
2 1. n-1 L
ExtY <neN#\N>A<n§N_1>“( 1R§) " + Oz (14.1.55

814.2.External non-Archimedean field /*-@% via special

extension of non-Archimedean field *R#%

Notation 14.2.3. Let A c *R% and A + {0}.Then we write A > Oiffae A = a > 0.
Definition 14.2.13. Let A < *R¥ and A > 0.Assume that: a,b € A = a+b € A.
Then we say that A is a positive idempotent in *R%.

Notation 14.2.4. We will denote by *R% ;, a set of the all positive finite number in R
except infinitesimals in *R%.

Remark 14.2.6.Note that a set *R?,_;\{0} < *R% is a positive idempotent in *R%.
Proposition 14.2.1.Let A c *R¥ is a positive idempotent in *R%. Then the following
are equivalent.[In what follows assume a,b > 0].

(lae A= 2acA,

(i) a € A = na e A for all standard integers n € N,

(i) a € A = ra € A for all finite r € *R%,.

Proof. All parts are immediate from the Definition 14.2.13.

Notation 14.2.4. A*" 2 {§ € *RE |6 > 0,6 = O},i.e. A¥ is a set of the all positive
infinitesimals in *RE,;AZ 2 {6 € *RE |6 < 0,6 ~ Ogs},i.e. AL = ALY is a set of

the all negative infinitesimals in *R%.Note that A% = —A%*",



Remark 14.2.7.Note that a set A#" < *R% is a positive idempotent in *R% and A%

is a negative idempotent in *R%.

Definition 14.2.14. Let {an},, , be *R%, ;.- valued countable sequence

a: N - *R% o such that:

(i) there is M e N such that {an},,, is monotonically decreasing *R, ;;,- valued

countable sequence a : N - *R%, ; \{Ogs}

(i) there is M e N such that for all n > M,an # O.g; [it follows from (ii)]

(iii) for all n € N,a, # 0. and for any € > 0,e # Ogs,€ € *RE, ¢, thereis N € N

such that for alln > N : a5 < € and we denote a set of the all these sequences by
+/0

We define a set A;° by ¢y € AS® = {~ca}?, € A4%.Note that A;"° = —AS®.

Remark 14.2.8.Note that a set A5 is a positive idempotent in *R¥ and a set Al is a

negative idempotent in *R%.

Proposition 14.2.2.(1) Let {a,}*, € A5 and {bn}”, € A then:

(i) {an} o+ {bn}?y £ {@an+bn}?, € AP

(i) {an} o= {bnio 2 {an = bnkio € Aa” UAL® U AL UAL U {0y},

where {O*M}::o is a countable 0.z;- valued sequence.

(iii) {an}7 4 x {bn}:o {an x bn}7 € A

(2) Let {an}7, € A" and {bn} =, € A" then we define

(i) {an} g+ {bn}2y 2 {@n+bn}?, € AP

(i) {@an}2 o — b}y 2 {an—bn}?, € AGUAL°

(iii) {an} 2o x {bn}?, 2 {an x bt € ASP

(3) Let {an}7, € As® UAZ and x,y € R¥ then we define

(V) X+ y{@n} 1o 2 {X+Yankig

Proof. Immediately by definitions and by Definition 14.2.14.

Definition 14.2.15. We define the relation (- < -) on a set A" by:

let {an}*, € As° and {bn}7, € As® then {an}?, < {bn}?, iff there isN € N such

thatforalln > N : a5 < b, and S|m|IarIy we define the relation (- < -) on a set Ay’

by: let {an}7, € Aa* and {bn}, € AL then {an}*, < {bn}7, iff there is N e N

such that foralln > N : a, < by

Definition 14.2.16. (1) We define the relation (- < +) on a set A; x *RE, ¢in by:

let {an}, , € A5 and x e *RE, qin then {an}, < xiff there is N e N such that for

aln>N:a,<x

(2) We define the relation (- < +) on a set A% x Ay by: let {@n}no € Ao

then x < {an},, iff there is N € N such that for alln > N : x < ax.

(3) Let {an},, be AZ*- valued countable sequence a : N - A%, and we denote a set

of the all these sequences by A%,

We define the relation (- < +) on a set A%, x AL by: let {an}7, € A%, and x € A%

then {an} , < xiff there is N € N such that foralln > N : a, < x.

Proposition 14.2.2.Let {an}, , € AP {an} o * O-gs then there is N € N such that

O*[Ré‘ < AT < {an}n=0 < *R§+f|n\{0*n&§}-

Proof. Immediately by definitions and by Definition 14.2.16.

Remark 14.2.9.Note that it follows from Proposition 14.2.2 that

+/0

90 and x e A%



Oups < AF < AL < *RZ 1\ {Ougs ). (14.2.9

Definition 14.2.17. Let {an}},, be monotonically increasing *R, ;- valued
countable sequence a : N - *R% . \AZ such that:
(i) there is M € N such that for all n > M,an # O-gy
(ii) there is N € N such that for all n > Nand for any & > O.zs#,& € *RE 4 ,an > &
and we denote a set of the all these sequences by A5”.We define a set Az by
Cn € Aa” & {—Cn}Z, € As”.Note that As” = —AL"™.
Proposition 14.2.3.(1) Let {an}*, € A%” and {ba} >, € AL” then we define
(i) {an}o o+ {bn}iry 2 {an+bn}i, € A*l‘”
(ii) {any 2, —{bn} %, £ {an - bn}n=0 e AL UAS UAF UAE UAS U
A U {0. vt} o Where {Og¢}~ is a countable Og;- valued sequence.
(|||) {an}7 o x {bn}7 2 {anx bn}7, € AL,
(2) Let {an}, € A‘“” and {bn}7, € Aa” then we define
(i) {an}o o+ {bn}iy 2 {an+bn}o, € AS”
(ii) {an}y — {bn}ry 2 {an—bn}i, € A UAS”
(iii) {an}7 o x {bn}, 2 {anx b}, € AL
(3) Let {an}, € Ao and x,y € R¥ then we define
(V) Xn + Yn{an} o = {Xn + Ynan}, o, and we denote a set of the all these sequences
by {Aﬂw {Xn} o {yn}::o}-
Proof. Immediately by definitions and by Definition 14.2.16.
Remark 14.2.10.Note that {an} 7, € Au” < {ail}7, € A,

Definition 14.2.18.(1) Let {an}, , € AS° and let {An} % = {an}7, be a hyper infinite
sequence

{An}n_ {@n} o = (ao,a1,...,8k ...,{8n}Fng:---) (14.2.10
i.e. for any infinite m € *N\W,An = {an};,. We will denote a set of the all these

hyper infinite sequences by AP

{~an}, by A, (2) Let {Xn + Ynan} g € {AG", {Xn} g {Yn}mop and let

and a set of the all hyper infinite sequences

Xn + YnAn} o = {Xn+ Yndn} g (14.2.19)
(Xo + Yod0,X1 + Y11, - . . Xk + Y8k, - - - »{Xn + Yn@n} g, -+ )

i.e. for any infinite m € *N\N,An = {Xn + Ynan} . We will denote a set of the all

these hyper infinite sequences by {AHO {Xn} o Yn) ff_o}

Definition 14.2.19.Let {An}, %, = {an}n oand {Bn}. % = {bn}n o bein A”O.
Then we define:

(i) {An} 5+ {Bn} " = {an}n 0 +{bn}n 02 {@an+bn}7 = {An+By} % € AL
(“) {An}n— {Bn}n— {an}n—o {bn}n— {an bn}n=0 =
= {An-Bn} %5 € AR AP {OR#}

(iii) {An}n 0 % {Bn}n 0= {an}n 0 X{bn}n o = {anxbn} o = {Anx Bn}n 0 € ’-Ifo



Let {An} % = {@n) =g and {Bn} % = {bn} 2, be m{A“" {Xn} g Yan}mor pand
{Bn} % = b}, be in{A°, {Xan} 70, Y2n} o - Then we define:

(iv) {An}n ot {Bn}n 0 = Xun +Y1nan} o +{Xon + Y2nbn} o =

2 {Xin+Xon + Yinan FY2nbnt g = {Xin + +Xon + Y1nAn + yz,an};fo

Definition 14.2.20.Let {¥,}.%, be in A e foralln e *N, W, e ALC. Say
{‘Pn}n=o #-tends to O.zx as n - *oo iff for any given ¢ > Og#,& = O+ there is a
hypernatural number N € *N\N,N = N(¢) such that for any n > N, [¥n|< e.
Definition 14.2.21. Let {¥,},%, be a hyper infinite sequence such that for all

ne *N,¥, e A*lo We call {‘Pn}nzo a Cauchy hyper infinite sequence if the
difference between its terms #tends to O.z;. To be precise: given any ¢ > O.g¢,

¢ = O.gzthere is a hypernatural number N € *NW,N = N(¢) such that for any
m,n > N, [¥h - ¥ &.
Theorem 14.2.3.Let {¥,} %, be in A*lo If {¥n}, 5 is a #convergent hyper infinite

sequence (that is, ¥n -4 ® as n — *oo for some ® € A”O) then {‘Pn};fo isa
Cauchy hyper infinite sequence.

Proof.cWe know that ¥, -4 ®. Here is a ubiquitous trick: instead of using ¢ in the
definition, start with an arbitrary infinitesimall ¢ > 0.z¢,& = 0.z and then choose

N so that |V, — ®| < ¢/2when n > N. Then if m,n > N, we have
[Fn—Ym|=|¥n—D)— (Ym—D)|< [¥n—O|+H¥m—D| < &/2+¢l2 = &.

This shows that {\Pn};fo is a Cauchy hyper infinite sequence.

Theorem 14.2.4.1f {\Pn};fo is a Cauchy hyper infinite sequence, then it is bounded
in *R¥; that is, there is some number M e *R¥ such that [{¥,} %< M for all

ne *N.

Proof. Since {\Pn};fo is Cauchy, setting € = 1 we know that there is some N such
that |[¥m — Wnl< 1 whenever m,n > N. Thus, [¥ni1 — WPalk L for n > N. We can rewrite
this as Wni1 — 1 < Wn < Whia + 1.This means that [V,| is less than the maximum of
[¥ni1 — 1] and [P + 1. So, set M € *R¥% larger than any number in the following
list: {l‘Pol, H’ll, cen ,H’Nl, H’Nﬂ — 1|, H’Nﬂ_ + 1|}.

Then for any term ¥, if n < N, then |¥,| appears in the list and so [¥,|< M;if n > N,
then (as shown above) [V, is less than at least one of the last two entries in the list,
and so |[¥n< M. Hence, M is a bound for the sequence.

Let = denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on =.

Definition 14.2.22. Let S be a set of objects. A relation among pairs of

elements of Sis said to be an equivalence relation if the following three properties
hold:

Reflexivity: for any s € S, sis related to s.

Symmetry: forany s,;t € S if s is related to t then t is related to s.

Transitivity: for any s,t,r € S, if sis related to t and t is related to r, then sis
related to r.

The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.



Theorem 14.2.5. Let S be a set, with an equivalence relation on pairs of elements.
For s € S, denote by [s] the set of all elements in Sthat are related to s. Then for
any s,t € S either [s] = [t] or [s] and [t] are disjoint.

The sets [s] for s € Sare called the equivalence classes, and they are the bins.
Corollary 14.2.1. If Sis a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.2.23.Let {¥1,},7 and {¥2n} %, be in AR, Say they are equivalent
(i.e. related) if [¥1n — W2n| »# O.zz @s N - *oo, i.e. if the hyper infinite sequence
{¥1n— Ponl} 5 #tends to O.ps.

Proposition 14.2.4.Definition 4.2.23 yields an equivalence relation on

E = {AS {xn} g Yn}rio b
Proof. we need to show that this relation is reflexive, symmetric, and transitive.
* Reflexive: Wn -V = O-#, and the sequence all of whose terms are 0. clearly
converges to Ogs.S0 {¥n} %, is related to {¥n} 5.
- Symmetric: Suppose {¥1n},7 is related to {¥2n} %, SO Win — ¥2n >4 Ougp.
But Waon — Win = —(W1n — Y2n),and since only the absolute value |Y1, — Wanl|=
= |¥2n — W1n| comes into play in Definition 14.2.20,it follows that Wan — W1n »# O.gy
as well. Hence, {¥2n},% is related to {¥1n},%.
* Transitive: Here we will use the &/2 trick we applied to prove Theorem 14.1.4.
Suppose {¥1n} % is related to {¥on} %, and {¥2n},% is related to {¥sn} %
This means that Wi — ¥W2n »# Ogz and Wop — Wapn —»# Ogs.
To be fully precise, let us fix infinite small ¢ > 0.z; then there exists an N € *N\N
such that for all n > N,[¥1, — Wanlk €/2; also, there exists an M such that for all
n> M, [¥2n— Wanl /2. Well, then, as long as n > maxN,M) , we have that
[Pon—Wanl |(Win—Yan) + (Won— Van)K Win — Yo Won — Yanlk €2+ €/2 = &.
So, choosing L equal to the max of N,M , we see that given ¢ > 0 we can always
choose L so that forn > L,[¥1n — W3nk €. This means that W1p — W3n —»# Oy,
i.e. {¥1n}, 5 is related to {¥sn} *.
So, we really have equivalence relation, and so by Corollary 14.2.1, the set = is
partitioned into disjoint subsets (equivalence classes).

Definition 14.2.24. The hyperreal numbers ?@E are the equivalence classes
[{‘I’l,n};i"o] of Cauchy hyper infinite sequences of, as per Definition 14.2.23.

That is, each such equivalence class is a hyperreal number in *R% .

Definition 14.2.25.Let s,t fﬂ@, so there are Cauchy hyper infinite sequences
{¥n}Joand {@n}, 5 withs = [{¥n}, 5] and t = [{@n} .5 ].

(a) Define s+t to be the equivalence class of the hyper infinite sequence
{¥n+®n} 7%

(b) Define sx t to be the equivalence class of the hyper infinite sequence

{¥n x (Dn};fo-

Proposition 14.2.5.The operations +, x in Definition 14.2.25 (a),(b) are well-defined.
Proof. Suppose that [ {¥n} 7 ] = [{¥1n}n% ] @and [{@n} 5] = [{®1n}5 ]

Thus means that ¥n — W1n »# O.gz and @ — @1 -4 O.zz. Then



(Wn+®Dn) — (Wipn+D1p) = (Wn—Yin) + (On — P1p).Now, using the familiar /2
trick, you can construct a proof that this tends to 0.z¢, and so

[(Wn+Pn)] = [(W1n+ DP1n)].

Multiplication is a little trickier; this is where we will use Theorem 14.2.4. We will
also use another ubiquitous technique: adding 0. in the form of s—s. Again,
suppose that

[{¥ntio] = [{Pintno] and [{@n} 5] = [{@1n} 7 ]; We wish to show that
[{¥nx ®n} %] =[{¥1nx Pin},% |, OF, in other words, that

Wn x ®p — Wip x O1p >4 O-zz. Well, we add and subtract one of the other cross
terms, say ®n x Wi :

WYixOp—VYinxPip=¥nx®y+ (Opx Pin—Onx Yipn) —Vipx 01y =
=(Wnx @n—Opx Wip)+ (@Pnx Yip—VPipnx ®1p) =

= O x (Pn—Yin) +¥Pinx (On—DPip).

Hence, we have [V, x ®n—Winx O1pf< |@nfx [¥n— Pin|Yin| [On— Papl.
Now, from Theorem 14.2.4, there are numbers M and L such that |®,|< M and
[P1nl< L for all n € *N. Taking some number R (for example R = M + L) which is
bigger than both, we have

[Pnx @n—Yipx Pipl< |@n|x [¥n— PinH|Yinlx [On — D1p<

< R(|¥n— Yinh|®n — D1nl).

Now, noting that both ¥, —¥1, and @, — ®;, #tend to 0.z and using the &/2 trick
(actually, this time we’ll want to use /2R, we see that

Yy x Oy — \Pl,n X O1p -4 O*R’g

Theorem 14.2.6. Given any hyperreal number s fﬂi%, S+ 0, there is a

hyperreal numbert e fﬂi% suchthatsx t = 1=
Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that sis not in the equivalence class of

O;E; = (O*Rg,O*Rg,O*Rg,O*Rg, . ..). (14.2.13

In other words, s = [ {¥n},, | where ¥, - 0 does not #-converge 10 0.g;.

From this, we are to deduce the existence of a hyperreal number t = [ {®.} % ]
such that sx t = [ {¥n x ®n},% ] is the same equivalence

class as 1;@ = [(L+rg, Legs, Leggs Logg, .. .)]. DoINg so is actually an easy
consequence of the fact that nonzero hyperreal numbers from *R% have
multiplicative inverses, but there is a subtle difficulty. Just because sis nonzero
(i.e. {\Pn}‘,fjo does not #tend to 0.gz as n — *o0), there’s no reason any number
of the terms in {‘Pn};fo can't equal O;@. However, it turns out that eventually,
Whn # O-gs.

That is,

Lemma 14.2.1. If {¥,}.% is a Cauchy hyper infinite sequence which does not #-tends
to Og¢, then there is an N € *N such that, for n > N, ¥n # Ogg.

We will now use it to complete the proof of Theorem 14.2.6.

Let N € N* be such that ¥, + Og: for n > N. Define hyper infinite sequence @, of

hyperreal numbers from R# as follows:



forn < N,®n = Oy, and forn > N, ®p = 1/¥y :

{®n} % = (0-gg, Ogs, ..., Ops, Logs/Pivit, ¥ iz, - . ).

This makes sense since, for n > N, an is a nonzero hyperreal number, so
1g:/'¥'n exists.

Then ¥, x @y is equal to Wy x0-g# = 0.4 for n < N, and equals

Wn x Op =Wy x Lgs/¥n=1gsforn>N

Well, then, if we look at the hyper infinite sequence

1’-—;# = (1*|R§11*[R§11*|R§11*[R§1---)1 (14213

*RC
we have (L.gs, Ligs, Ligs, Lgs,...) = (Pn x @y) is the sequence which is
1— - 0— =1—; forn < Nand equals 1—; —-1— = 0—; for n > N. Since this
*RC *RC *RC *RC *RC *RC

hyper infinite sequence is eventually equal to Ogy, it #-converges to Og: as n —» oo,
and SO [{\Iln X q)n};:()] = [(1*|R§1 1*[R§! 1*|R§1 1*[R§! . )] = 1~ S %Thls ShOWS that

*Rg
t = [{®n},% ] is a multiplicative inverse to s = [ {¥n}% ].

Definition 14.2.26. Lets e :Di% . Say that sis positive if s + O and if

S= [{‘Pn};f(,] for some Cauchy hyper infinite sequence such that for some N,

Wn > 0.z for all n > N.Given two hyperreal numbers s,t e :@%, say that s > t if
S—tis positive.

Theorem 14.2.7. Let st € :@% be hyperreal numbers such that s > t, and let

re :@%.Then S+r >t+r.

Proof. Let s = [ {¥n}, 5 |t = [{®n} 5], and r = [{®n},% ]. Since s> t, i.e.
s—t > 0, we know that there is an N such that, for n > N,¥, - ®, > 0.So ¥, > @,
for n > N. Now, adding ®, to both sides of this inequality , we have

Wn +On > ®n+ Op forn > N, or (¥n+0n) — (O +On) > Ogy for n > N. Note also that
(Wn+0On) — (Pn + On) = ¥, — @y does not #-converge to O.gz as n —» *oo, by the
assumption that s—t > 0@. Thus, by Definition 14.2.26, this means that:

S+ =[{¥n+On} 5] > [{Pn+On}, 5] =t+r.

Definition 14.2.27. There is canonical imbeding

“R# o *RE (14.2.14
defined by
a— a (14.2.19

where 3 is hyper infinite sequence @ = (a,a,....) € :ﬂi%,a e *R¥ U A,
Notation 14.25.4 = (a,a,....) € :@E,a € ?@’g.

Remark14.2.11.Leta e :@E.We will be identity a € :@% with any {an},% < :@%
such that #lim,.-, a, = a and we denote by [[a]] the equivalence class
corresponding to a € :@/ﬁ.

Definition 14.2.28. (i) Let {an}¥ ,,k € N be finite sequence in *RZ, {an}k, *RZ,
,_% —
We define external hyper infinite sequence {an}ﬁzo c *REby



*o0 k
{AnK} o = {@n}no = (14.2.16

= (ao,al,---,am,---,ak—l,é\k> € [[ak]].
(i) Let {an} , be countable sequence in *R{ : {an}, , < *RE.

. . . . * ’__\ —_—
We define hyper infinite sequence {An} ", = {@n} o < *RE by

! *o0 ]
{An 0} o = {@n}no =

° (14.2.17
= (ao,al,...,ak,..,{an};io) € [[{an} noll-

(iii) Let {an}N ,,N € *NWN be external hyperfinite sequence in :@/ﬁ S{ankN, 1@%.

,__\ o~
We define hyper infinite sequence {an}\, = *R¥ by

, TN
{AnN} 5 = {an} o = (14.2.18
- (ao,al,,...,an,...,aN_1,§N> € [[an]].

Definition 14.2.29.(i) Let {an}ﬁzo,k € N be finite sequence in fﬂi%, {an}r’\]l:o c fﬂi%.

/\n:k
We define external finite sum Ext)_  an by
/\n=k I—’T\
Ext) . ,an = {Cn}no = (Co,C1,...,Ck,-..,Ck) € [[Ck]] (14.2.19

where co = @0,¢ = ExtY_l ) a,,0<j <k

(ii) Let {an}_, be countable sequence in fﬂi% “Hanfhg C %.We define external
A~N=x©

countable sum Ext) | an by

~N=0

o0
EXt) . @ = {Cn}po=

e (14.2.20
= (co,cl,...,ck,...{cn}ﬁzo,{cn}fzo) € [[{cn}nol]

where ¢ = ag,Ck = EXt‘ZEjS an,k € N,

(iii) Let {an}ﬂjg‘, N € *N\N be external hyperfinite sequence in fﬂi% X {an}r’\]l:o c fﬂi%.
~=N

We define external hyperfinite sum Ext-Zn:0 an by

~Nn=N

=N
ExtY . , an = {Cn}ng = (Co,C1,---,Ck,---,CN, CN) (14.2.21
where co = @0,Ck = EXtY " s an, 0< k < N,cy = Ext Y"1 an.

(iv) Let {an}ﬂjB‘,N € *N be external hyperfinite sequence in fﬂi% X {an}r’\]l:o c fﬂi%
such that a, = 0 for all n € *N\W.We assume that

~=N =0
Ext). ,an=Ext)  an (14.2.22
Example 14.2.1.Consider the G.P: a,ar,ar?,....arN1,N € *N,a € :Di%,

re :@/ﬁ be the first term and the ratio of the G.P respectively. Then for any



N € *N by Proposition 14.2.6 and Definition 14.2.29 one obtains that

N1 ﬁ /1,,#\ —
- -1 _ *RE — *RE _ I
EXtZn=l ar a T——r 'a1~;—r alfv#—r' (14.2.23
*lRC *IRC *lRC
and
1 - N5
AP —_—
. n-1 _ *[Rg _ rn
Ext) ar S m— a{—l:[yg# — } : (14.2.24
c c n=1

Example 14.2.2.Consider the G.P: a,ar,ar?,....arN1,N € *N,a € :Di%,r € :Di%,

r > 0,r # 1.Note that

/—\
1~; —_ rN ~_h=N-1
*RE — - n-1 _
oc—:l_*[Rg — Ext anl ar
_ - n-1 - n-1 _
=Ext), ar"l+ Eth(ne*N\N)A(nSN_l)ar (14.2.25
1. g
_ % i rn _/\ n-1
- l——r a{ l——r } +Ext Z(ne*N\N)/\(nSN—l)ar ’
*[Rc *[Rc n=1
From (14.2.25) we obtain
/\ /\
xS T A L
X (ne*N\N)/\(nSN—l)a -a l*[Rg -r ¢ 1;[7&-; —r e 1:[,‘&'; =r -
o ¢ ¢ "~ (14.2.29
© /\
a{r_} L
=, twm'
Assume that: (i) r < 1;@«#,then from (14.2.26) we obtain
- n-1 L
Ext Z(HE*N\NWHSN_DM > Oy (14.2.27
@iyr> 1;@«#,then from (14.2.26) we obtain
=N T . 17 o
3 1 _ _r Lg—t L
Ext Z(ne*N\N)/\(nSN—l)ar a{ 1?(# -r } ) Ta r— 1%«# > O*[R"é' (14.2.28
c N= c

Proposition 14.2.6.(i) Consider the G.P: a,ar,ar?,....arM1, N € *N.Let Sy,
a € *R% r € *R¥ be the sum of N terms, first term and the ratio of the G.P
respectively. Then for any N € *Nthe statement @y holds

N
n=N-1 - 1*|R# - r
ar™t = g——=

[OINJR=—" EXt-anl ﬁ.
*lRC -

(14.2.29

Proof.(i) Directly by hyperinfinite induction. Note that &y =s Oy -



N

N o -N-1 Loy —71
Swi=Ext Y armt = Ext > et +arN = g —t—— +arN =
n=1

n=1 1*|R§_r
Lige —rN Lige —r)rN Lige —rN 4NN+
= g e +a( re 1) = q—R¢ = (14.2.30
1*Rg—r 1*Rg—r 1*Rg—r
_ 1*R§_rN+l
1*Rg—r

Ligs + it
(i) Consider the G.P: a,ar,ar?,....arN1,N e *N.Let Sy,
a < %,r € 1@% be the sum of N terms, first term and the ratio of the G.P

Thus Sy = a and therefore ®y,1holds.

respectively. Then for any N € *Nthe statement @y holds

~ ~_n=N-1 ,*__; — rN
[OINIR=—N EXt-Zn—l ar”‘l = a%. (1423])
— RE —

Notice that (i)=(ii) by definitions.
Definition 14.2.30. Let {an};fo,n € *N be external hyperinfinite sequence in *R% :

{an};fo c %.We define external hyperinfinite sum Ext-Zn:0 an by
Ao ~.n=N
EXt). ,an = #limy.-o (EXt'Zn=O an> (14.2.32

if #limit in (14.2.31) exists.

Example 14.2.3.Consider the G.P: a,ar,ar?,....ar™,n e *N* o € :@E,r € 1@%.
From (14.2.27) we obtain

A~ oo ~=N 1;‘&@—;# — I‘N
EXt—anoar”‘l = #'||m N- *o0 (Ext-2n=0 ar”‘1> = #‘llm N-oo# (Zﬁ =
"RE (14.2.33
RE
=
1% -r
since #limp. o N = 0— if Ir] < 1.From (14.2.33) and (14.2.25) we obtain
a—lﬁ;ﬂgér = Ext) ) jar™t=Ext)] ar"t+Ext)] . or™t =
*RC
— _ (14.2.39
“RE rn L 1
a jP—— a{ jp—— } +Ext)] L arth
*RE *RE n=1

From (14.2.34) we obtain



(14.2.35

Definition 14.2.31. Let {an},, be *R¥- valued countable sequence
a: N - *R¥ such that:
(i) there is M e N such that for all n > M,an # 0.4,
we denote a set of the all these sequences by =570,
We define a set =250 by {cn} 7, € —E5*° < {-cn}, € E57°. Note that
Egﬁo — _Egﬁo.
(i) there is countable subsequence {an, } i, < {@n}no such that a, = O.gs,k > m
and a.n * O*Rg |ff an E {ank}f:m,
we denote a set of the all these countable sequences by =£5*0v-=0.
We define a set -E5*%=0 by {cn},, € -E57"" = {-Cn}n o € 5. Note that
Ei,:tO\/ =0 _ _Ei,:tO\/ O.
Definition 14.2.31.
(1) Let {an}, , € E5*° and {bn},, € E5*° then we define
(i) {@ntro+ {bn}ry = {@n+bn}r, € B0
(ii) {@n} o — {bn}no 2 {@n —bn};y € EG*°
(i) {an} o x {bn}no = {@n x bn}y o € ”HO
(V) ({an} o) " 2 @ity € S57°
(2) Let {an}, o € E5*™Pand {bn}; , € 250 then we define
() {an}yo+ {bn}yo = {@n+bn} o € E570°
(ii) {@n} o — {bn}no 2 {@n — b}y € EG*°
(“l) {an};lo X {bn};o_ = {an X bn} (S ':i¢0\/ 0
(iv) ({anyig) ™ £ {ab}7, where
agt if an # O.gs

als = ¢ 14.2.3
" O*Rg |f an = O*Rg ( 6

Note that
H [¢'s} —Lx -1, o0
0) (Hantio)™) " = {anti,
(i) {anyiy x ({anyig) ™ = 1.5 where 1.gs = {an}7, is countable sequence
such that
lge if an # 0.
tn = e T Sn TR (14.2.37
O*[R§ if On = O*[Rg
Definition 14.2.32. We say that
({an}?,) ™" € 2500 s a quasi inverse of {a}* .
Definition 14.2.33.(1) Let {an}, € Z5*%=C and let {An},% = {an}., be a hyper
infinite sequence



{An} 5 = {an}no (0,81, ,@ks - {@n} g {@nigre--) (14.2.38

i.e. for any infinite m € *N\WN,An = {an};,. We will denote a set of the all these
~+,20v=0
hyper infinite sequences by Hwi

(2) Let {Xn + Ynan},, € 25790 and let

{Xn + YnAn} o = Xn+ Ynan} o =

(14.2.39
(Xo + Yoo, X1 + Y181, ... . Xk + Yk8k, - - - ,{Xn +n Yan} gy ---),
i.e. for any infinite m € *N\WN, An = {Xn + Ynan} ;. We will denote a set of the all
these hyper infinite sequences by {Z£*%=0, {xn} 7 o, {Yn} o)
~++0v=0
Definition 14.2.34.Let {An}, %, = {an}n oand {By}. % = {bn}n o bein Hwi .
Then we define:
. *o0 * _ ':i,¢0\/=0
() {An} 2o+ {Bn} o = {an}n_o +{bn}n 02 {@n+bn}y g = {An+Bn} % € 5y
(i) {An}; 0 {Bn}n 0= {an}n 0 {bn}n 0= {a@n—bn}, =
N+¢O\/—

= {An Bn}n 0 S Ea)

~+¢O\/ 0

(i) {An}n 0 X {Bn}n 0= {an}n 0 X{bn}n 0 = @ xbn} = {Anx Bn}n 0 € =0
Definition 14.2.35.Let {¥,},%, be in z:tov Ji.e.forallne *N, ¥, € 2500,
Say {‘Pn};fo #-tends to O.z: as n —» *wo iff for any given ¢ > Ogs,e = 0. there is
a hypernatural number N € *N\,N = N(¢) such that for any n > N, |¥ e.
Definition 14.2.36. Let {¥n},%, be a hyper infinite sequence such that for all

~* +0v=0

ne*N,¥, ez, .We call {\Pn};fo a Cauchy hyper infinite sequence if the
difference between its terms #tends to O.g:. To be precise: given any & > O,
¢ = O.ggthere is a hypernatural number N € *N\WN,N = N(¢) such that for any
mn > N, [¥n - ¥k ¢.

0v=0 * .
Theorem 14.2.8.Let {‘Pn} be in _:t ' Af{¥n} His a #—convergent hyper

#0v=0
infinite sequence (that is, ¥n -4 ® as n - *oo for some ® € :w ), then

{‘Pn}n=o is a Cauchy hyper infinite sequence.

Proof.We know that ¥, -4 ®. Here is a ubiquitous trick: instead of using ¢ in the
definition, start with an arbitrary infinitesimall ¢ > 0.z¢,& = 0.z and then choose

N so that |V, — ®| < ¢/2when n > N. Then if m,n > N, we have
[Pn—¥m|=|(Yn—D) = (Ym—D)|< [Pn—O|+¥Ym— Q| < &/2+¢/2 = ¢.

This shows that {\Pn};fo is a Cauchy hyper infinite sequence.

Theorem 14.2.9.1f {\Pn};fo is a Cauchy hyper infinite sequence, then it is

bounded in *R¥; that is, there is some number M € *R¥ such that

{¥n} 5 M foralln e *N.

Proof. Since {\Pn};fo is Cauchy, setting € = 1 we know that there is some N such
that |[¥m — Wnl< 1 whenever m,n > N. Thus, [¥ni1 — Walk 1 for n > N. We can rewrite
this as Wni1 — 1 < Wn < Whia + 1.This means that [V,| is less than the maximum of
[¥ni1 — 1] and [P + 1. So, set M € *R¥% larger than any number in the following

list: {l‘Pol, H’ll, - ,H’Nl, H’Nﬂ — 1|, H’Nﬂ_ + 1|}.

Then for any term ¥, if n < N, then |¥,| appears in the list and so [¥Y,|< M;if n > N,




then (as shown above) [V, is less than at least one of the last two entries in the list,
and so |[¥n< M. Hence, M is a bound for the sequence.

Let E denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on E.

Definition 14.2.37. Let S be a set of objects. A relation among pairs of

elements of Sis said to be an equivalence relation if the following three properties
hold:

Reflexivity: forany s € S, sis related to s.

Symmetry: for any s,;t € S, if s is related to t then t is related to s.

Transitivity: for any s,t,r € S, if sis related to t and t is related to r, then sis

related to r.

The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.

Theorem 14.2.10. Let S be a set, with an equivalence relation on pairs of elements.
For s € S, denote by [s] the set of all elements in Sthat are related to s. Then for
any s,;t € S either [s] = [t] or [s] and [t] are disjoint.

The sets [s] for s € Sare called the equivalence classes, and they are the bins.
Corollary 14.2.2. If Sis a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

* * ~++0v=0
Definition 14.2.38.Let {¥1n},, and {¥2n} ., be in Ewi ' . Say they are
equivalent (i.e. related) if [¥1n — W2n| »# O-gz @s n - *oo, i.e. if the hyper infinite

sequence {1y — Wanl} % #tends to O-gy.

~x,#0v=0
Proposition 14.2.4. Definition 4.2.38 yields an equivalence relation on E(; !

Proof. we need to show that this relation is reflexive, symmetric, and transitive.

* Reflexive: Wn —¥n = 0.z, and the sequence all of whose terms are 0. clearly
converges to Ogz.S0 {¥n} 7 is related to {¥n} %

- Symmetric: Suppose {¥1n} % is related to {¥2n} %, SO P1n — Pon >4 Ougs.

But Won — Win = —(W1n — ¥2n),and since only the absolute value W1, — Wan|=

= |¥2n — W1n| comes into play in Definition 14.2.35,it follows that Wzn — W1n »# O«gs
as well. Hence, {¥2n},7%, is related to {¥1n}~.

» Transitive: Here we will use the &/2 trick we applied to prove Theorem 14.2.4.
Suppose {¥1n} % is related to {¥on}.%, and {¥2n} % is related to {¥sn} *.
This means that Wi — ¥W2n —# Ogz and Won — W3n —»# Ogs.

To be fully precise, let us fix infinite small ¢ > 0.z; then there exists an N € *N\N
such that for all n > N, |[¥1, — W2nk €/2; also, there exists an M such that for all
n> M, V20— W¥ank €/2. Well, then, as long as n> max(N,M) , we have that

|\P2,n - \P3,n|: I(\Pl,n - ‘Pz,n) + (\Pz,n - \P3,n)|§ |\P1,n — \Pz,nl-i-l\Pz,n — \P3,n|< el2+¢el2 = ¢.
So, choosing L equal to the max of N,M , we see that given ¢ > 0 we can always
choose L so that forn > L,[¥1n — W3nl< €. This means that W1n — W3n »# Oy,

i.e. {¥1n}, 5 is related to {¥an} .

So, we really have equivalence relation, and so by Corollary 14.2.2, the set §Z’¢OV=O
is partitioned into disjoint subsets (equivalence classes).

Definition 14.2.39. (1) The hyperreal numbers fﬂi% are the equivalence classes



[{‘Pl,n};fo] of Cauchy hyper infinite sequences of, as per Definition 14.2.38 and
(2) the all gyperreals *R¥ — fﬂi% by the canonical imbedding *R¥ < fﬂi%
(14.1.42)-(14.1.43).

That is, each such equivalence class is a hyperreal number in *R% .

Definition 14.2.40. Let st /*-[Iif, so there are Cauchy hyper infinite

sequences {¥n}, 5 and {®@n} 5 with s = [{¥n}. 5 ] and t = [ {@n} .75 .

(a) Define s+t to be the equivalence class of the hyper infinite sequence
{Wn+®n} 5.

(b) Define sx t to be the equivalence class of the hyper infinite sequence

{¥nx On} .

Proposition 14.2.5.The operations +, x in Definition 14.2.25 (a),(b) are well-defined.
Proof. Suppose that [ {¥n} 7 ] = [{¥1n}n% ] @and [{@n} 5] = [{®1n}15 ]
Thus means that ¥n — W1n »# O.gz and @ — @1 -4 O-z. Then

(Wn+®n) — (Wipn+D1pn) = (Wn—Yip) + (On— P1p).Now, using the familiar /2
trick, you can construct a proof that this tends to 0.z, and so

[(Wn+@n)] = [(W1n+ DP1n)].

Multiplication is a little trickier; this is where we will use Theorem 14.2.10. We will
also use another ubiquitous technique: adding 0. in the form of s—s. Again,
suppose that

[{¥n} 5] = [{¥in}% ] and [{®@n}, 5 ] = [ {@1n}s% |; e wish to show that
[{¥nx ®n} 5] = [{¥1nx Pin},5 |, OF, in other words, that

Wn x ®p —Wip x O1p —»# 0-zz. Well, we add and subtract one of the other cross
terms, say ®n x Wi :

WYnx On—WYinx Orp=¥nx O+ ((Dn X Win—DOp x \Pl,n) —WYinx O1p =

= (Whx ®y— Dy x \Pl,n) + (P x WYWin—YWip x (Dl,n) =

= O, x (\Pn - \Plyn) + \Pl,n X (CDn - (Dl,n).

Hence, we have |¥n x Op—Wipx Q1< [On|x [Wn— VinH|Yin| |@n— DP1pl.
Now, from Theorem 14.2.9, there are numbers M and L such that |®,< M and
[V1nl< L for all n € *N. Taking some number R (for example R = M + L) which is
bigger than both, we have

|\Pn x Op—Wipx (I)l,nlf |(I)n|>< I\Pn — \Pl,nl‘f‘l\yl,nlx |(Dn - (I)l,nlf

< R(¥n— YinlH®Pn — P1pl).

Now, noting that both ¥, —¥1, and @, — ®;, #-tend to 0.z and using the &/2 trick
(actually, this time we’ll want to use ¢/2R, we see that

WnXx ®p—Wipx O1p—s O*[Rg

Theorem 14.2.11. Given any hyperreal number s € i@/ﬁ, S+ 0, thereis a

hyperreal number t € *R% such thatsx t = 1% orsx t= iq@.

Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that sis not in the equivalence class of

O’*‘ﬁ{g = (O*IR§1O*[R§’O*IR§1O*[R§! . ) (14240

In other words, s = [ {¥n},% | where ¥, - 0% does not #-converge to O-;.

From this, we are to deduce the existence of a hyperreal number t = [ {®n} % ]



such that sx t = [{¥n x ®n} 7 ] is the same equivalence

class as 1*7@ = [(Logg, Logg, Logg, Logs, ...)] OF @s some i;@. Doing so is actually an
easy consequence of the fact that nonzero hyperreal numbers from *R¥ have
multiplicative inverses, but there is a subtle difficulty. Just because sis nonzero
(i.e. {‘Pn}ﬁo does not #tend to O.zx as n —» *wo), there’s no reason any number
of the terms in {‘I’n};fo can’t equal O%. However, it turns out that eventually,
Y, + O*Rg.

That is,

Lemma 14.2.2. If {‘Pn};fo is a Cauchy hyper infinite sequence which does

not #tends to Og:, then there is an N € *N such that, for n > N, Wy # Og:.

We will now use it to complete the proof of Theorem 14.2.11.

Let N € N* be such that ¥, # Oz« for n > N. Define hyper infinite sequence @, of

hyperreal numbers from ﬁl-@ as follows:
forn < N,®n = Oy, and forn > N, ®p = L.gs/¥y :
{®n} % = (0-gg, g, ..., Ogsr, Logs/Fivit, Legs/ Pz, - ).
This makes sense since, for n > N, an is a nonzero hyperreal number, so
1.xs/'Vn eXists.
Then ¥, x @y is equal to Wy x0-g# = 0.5 for n < N, and equals
Wn x Op =Wy x lgs/¥n=1gsforn>N
Well, then, if we look at the hyper infinite sequence
1— = (L-g#, Lgs, Lgs, Lgs, ..., (14.2.4)

*RC
we have (L.gs, Ligs, Ligs, Lgs,...) = (Pn x @y) is the sequence which is
1% - 0% = 1?@’3 for n < N and equals 1?@’3 —1% = O;@ for n > N. Since this
hyper infinite sequence is eventually equal to Ogy, it #-converges to Og: as n —» oo,

and SO [{\Iln X q)n};:()] = [(1*|R§1 1*[R§! 1*|R§1 1*[R§! . e )] = 1;‘@—% S ;ﬁ% or Slml|al’|y

[{¥nx®n} 5] = iﬁ{g e *R%.This shows that t = [ {®n},% ] is a multiplicative

inverse (or similarly quasi inverse) to s = [ {¥n}% ].

Definition 14.2.41. Lets e :ﬂi% . Say that sis positive if s + O;@, and if

S= [{‘Pn};f(,] for some Cauchy hyper infinite sequence such that for some N,
Wn > 0. for all n > N.Given two hyperreal numbers s,t e :@%, say that s > t if
S—tis positive.

Theorem 14.2.7. Let st € :@% be hyperreal numbers such that s > t, and let

re :@%.Then S+r >t+r.

Proof. Let s = [ {¥n}, 5 |t =[{®n} 5], and r = [{®n},% ]. Since s> t, i.e.

s—t > 0, we know that there is an N such that, for n > N,¥, - ®, > 0.So ¥, > @,
for n > N. Now, adding ®, to both sides of this inequality , we have

Wn +On > ®n+ Op forn > N, or (¥n+0On) — (O +On) > Ogy for n > N. Note also that
(Wn+0On) — (Pn + On) = ¥y — @y does not #-converge to O.gz as n —» *oo, by the
assumption that s—t > 0@. Thus, by Definition 14.2.41, this means that:

S+1=[{¥n+On} 0> [{®n+On} 5] =t+r.



Definition 14.2.42. There is canonical imbeding

*R# & *R% (14.2.42
defined by
a—a (14.2.43

where 3 is hyper infinite sequence @ = (a,a,....) € :ﬂi%,a e *R%.
Notation 14.2.5.4 = (a,a,....) € :@E,a € ?@’g.

Definition 14.2.43. (i) Let {an}* ,,k € N be finite sequence in “RE, {an}k , R,
,__\ o~
We define external hyper infinite sequence {an}Lo c *Riby

* k
{AnKrlo = {@nkno = (14.2.44
= (ao,al, ...,dmy ... ,AKk-1, k,@).

(ii) Let {an}_, be countable sequence in fﬂi% “Hanfhg C fﬂi%.

. . . . * ,_H —
We define hyper infinite sequence {An} ., = {@n}n o < *REZ by

*o0 ’_A?
{An 0} "o = {an} o =

- (14.2.45
= (ao,al, e @y {8n Y g {an}jfzo).

(iii) Let {an}r’\l‘zo,N € *NWN be external hyperfinite sequence in :Di% : {an}ﬁzo c :ﬂi%.
,_% —
We define hyper infinite sequence {an}ﬁzo c *R¥ by

f_%
{An;N}nfo = {an}rio = (14246
= (ao,al,,...,am,...,aN_l,aN,éD e [[an]].

Definition 14.2.44.(i) Let {an}LO,k € N be finite sequence in :@%, {an},ﬁ‘zo c :@g.
/\n=k

We define external finite sum Ext) . a, by

~Nn=k

k
ExtY. @ = {Cn}5o = (C0,C1,...,Cms-..,Ck Ck) € [[Ck]] (14.2.47
where co = a0,¢; = Ext> ") an,0<j < k
(ii) Let {an}, be countable sequence in “RE {an}r o, C “RE.We define external

~N=0

countable sum Ext)_  an by

~N=00

Ext). , an = m =
= (Co,Cl,---,Ck1---{cl’l}:10=0’m) < [[m]]

where co = a0,Ck = EXtY." s an k € N.

(14.2.48

(iii) Let {a,}™,N € *N\N be external hyperfinite sequence in :@% S{ank N, :@g.

n=0"
~.n=N

We define external hyperfinite sum Ext)_ . an by



~.n=N

=N
EXtD . ;@ = {Cn}np = (Co,C1..,Ck,---,CN, CN) € [[CN]]
where Co = a0,Ck = EXtY [ san, 0 < k < N,cy = EXtX. " an

(iv) Let {an}),N € *N be external hyperfinite sequence in *R% : {a,}, = *R%

such that a, = 0 for all n € *N\N.We assume that

~.n=N A~N=0

Ext). ,an=Ext) . an
Example 14.2.3.Consider the G.P: a,ar,ar?,....arN1,N € *N,a € :@/ﬁ,

re :ﬂi% be the first term and the ratio of the G.P respectively. Then for any

N € *N by Proposition 14.2.6 and Definition 14.2.44 one obtains that

—_—
~n=N-1 . 1,_@; —_ rN 1:5@ /rN\
Ext ar™ =a =a — —a
2 e P
*Rg *Rg *Rg

and

c c

/\
A0 1~# n ®©
- R r
Ext ar™ =« Cf— —q :
Zn=l l;‘\; =TI 1;\; =TI
R R n=1

Example 14.2.4.Consider the G.P: a,ar,ar?,....arN1,N € *N,a € :Di%,r € :Di%,

r< 0~ [r] < 1.Note that

A
1,*TR_£ — rN ~n=N-1
TH ey art-
1 R# - n=1
Py ~

_ - n-1 - n-1 _
Ext anlar + Ext Z(ne*N\N)/\(nSN—l)ar

— —
1*[R§ rn /\E: n-1
1?; —-r 1?; -r (ne*NW)A(n<N-1)
RE R n=1

[

From (14.2.53) we obtain

—~ 1— —rN 1— ®
- *# *R# rn
Ext ar™l = g— ¢ —a C _+q =
Z(ne*N\N)/\(I’EN—l) 1*R§ —r 1—-r 1—-r

c n=1
n
AGm)wT
r 97 r
TR“# “RE
n=1

Assume that: (i) r < O |r| < 1then from (14.2.54) we obtain

T~

n-1
- —_— ] — n_l | —
Ext Z(ne*N\N)/\(ﬂSN—l)a< 1*R§ Irl * O*Rg'

(14.2.49

(14.2.50

(14.2.51)

(14.2.52

(14.2.53

(14.2.54

(14.2.55

15.1.Basic analisys on external non-Archimedean field R,



15.1.The #limit of a function f : R¥ - R¥

Definition 15.1.The (¢,6) definition of the #limit of a function f : D — R# is as follows:

Let f be a RE-valued function defined on a subset D < R# of the Cauchy hyperreal

numbers. Let ¢ be a limit point of D and let L be a hyperreal number. We say that
#limy, o f(X) =L (15.1)

if for every ¢ ~ 0,6 > O there exists a 6 ~ 0,6 > 0 such that, for all x € D, if
0 < [x—ck 9, then [f(x) — L|< &, symbolically:

limy., f(X) = L < (Ve(e ~ 0Ae > 0)36(5 ~ 0Ad > 0)¥x e D,0< X d =

15.2
fX) - L| < e. (1.2

Definition 15.2.The function f : R% - R¥ is #-continuous (or micro continuous) at
some

point c of its domain if the #limit of f(x), as x #-approaches c through the domain of f,

exists and is equal to f(c) :

#limy.,, f(X) = f(c). (15.3
Theorem 15.1.If #limy., x, f(X) exists; then it is unique that is; if
#limy, x, f(X) = L1 and #limy., x, f(X) = L2, then L1 = L.
Theorem 15.2. If #limy., x,f1(X) = L1 and #limy., x,f2(x) = L2 then

#-lim Xoru xo[fl(x) +f(X)] = L1 £ Lo,

#‘llm Xogt xo[fl(x) X fz(X)] = Ll X L2, (15'4)
Xt fl(X) _ ﬁ
# ||mx_># Xo fz(x) == L2 ,L2 * 0.

Definition 15.3.(a) We say that f(x) #-approaches the left-hand #-limit L as x

#-approaches xo from the left,and write #-lim,.y,- f(x) = L, if f(x) is defined on some

#-open interval (a,Xo) and, for each ¢ > 0,6 = Othereisa o > 0,0 ~ 0 such that

f(X) —L|<eif Xo—0 < X< Xo.

(b) We say that f(x) #-approaches the right-hand #-limit L as x #-approaches Xxo from
the

right, and write #limy., x,. f(x) = L,if f(x) is defined on some open interval (xo,b) and,
for

each ¢ > 0, thereisad > 0,6 = Osuch that [f(x) - L|< &,& > 0,6 = 0if Xo < X < Xo + 0.

Left- and right-hand #-limits are also called one-sided #-limits. We will often simplify
the

notation by writing #limy.,, x,- f(X) = f(Xo —) and #lim.., x,+ f(X) = f(Xo +).

Theorem 15.3. A function f has a #-limit at Xo if and only if it has left- and right-hand

#-limits at xo; and they are equal. More specifically; #limy., x, f(x) = L if and only if

f(xo+) =f(xo—) =L.

Definition 15.4. We say that f(x) approaches the #limit L as x approaches «# , and

write #lim,,, ..+ f(x) = L,if f is defined on an interval (a,«") and, for each ¢ > 0, = 0,

there is a number g such that [f(x) = L| < g if x > .

Definition 15.5. We say that f(x) approaches «* as x approaches x, from the left,

and write



#-limy., x,- f(X) = oo® or f(xg —) = oo (15.5
if f is defined on an interval (a,Xo) and, for each hyperreal number M, there is a
0 ~ 0,0 >0suchthatf(x) > Mifxo—0 < X < Xo.
Similarly we define: #limy.x,- f(X) = —oo®, #lim .., xor f(X) = —0o®, #-lim ., xor F(X) = 0%,
Example 15.1. (i) #limy., x,- X2 = —o®, (i) #limy., x4 X1 = +o0,
(iii) #lim,,, _#Xx? = #lim # X2 = oo,
Remark 15.1. Throughout this paper, #-lim., x, f(X) exists” will mean that
#limy., x, f(X) = L, where L is finite or hyperfinite.
To leave open the possibility that L = +o, we will say that
#-lim.x, f(X) exists in the extended hyperreals.
This convention also applies to one-sided limits and limits as x approaches oo .

15.2.Monotonic Functions f : R¥ - R¥%,
Definition 17.6.A function f : RZ — R% is nondecreasing on an interval | — R% if

Xy 00

f(Xl) < f(Xz) (15. 6)
whenever x; and xz are in | and X1 < X2, or nonincreasing on | if
f(x1) > f(x2) (15.7)

whenever x; and xz are in | and x1 < Xa.

In either case, fis on I.If < can be replaced by < in (15.6), f is increasing on I. If >
can be replaced by > in (15.7), f is decreasing on I. In either of these two cases, f is
strictly monotonic on |.

Theorem 15.4. Suppose that f(x) is monotonic on (a,b) and define

a = INfaxap f(X) and B = supxp f(X). Suppose that 3o and 38, then:

(a) If fis nondecreasing, then f(a+) = ¢ and f(b-) = B.

(b) If fis nonincreasing; then f(a+) = pand f(b-) = a.

Here a+= —of if a = —o® and b += o if b = «o*.

(c) If a < xo < b, then f(xo +) and f(xo —) exist and are finite or hyperfinite;
moreover, f(Xo +) < f(Xo) < f(Xo —) if fis nondecreasing, and f(xo +) > f(Xo) > f(Xo —)
if f is nonincreasing:

Proof (a) We first show that f(a+) = a. If M > a, there is an Xp in (a,b) such that
f(xo) < M. Since f is nondecreasing, f(x) < M if a < X < Xo. Therefore, if , a = —0*,
then f(a+) = —oo®. If ,a > —o*, let M = a + ¢, where ¢ ~ 0,& > 0.

Thena <f(x) < a+¢, so (i) [f(x)—a| < eifa< X< Xo.

If a = —oo”, this implies that f(—o*) = a,. If a > —o¥, let § = xo —a. Then (i) is
equivalent to [f(x) — a| <¢ if a < X < a+ o,which implies that f(a+) = «a.

We now show that f(b+) = . If M < f3, there is an Xo in (a,b) such that f(xo) > M.
Since f(x) is nondecreasing, f(x) > M if xo < X < b. Therefore, if p = o, then
flb-) = 0. If B < o0 letM = B—¢, Wwhere e ~ ¢ > 0. Then f—¢ < f(x) < B,

so (i) [f(x) — Bl < e if xo < X < b.

If b = oo, this implies that f(eo*) = B. If b < o , let § = b — xo. Then (i) is
equivalent to f(x) < if b— 6 < x < b,which implies that f(b-) = .

(b) The proof is similar to the proof of (a).

(c) Suppose that f(x) is nondecreasing. Applying (a) to f(x) on (a,Xo) and (Xo,b)
separately shows that f(Xo —) = SUfx<x, f(X) and f(Xo +) =infy,cxb F(X).



However, if X1 < Xo < X2, then f(x1) < f(Xo) < f(X2) and hence, f(xo —) < f(Xo) < f(Xo +).

15.3. #Limits Inferior and Superior

Definition 15.7.We say that: (i) f is bounded on a set S c R if there is a constant
M e R,M < o such that f(x) < M for all x € S (ii) f is hyperbounded on a set S< R%
if f is not bounded on a set Sand there is a constant M € R%/R,M < «# such that
f(x) <Mforallxe S

Definition 15.8. Suppose that f is bounded or hyperbounded on [a,Xp), where Xo
may be finite or hyperfinite or «o*. For a < x < Xo, define (i) S(X;Xo) = SUPket<x, f(t)
and

(i) T1(X; X0) = infyex, f(1).

Then the left #limit superior of f(x) at X is defined to be

#iM e, xo-F(X) = #liMy., xo- SH(X; X0) (15.8)
and the left limit inferior of f(x) at Xo is defined to be
#lim, . f(X) = #limx., x- 11X Xo). (15.9

If Xxo = o, we define xo — = oo,

Theorem 15.5. If f(x) is bounded or hyperbounded on [a,Xo), then B = #lim., x,-f(X)
exists and is the unique hyperreal number with the following properties:

(@) If e > 0,e = 0, there is an a; in [a,Xp) such that

() f(X) < B+eifa; < X< Xo

(b) If e > 0,6 ~ 0and a; isin [a,Xo), then

f(X) > B — ¢ for some X € [a,Xo).

Proof. Since f(x) is bounded or hyperbounded on [a,Xo), S(X; Xo) iS nonincreasing
and bounded or hyperbounded on [a,Xo). By applying Theorem 17.4(b) to &(X; Xo),
we conclude that g exists finite or hyperfinite.

Therefore, if ¢ > 0,6 = 0, there is an ain [a,Xo) such that

(i) B—el2 < S(X;X0) < B+ el2ifa <X < Xo.

Since S(X;Xo) is an upper bound of {f(t)|x <t < Xo},f(X) < S(X;Xo). Therefore,

the second inequality in (ii) implies the inequality (i) with a; = a. This proves (a).

To prove (b),let a; be given and define x; = max{ai,a}. Then the first inequality in
(i) implies that (i) S(x;Xo0) > B — &/2. Since S(X; Xo) is the supremum of

{f(H)|x1 <t < Xo}, there is an X in [X1,Xo) such that

f(X) > S(X;%o0) — &/2.This and (iii) imply that f(X) > g — &/2. Since X is in [a1,Xo), this
proves (b).

Now we show that there cannot be more than one hyperreal number with properties
(a) and (b). Suppose that 81 < 2 and B2 has property (b); thus, if ¢ * 0,6 > 0and a3
is in [a,Xp) there is an X in [a1,Xo) such that f(X) > B2 — ¢ . Letting € = 2 — 1, we see
that there is an X in [a1,b) such that f(X) > 2 — (82— B1) = B1S0 1 cannot have
property (a).Therefore, there cannot be more than one hyperreal number that satisfies
both (a) and (b).

Theorem 15.6. If f(x) is bounded or hyperbounded on [a,Xo), then a = lim,_, f(x)
exists and there is the unique hyperreal number with the following properties:

(@) If ¢ = 0,6 > Othereis an a; in [a,Xo) such that

f(x) > a—c¢ifair < X < Xo.

(b) If e ~ 0,6 > 0and a; isin [a,Xp), then



f(X) < a + ¢ for some X € [a,Xo).

Theorem 15.7. If f(x) is bounded or hyperbounded on [a,Xo), then

(l) #'”—mx—># xo—f(x) < #'WX—'# Xo—f(x);

(il) #lim,., 5, F(X) = # M., x-FX);

(i) #TM e, 1o F(X) = # lim,., 1, FOO;

(iv) #lim,., , f(X) = #limy., x,-f(x) if and only if #-limy., x,- f(X) exists, in which case
#limse, - f(X) = #lim,,, , f(X) = #limx., x,-f(X)

Theorem 15.8.Suppose that f(x) and g(x) are bounded or hyperbounded on [a,Xo) .
Then: (i) #limy., x,-(f + 9)(X) < #liMy., x,-f(X) + #lIMxx,-g(x);

(il) #lim,., 5, (F+ Q)0 > #lim,, , f(x) +#lim,, . g%).

Theorem 15.9.The a = limy .4, f(X) exists i.e.,a is finite or hyperfinite

if and only if for each ¢ ~ 0,6 > Othereisad ~ 0,6 > 0

such that [f(x1) — f(X2)| < € if Xo — 0 < X1,X2 < Xo.

Theorem 15.10.(i) Suppose that f(x) is bounded or hyperbounded on an interval
(Xo,b],then #lim, . f(xX) = #lim ., x,:f(x) if and only if #lim .. f(x) exists, in
which case #limx.,, x,+ f(X) = #lim, ., .. f(X) = #lMx., x: f(X).

(i) Suppose that f(x) is bounded or hyperbounded on an open interval containing Xo,
then #limy., x, f(X) exists if and only if

#lim s, xo-F(X) = #lim ., %, f(X) = #lim f(X) = #lim f(x).

=——X—=# Xo— =———X—# Xo+

X=># Xo—

15.4.The #-continuity of a function f : R¥ - R%,

Definition 15.9. (i) We say that a function f : R% — R%. is #-continuous at X if f is
defined on an open interval (a,b) containing Xo and limy.,, x,- f{(Xo) = Xo.

(i) We say that f is #-continuous from the left at X, if f is defined on an open interval
(a,%o) and f(xp —) = f(Xo).

(iii) We say that f is #-continuous from the right at xo if f is defined on an open interval
(Xo,b) and f(xp +) = f(Xo).

Theorem 15.11. (i) A function f is #-continuous at Xo if and only if f is defined on an

open

is

interval (a,b) containing xo and for each ¢ ~ 0,6 > Othereisa é = 0,6 > 0 such that
[f(x) —f(X0)| < € (15.10

whenever |x — Xo| < 0.

(i) A function f is #-continuous from the right at Xo if and only if f is defined on an

interval [xo,b) and for each ¢ = 0,6 > Othereisa o ~ 0,6 > 0 such that (17.10) holds

whenever xo < X < Xg + 6.

(iii) A function f is #-continuous from the left at X, if and only if f is defined on an

interval (a,xo] and for each ¢ ~ 0,6 > Othereisaé =~ 0,6 > 0 such that (15.10) holds

whenever xo — 6 < X < Xo.

Note that from Definition 15.9 and Theorem 15.8, f is #-continuous at xo if and only if

f(xo +) = f(xo —) = f(Xo) or, equivalently, if and only if it is #-continuous from the right

and left at Xo.

Definition 15.10. A function f : R% » R% is #-continuous on an open interval (a,b) if it

#-continuous at every point in (a,b). If, in addition,



f(b—) = f(b) (15.11)

or

f(a+) = f(a) (15.12

then f is #-continuous on (a,b] or [a,b), respectively. If f is #continuous on (a,b) and
(15.11) and (15.12) both hold, then f is #-continuous on [a,b]. More generally, if Sis a
subset of dom(f) consisting of finitely or countably or hyper finitely or hyper infinitely
many disjoint intervals, then f is #-continuous on Sif f is #-continuous on every interval
inS
Definition 15.11. A function f : R%Z - R¥ is piecewise #-continuous on [a,b] if
(1) f(xo +) exists for all xo in [a,b);
(i) f(xo —) exists for all xo in (a,b];
(i) f (xo +) = f(xo —) = f(Xo) for all but except finitely or hyper finitely many points xo
in (a,b).
If (iii) fails to hold at some X in (&,b), f has a jump #-discontinuity at xo. Also, f has a
jump #-discontinuity at a if f(a+) = f(a) or at b if f(b —) # f(b).
Theorem 15.12. If f and g are #-continuous on a set S then so are f + g, and
fg. In addition, f/g is #-continuous at each X in Ssuch that g(xo) # O.
By hyper infinite induction, it can be shown that if vn € N* f,(x) are #-continuous on a
set S then so are an(x).Therefore, vn,m € N* any rational function
1<n

r(x) = Zaixilz bix',b; # 0 is #-continuous for all values of x except those for which

I<n I<m
its denominator vanishes.

15.5.Removable #-discontinuities.

Definition 15.12.Let f(x) be defined on a deleted #-neighborhood of xo and
#-discontinuous (perhaps even undefined) at Xo. Then we say that f(x) has a
removable #-discontinuity at Xo if #limy.x, f(Xo) exists. In this case, the function

f(x) if x e dom(f) and x # Xo
9(x) = (15.13
limy.x, f(Xo) if X = Xo

is #-continuous at Xg.

15.6.Composite Functions f : R% — R%,

Definition 15.13. Suppose that f : R% - R# and g : R% —» R% are functions with
domains dom(f) and dom(g) correspondingly. If dom(g) has a nonempty subset T
such that g(x) € dom(g) whenever x € T, then the composite function fo g : R% - R
is defined

on T by (fog)(x) = f(g(x))

Theorem 15.10. Suppose that g is #continuous at Xo,g(Xo) is an #-interior point of

dom(f) and f is #-continuous at g(Xo). Then f o g is #-continuous at Xo.

Proof. Suppose that ¢ » 0, > 0. Since g(Xo) is an #-interior point of dom(f) and f(x) is

#-continuous at g(xo), thereis a §1 ~ 0,61 > 0 such that f(t) is defined and



(i) If(t) — f(g%0)| < & if t— g(xo)| < &1
Since g(x) is #-continuous at Xo, there isa 6 = 0,0 > 0 such that g(x) is defined and
(i) [a(x) —g(Xo)| < I1 if [x—Xo| < 0.

Now (i) and (ii) imply that [f(g(x)) — f(g(Xo0))| < ¢ if [Xx—Xo| < €. Therefore, fo gis
#-continuous at Xo.

15.7.Bounded and Hyperbounded Functions f : R¥ - RZ.

Definition 15.14. (i) A function f : R¥ » R% is bounded below on a set S c R¥ if

there is a finite or hyperfinite hyperreal number m € R¥;, such that f(x) > mfor all

x € SIfin this case the set V = {f(x)|x € S} has infimum a, we write a = infysf(X).

If there is a point x; € Ssuch that f(x1) = a,, we say that « is the minimum of f(x)

on S and write @ = Minysf(X)

(i) A function f : R% -~ R% is bounded above on S c R¥ if there is a finite or hyperfinite
hyperreal number M € R%;,, such that f(x) < M for all x € S If in this case, V has a
supremum f, we write f = supesf(x).If there is a point x; € Ssuch that f(x2) = g,
we say that g is the maximum of f(x) on Sand write a = maXesf(X).

(iii) If f is bounded above and below on a set S, we say that f is bounded on S

Theorem 15.11. If f is #-continuous on a finite or hyperfinite #-closed interval [a, b],
then f is bounded or hyperbounded on [a,b].
Proof. Suppose that t € [a,b]. Since f is #-continuous at t, there is an open interval
I+ containing t such that
[f(x) — f(t)] < 1ifx € It N [a,b] (15.14
To see this, set ¢ = 1in (15.10), Theorem 15.11. The collection H = {l;fa <t < b}
is an open covering of [a,b]. Since [a,b] is #-compact, the generalized Heine—Borel
theorem implies that there are hyper finitely many points ty,t5, ... ,ty,n € N* such that
the intervals Iy, 1+,,...,lt, cover [a,b]. According to (11.14) with t = t;,
[f(x) —f(ti)| < 1if x € I, N [a,b]. Therefore,

f(x) = [(FC0) = f(ti)) + f(ti) | < [FO<) — f(ti) |+ [f(ti)] < 1+ [f(ti)| (15.19
if x e I, N [a,b]. Let M = 1+ maxi<i<n[f(ti)]- Since [a,b] < LnJ(Iti N [ab]),
i=1

(15.15) implies that [f(x)| < M if x € [a,b].

Theorem 15.12. Suppose that f is #-continuous on a finite or hyperfinite closed
interval [a,b].Let Vap = {f(X)|x € [a,b]}. Assume that the set V,, is admissible above
and below. Let

a = IiNfVap = infaeep f(X) @and f = supVap = SURexeb F(X). (15.16

Then a and g are respectively the minimum and maximum of f on [a, b]; that is

there are points x; and xz in [a,b] such that a = f(x1) and B = f(x2).

Proof. We show that x; exists. Note that a = infV,p and B = supVap exist since the
set Vap is admissible below and above. Suppose that there is no x; in [a,b] such that
f(x1) = a,. Thenf(x) > o, for all x € [a,b]. We will show that this leads to a
contradiction. Suppose that t € [a,b]. Then f(t) > a, so f(t) > [f(t) + a]/2 > a.

Since f is #-continuous at t, there is an open interval | about t such that



f(x) > f(t)% (15.17)

if x € [tN[a,b]. The collection H = {l{fa<t<b} isan open covering of [a,b].
Since [a,b] is #-compact, the generalized Heine—Borel theorem implies that there are
hyper finitely many points t4,t»,...,t, such that the intervals I, Is,,...,lt, cover [a,b].

n
Define a1 = miny<i«[f(ti) + a]/2.Then, since [a,b] < | (I, N [a b]), (15.17) implies that
i=1

f(t) > a1,a <t < b.But a1 > a, so this contradicts the definition of a. Therefore,
f(x1) = a , for some x; € [a,b].

15.8. Generalized Intermediate Value Theorem.

Theorem 15.13.(Generalized Intermediate Value Theorem) Suppose that:

(i) fis #-continuous on [a,b], (ii) f(a) # f(b) and f(a) < u < f(b),

(iii) the set S= {x|(a < x < b) A (f(X) < u)}is admissible above.Then f(c) = u for
some c € (a,b).

Proof. Suppose that f(a) < u < f(b). Note that supS exists, since the set Sis
admissible above. Let ¢ = supS. We will show that f(c) = u . If f(c) > g,

then ¢ > a and, since f is #-continuous at c, there is an ¢ > 0, ~ 0 such that

f(x) > nif c— e < x < c. Therefore, cis an upper bound for S which contradicts
the definition of ¢ as the supremum of S If f(c) < u, then ¢ < b and there is

an e > 0,e = Osuch that f(x) < uforc < x < c—-¢g, so cis notan upper bound for S
This is also a contradiction. Therefore, f(c) = u. The proof for the case where

f(b) < u < f(a) can be obtained by applying this result to —f(x).

Lemma.15.1.If f is #-continuous at xo and f(xo) > u, then f(x) > u for all x in some
#-neighborhood of xo.

15.9.Uniform #-Continuity.

Definition 15.15. A function f is uniformly #-continuous on a subset Sof its domain
if, for every ¢> 0,6 ~ Othereisa é > 0,6 ~ 0 such that [f(x) — f(x')| < &€ whenever
x-x]<dandx,x € S

We emphasize that in this definition § depends only on and Sand not on the
particular choice of x and x', provided that they are both in S

Theorem 15.14. If f is #-continuous on a #-closed and bounded or hyperbounded
interval [a, b], then f is uniformly #-continuous on [a, b].

Proof. Suppose that ¢ > 0,& ~ 0. Since f is #continuous on [a,b], for each t € [a,b]
there is a positive number ¢, such that

[f(x) — f(t)| < &/2 (15.18
if x—t|<drand x € [a,b]. If I; = (t—d,t+ 1), the collection H = {Ii|t € [a,b]}
is an open covering of [a,b].Since [a,b] is #-compact, the generalized Heine—Borel
theorem implies that there are hyper finitely many points t4,t,...,ty in [a,b] such that
lt,,lt,,...,lt, COvVer [a,b]. Now define
5 = min{6t,,8 ¢, ... Oty - (15.19

We will show that if
x—x'| < éandxx € [ab] (15.20



then [f(x) — f(X')| < &.From the triangle inequality one obtains:

[FO) = FO | = [(F() = f(tr)) + (F(te) = FO)) | < O — f(to) [+ [f(t) — F(X)| (15.22)

Since Iy, ly,,...,lt, cover [a,b], x must be in one of these intervals. Suppose that
X € Iy, that is,
X —tr| < O,. (15.22
From (11.18) with t = t,,
f) ~f(t)| < 5. (15.23
From (11.20), (11.22), and the triangle inequality,
K —t]=]X=X)+(X—t)| < X =X|+ X=t]| < 5+ 3 < 2654, (15.24)
Therefore, (11.18) with t = t, and x replaced by x' implies that
[f(x') —f(tr)] < % (15.295

Thus (11.25),(11.21) and (11.23) imply that [f(x") — f(t;)| < &/2.

15.10. Monotonic External Functions f : R¥ - R¥%,

Theorem 15.15. If f is monotonic and nonconstant on [a, b], then f is #continuous
on [a,b] if and only if its range range (f) = {f(x)|x € [a,b]} is the #-closed interval with
endpoints f(a) and f(b).

Theorem 15.16. Suppose that f is increasing and #-continuous on [a,b] and let

f(a) = cand f(b) = d. Then there is a unique function g defined on [c,d] such that

g(f(x)) = x,a<x<b, (15.26)
and

f(gly)) =y.c<y=<d. (15.27)
Moreover, g is #-continuous and increasing on [c,d]:
The function g of Theorem 15.16 is the inverse of f, denoted by f . Since (15.26)

and (15.27) are symmetric in f and g, we can also regard f as the inverse of g, and
denote it by g~*.

15.11. The #-derivative of a R#-valued function f : D - RZ,

A function f : D » R¥% D < R% is differentiable at an #-interior point xo € D of its
domain
D < R{ if the difference quotient

w,x + Xo (15.298

approaches a #-limit as x approaches X, in which case the #-limit is called the
#-derivative
of f at xo, and is denoted by f#(xo) or by f #(xo) or by d*f(xo)/d*x i.e.,
G (x0)IFX 2 (o) = #liMe, xp g 100) (15.29
If f is defined on an #-open set S c R%, we say that f is #differentiable on Sif f is
#-differentiable at every point of S. If f is #-differentiable on S, then f '# is a function on
S
We say that f is #-continuously #-differentiable on Sif f #(x) is #continuous on S If f is



#-differentiable on a #-neighbourhood of xo, it is reasonable to ask if f #(x) is
#-differentiable at xo. If so, we denote the #-derivative of f'# at xo by f"#(Xo). This is
the
second #-derivative of f at X, and it is also denoted by f®#(x,). Continuing inductively,
if f(™1* is defined on a #-neighborhood of xo, then the n-th #-derivative of f at Xo,
denoted by f™#(xo), where n € N* or by d™f(xo)/d*x" is the #-derivative of f(™1#(x) at
Xo.For convenience we define the zeroth #-derivative of f to be f itself; thus f©O# = f,
Examplel5.1 If n € N¥\N is a positive hyperinteger and f(x),= x" then

f(x) — f(x X"—x1 x—x =
())(—X(OO) - X—Xo0 - X—Xg (EXt_kz:%Xnkl>' (15.30
n-1
Thus f"#(Xo) = #lim ., x, EXtD_ X1 = nx™L,
k=0
Lemma 15.2. If f is #-differentiable at xo; then
f(x) = f(xo) + |:f #(Xo0) + E(x)](x— Xo), (15.3))

where E(x) is defined on a #-neighborhood of xo and #-limy., x, E(X) = E(Xo) = O.
Proof. Define

fx) —f(xo) _

E(x) = X—=Xo f'#(x0) x € Dom(f) and X # Xo

(15.32
0 X = Xo

Solving (15.32) for f(x) yields (15.31) if x # Xo, and (15.31) is obvious if X = Xo.
Definition 15.29 implies that #-lim,.x, E(x) = 0. We defined E(xo) = 0 to make E(x)
#-continuous at Xo. Since the right side of (15.32) is #-continuous at Xo, S0 is the left.
This yields the following theorem.
Theorem 15.17. If f is #-differentiable at xo; then f is #-continuous at Xo.
Theorem 15.18. If f and g are #-differentiable at xo,then so are f + g and fg with
(@) (f+9g) (x0) = f#(x0) + g *(Xo);
(b) (f-g) "(x0) = f*(x0) — g #(Xo);
(c) (fg) *(x0) = f*(x0)g(%o) + f(x0)g *(X0);
(d)The quotient f/g is #-differentiable at xo if g(Xo) # O with
(i) " xg) = 1700)G00) ~ g *(x0)f(X0)
g) " [9(%0)]? |

n
(e) If n e N* and fi,1 <i < n are #differentiable at xo,then so are Ext-)_ f; and
i=1

n 1# n
(Ext—Zfi(xo)> = Ext-Y_f"(xo).
i—1 i=1
() Ifne N*and f™¥(xp),g ™*(xo) exist, then so does (f x g)™*(xo) and
n
(f9) ™*(x0) = Ext (1) F0¥(x0)g ™¥(x0).
i—0
Proof. For the statements (a)-(d) the proof is straightforward. For the statements
(e) and (f) immediately by hyper infinite induction.
Theorem 15.19. (The Chain Rule) Suppose that g is #-differentiable at xo and f

is #-differentiable at g(xo). Then the composite function h = f - g defined by
h(x) = f(g(x)) is #-differentiable at xo with h #(xo) = f"#(g(x0))g #(x0).



Definition 15.16.If f(x) is defined on [Xo,b), the right-hand derivative of f(x) at xo is
defined to be

, | 00 - f
£(X0) = #liMye, s TOG 100 (15.33

if the #-limit exists, while if f is defined on (a, xo], the left-hand derivative of f(x) at xo is
defined to be

£(x0) = #liMey gy O rO0). (15.34)

if the #-limit exists.

Remark 15.2. Note that f(x) is #-differentiable at xo if and only if f*(xo) and f#(xo)
exist and are equal, in which case f #(xo) = f/#(xo0) = f*(Xo).

Definition 15.16'(1) We say that f is #-differentiable on the #-closed interval [a,b] if
f is #-differentiable on the #-open interval (a,b) and f.*(a) and f#(b) both exist.

(2) We say that f is #-continuously #-differentiable on [a,b] if f is #-differentiable on
[a,b], f # is #-continuous on (a,b),f#(a) = f #(a+), and f#(b) = f #(b+).

Definition 15.17.We say that f(Xp) is a local extreme value of f(x) if thereisa é > 0,
0 ~ 0 such that f(x) — f(xo) does not change sign on

(Xo — 6x%o + &) N dom(f). (15.3H
More specifically, f(xo) is a local maximum value of f(x) if
f(x) < f(xo) (15.36

or a local minimum value of f(x) if

f(x) > f(xo) (15.37)
for all x € (Xo — 0Xo + 6) N dom(f). The point Xo is called a local extreme point of f(x),
or, more specifically, a local maximum or local minimum point of f(x).
Theorem 15.20. If f(x) is #-differentiable at a local extreme point xo € dom(f) then

f#(x0) = 0.

Proof. We will show that X is not a local extreme point of f if f #(xo) # 0. From
Lemma 15.2 we get

—f(x>)<: L(g( 2) _ £%(x0) + EX), (15.37)
where #lim,., x, E(xX) = 0.Therefore, if f #(xo) + 0, thereis a § > 0,6 ~ 0, such that
[E(X)| < |f*#(x0)|,and the right side of (15.37") must have the same sign as f #(xo)
for [x— Xo| < 6. Since the same is true of the left side, f(x) — f(xo) must change sign in
every neighborhood of X (since x — xo does). Therefore, neither (15.36) nor (15.37)
can hold for all x in any interval about Xo.
Theorem 15.21. (Generalized Rolle’s Theorem) Suppose that:
(i) f is #-continuous on the #-closed interval [a,b],
(i) f is #-differentiable on the #-open interval (a,b),
(iii) the set Vap = {f(X)|x € [a,b]} is admissible above and below and
(iv) f(a) = f(b).
Then f#(c) = 0 for some ¢ € (a,b).
Proof.Since f is #-continuous on [a,b] and the set Vap = {f(X)|x € [a,b]} is



admissible above and below, f attains a maximum and a minimum value on [a, b]
(Theorem 15.12). If these two extreme values are the same, then f is constant on
(a,b), so f#(x) = Ofor all x € [a,b]. If the extreme values differ, then at least one
must be attained at some point c in the #open interval (a,b), and f #(c) = 0, by
Theorem 15.20.

Theorem 15.22. (Intermediate Value Theorem for #-Derivatives) Suppose that:
(i) f(x) is #-differentiable on [a, b],

(i) the set Vap[f] = {f(X)|x € [a,b]} is admissible above and below,

(ii) f#(a) # f#(b) and f #(a) < u < f#(b). Then

f'#(c) = u for some c € (a,b).

Proof.Suppose first that: (1) f #(a) < u < f #(b) and define g(x) = f(x) — ux.

Then (2) g'#(x) = f#(x) — u,a < x < b, and (1) implies that: (3) g"#(a) < 0 and
g#(b) > 0.Notice (ii) implies that Vap[g] = {X(X)|x € [a,b]} is admissible above and
below. Since g is #-continuous on [a,b], g attains a minimum at some point

c € [a,b].Lemma 15.2 and (3) implies that there isa § > 0,6 ~ 0, such that

g(x) < g(a),a< x<a+¢andg(x) <g),b-5 < x< b,and therefore c + aand c = b.
Hence, a < ¢ < b, and therefore g #(c) = 0 by Theorem 11.20.From (2) f #(c) = p.
The proof for the case where f #(b) < u < f'#(a) can be obtained by applying this
result to —f(x).

Theorem 15.23. (Generalized Mean Value Theorem) Assume that:

(i) f and g are #-continuous on the #-closed interval [a,b] and #-differentiable on the
open interval (a,b), (i) the set Vap[f] and Vap[g] are admissible above and below,
(iii) let h(x) = [g(b) — g(a)]f(x) — [f(b) — f(a)]g(x),the set Vap[h] admissible above and
below, then

[9(b) — g(@)]f *(c) = [f(b) - f(a)]g *(c) (15.38
for some c € (a,b).
Proof.The function h(x) = [g(b) — g(a)]f(x) — [f(b) — f(a)]g(x) is #-continuous on [a, b]
and #-differentiable on (a,b), and h(a) = h(b) = g(b)f(a) — f(b)g(a). Note that the set
Vap[h] is admissible above and below. Therefore, Rolle’s theorem (Theorem 11.21)
implies that h #(c) = 0 for some ¢ € (a,b).Since
h"#(c) = [g(b) — g(a)]f #(c) - [f(b) — f(a)]g #(c), this implies Eq.(15.38).
The following special case of Theorem 15.23 is important enough to be stated
separately.
Theorem 15.24.(Mean Value Theorem) Assume that: (i) f is #-continuous on the
#-closed interval [a,b], (ii) #-differentiable on the #-open interval (a,b), (iii) the set
Vap[f] is admissible above and below, then
f(b) —f(a)

) = b-—a

(15.39

for some c € (a,b).

Proof.Apply Theorem 15.24 with g(x) = x.

h(x) = [b—a]f(x) - [f(b) —f(a)]x

h(a) = h(b) = bf(a) —f(b)g(a)

Remark 15.3. Assume that the set V,p[f] is admissible above and below. If f is
#-differentiable on (a,b) and x1,x2 € (a,b) then f is #-continuous on the #-closed
interval with endpoints x; and x; and #-differentiable on its interior. Hence, the mean



value theorem (Theorem 15.24) implies that

f(x2) — f(x1) = f#(c) (X2 — x1). (15.39)
for some c between x; and x.. (This is true whether X3 < Xz or X2 < X1.) The next
three theorems follow from (11.39).
Theorem 15.25. Assume that the set Vap[f] is admissible above and below.
If f #(x) = Ofor all x € (a,b), then f is constant on (a,b).
Remark 15.4.
Theorem 15.26. If f #(x) exists for all x € (a,b) and does not change sign on (a,b),
then f(x) is monotonic on (a,b) increasing, nondecreasing, decreasing, or
nonincreasing as: (i) f #(x) > 0,(ii) f #(x) > 0, (iii) f #(x) < 0,(iv) f #(x) < 0,
respectively, for all x € (a,b).
Theorem 15.27. If | #(x)| < M,a < x < bthen

[f(x) — f(x)| < Mjx— x|, (15.40

where x,x' € (a,b).
Definition 15.18.A function that satisfies an inequality like (15.40) for all x and x' in
an interval is said to satisfy a Lipschitz condition on the interval.
Theorem 15.28. (Generalized L'Hospital’s Rule) Suppose that f and g are
#-differentiable and g # has no zeros on (a,b). Let #lim,., »- f(X) = #limy., p- g(x)
or #lim., b f(x) = +o*and #-lim., - g(x) = +wo*and suppose that

#—-limy, b 700 =L (15.4)
g9"(x)
where L € R# or L = +o”. Then
. f(x)
#-limy, b a0 L, (15.42
As we saw above in Lemma 15.2 if f is #-differentiable at Xo; then
f(x) = f(Xo) + f #(X0) (X — X0) + E(X)(X = Xo), (15.43

where #-limy., x, E(X) = 0.To generalize this result, we first restate it: the polynomial
P1(x) = f(Xo) + f #(X0) (X — Xo) which is of degree < 1 and satisfies P1(Xo) = f(Xo),
Pll#(x) = f #(Xo), approximates f(x) so well near xo such that

f(x) — P
MO ZF109 o, (15.44)

Now suppose that f has n #-derivatives at xo and Pn(x) is the polynomial of degree
n € NN such that

#1im e, x

§%(x0) = f*(x0),0< 1 < n. (15.45
Since Py(X) is a polynomial of hyperfinite degree n,it can be written as

Pn(X) = Ext-Zn]ai (X Xo)' (15.46
i=0

where ao, ...,a, € R¥ are constants. Differentiating (11.46) gives PY*(x0) = ra,
0 <r < n,so (15.45) determines a uniquely as a, = f V#(xo)/r!,0 < r < n.Therefore,



P — Ext- 3" &= XO): Dxo) (15.47)
r=0 )

We call Py(x) the n-th Taylor hyper polynomial of f(x) about X

Theorem 15.29.1f f ™W#(xo) exists for some hyper integer n € NN and Pn(x) is

the n-th Taylor hyper polynomial of f about X, then

f(x) = Pn(X) _
(X=%o)"

Theorem 15.30. (Generalized Taylor's Theorem) Suppose that f (mD#(x)

exists on an #-open interval | about xo, and let x € I. Then the remainder

Rn(X) = f(X) — Pn(X) can be written as

f (n+1)#(c)
(n+1)!

where ¢ depends upon x and is between x and Xo.

15.12.The Riemann integral of a RZ-valued external

function f(x).

The Riemann integral is defined as #-limit of Riemann hyperfinite sums of functions
with respect to tagged partitions of an interval [a,b] = R¥ A tagged hyperfinite partition
P of a closed interval [a,b] on the real line is a hyperfinite sequence

a=X <t <X1 <t <X2<...<Xnp1<th <Xn =D, (15.50

#'liqu# X0 O (1548)

Rn(X) = (X—Xo)", (15.49

where n € N\N. This partitions the interval [a,b] into n sub-intervals [xj_1,x;] indexed by

i € N*, each of which is "tagged" with a distinguished point tj € [xj_1,Xi]. Thus, any set of
n+ 1 € NN points satisfying (15.50) defines a partition P of [a,b], which we denote by
P = {Xo,X1,...,Xn}.A Riemann hyperfinite sum of a function f with respect to such a
tagged hyperfinite partition is defined as

In = Xn:f(ti)Ai, (15.5))
i=1

where n € N\N.thus each term of the sum (15.51) is the area of a rectangle with height
equal to the function value at the distinguished point of the given sub-interval, and width
the same as the width of sub-interval, A; = xj — Xi-1. The mesh(P) of such a tagged
partition is the width of the largest sub-interval formed by the partition, max_1.n A;.
Definition 15.19. The Riemann integral of a function f over the interval [a,b] is equal
to | if for every ¢ > 0,¢ =~ O there exists 6 > 0,6 ~ 0 such that for any partition with
distinguished points on [a,b] whose mesh is less than 6.
Upper and Lower Integrals.
Definition 15.20. f is bounded (hyperbounded) on [a,b] and P = {Xo,X1,...,Xn} IS @
hyperfinite partition of [a,b],let

M; = SUR; 104 f(X) (15.52
and

m; = infy <y f(X) (15.53
The upper external hyperfinite sum of f over P is



n
S(P) = Ext- > Mj(X; — Xj-1) (15.54)
=1
and the upper external integral of f over [a,b], denoted by
SR (15.55
is the infimum of all hyperfinite upper sums.
The lower external hyperfinite sum of f over P is

s(P) = Ext-zn:mj (Xj — Xj-1) (15.56
i1

and the lower external integral of f over [a,b], denoted by
Ext[ f(x)d¥x. (15.57)

is the supremum of all lower hyperfinite sums. If m < f(x) < M for all x € [a,b], then
m(b—-a) < s(P) < S(P) < M(b-a) (15.58

for every hyperfinite partition P; thus, the set of upper hyperfinite sums of f over all

partitions P of [a,b] is bounded, as is the set of lower hyperfinite sums. Therefore,

Theorems 15.3 and 15.8 imply that: if the quantity (15.55) and (15.57) exist then
both are unique, and satisfy the inequalities

m(b- a) < Ext]” f(x)d* < M(b - a) (15.59
and
m(b- a) < Ext[ f0)d* < M(b - a). (15.60)

Theorem 15.31. Let f be bounded on [a,b], and let P be a hyperfinite partition of [a, b].
Then (i) The upper hyperfinite sum SP) of f over P is the supremum of the set of all
hyperfinite Riemann sums of f over P.

(i) The lower hyperfinite sum s(P) of f over P is the infimum of the set of all hyperfinite
Riemann sums of f over P.

n
Proof (a) If P = {Xo,X1,...,Xn}, then S(P) = Ext>_ M;(x; — Xj-1) where
j=1

M;j = SUPRK_y<xx; f(x).
An arbitrary hyperfinite Riemann sum of f over P is of the following form
o = Ext Zj":l f(ci) (X — Xj-1), (15.61)
where xj-1 < ¢; < X;.Since f(¢;) < M;, it follows that o < S(P).Now let¢ > 0,6 = O
and choose Tj € [xj_1,X;] so that

where 1 < j < n e NN, The hyperfinite Riemann sum & produced in this way is
= _ Ext S Nx — X S all ._ € oy ) =
G = Ext ijlf(q)(xJ Xj-1) > Ext ijl[MJ 0% = %1 J(xJ Xj_1) =
S(P) —e¢.

Now Theorem 15.3 implies that S(P) is the supremum of the set of hyperfinite

(15.63



Riemann sums of f over P.

15.12.The Riemann-Stieltjes Integral of a R#-valued

external function f(x).

Definition 15.21. Let f and g be defined on [a,b]. We say that f is Riemann—Stieltjes
integrable with respect to g on [a,b], if there is a number L € R¥ with the following
property: For every ¢ > 0,e = O, thereisa 6 > 0,6 = 0 such that

n
Ext D f(c)[9(4) - g(x1)] -L| <& (15.64
=1
provided only that P = {xo,X1,...,Xn},N € N\ is a hyperfinite partition of [a,b]

such that ||P|| < ¢ and xj-1 < ¢j < X;,j € n.In this case, we say that L is the external
Riemann-Stieltjes integral of f with respect to g over [a,b], and write

b
Ext—jf(x)d#g(x) - L. (15.65
15.13 Existence of the integral of a RZ-valued external

function f(x).
Lemma 15.3 Suppose that
| f0)] <M,a<x<b (15.66

and let P' be a hyperfinite partition of [a, b] obtained by adding r € N*\N points to a
partition P = {Xo,X1,...,Xn},n € N\ of [a,b]. Then

S(P) > S(P') > S(P) - 2Mr||P|| (15.67)
and
s(P) < s(P') < s(P) + 2Mr||P]|. (15.68
Theorem 15.32. If f(x) is bounded on [a,b], then

Ext[° f(x)d*x < Ext[” fx)dx. (15.69
‘a a
Theorem 15.33. If f is integrable on [a,b], then
(P e _ Evt (P ty — Ext [P #
Ext j_a f(x)d*x = Ext|  feod™ = Ext | , feod™ (15.70
Theorem 15.34.1f f is bounded (or hyperbounded) on [a,b] and
(P e — Ext (P thy _
Extj_a f(x)d*x = Extja f(x)d*x = L, (15.71)

then f(x) is integrable on [a,b] and
b
Ext-j f(x)dx = L. (15.72)

Theorem 15.35.A bounded (hyperbounded) function f is integrable on [a,b] if and
only if



b s
Ext—J- f(x)d#x = Ext—J- f(x)dx. (15.73

Theorem 15.36.If f is bounded (hyperbounded) on [a,b], then f is integrable on [a, b]
if and only if for each & > 0,& = O there is a partition P of [a,b] for which

S(P) -s(P) < &. (15.74)
Theorem 15.37.If f is #-continuous on [a,b], then f is integrable on [a,b].
Proof.
Theorem 15.38. If f is monotonic on [a,b], then f is integrable on [a,b].

Proof.
Theorem 15.39.(a) If f and g are integrable on [a,b], then sois f + g, and

b b b
Ext—j [f(X) + g(x)]d*x = Ext—j f(x)d*x + Ext _[ g(x)d*x (15.79

n
(b) If fi, 1 < i < n e N* are integrable on [a,b], then so is Ext- ) _ fi(x), and
=1

b n n b
Ext—f|:Ext-Z fi(x)Jd#x.: Ext—Z(Ext— j f(x)d#x> (15.76)

=1 =1

a a

Proof.
Theorem 15.40.(a) If f is integrable on [a,b] and ¢ € R is a constant, then cf
is integrable on [a,b] and

b b
Ext j ¢ f(x)dx = c(Ext—j f(x)d#x>. (15.77)

a a

(b) If fi,1 < i < n e N* are integrable on [a,b] and ¢; € R% are constants, then

b n n b
Ext I|: Ext Z ci fi(x) :|d#x. = Ext Z Ci (Ext— J. fi (x)d#x> . (15.78

=1 =1

a a

Proof.
Theorem 15.41. If fis and g integrable on [a,b] and f(x) < g(x) for x € [a,b],then
b b
Ext-jf(x)d#x < Ext-jg(x)d#x. (15.79
a a

Proof.
Theorem 15.42. If f(x) is integrable on [a,b], then so is [f(x)|, and

b
< Ext [0 [d*x (15.80)

a

b
Ext I f(x)d*x
a

Theorem 15.43. If f(x) and g(x) are integrable on [a,b], then so is the product

fx)g(x).
Proof.




Theorem 15.44.(First Mean Value Theorem for Integrals) Suppose that
u(x) is #-continuous and v(x) is integrable and nonnegative on [a,b]. Then

b b
Ext-jf(x)v(x)d#x - v(c)(Ext— j f(x)d#x> (15.81)

a a

for some c € [a,b].

Proof.

Theorem 15.45.1f f(x) is integrable on [a,b] and a < a; < by < b, then f(Xx) is
integrable on [aj,b;].

Proof.

Theorem 15.46.1f f(x) is integrable on [a,b] and [b,c] then f(x) is integrable on [a,b]
and

c b c
Ext j f(x)d*x = Ext j f(x)dx + Ext j f(x)d"x. (15.82)
a a b
Proof.

Theorem 15.47.1f f(x) is integrable on [a,b] and a < ¢ < b, then the function F(x)
defined by

F(x) = Ext j f(t)d#t (15.83)

satisfies a Lipschitz condition on [a,b], and is therefore #-continuous on [a,b].
Proof.

Theorem 15.48.1f f(X) is integrable on [a,b] and a < ¢ < b, then F(x) = Ext—f f(t)d*t

C
is #-differentiable at any point Xo € [a,b], where f(x) is #continuous, with

F'#(Xo) = f(Xo). (15.89
If f(x) is #-continuous from the right at a, then F#(a) = f(a).If f(x) is #-continuous

from the left at b,then F'#(b) = f(b).
Proof.We consider the case where a < Xo < b.From the equality

X
X——lxo J-XO f(xo)dt™ = f(xo)
one obtains

FOOZFX0) fix0) = x5 j[f(t)—f(xo)]dt'#

Xo

From this one obtains

w —f(Xo)‘ <

j If(t) — f(xo)|dt*]. (15.84)



Since f is #-continuous at Xg, there is foreach ¢ > 0,6 = 0a § > 0,6 = 0 such that
[f(t) — f(Xo)| < € if [x—Xo|] < § and x < t < Xo.From (11.84') we get

F(x) — F(Xo0)
X— Xo

X—Xo| _

_f(Xo) <8|X—Xo| =

where 0 < [x - Xo| < 6. Therefore F#(xo) = f(Xo).
Theorem 15.49.Suppose that F(x) is #continuous on the #-closed interval [a, b]
and #-differentiable on the #-open interval (a,b),and f™(x) is integrable on [a, b].
Suppose also that F'#(x) = f(x),a < x < b.Then

b
Ext—ff(x)d#x = F(b) - F(a). (15.85
a
Proof. Let P by an partition P = {xi}!',, n € N\N of [a,b], then we get
n
F(b) - F(a) = Ext »_[F(x) - F(xi-1)]. (15.85)
i1
From Theorem 2.3.11, there is in each #open interval .(xj-1,%;) a point
Cj € (Xj-1,%;) such that F(x) — F(xi-1) = f(cj)(% — Xj-1).Hence, Eq.(11.85") can be
written as

n
F(b) - F(a) = EXt‘Zf(CJ’)(Xj - Xj-1) = O, (15.85)
i=1
where o is a Riemann sum for f over P. Since f is integrable on [a,b], there is for
eache > 0,e  0ad > 0,6 ~ 0such that
b
o - If(x)d#x

a

<é

if |P]| < é6.Therefore,

b
F(b) - F(a) - [ f(x)d"x

a

<é

for every ¢ > 0, ~ 0, which implies 15.85
Theorem 15.50.If f#(x) is integrable on [a,b], then

b

Ext j f#(x)d*x = f(b) —f(a). (15.86)
a

Definition 15.22. A function F(x) is an #-antiderivative of f(x) on [a,b] if F(x) is

#-continuous on [a, b] and #-differentiable on [a,b], with F#(x) = f(x),a < x < b.

Theorem 15.50.1f F(x) is an #-antiderivative of f(x) on [a,b], then so is F(x) + ¢ for

any constant c. Conversely,if F1(x) and F2(x) are #-antiderivatives of f on [a,b], then

F1(x) — F2(x) is constant on [a,b].

Theorem 15.51.(Fundamental Theorem of Calculus) If f(x) is #continuous on [a, b],

then f(x) has an #-antiderivative on [a,b]. Moreover, if F(X) is any #-antiderivative

of f on [a,b], then



b
Ext j f(x)d*x = F(b) — F(a). (15.87)

Theorem 15.52. (Integration by Parts) If u#(x) and v#(x) are integrable on [a, b],
then

b b
Ext I UO)V#(x)d*x = u(x)v(x)|2 - Ext I u(x) *v(x)d*x. (15.88

Theorem 15.53.Suppose that the transformation x = ¢(t) maps the intervalc <t <d
into the interval a < x < b, with ¢(c) = a@ and ¢(c) = B, and let f(x) be #-continuous
on [a,b]. Let ¢'#(t) be integrable on [c,d]. Then

B d
Ext [ f(0)d* = Ext [ f(p()p"(D)d"t. (15.89

Theorem 15.54. Suppose that ¢'#(t) is integrable and ¢(t) is monotonic on [c,d],
and the transformation x = ¢(t) maps [c,d] onto [a,b]. Let f(x) be bounded
(hyperbounded) on [a,b]. Then g(t) = f(e(t))*(t) is integrable on [c,d] if and only
if f(x) is integrable over [a,b],and in this case

b d
Ext [ f(0)d* = Ext [ f(p()p"(D)d"t. (15.90

15.14.Improper integrals.

Definition 15.22. We say f(x) is locally integrable on an interval | if f(x) is integrable
on every finite or hyperfinite #-closed subinterval of I.
Definition 15.23.1f f is locally integrable on [a,b], we define

b c
Ext j f)d*x = #lime., m(Ext— j f(x)d#x) (15.91)

a a

Remark 11.3.The #limit in (15.91) always exists if [a, b] is finite or hyperfinite
and f is locally integrable and bounded (hyperbounded) on [a,b]. In this case,

Definitions 15.70 and 15.91 assign the same value to Ext—jZf(x)d#x no matter how f

is defined. However, the #-limit may also exist in cases where b = «* or b < «* and
fis hyper unbounded as x approaches b from the left.
Definition 15.24.In the cases mentioned above, Definition 15.91 assigns a value to

an integral that does not exist in the sense of Definition 15.70, and Ext—jZf(x)d#x
is said to be an improper integral that #-converges to the #limit in (15.91). We also

say in this case that f is integrable on [a,b] and that Ext—jZf(x)d#x exists.
If the #-limit in (15.91) does not exist (finite or hyperfinite), we say that the improper
integral Ext—fo(x)d#x #-diverges, and f is nonintegrable on [a,b). In particular, if

#lime., m(Ext— j :f(x)d#x> = +oo* we say that #-diverges to «*, and we write



b
Ext—jf(x)d#x = oot (15.92
a

or

b
Ext—jf(x)d#x — (15.93
a

whichever the case may be.Similar comments apply to the next two definitions.
Definition 15.25.1f f(x) is locally integrable on (a,b], we define

a Cc

b b
Ext j f)d*x = #lime., a+<Ext— j f(x)d#x) (15.94)

provided that the #-limit exists (finite or hyperfinite). To include the case where
a = —oo”, we adopt the convention that —oo# += —0?,
Definition 15.26.If f(x) is locally integrable on (a,b), we define

b a b
Ext j f(x)d*x = Ext j f(x)dx + Ext j f(x)d"x, (15.95
a a o

where a < a < b, provided that both improper integrals on the right exist i.e.,finite or
hyperfinite.

Remark 15.4.Note that the existence and value of Ext—jZf(x)d#x according to

Definition 15.26 do not depend on the particular choice of a € (a,b).

Remark 15.5.When we wish to distinguish between improper integrals and integrals in
the sense of Definition 11.70, we will call the latter proper integrals.

Theorem 15.55.Suppose that f4,fs,...,f, are locally integrable on [a,b) and that

Ext | Zfl(x)d#x, o EXE] :fn<X>d#X #-converge. Let cy,Co, . ..,Cn be constants.Then
EXt‘I 2<Ext- Zln:l cif; (X))d#x #-converges and

Ext- jZ(Ext— Z.il cifi (x))d#x = Ext Zln:l C (Ext— .[Zf‘ (x)d#x> . (15.96)

15.15.Improper integrals of nonnegative functions
f : D - R% Absolute Integrability.

Theorem 15.56. If f(x) is nonnegative and locally integrable on [a,b), then
Ext—fo(x)d#x converges if the function
X
F() = Ext- [ f(x)d"x (15.97)
a
is bounded (hyperbounded) on [a,b), and Ext—jZf(x)d#x = oo if it is not.
Theorem 15.57.(Comparison Test) If f and g are locally integrable on [a,b) and
0 < f(x) < g(x),0< x < b, then (a) Ext—fo(x)d#x < oot if Ext—f:1 g(x)d#x < oo* and
(b) Ext[_f(x)d*x = oo* if Ext[” gx)dx = oo*.
Theorem 15.58. Suppose that f and g are locally integrable on [a,b), g(x) > 0 and



f(x) > 0 on some subinterval [a;,b) < [a,b), and

. f(x)
#'||mc_>#b_w = M. (1598)

(@) If 0 < M < «*, then Ext—fo(x)d#x and Ext—ng(x)d#x converge or diverge together.
(b) If M = oo* and Ext[ g(x)d*x = oo*, then Ext[ f(x)d*x = oo*.

(c)IfM=0and Ext—f:1 g(x)d#x < oo*, then Ext—jZf(x)d#x < oo,

Definition 15.27. We say that f is absolutely integrable on [a,b) if f is locally inte
grable on [a,b) and Ext—f:|f(x) |d*x < oo*.In this case we also say that Ext- j Zf(x)d#x
#-converges absolutely or is absolutely #-convergent.

Theorem 11.59.1f f is locally integrable on [a,b) and Ext—f:|f(x) |d*x < «o*, then

Ext—fo(x)d#x #-converges: that is, an absolutely #-convergent integral is #-convergent.
Theorem 15.60. (Dirichlet’'s Test) Suppose that f is #-continuous and its
#-antiderivative F(x) = Ext j :f(x)d#x is bounded (hyperbounded) on [a,b).
Let g be absolutely integrable on [a,b),and suppose that

#-lime., p-g(x) = 0. (15.99
Then Ext| :f(x)g(x)d#x #-converges.
Theorem 15.61. Suppose that u(x) is #-continuous on [a,b) and Ext—j:1 u(x)d*x
#-diverges. Let v(x) be positive and #-differentiable on [a,b), and suppose that
#-limc., b- V(X) = o and v#/v? is absolutely integrable on [a,b). Then
Ext[” up)v(x)dx #-diverges.
Theorem 15.62.Suppose that g(x) is monotonic on [a,b) and Ext—fo(x)d#x = oo,
Let f(x) be locally integrable on [a,b) and

Xj+1
Ext j|f(x)|d#x > p,j >0 (15.100
Xj
for some positive p where X jane is an increasing hyper infinite sequence of
points in [a,b) such that #Ilim;,_.«X = band X;.1Xj < M,j > 0O, for some M. Then

J=# o

Ext [ :|f(x)g(x) ld#x = oo*. (15.103)

15.16.Change of Variable in an Improper Integral

Theorem 11.63.Suppose that ¢(t) is monotonic and ¢'#(t) is locally integrable on
either of the half-open intervals | = [c,d) or (c,d], and let x = ¢(t) map | onto either
of the half-open intervals J = [a,b) or J = (a,b]. Let f be locally integrable on J.
Then the improper integrals

Ext- [ f(x)d*x and Ext- [ f(¢)lp"(t)|d*t (15.102

#-diverge or #-converge together, in the latter case to the same value. The same
conclusion holds if ¢(t) and ¢'#(t) have the stated properties only on the #open
interval (a,b), the transformation x = ¢(t) maps (c,d) onto (a,b),and f is locally



integrable on (a,b).

15.17.Generalized integrability criterion due to Lebesgue.

The main result of this section is an integrability criterion due to Lebesgue that does
not require computation, but has to do with how badly #-discontinuous a function may
be and still be integrable.
Definition 15.28. If f(x) is bounded (hyperbounded) on [a,b], the oscillation Wi[a, b] of
f(x) on [a,b] is defined by
Wi[a,b] = sup [f(x) — f(X')| (15.103
a<xx'<b

which can also be written as

Wi[a, b] =sup f(x) — inf f(x). (15.109
a<x<b a<x<b
Definition 15.29. If a < x < b, the oscillation w(x) of f(x) at x is defined by
Wi(X) = #limn., or Wi(X—h,x+ h) (15.105
The corresponding definitions for x = aand x = b are
wi(a) = #limn., or Wi(a,a+ h) and wi(b) = #limn.,, o. Wi(b— h,b). (15.1006

Note that for a fixed x € (a,b), Wi(x— h,x + h) is a nonnegative and nondecreasing
function of h for 0 < h < min{x — a,b — x},therefore, w;(x) exists and is nonnegative.
Theorem 15.64.Let f be defined on [a,b]. Then f is #continuous at xo € [a,b] if
and only if wi(x) = 0; #continuity at a or b means #-continuity from the right or left,
respectively.

Definition 15.30. A subset Sof the R% is of Lebesgue measure zero if for every

e > 0,e ~ 0, there is a hyperfinite or hyper infinite sequence of open intervals
I1,12,... such that

Sc U ¥ (15.107
i
and

n
Ext ) L(Ij)) <en>1. (15.108

=1
Note that any subset of a set of Lebesgue measure zero is also of Lebesgue measure
zero.
Example 15.1. Any hyperfinite set S= {xi},.,.n € N\ is of Lebesgue measure zero,
since we can choose #open intervals 11,12, ...,I, such that x; € 1; and L(l;) < &/n,
1<j<n.
Definition 15.31.An infinite set S < R#% is hyper denumerable if its members can be
listed in a hyper infinite sequence (that is, in a one-to-one correspondence with the
positive hyper integers); thus, S = {X; };_..+.An infinite set that does not have this
property is hyper non hyper denumerable.
Example 15.2. Any denumerable set S= {x;};_+IS of Lebesgue measure zero, since
if e > 0,6 = 0, itis possible to choose open intervals
l1,12,...,s0thatx; € I; and L(l;) < 27¢,j > 1. Then (15.108) holds since



n
Extd 27 =1-2"<1.

=1
Theorem 15.64. If wi(X) < €,& = 0, fora < x < b, then thereisa § > 0,0 ~ 0 such
that Wi[a,b] < ¢, provided that a;,b; < [a,b] and b; —a; < 6.
Theorem 15.65.Let f be bounded (hyperbounded) on [a,b] and define
E, = {x € [a,b]wi(X) > p}.Then E, is #-closed; and f is integrable on [a,b] if and
only if for every pair of positive numbers p and 4, E, can be covered by hyper finitely
many open intervals 14,12, ...,l,,p € NN such that

p
Ext ) L(I)) < 4. (15.109
j=1

Theorem 15.66. A bounded (hyperbounded) function f is integrable on a finite or
hyperfinite interval [a,b] if and only if the set S of #-discontinuities of f in [a,b] is of
Lebesgue measure zero.

16.Hyper infinite external sequences and series

16.1.Hyper infinite external sequences

An hyper infinite sequence (or hypersequence) of R%-real numbers is a R%-valued

function defined on a set of hyperintegers {njn € N* An > k € N}. We call the values

of the function the terms of the hypersequence. We denote a hypersequence by listing

its terms in order; thus, {sn}f# = {Sk,Sks1, ... We often write {sn}+0r simple {sn} for

a shot.

Definition 16.1. A hyper infinite sequence {sn}‘;f# converges to a limit s € R if for
every ¢ ~ 0,¢ > Othere is an hyperinteger N € N*\N such that

|sn—s| <eifn=N (16.1)
In this case we say that {s,} is #-convergent and write
#lim +Sh=s (16.2

A hyper infinite sequence that does not #-converge diverges, or is #-divergent.

Theorem 16.1. The #-limit of a #-convergent hypersequence is unique:

Proof. Suppose that #lim, . +sy = s and #lim_ S, = s;.We must show that

s=¢s.Let ¢~ 0,6 > 0. From Definition 10.1, there are hyperintegers N; and N, such

that | ss—s1| < eif n> Ny,and | sy —s2| < ¢ if n > N2. These inequalities both hold if

n > N = max(N1,N2),which implies that: |s; — S2| < 2¢. Since this inequality holds for
every ¢~ 0,6 >0and |s;1 — S| is independent of ¢, we conclude that |s; — S| = 0; that
iS, S1 = S2.

Definition 16.2.A hypersequence {s,} is bounded above if there is a hyperreal
number

b € R# such that s, < b for all n € N*; bounded below if there is a real number a € R¥

such that s, > afor all n € N*;or bounded if there is a real number r € RZ such that

|sn] <r for all n e N*,

Theorem 16.2. Any #-convergent hypersequence {s,} is bounded or hyperbounded.

Proof. By taking ¢ = 1in Eq.(16.1), we see that if #lim__+s, = s, then there is an

hyperinteger N e NN such that | s, — s| < 1if n > N.Therefore,



Sh=|(Sh—S)+S| < |sn—95|+|s|< 1+ |s]if n > N;and
Sn < max{(MaX<i=n-1<|So|, [S1, - - - »|Sn-1[}), 1+ ||} for all n € N#, so {sp} is bounded.
Definition 16.3.(Sequences Diverging to +oo#).We say that
#lim,,,, ¢ Sn = +oo”
if for any hyperreal number a,s, > afor any n > N € NAN. Similarly,
#lim,., . #

if for any hyperreal number a, s, < afor any n > N € N\N. However, we do not regard
{sn} as #convergent unless #lim,_, .«Sy
is finite or hyperfinite, as required by Definition 16.1. To emphasize this distinction,
we say that {s,} diverges to co”(—co®) if #lim,, .+ Sn = 00 (—o0").
Theorem 16.3. Assume that a nonempty set S < R¥ of real RZ-numbers has a
supremum sup(S),then supSis the unique hyperreal number g € R% such that
(@ x< pforallxe S
(b) if ¢ > 0,6 = 0 (no matter how infinite small) there is an xo € Ssuch that
Xo > f—¢.
Proof. We first show that g = sup Shas properties (a) and (b). Since  is an upper
bound of S it must satisfy (a). Since any hyperreal number o less than g can be
written as ¢ = f— ¢ with e = p—a > 0, (b) is just another way of saying that no
number less than g is an upper bound of S. Hence, 8 = sup Ssatisfies (a) and (b).
Now we show that there cannot be more than one hyperreal number with properties
(a) and (b).
Suppose that g1 < B2 and B2 has property (b); thus, if ¢ > 0, thereisan xo € S
such that xo > f2 — €. Then, by taking ¢ = 2 — 1, we see that thereisan xo € S
such that xo > f2 — (B2 — B1) = B1,S0 B1 cannot have property (a). Therefore, there
cannot be more than one hyperreal number that satisfies both (a) and (b).
Definition 16.4. A hypersequence {sn} .+ iS nondecreasing if s, > sy for all n € N,
or nonincreasing if s, < sp; for all n € N¥. A monotonic hyper infinite sequence is a
hyper infinite sequence that is either nonincreasing or nondecreasing. If s, > Sp1
for all n € N*, then {s,} . is increasing, while if s, < sy-1 for all n € N, {sp} . IS
decreasing.
Theorem 16.4.(a) If {sn} .+ is Nondecreasing and there exists sup{sy|n € N*} then

#lim .., ..#Sn = sup{snn € N*}.
(b) If {sn} .+ is NONincreasing and there exists inf{sy|n € N*} then

#lim ., .#Sn = inf{sy|n € N*}..
Proof. (a) Let B = sup{sn|n € N*}. . If B < +0¥, Theorem 16.3 implies that if ¢ > 0 then
B —¢ < sy < B for some hyperinteger N € N\ . Since sy < sy < Bif n > N, it follows
that f— & < sy < Bif n > N.This implies that |[s, — | < ¢ if n > N, so #lim,, «sy = B,
by definition of the #limit. If B = +oo*
and b is any hyperreal number, then sy > b for some hyperinteger N. Then s, > b for
n>N, so #lim,, Sy = +oo".
Theorem 16.5.(Generalized Nested Intervals Theorem)
Let {In} e = {[@n,bn]} s [@n,bn] = RE be a hyper infinite sequence of #-closed
intervals satisfying each of the following conditions:
Mh=2lh2l32..21h2...,
(i) bn —an »x 0as n - «o*,

#Spn = —00



Then N%; I, consists of exactly one hyperreal number x € R%. Moreover both
hyper infinite sequences {a,} and {b,} #-converge to x.

Proof. See proof to Theorem 8.11.

Theorem 16.6.(Generalized Bolzano-Weierstrass Theorem) Every bounded
(hyperbounded) hyper infinite sequence {sn} .+ has a #convergent sub hyper
infinite sequence.

Proof.Let {sn} .+ be a bounded hyper infinite sequence. Then, there exists an
interval [a1,b;1] such that: (i) a;,b; € Q* and (ii) a1 < sy < by for all n € N*,
Either [ay, 242 | or [ 242 by | contains hyperinfinitely many terms of {Sn} .

That is, there exists hyper infinitely many n € N* such that a, is in |:a1, al%bl :|

or there exists hyper infinitely many n € N* such that a, is in [ 2%, by ].

If |:a1, al%bl] contains hyper infinitely many terms of {s,} . let [az,bz] =

[ a1, 2424 ]. Otherwise, let [az, by] = [ 2524, by .

Either [ a, 222 | or [ 222, b, | contains hyper infinitely many terms of {s} .-
If [ @, 2222 | contains hyper infinitely many terms of {sn} .+, let [as,bs] =

[ a2, 222 ].Otherwise, let [as, bs] = [ 252 ,b, ].

By hyper infinite induction, we can continue this construction and obtain a

hyper infinite sequence of intervals {[an, bn]}, .+ such that:

(i) for each n € N*, interval [an, bn] contains hyper infinitely many terms of {s\} .,
(ii) for each n e N#, [an;1,bni1] < [an,bn] and

(iii) for each n € N* by1 — ans = 5 (bn — an).

The nested intervals theorem implies that the intersection (1 [an,bn] of all of the

neN?

intervals [an,bn] is a single point s. We will now construct a sub hyper infinite
sequence of

{Sn} nen# Which will #-converge to s.

Since [az,b1] contains hyper infinitely many terms of {s,} .+, there exists ki € N*
such that sy, is in [a1,b1]. Since [az, bz2] contains hyper infinitely many terms of
{Sn} o there exists k, € N# ky > ki such that sy, is in [az,b2]. Since [as, bs]
contains hyper infinitely many terms of {s,} .+ there exists k3 € N* ks > k» such
that s, is in [as, bs]. Continuing this process by hyper infinite induction, we obtain a
hyper infinite sequencev<{s, } .+ such that sy, € [an,bn] for each n € N*.The
hypersequence {sk, } ..+ IS @ sub hyper infinite sequence of {sn} . Since Kn.1 > Kn
for each n € N*.Since #-lim,__+an = sand #lim,_ b, = sand a, < s, < b, for each
n € N¥, the squeeze theorem implies that that #lim . +s, = s.

16.2.Hyper infinite external series of constant.

Definition 16.5. If {an}"k“# is an hyper infinite external sequence of Cauchy hyperreal

numbers, the symbol
#

Ext Y an (16.3)
n=k

is an hyper infinite series, and a, is the n-th term of the hyper infinite series.



o

We say that Ext-)_ a, #-converges to the sum A € R¥, and write
n=k
oft
Ext > an=A (16.4)
n=k

if the hyper infinite sequence {An}f# defined by
i=n
An = EXt‘Zan (16'5)
ik

ot

n € N*¥ #converges to A. The hyperf inite sum A, is the n-th partial sum of Ext- >_ a,
n=k

ot

If {An}‘[f# diverges, we say that Ext-) a, diverges; in particular, if lim,, ,+«Aq = ¥
n=k

Iid

or —o*, we say that Ext Y a, #-diverges to «* or —o*, and write

n=k
oft oft
Ext > an = o or Ext- Y ap = —o*. (16.6)
n=k n=k

A divergent hyperinfinite series that does not diverge to +oo* is said to oscillate, or be
oscillatory.
Example 16.1 Consider the hyper infinite series

#

Ext > -1<r<1. (16.7)

n=0
Here a, = r",n > 0,n € N* and

An=1+r+r2+...+r“=11_—_”:1 (16.8)
which #-converges to 1 = 1/(1-r) as n - ¥ ; thus, we write
Ext—%rn =1UA-r),-1<r<1.
An hyperinfinite series can b(;:f)/iewed as a generalization of a gyperfinite sum

N
An = Ext)_ a, Therefore, #limy,.«An = A.

n=k
Theorem 16.7. The sum of a #-convergent hyper infinite series is unique.
ED# ED#
Theorem 16.8. Let >_a, = Aand Y_b, = B where A and B are finite or hyperfinite.
n=k n=k
Then
oft
n=k

and



ot
Ext D (Cxan) =CxA (16.10

n=k

if c € R¥ is a constant.
Theorem 16.9. (Cauchy’s #-convergence criterion for hyper infinite series) A hyper
infinite series Ext—Z:jk an #-converges if and only if for every ¢ > 0, = O there is an
gyperinteger N € N*\N such that

|[Ext > "aq| < ¢ (16.11)
ifm>n>N.
Corollary 16.1. If Ext—Z::k an #-converges; then #limy_#a, = 0.
Corollary 16.2. If Ext—Z:# an #-converges; then for each ¢ > 0,6 ~ O there is an

gyperinteger K € N*\N such that |Ext—2;°jk an| < gifk> K, thatis

#—Iimkﬁw#<Ext-Z::kan> - 0. (16.12)

16.3.Hyper Infinite Series of Nonnegative Terms.

ot

The theory of series Ext—Z an with terms that are nonnegative for sufficiently large
n=k
n € N*\N is simpler than the general theory, since such a series either #-converges to
a
finite or hyperfinite #-limit or diverges to «* , as the next theorem shows.

oot

Theorem 16.10.1f a, > O for n > k, then Ext—Z an #-converges if its partial sums are
n=1
bounded or hyper bounded, or #-diverges to «* if they are not. These are the only

oot n

possibilities and, in either case, Ext Y _ a, = {Aaln > Kk}, where A, = Ext ) _ a;.
n=k i=k
Theorem 16.11.(The Comparison Test) Suppose that
O<an<bynn=>k (16.13

Then

(@) Ext Y an < oo if Ext-)_ by < oo”.(b) Ext Y _ ay = oo if Ext ) _ by = oo’
n=k n=k n=k n=k

Theorem 16.12.(The Integral Test) Let
cn = f(n),n > Kk, (16.19
where f is positive; nonincreasing; and locally #-integrable on [k,«*). Then

Ext ) a, < oo (16.15
n=k

if and only if

ot

Ext j f(x)d*x < oo*, (16.16)
k



ot

Example 16.2. The integral test implies that the hyper infinnite series Ext—Z n—P
n=k
converge if p > 1 and diverge if 0 < p < 1, because the same is true of the

ot

integral Ext—j xPd¥x,a > 1.

a
The next theorem is often applicable where the integral test is not.
Theorem 16.13.Suppose that a, > 0 and b, > Ofor n > k. Then

oof oo

(8) ExtD_ an < oo* if ExtD by < oo and #lim . s g < oo,

n=k n=k
(b) EXt-nZk: an = oo if Ext—nZ; bn = «o* and #—Ilmnﬁw#b—: > 0.
Corollary 16.3. Suppose that a, > 0 and b, > 0 for n > k, and #lim ,_+ 20 = L.

N—oo bn

# #

o8]

where 0 < L < o Then Ext—Z an and Ext—Z b, #-converge or #-diverge together.

o0

Theorem 16.14.Suppose thzr:tkan > 0,b, > nOz,kand
Bon bbL;l. (16.17)
Then (a) Ext—Z an < oo if Ext—Z bn < o*. (b) Ext—Z an = oo if Ext—Z bn = oo
Theorem 16.;5k.(The Ratio Tesnt)kSuppose that a, n>k0 forn > k. Thennk
oo ot
(@) Ext Y an < oof if #Tim .. ag;l < 1.(b) EXt)_ an = oo if #:lim, ...+ ag;l > 1.If
n=k n=k
#1im .+ ag;l <1<#m, .« ag;l (16.18

ot

then the test is inconclusive; that is, Ext—Z an may #-converge or #-diverge.
n=k
Proof.(a) If #lim .« Al < 1, there is a number r such that 0 < r < 1 and

an
m < r for n e N* sufficiently large. This can be rewritten as a£+1 <

rn+l

rn
#

OC# o0
Since Ext) 1" < w*Theorem 16.14 (a) with b, = r" implies that Ext- ) | a, < oo,
n=k n=k
(b) If #1lim ., +20L > 1 there is a number r such thatr > 1 and aaL;l > r for

an
n e N* sufficiently large. This can be rewritten as a£+1

Ext—Zrn = wo*Theorem 16.14 (b) with b, = r" implies that Ext—Z an = oo,

n=k n=k
To see that no conclusion can be drawn if (12.18) holds,consider hyper infinite
series

Ext D a, = Ext ) n. (16.19
n=k n=k



This series #-converges if p > 1 or #diverges if p < 1,however,

#1im .- ag;l = FIm ag;l = 1. (16.20

Corollary 16.4.Suppose that a, > 0for n > kand #lim_ aa'{;l = L.Then

# #

(@) Ext Y an < o if L < 1.(b) Ext-)_an = oo if L > 1.
n=k n=k
The test is inconclusive if L = 1.
Theorem 16.16.(Generalized Raabe’s Test) Suppose that a, > 0 for large n € NN,

Let M = #—Iimn%#<aaL;1 - 1) and m = #—Iimn%o#< aa'{;l - 1>.Then

o0

# #

(@) Ext Y an < o if M < —1.(b) Ext ) _ an = oof if m > —1.
n=k n=k
The test is inconclusive if m< -1 < M.
Theorem 16.17.(Generalized Cauchy’s Root Test)bSuppose that a, > 0 for
n > k e NN, then

o0

oo# ot
(@) Ext Y an < oof if #Tm .+ g8 < 1.(b) Ext ) | ay = oo if Flim .« ya > 1.
n=k n=k

The test is inconclusive if #Ilim .+ ga, = 1.

16.4.Absolute and Conditional #-Convergence.

oot

Definition 16.6.A series Ext—Z an #-converges absolutely, or is absolutely
n=k

Iid

#-convergent if Ext—Z|an| < oo,
n=k

oot

oot

Theorem 12.18. If Ext Y _ a, #-converges absolutely; then Ext-) _ a, #-converges.
n=k n=k
Theorem 12.19. (Dirichlet’s Test for Hyper Infinite Series) The hyper infinite series

ot

Ext—Z anby, is #-converges if the following conditions are satisfied

n=k
(i) #lim,, . +an = 0,
(if)
oc#
Ext ) Jan — an| < oo (16.21)
n=k
and
(iii)) for all n > k
n
Ext Y by <M (16.22

i=k
for some constant M.
Proof. Let B,,n > k be the partial sum



n
Bn = Ext- ) by (16.23
i=k

ot

Let us consider the partial sums S,,n > k of Ext—Z anbn,where

n=k
n
Sy = Ext ) anby (16.29
i=k
By substituting by = Bx and b, = B, — Br-1,n > k+ 1,into (16.24), we obtain
n
Sh = adi+ Ext D _ ai(Bi - Biy), (16.25
i=k+1
which we rewrite as
n-1
Sh = anBn + Ext ) _(ai — &.1)Bi. (16.26)

i=k
Now (16.26) can be viewed as

Sy = T + anBn, (16.27)
n-1
where Tp1 = Ext—Z(ai —ai;1)Bi;that is, {Tn} is the hyper infinite sequence of partial
i—
sums of the hyper infinite series

Ext ) _(a — ai1)Bi. (16.28
i=k
Since |(& — ai+1)Bi| < Mjai — ai;1| from (16.22), the comparison test and (16.21)
imply that the series (16.28) #-converges absolutely. Theorem 12.18 now implies
that {Tn} .+ #converges. Let T = #lim .« Tn. Since B, is bounded (hyperbounded)
and #lim__+an, = 0, we infer from (16.27) that

#—Iimn%o#sq = #—"mn_,w#Tn_l + #—"mn_,w# anBn=T. (1629)

ot

Therefore, Ext ) | aqby is #-converges.
n=k
Corollary 16.4.(Abel’'s Test for Hyper Infinite Series) The series Ext—Z anbn

n=k
n

#-converges if a1 < an for n > k,#lim_+«a, = 0 and Ext—Z bn < M, for some
i—k
constant M.

ot

Corollary 16.5.(Alternating Hyper Infinite Series Test) The series Ext—Z(—l)“an
n=0

#-converges if 0 < an;1 < ap and #lim_ «a, = 0.

Proof.Let b, = (-1)", then {|Bs|} .+ IS @ hyper infinite sequence of zeros and ones

and therefore bounded. The conclusion now follows from Abel’s test.



16.5.Grouping Terms in a Hyper Infinite Series.

The terms of a hyper finite sum can be grouped arbitrarily by it hyper finite

(but not by countable set of it finite subsets) subsets by inserting corresponding

parentheses, see Appendix C. According to the next theorem, the same is true of an

hyper infinite series that #-converges or #-diverges to +oo*,

Theorem 16.20.Suppose that Ext—Z an = A, where —o* < A < o”. Let {nj} .+ be
n=k

an increasing hyper infite sequence of integers, with n; > k. Define

ny
b, = Ext Z an,
n=k

N2
b2 = EXt‘ Z an,
n=ny+1 (16. 3@

Then

oc#
Ext Y by = A (12.31)
=1

16.6.Rearrangement of hyper infite series.

A hyperfinite sum is not changed by rearranging its terms ,see Appendix C.

According to the next theorem, we see that every rearrangement of an absolutely
#-convergent hyper infite series has the same sum, but that conditionally #-convergent
series fail, spectacularly, to have this property.

ot

Theorem 16.21.If Ext—Z b, is a rearrangement of an absolutely #-convergent series

n=1

# #

o0 o0

Ext) _ a, then Ext) _ by also #converges absolutely, and to the same sum.
n=1 n=1

Theorem 16.22.If {an };_+ and {amj}jeN# are respectively the subsequences

o

of all positive and negative terms in a conditionally #-convergent series Ext—Z an
n=1
then

Ext ) an = of and Ext D _ an, = —o. (16.32
i=1 =1

Iid

Theorem 16.23.Suppose that Ext—Z an is conditionally #-convergent and u and v
n=1
are arbitrarily given in the extended hyperreals; with 4 < v. Then the terms of



OO# OO#
Ext—Z an can be rearranged to form a series Ext—Z b, with partial sums
n=1 n=1

n
B, = Ext—Z bi such that
i=1

fim Bn=vand lim Bn= s (16.33

Ny oo Ny oot

#

16.7.Multiplication of hyper infite Series.

Given two hyper infite series Ext—Z an and Ext—Z b, we can arrange all possible
n=0 n=0
products a;b;, i,j > 0in a two-dimensional array:

aobo agb: agh, aghs ---
aibo aib; ajb, ajbs .-
azbo axb: ab, abz - -- (16.34)
asbo asb; asb, asbs .-

where the subscript on a is constant in each row and the subscript on b is constant in
each column. Any sensible definition of the product

(Ext— O'z an> (Ext— wZ bn> (12.35
n=0 n=0

clearly must involve every product in this array exactly once; thus, we might define

ot

the product of the two series to be the series Ext—Z Pn, Where {pn},,+ iS a hyper
n=0

infite sequence obtained by ordering the products in (12.34) according to some

method that chooses every product exactly once.

# #

Theorem 16.24.Let Ext—Z an = Aand Ext—Z b, = B,where A and B are finite or

n=0 n=0

Iid

hyperfinite, and at least one term of each series is nonzero. Then Ext—Z ph=AxB
n=0

for every hyper infinite sequence {pn};_.+ obtained by ordering the products in

# #

o0 o0

(16.34) if and only if Ext- ) _ a, and Ext) _ by #converge absolutely:
n=0 n=0

oot

Moreover, in this case, Ext—Z pn #-converges absolutely.

n=0
Definition 16.7.The Cauchy product of Ext-) _ a, and Ext) _ by is EXt ) ¢,
n=0 n=0 n=0

where



n
Cn = Ext ) ajbn. (16.36)

j=0
Thus, c, is the external sum of all products ajbx, wherei > 0,j >0, andi+j =n;
thus,

n n
Cn = Ext ) ajbnj = Ext D _ bjan. (16.37)
j=0 i=0
Theorem 16.25. If Ext—Z an and Ext—Z b, #-converge absolutely to sums A and
n=0 n=0

n
B,then the Cauchy product Ext—Z ajbnj #-converges absolutely to AB.
j=0

ot

OO# n
Theorem 16.26. Let f(a) = Ext-) ‘;‘]—:’ and f(B) = Ext)_ [:]—!,then
n=0 n=0
f)f(B) = f(a + B). (16.39
Proof. From Eq.(16.37) we obtain

Cn = Ext-;(n“__—rrgm - n—:L!(Ext-Zc)( rrg,)an-mﬁm) - Ext—Zo% (16.39

Thus

f(a)f(B) = Ext i (“;—,ﬂ)n = f(a + p). (16.40

n=0

16.8.Double Hyper Infinite Sequences.

Definition 16.8. A double hyper infinite sequence of hyperreal numbers R% (complex
numbers C = R% + iR¥) is a RE-valued (C¢-valued) function s : N x N# - R¥ or

s N¥ x N* - C¢ We shall use the notation {Snm} , ne OF SIMPIY Snm.

Definition 16.9. We say that a double hyper infinite sequence s,m #-converges to

a e C{and we write #lim,, .., .+ Snm = &, if the following condition is satisfied:

for every ¢ > 0,¢ ~ 0,there exists N € N* such that |s,m —a| < ¢ if n,m > N.

Theorem 16.27. (Uniqueness of Double #-Limits). A double hyper infinite C#-valued
sequence has at most one #-limit.

Definition 16.10. A double hyper infinite sequence s, is called bounded

(hyper bounded) if there exists finite (hyperfinite) number M € R%, M > 0 such that
[sSnml< M, Vn,m e N¥#,

Theorem16.28. A #-convergent double C#-valued hyper infinite sequence is
bounded or hyper bounded.

Definition 16.11.A double C%-valued hyper infinite sequence sy is called

a Cauchy sequence if and only if for every ¢ > 0,¢ = 0, there exists a hypernatural
number N € NN such that |spq — Snml< &, Vp(p = n > N) and vqg(q > m> N).
Theorem 16.29.(Cauchy Convergence Criterion for Double hyper infinite Sequences).
A double C¢-valued hyper infinite sequence snm,n,m € N* #-converges if and only if it
is a Cauchy sequence.



Definition 16.12.Let s,m be a double R#-valued hyper infinite sequence.

(i) if sam < Six VNVjVMVk(n < j Am < k), n,m,j,k € N¥, we say the sequence Spm
is increasing.

(ii) snm > Sik, VNVjVmvk(n < jAm< k), n,m,j,k € N¥, we say the sequence shm

is decreasing.

(i) If shm Is either increasing or decreasing, then we say it is monotone.

Definition 16.13.For a double sequence s,m, the #Ilimits

#lim,,., . (#lim ., 5 Som)

and #lim,., ..+ (#lim ., .»Sym) are called repeated #-limits.

Theorem 16.30.Let #lim ., .# Sam= @ Then #lim ., . (#1lim ., +som) = a

if and only if #lim ., ..« Shm exists for each m e N*.

Theorem 16.31. Let #lim, .., ..» Sa,m = @ Then the repeated #-limits

#lim,,., o (#-lim ., o+ Som) and #lim ., L« (#lim ., .+ Som) exist and both are equal
to a if and only if (i) #lim,,., .+ Sam exists for each m e N*,and (ii) #-lim ., .,# Snm exists
for each n e N*,

Theorem 16.32.1f spm is a double sequence such that the repeated #-limit

#lim ., o+ (#1im ., .+ Sum) = aand the #limit #lim,,., ..+ S,m exists uniformly in

m € N* then the double #limit #lim .., .+ Sam = a.

Theorem 16.33.(Monotone Convergence Theorem). A monotone double R%-valued
hyper infinite sequence is #-convergent if and only if it is bounded (hyper bounded).
Further: (i) If s,m is increasing and bounded (hyper bounded) above, then

#lim ., e (1M, e Sam) = #im L, e (1M, e Som) = #lIM g L Sam.

(ii) If spm is decreasing and bounded (hyper bounded) below, then

#lim ., e (1M, e Sam) = #Iim ., e (1M, e Som) = #liM o, LS.
Theorem16.34.(The Sandwich Theorem). Suppose that Xnm, Snm,

and ynm are double R#-valued hyper infinite sequences such that

Xnm < Sam < Yam, VN,m e N¥,and #0im . ¢ Xom = #M L Yom.

Then sy, is #convergent and #lim, ., .« Xom = #liM ¢ Ynm = #limy s Som.
Definition 16.14. Let s,m be a double C¢-valued hyper infinite sequence and

let (k1,r1) < (k2,r2) <...< (kn,rn) <... be a strictly increasing sequences of

pairs of hypernatural numbers. Then the sequence sy, ., is called a subsequence of

N—y oo

Snm-
Theorem16.35.If a double C%-valued hyper infinite sequence snm #-converges

to number a € C%, then any hyper infinite subsequence of s,m also #-converges to a.
Theorem16.36.If the repeated #-limits of a double sequence s,m exist and

satisfy #lim ., .+ (#lim, .+ Sam) = #lim,, .+ (#lim ., .+Sum) = a,then the

repeted #-limits for any subsequence sy, ., €xist and satisfy

1M, e (1M e Spogn ) = #lIM L, e (BN, e Spoge) = @

Theorem16.37. Every double R%-valued hyper infinite sequence has a monotone
hyper infinite subsequence.

Theorem16.38.(Bolzano-Weierstrass Theorem). A bounded (hyper bounded) double
R#-valued hyper infinite sequence sequence has a #-convergent monotone
subsequence.



16.9.External Double Hyper Infinite Series.

Definition 16.15. Let z : N* x N¥ - C# be external hyper infinite double sequence
of complex numbers C% and let s,m be the double hyper infinite sequence defined by
the equation

n m
Som = Ext Z(Ext— Zzi,,). (16.41)
=1

i=1

The pair (z,5) is called a double hyper infinite series and is denoted by the symbol

Ext Y Zom (16.42)

n=1m=1

or, more briefly by Ext—ZZ’Ll Znm. Each number z,, is called a term of the double
series and each spn, is called a partial sum.

Definition 16.16.We say that the double series Ext—ZZ’Ll Znm IS #-convergent to the
sum sif #lim,, ... .+ Sam = S. If no such #limit exists, we say that the double series
Ext-z:::i1=1 Z,m is #-divergent.

Definition 16.17. The hyper infinite series

OC# OO#
Ext ) (Ext— > zn,m> (16.43
m=1

n=1

and

o0

Ext ) (Ext— i zn,m> (16.44)
n=1

m=1

are called repeated hyper infinite series.

ot

Theorem 16.38.1f the double hyper infinite series Ext Z Znm IS #-convergent, then

n=1nm=1

#‘ ||m Zn’m = O (1245)

nmoy oof

Theorem 16.39.(Cauchy #-Convergence Criterion for Double hyper infinite Series.)

Iid

A double hyper infinite series Ext Z znm #-converges if and only if its sequence of
n=1m=1
partial sums s, is Cauchy.

# #

o0 0

Theorem16.40.If the double series Ext- Z Znm #-converges to s; and Ext Z Unm

n=1m=1 n=1m=1
ED# OO#
#-converges to sy, then: (i) Ext Z Znm + EXxt Z Unm = S1 + Sp.
n=1m=1 n=1m=1

(ii) Ext Z CX Zpnm = CX (Ext— Z zn,m)

n=1m=1 n=1m=1



Iid

Theorem16.41.Suppose that the double series Ext Z Znm IS #-convergent, with
n=1m=1

0

sum s. Then the repeated series Ext—Z (Ext—Zzn,m> and

n=1 m=1

m=1 n=1

Ext (Ext— > zn,m> are both #-convergent with sum sif and only if for every

ot

m € N*, the series Ext—Z Z,m is #-convergent, and for every n e N#, the

n=1

ot

series Ext—Z Znm IS #-convergent.
m=1

16.10.Interchanging the order of summation of hyper

infinite sum.
Theorem 12..Assum that

ot ot
Ext—Z(Ext—Z|ajk|> < oo (16.46)
k=1

i=1

Then

Ext wZ(Ext— i|ajk|> = Ext wZ(Ext— i|ajk|> (16.47)

i=1 k=1 k=1 j=1

17 .Hyper infinite sequences and series of R#%-valued
functions.

17.1.Uniform #-Convergence

If f1,... f. fiet, ... fn, ... ,n € N# are R#-valued functions defined on a subset D < R# of
the hyperreals, we say that {f,(X)} .+ IS an hyper infinite sequence of functions on D.
If the sequence of values {fn(X)} .+ #converges for each x in some subset Sof D,
then {fn} .+ defines a #limit function on S The formal definition is as follows.
Definition 17.1. Suppose that {fn(X) } .+ iS @ hyper infinite sequence of functions on
D < R and the hyper infinite sequence of values {fn(x)}, .+ #-converges for each x
in some subset Sof D. Then we say that {f,} . #-converges pointwise on Sto the
#-limit function f, defined by

f(x) = #1lim, . +fn(X),x € S (17.1)

Definition 17.2.Let f be a function defined on S « R% and there exist supcs|f(x)|,then
we set

Iflls = supesff(x)]. (17.2)



Lemma 17.1. If g and h are defined on S then |[g+hl|g< |lglls+ [Ihllg

and ||g x h|[g< |lgllg x Ih|ls. Moroever if either g or h is bounded on S, then
lg-hlls=lglls—hlls

Definition 17.2. A hyper infinite sequence {f,} .+ of functions defined on a set S
#-converges uniformly to the #limit function f on Sif #lim | f, —f||5 = 0.

Thus, f, #-converges uniformly to f on Sif for each ¢ > 0,6 = 0, there is an integer
N € NN such that

Ifo—fll < eif N> N, (17.3)

Theorem 17.1. Let f,,n € N* be hyper infinite sequence defined on S Then

(a) fn #-converges pointwise to f on Sif and only if there is, for each ¢ > 0, ~ 0,
and x € S an integer N € NN which may depend on x as well as ¢ such that
[fn(x) —f(X)| < eifn>N;

(b) fn #-converges uniformly to f on Sif and only if there is for each ¢ > 0,6 ~ 0, an
integer N € N*AN which depends only on and not on any particular x in Ssuch that
[fn(x) —f(X)| < e forall x e Sif n > N.

Theorem 17.2. If f, #-converges uniformly to f on S then f, #-converges
pointwise to f on S The converse is false; that is pointwise #-convergence does
not imply uniform #-convergence.

Theorem 17.3. (Cauchy’s Uniform #-Convergence Criterion) A sequence

of functions f, #-converges uniformly on a set Sif and only if for each ¢ > 0, = 0,
there is an integer N € N\N such that

[fn = fmllg < € if n,m>N. (17.4)

Theorem 17.4. If f, #-converges uniformly to f on Sand each f, is #-continuous

at a point Xo € S then so is f. Similar statements hold for #-continuity from the right
and left.

Theorem 17.5. Suppose that f,, #-converges uniformly to f on S= [a,b]. Assume
that f and all f, are #-integrable on [a,b]. Then

b b
Ext j fx)d*x = #lim .+ (Ext— j fn(x)d#x> . (17.5)

a a

Proof. Since
b
< Ext—J.|f(x) —fa()d*x < (b-a)|If-fnllg  (17.6)

a

b b
Ext I f(x)d#x — Ext I fa(x)d?x
a a
and #lim_«[f - fql|g = O,the Eq.(17.5) follows.
Theorem 17.6. Suppose that f,(x) #-converges pointwise to f and each fy(x) is
#-integrable on [a,b].Then
(a) If the #-convergence is uniform, then f(x) is #-integrable on [a,b] and (13.5) holds.
(b) If the sequence ||fn |}, is bounded and f(x) is #-integrable on [a, b], then
(13.5) holds.
Theorem 17.7. Suppose that f,"(x) is #continuous on [a,b] for all n € N* and
{fn/#} L #-converges uniformly on [a,b] Suppose also that {fn(Xo)} o

#-converges for some Xp € [a,b]. Then {fn(x)} . #-converges uniformly on [a,b] to
ne



a #-differentiable #-limit function f(x) and
f#(x) = #-lim .+ fn (X),X € (& b), (17.7)
while
f.* (@) = #lim,. +fn (@+),f%(b) = #lim . +fn (b —). (17.8)

17.2.Hyper Infinite Series of Functions.

Definition 17.3. If {f; (X)}ﬁi is a hyper infinite sequence of R#-valued functions defined
on a set D < R¥ of hyperreals, then

Ext—ifj (X) (17.9
j=k

Iid

is an hyper infinite series of functions on D. The partial sums of , ExtY_fj(x) are
j=k

defined by

Fn(X) = Ext-zn)f,-(x),n e N*, (17.10
j=k

If Fn(X) #-converges pointwise to a function F on a subset S c D, we say that
n

Ext>_f;(x) #-converges pointwise to the sum F(x) on S, and write
j=k

F(x) = Ext—ifi (X). (17.1)
j=k

n

If Fn(x) #-converges uniformly to F(x) on S we say that Ext-)_ fj(x) #-converges
j=k

uniformly to F(x) on S

Example 17.1. The functions fj(x) = xJ,j € N* define the hyper infinite series

#

o0 n
Ext-)_x on D = (—o",00). The n-th partial sum of the series is Fn(x) = ExtY_X,
j=0 =0

or, in closed form,
=Xy,
Fn(X) = 1-x (17.12
n+1 x=1

Therefore {F,} #-converges pointwise toif |[x| < 1 and #-diverges if [x| > 1, hence,

#

we get F(x) = Ext> % = (1- x),-1 < x < 1.Since the difference F(x) — Fn(X) =
j=0

"_can be made arbitrarily infinite large by taking x infinite close to 1,

1X— X
IF=Fnll 1) = «* so the #-convergence is not uniform on (-1, 1). Neither is it
uniform on any interval (-1,r] with 1 < r < 1, since ||F — Fn||[_”] =r"(1-r)and
#lim__+r" = o, Put another way, the series #-converges uniformly on #-closed
subsets of (-1, 1).

Theorem 17.8.(Cauchy’s Uniform #-Convergence Criterion) A hyper infinite series




ot

Ext>_fi(x) #-converges uniformly on a set S — R¥ if and only if for each ¢ > 0,6 ~ 0
i—0
there is an hyperinteger N € N* such that

H Ext—Zm:fi(x) <eg (17.13

S

ifm>n>N.
o
Corollary 17.1. If Ext-)_fi(x) #converges uniformly on S, then #-lim,__«||fa|ls = O.

i=0

ot

Theorem 17.9.(Weierstrass’s Test) The hyper infinite series Ext-)_ fi(x) #-converges
i—0
uniformly on Sif

[fnlls < Mn,n = kK, (17.14
ot
where Ext-)_ M, < oo*.
n=k

Theorem 17.10.(Dirichlet’'s Test for Uniform #-Convergence) The hyper infinite series

ot

ExtY_ fa(X)gn(X) #-converges uniformly on Sif f, #-converges uniformly to zero on S,

n=k
#

ExtY_(fra(X) — fn(X)) #-converges absolutely uniformly on S and
n=k

<M, (17.14)

S

Ext Xn: gi(x)
i=k

where n > k, for some constant M.
#

Corollary 17.2.The hyper infinite series Ext->_ f,(X)gn(X) #-converges uniformly on
n=k

Sif fria(X) < fn(X),x € Sn > k, {f,} #-converges uniformly to zero on S, and

n
‘ Ext > gi(x)
i=k
for some constant M.

17.3.#-Continuity, #-Differentiability, and Integrability of
hyper infinite Series.

<M, (17.15

S

ot
Theorem 17.11.1f Ext>_ f,(x) #converges uniformly to F(x) on Sand each f, is

n=k
#-continuous at a point xo in S, then so is F(x). Similar statements hold for #-continuity
from the right and left.

of

Theorem 17.12.Suppose that Ext-)  f,(x) #-converges uniformly to F(x) on S= [a,b]
n=k

Assume that F(x) and f,(x),n > k, are integrable on [a,b]. Then

o0

b # b
Ext j F(x)d#x = Ext Z(Ext— j fn(x)d#x>. (17.16

a n=k a



Theorem 17.13.Suppose that f, is #-continuously #-differentiable on [a, b] for each

# #

0 0

n >k, Ext>_fa(Xo) #-converges for some xo € [a,b] and Ext>_ fi#(x) #-converges

n=k n=k

ot

uniformly on [a,b]. ExtY_ fn(x) #-converges uniformly on [a,b] to a #differentiable
n=k

function F(x), and F#(x) = Ext-)_f#(x),a < x < b,while F#*(a+) = Ext)_f#(a+)
n=k n=k

#

and F#(b-) = Ext>_f#(b-).
n=k

18.Hyper Infinite Power Series.

18.1.The convergence properties of hyper infinite power

series.
Definition 18.1. A hyper infinite series of the form

#

Ext D an(Xx—Xo)" (18.1
n=0

where xo € R% and a, € R n e N* is called a hyper infinite power series in (X — Xo).
The following theorem summarizes the #-convergence properties of hyper infinite
power series.

Theorem 18.1.In connection with the hyper infinite power series (14.1) define Rin
the extended hyperreals by

L = Elim, el (18.2)

In particular, R = 0 if #1im . +ifJas| = o, and R = oo if #1lim __+4[an] = 0.Then

the hyper infinite power series #-converges:

(@) only forx = xpifR=0

(b) for all x e R% if R = o#, and absolutely uniformly in every bounded set;

(c) forx € (Xo — R X0+ R) if 0 < R < 1, and absolutely uniformly in every closed

subset of this interval.

The series #-diverges if [x — Xo| > R. No general statement can be made concerning
#-convergence at the endpoints x = Xo + Rand x = Xo + R : the series may #-converge
absolutely or conditionally at both; #-converge conditionally at one and #-diverge at the
other; or #-diverge at both.

oot

Theorem 18.2. The radius of #-convergence of Ext>_an(Xx—Xo)" is given by

n=0
% = #-lim,_.»| S22 (18.3)
if the #-limit exists in the extended hyperreals.
Example 18.1. For the hyper infinite power series
O(J# n
Ext Y X (18.4)

n=0 n!

one obtains that



a

n+1 n!
an

o T+ 1)1
Therefore, R = «* ; that is, the series #-converges for all x € R%, and absolutely
uniformly
in every bounded set.
Theorem 18.3. A hyper infinite power series

#

f(x) = Ext—ian(x— Xo)" (18.5)
n=0

= #lim,—L— = 0. (18.4)

= #-lim m =

#lim |

with positive radius of #-convergence R s #-continuous and #-differentiable in its
interval of #-convergence; and its #-derivative can be obtained by #-differentiating term
by term; that is;

#

f'#(x) = Ext—inan(x—xo)“‘1 (18.6)
n=0

which can also be written as

#

f#(x) = Ext—i(n + Dan.1(X— Xo)" (18.7)
n=0

This hyper infinite series also has radius of #-convergence R.
Theorem 18.4. A hyper infinite power series

#

f(x) = Ext—ian(x —Xo)" (18.8)
n=0

with positive radius of #-convergence R has #-derivatives of all orders in its interval of
#-convergence, which can be obtained by repeated term by term #-differentiation thus,

#

FO#(x) = Ext (N 1) - + (1= K+ 1)an(x— X0)" =
n=k

» N (18.9
= Ext-2|: (Ext— H j)an(x— xo)”:|.
n=k j=n-k+1

The radius of #convergence of each of these hyper infinite series is R.
Corollary 18.1. (Uniqueness of hyper infinite Power Series) If

# #

Ext Y an(X—Xo)" = Ext > bn(X—Xo)" (18.10
n=0 n=0
for all x in some interval (Xo —r,Xo + r) then
an = bp,n > 0. (18.11)
Corollary 18.2. If
f(x) = ExtY_an(X—Xo)", [X—Xo| < R (18.12
n=0
then
(n)#
an = 1 _O) (18.13

Theorem 18.5. If x; and x; are in the interval of #-convergence of



#

f(x) = Ext—ian(x— Xo)" (18.14

n=0
Then
X2 ot
a
Ext j f(x)dfx = Ext—n§ B0 (xg — x0)"™" — (1 = %0)"" ] (18.15

X1
that is, a hyper infinite power series may be integrated term by term between any
two points in its interval of #-convergence.
Theorem 18.6.Suppose that f(x) is hyper infinitely #-differentiable on an interval |
and

#-limm#g—T [f @0, =o. (18.16)
Then, if xo € 1°,the hyper infinite Taylor series
o £ (n)#
Ext—Zw(x—xo)” (18.17)
n=0 n:
#-converges uniformly to f(x) on I, = I N [Xo —r,Xo + r].
Theorem 18.7.If
of
f(x) = Ext-D_an(X—Xo)", X — Xo| < Ry (18.18
n=0
and
g(x) = ExtD_bn(x—Xo)" X — Xo| < Rz (18.19
n=0

and a and p are constants, then

oot

af(X) + Bg(X) = Ext D (aan+ Bbn)(X—Xo)", X — Xo| < R, (18.20

n=0
where R> min{Ry,Rz2}.
Theorem 18.8.1f f(x) and g(x) are given by Eq.(18.19) and Eq.(18.20) correspondingly,
then

#

f(x)g(x) = ExtD_ca(X—X0)",[X—Xo| < R, (18.21)
n=0
where
n n
Cn = EXt‘ZaJ bn_' = Zan_j bJ, (1822)
=0 =0

n € N* and R> min{Ry,R}.
Theorem 18.9.(Generalized Abel’'s Theorem) Let f(x) be defined by a hyper infinite

power series
#

f(x) = Ext D> an(X—Xo0)",[Xx—Xo| < R (18.23
n=0

with finite or hyperfinite radius of #-convergence R € R%.
ot

(@) If ExtY_anR" #-converges, then
n=0



oot

# limy., xr- f(X) = ExtY_anR". (18.24

n=0
oft

(b) If Ext)>_(-1)"a,R" #-converges, then
n=0

oot

# limy., oory F(X) = Ext Y (-1)"asR". (18.25
n=0

18.2.The R¥-valued #-exponential Ext-exp(x)

We define the #-exponential Ext-exp(x) function as the solution of the differential
equation

f#(x) = f(x),f(0) = 1. (18.26)
We solve it by setting
OO# OC#
f(x) = Ext-D_anx",f#(x) = Ext-D_ nax". (18.27)
n=0 n=0
Therefore
Extexpx) = Ext Y >r<]—'|‘ (18.28
n=0 "
From Eq.(18.40) and Eq.(18.28) we get
(Ext-exp(x))(Extexply)) = Extexp(x+Yy), (18.29
for any x,y € R% We often denote #-exponential Ext-exp(x) by Exte
Exte*. (18.30

18.3.The R#-valued Trigonometric Functions Extsin(x) and
Ext-cogX).

We define the R%-valued Trigonometric Functions Extsin(x) and Extcogx) by

Ext-sin(x) = Ext i(—l)”ﬁ (18.31)
and
Ext-cog(x) — Ext 2( 1" éf]")l . (18.32

It can be shown that the series (18.30) and (18.31) #-converge for all x € R¥ and
#-differentiating yields

[Ext-sin(x)] *

(2 )l = Extcogx) (18.33

and

X2n 1 X2n+1

a1y - Xt Z( O n+ 1) (18.34)
—[Ext-sin(x)].

[Ext-cogx)] * = Ext Z( n"



18.4.R%-valued functions of several variables.

In this subsection we study R#-valued functions defined on subsets of the
n-dimensional external linear space R#",n e N* which consists of all external and
internal hyperfinite (or finite) sequences (called a vector) X = {xi}:j = {Xi}:_, of
hyperreal numbers, called the coordinates or components of vector X.
Definition 18.2. The vector sum of X = {x;}/=1 and Y = {y;} " is

X+Y = {X+yi}7. (18.35
If a € R% is a hyperreal number, the scalar multiple of X by ais

a-X = {ax}. (18.36

Theorem 18.10.If X,Y, and Z are in RZ" and a,b € R¥ are hyperreal numbers, then
() X+Y =Y + X - vector addition is commutative

(i) (X +Y) +Z =X+ (Y +Z) - vector addition is associative

(iii) There is a unique vector 0, called the zero vector, such that X +0 = X for all
X e R

(iv) For each X € R#" there is a unique vector —X such that X +(-X)= 0
(v)a«(b-X)=(ab)-X

(vij(@a+b):-X=a+-X+b-X

(vila.-(X+Y)=a-X+a-Y

(viii) 1+ X = X.

Clearly, 0 = {0}=] and, if X = {x;}|=, then =X = {-x;} .

We write X + (=Y ) as X — Y. The point O is called the origin.

Definition 18.3. The length of the vector X = {xi}i=2 is

1/2
IXI = (Ext X" x2) ™. (18.37
The distance between points X and Y is | X = Y ||; in particular, || X|| is the distance
between X and the origin. If | X| = 1, then X is a unit vector.
Definition 18.4.The inner product X - Y of X = {x;}i-; and Y = {y;} | is

ien

XY =Ext)." X (18.39
Theorem 18.11. (Schwarz's Inequality) If X,Y € R#" then
XY < XYL (18.39

with equality if and only if one of the vectors is a scalar multiple of the other:
Theorem 18.12. (Triangle Inequality) If X,Y € R#" then

IX+Y < X[+ YL (18.40

with equality if and only if one of the vectors is a nonnegative multiple of the other.
Corollary 18.3. If X,Y,Z € R, then

IX=Z| < [X=Y[+]Y-2Z]. (18.4)
Corollary 18.4. If X,Y € R#", then
IX =Y = [IXI =Y (18.42
Theorem 18.13.1f X,Y,Z € R¥ and a € R¥ is a scalar, then

(i) laX|l = falllX]]
(i) IX] = 0, with equality if and only if X =0



@iii) | X =Y | =0, with equality if and only if X =Y

(V)XY =Y X

V) X« (Y+2)=X-Y+X-Z

(Vi) (cX) Y =X-(cY)=c(X-Y)

Definition 18.5.Non-Archimedian metric space (X,d) is a set X together with a
R#-valued function d : X x X - R¥ (called a metric or non-Archimedian distance
function) which assigns a hyperreal number d(x,y) to every pair x,y belongs X
satisfying the properties:

1.d(x,y) > 0and d(x,y) = 0iff x =y,

2.d(x,y) = d(y,x),

3.d(x,y) + d(y,2) > d(x,2).

Remark 18.1. Note that external linear space R#" endroved with distance function
d(X,Y) = || X = Y| satisfying the properties 1-3 mentioned above in Definition 14.5.

18.5.Line Segments in R¥", n € N*,

Definition 18.6. Suppose that Xo,U € R# and U # 0. Then the line through
Xo in the direction of U is the set of all points in R#"of the form

X(Xo,U)= Xo +tU,—o < t < oo, (18.43
A set of points of the form
X=Xo+tU,tg <t <t (18.44)

is called a line segment. In particular, the line segment from X, to X; is the set of
points of the form

X = Xo+1t(X1—Xo) = tX1+ (1 - 1)X0,0 < t < 1. (18.45

Definition 18.7. A hyper infinite sequence of points X, n € N* in R#" #-converges to
the #limit X if
#-1lim ., [ Xn—X]| = 0. (18.46

In this case we write #lim .« X, = X.

Theorem 18.14. Let X = {x;}\-} and Xm = {Xi,}i,m > 1.Then #lim ., .+ Xm = X

if and only if #lim .. .+Xi, = Xi,1 < i < n;that is a hyper infinite sequence {Xn} of
points in R#" #-converges to a #limit X if and only if the hyper infinite sequences

of components of {Xn} #-converge to the respective components of X .

Theorem 18.15.(Cauchy’s #-Convergence Criterion) A hyper infinite sequence {Xnm}
in R# #-converges if and only if for each ¢ > 0,¢ ~ 0, there is an hyperinteger

N € NN such that

[Xn=Xml| <& (18.47

if n,m> N.

Definition 18.8.1f A is a subset of a metric space R#" then x is a #-limit point of A
if it is the #limit of an eventually non-constant hyper infinite sequence {a; },_+ of
points of A.

Definition 18.9.A subset A is said to be a #-closed subset of R#" if it contains all
its #-limit points.

Example 18.1.(i) R% with the canonical metric d(x,y) = [x — y|,since in R% every
hyperreal number is a #limit point of the hyper infinite sequence {d },_+ of



hyperrationals g; € Q*,i e N,

(i) The empty set is #-closed.

(ii)) Any finite set is #-closed.

(iv) Any hyperfinite set is #-closed.

(v) The closed interval [a,b],where a,b € R%, is #-closed subset of R# with its
canonical metric.

(vi) Let A be a set A = {¢|l¢| ~ 0}.A set A is #-closed subset of R%,since in A

every hyperreal number 6 € A is a #-limit point of the hyper infinite sequence

{0i }i+ Of hyperrationals gi € A N Q*,i € N*,

Definition 18.10.An #-neighbourhood of a point p in a metric space (X,d) is

the set N:(p) = {x € X|d(x,p) < &,& ~ O}

Definition 18.11.A subset A of a metric space (X,d) is called #open in X if every
point of A has an #-neighbourhood which lies completely in A.

Example 18.2. (i) Any open interval (a,b) is an #-open set in R# with its canonical
metric d(x,y) = [X—Y|.

(i) A set A = {¢|l¢] = O} is #-open subset of R¥, since every point of A obviously has a
#-neighbourhood which lies completely in A.

Remark 18.2.Note that a set A = {¢|le| = O} are #-open and #-closed simultaneously.
Definition 18.12.A subset A of a non-Archimedian metric space X is admissible if

A is exactly #-closed or exactly #-open but not #-open and #-closed simultaneously.

Theorem 18.16.(i) The union (of an arbitrary number) of #-open admissible sets is

#-open.(ii) The intersection of finitely or hyper finitely many #-open admissible sets

is #-open.

Proof. (i) Let x e UAi = A. Then x € A; for some i. Since this is #-open, x has an

#-neighbourhood lying completely inside A; and this is also inside A.

(i) It is enough to show this for just two #-open sets A and B.So suppose x € AN B.

Then x € A and so has an #-neighbourhood N, (p),e1 = 0 lying in A.Similarly x has an

#-neighbourhood N,,(p),&2 ~ 0 lying in B. So if ¢ = min{e1, &2} the #neighbourhood

N:(p) lies in both A and B and hence in AN B.By hyper infinite induction statement (ii)

holds in general.

Theorem 18.17. Any admissible subset A of a metric space X is #-closed if and only

if its complement X\A is admissible and is #-open subset of a metric space X.

Proof. 1.Suppose A is admissible and A is #-closed. We need to show that X\A is
#-open.

So suppose that x belongs X\A. Then some #-neighbourhood of x does not meet A

(otherwise x would be a #-limit point of A and hence in A). Thus this #-neighbourhood

of x lies completely in X\A which is what we needed to prove.

2.Conversely, suppose that X\A is #-open. We need to show that A contains all its

#-limit points. So suppose x is a #-limit point of A and that x ¢ A. Then x € X\A and
hence

has an #-neighbourhood subset X\A. But this is an #-neighbourhood that does not
meet A

and we have a contradiction.

Definition 18.13.1f Sis a nonempty subset of R#", then

d(S) = sup{[X = Y[[IX,Y € S} (18.48)



is the diameter of S. If d(S) < «# Sis bounded or hyperbounded.If d(S) = «#,Sis
hyperunbounded.

Theorem 18.18. (Principle of Nested Sets) If S1,S,, ..., are #-closed nonempty
subsets of R#" such that

vr(r e N9)[S1 < S (18.49
and
#lim_, +d(Sr) =0, (18.50
then the intersection
A= ﬂ S (18.51)
r=1

contains exactly one point:
Proof.Let {X;} be a hyper infinite sequence such that X; € S;,r > 1. Because of
(18.49), X, € Skifr >k, so || X; — Xs|| < d(Sk) ifr,s > k.
From (18.50) and Theorem 14.15., X, #-converges to a #limit X. Since X is a #-limit
point of every S¢ and every Sy is #-closed, X is in every Si. Therefore, X € A, so A
+ .
Moreover, X is the only point in A, since if Y € A, then || X - Y| < d(Sk),k > 1,and
(18.50) implies that Y = X.
Definition 18.14. If Sis a nonempty admissible subset of R#" we say that Sis a
#-compact set in R if is a #-closed and bounded or hyperbounded set.
Definition 18.15. Collection H of admissible #-open sets is an #-open covering of
aset Sif Sc U{HH € H}.
Theorem 18.19.(Heine-Borel Theorem) If H is an #-open covering of a #-compact
subset S then Scan be covered by hyper finitely many sets from H.
Proof.The proof is by contradiction. We first consider the case where n = 2.Suppose
that there is a #-open covering H for S from which it is impossible to select a
hyperfinite
subcovering. Since Sis bounded or hyperbounded, Sis contained in a #-closed square
T = {{Xy}ai < x < a;+L,az2 < xaz + L} with sides of length L (Pic. 14.5.1).

Pic.18.5.1.

Bisecting the sides of T as shown by the dashed lines in Figure 14.5.1 leads to four
#-closed squares, T®, T@ T® and T®, with sides of length L/2. Let
S =8SNT,1<i<4.Each SV, being the intersection of admissible #-closed sets,is



#-closed, and S = U, S¥.Moreover, H covers each S©, but at least one S cannot be
covered by any finite or hyperfinite subcollection of H, since if all the S¥could be, then
so could S Let S; be a set with this property, chosen from S®V, S® S® and S¥,
We are now back to the situation we started from: a #-compact set S; covered by H,
but not by any hyperfinite subcollection of H.However, S is contained in a square T
with sides of length L/2 instead of L. Bisecting the sides of T1 and repeating the
argument, we obtain a subset S, of S; that has the same properties as S except that it
is contained in a square with sides of length L/4. Continuing in this way produces a
hyper infinite sequence of nonempty #-closed sets S = S S1,S,,. .., such that
S © S and d(&) < L/2K12 k > 0. From Theorem 14.18, there is a point X in
N, S. Since X € S, there is an open set H in H that contains X, and this H must also
contain some #-neighborhood of X. Since every X in S satisfies the inequality
|X = X|| < 27%12L it follows that S = H for k € N#/N sufficiently large. This contradicts
our assumption on H,which led us to believe that no S could be covered by a
hyperfinite
number of sets from H.Consequently, this assumption must be false: H must have a
finite or hyperfinite subcollection that covers S. This completes the proof for n = 2.
The idea of the proof is the same for n > 2. The counterpart of the square T is the
hypercube with sides of length L :
T={(X1,X2,...Xn)|[a <X <a+L,1<i<n}.
Halving the intervals of variation of the n coordinates X1, Xa, ... X, divides T into 2"
closed hypercubes with sides of length L/2 :
TO = {(X1,X2,....Xn)[oi < X < bj +L/2,1<i < n},
where b; = g or b; = a; + L/2. If no hyperfinite subcollection of H covers S then at
least one of these smaller hypercubes must contain a subset of Sthat is not covered
by any hyperfinite subcollection of S. Now the proof proceeds as for n = 2.

18.6.#-Neighborhoods and #-open sets in R¥",n € N*,
Connected Sets and Regions in R,

Definition 18.16. Assum that A is admissible subset of R#",

(i) The #interior #int(A) of a set A is the largest open subset A,

(ii) The #-closure #-cl(A) of a set A is the smallest #-closed set containing A.
Theorem 18.20. 1. #-cl(9) = &

2. A c #-cl(A) for any set A.

3. #-cl(AU B) = #-cl(A) U #-cl(B) for any sets A and B.

4. cl(#cl(A)) = #-cl(A) for any set A.

Proof.1. and 2. follow from the definition.

To prove 3 note that #-cl(A) U #-cl(B) is a #-closed set which contains AU B and so
#-cl(A) < #-cl(AU B). Similarly, #-cl(B) c #-cl(AU B) and so

#-cl(A) U #-cl(B) < #-cl(AU B) and the result follows.

To prove 4 we have #-cl(A) c #-cl(#-cl(A)) from 2. Also #-cl(A) is a #-closed set
which contains #-cl(A) and hence it contains #-cl(#-cl(A)).

Example 18.3.For R# with its usual topology induced by its canonical metric
d(x,y) = x-y|, #cl((a,b)) = [a,b] and #int([a,b]) = (a,b).

Definition 18.17. If ¢ > 0,¢ ~ 0, the e-neighborhood of a point X in R is the set



N:(Xo) = {X|lIX = Xo| < &}. (18.52

Definition 18.18.1f X is a point in in R and r > 0O, the sphere of radius r about X

is the set S (Xo) = {X||X = Xo| =1}

Definition 18.19.1f X, is a point in in R and r > 0O, the #-open n-ball of radius r about

Xo is the set B, (Xo) = {X|||X = Xo|| < r} . Thus, e-neighborhoods are #-open n-balls.

If X1isinB;(Xo) and || X = X1|| <& =r1—||X—=Xo|,then X is in B;(Xo).

Thus, B;(Xo) contains an g-neighborhood of each of its points, and is therefore
#-open.

The #-closure of B,(Xp) is the #-closed n-ball of radius r about X, defined by

#cl(Br(X0)) = 4X|IX = Xoll < r},r = [X1-Xoll.

Proposition18.1. If X1 and X are in S;(Xo) for some r > 0, then so is every point on

the line segment from X to Xo.

Definition 18.20.A subset S ¢ R is #-connected if it is impossible to represent Sas

the union of two disjoint nonempty sets such that neither contains a #-limit point of the

other; that is, if Scannot be expressed as S= AU B, where

A+ J,B+J,#cl(A)NB = 3,#cl(B)NA= . (18.53

If Scan be expressed in this way, then Sis #-disconnected.

Definition 18.21. A region Sin R is the union of an #-open #-connected set with
some, all, or none of its #-boundary; thus, #-int(S) is #-connected, and every point of
Sis a #limit point of #int(S).

18.7.The #-limits and #-continuity R#-valued functions of

n € N* variables.

We denote the domain of a function f by D¢ and the value of f at a point X = {xi}:j

by f(X) or f({xi}171).

Definition 18.22. We say that f(X) #-approaches the #-limit L as X #-approaches X

and write

#limx., x,f(X) =L (18.59

if Xo is a #limit point of D¢ and, for every ¢ > 0,6 ~ O, thereisa é > 0,6 ~ 0, such

that [f(X) —L < ¢|forall X € Ds such that 0 < || X — Xo|| < 0.

Theorem 18.21.1f #limx.., x, f(X) exists, then it is unique.

Theorem 18.22. Suppose that f and g are defined on a set D < R#", Xj is a #limit
point

of D, and #limx., x,f(X) = L1,#limx., x,9(X) = L..Then

#—“mx_,# xo(f +9)(X) =Li1tLy,
#—“mx_,# xo(f X g)(X) = L.Lo,

and (18.55
#-limx., x,(f/g)(X) = LiLo,
if Lo = 0.
Definition 18.23. We say that f(X) #approaches «* as X #-approaches X, and write
#-limx.., x, f(X) = o (14.56

if Xo is a #limit point of D¢ and, for every hyperreal number M, thereisa o > 0,



6 = 0, such that f(X) > M whenever 0 < | X — Xo|| < § and X € Ds.We say that

#1limx., x, f(X) = —oo* (18.57)
if #limx., x,[-f(X)] = ©*.
Definition 18.24. If D¢ is hyperunbounded, we say that

#1im L, 0 FOX) = L, (18.58

where L finite or hyperfinite if for every 5 > 0,6 =~ 0, there is a number R € R¥
such that [f(X) —L < ¢|whenever || X| > Rand X € Dx.

Definition 18.25. If Xo € Ds and is a #limit point of D¢,then we say that f is
#-continuous at X if

#—“mx_,# xof(X) = f(Xo). (18.59

Theorem 18.23.Suppose that Xo € Dr and is a #-limit point of Ds. Then f is
#-continuous at X if and only if for each ¢ > 0,6 = Othereisa é > 0,6 ~ 0 such

that [f(X) — f(Xo)| < € whenever || X — Xo|| < § and X € Dx.

Definition 18.26.We will say that f is #-continuous on Sif f is #-continuous at every
point of S

Theorem 18.24. If f and g are #-continuous on a set S — R, then so are f + g, and fg.
Also, f/g is #-continuous at each X € Ssuch that g(Xo) # O.

Definition 18.27. Suppose that gi1,0>,...,9n,n € N* are R#-valued functions defined
on a subset T  R#", and define the vector-valued function G on T by

G(U) = (91(U),g2(U),...,gn(U)),U €T. (18.60

Then 91,92, ...,9n are the component functions of G = (g1,092,...,0n)-
We say that

#1limu., u,G(U) = L =(Ly,...,Ln) (18.61)

if #limy., u,0i(U) = Li,1 <1 < nand that G is #continuous at Uy if g1,02,...,gn are
each #-continuous at Uo.

Theorem 18.25.For a vector-valued function G, #limy., u, G(U) = L if and only if for
each ¢ > 0,6 ~ Othereisad > 0,6 ~ Osuch that |G(U) —L || < ¢ whenever

0< ||[U -U,y| <dandU e Dg.Similarly, G is #continuous at U if and only if for
each ¢ > 0,6 ~ Othereisaé > 0,6 = Osuch that ||G(U) — G(Up) || < € whenever

|U -U,| <sand U e De.

Theorem 18.26.Let f be a R#-valued function defined on a subset of R# and let

the vector-valued function G = (91,92, ...,0n) be defined on a domain Dg in RZ",
Letthe set T = {U|U € Dg and G(U) € Df}, be nonempty; and define the R¥-valued
composite function h=fo Gon T by h(U) = f(G(U)),U € T.Now suppose that Up e T
and is a #limit point of T, G is #-continuous at Ug, and f is #-continuous at

Xo = G(Up). Then his #-continuous at Uo.

Theorem 18.27.1f f is #-continuous on a #-compact set S c R, then f is bounded

or hyperbounded on S

Theorem 18.28.Let f be #-continuous on a compact set S« R and a = infxesf(X),
B = supkesf(X).Then f(X1) = a and f(X2) = B for some X; and X, in S

Theorem 18.29.(Intermediate Value Theorem) Let f be #-continuous on

aregion S c R#". Suppose that A and B are in Sand f(A) < u < f(B).Then f(C) = u



forsome C € S

Definition 18.28. f is uniformly #-continuous on a subset Sof its domain in RZ"

if for every ¢ > 0,6 = Othereisa § > 0,0 = 0 such that [f(X) — f(Xo)| < € whenever
[ X = Xo|| <sand X,X, € S

Theorem 18.30.If f is #-continuous on a #-compact set S c R then f is uniformly
#-continuous on S

18.8.Partial #Derivatives and the #-Differential

Definition 18.29. Let ® be a unit vector and X a point in R¥". The directional
#-derivative
of f(X) at X in the direction of @ is defined by
6:2%) _ # lim f(X +tCDt) —f(X)
t>x 0
if the #limit exists. That is, 0#f(X)/0*® is the ordinary derivative of the function
H(t) = f(X +t®) att = 0, if H#(t) exists.The directional #-derivatives that we are most
interested in are those in the directions of the unit vectors E;,1 < i < n,where
all components of E; are zero except for the i-th, which is 1.
Definition 18.30. Since X and X +tE; differ only in the i-th coordinate, 0#f(X)/0'*E; is
called the partial #-derivative of f with respect to x; at X. It is also denoted by
O™ (X)10"x; or £#(X),thus,

(18.62

/# f . — L
P00~ 100 = i T i) (i) 18.63
a tox 0 t
If X = (x,y), then we denote the partial #-derivatives accordingly; thus,
al#f(x’ Y) f(X + h,y) - f(X, y)
T o) = lim h (16.69
and
0*(X,y) . o y+h)—f(xy)
oy Woen = pm TEESERE 1065

Theorem 18.31.1f f#(X) and g (X) exist, then
o#(f X o'#(f X

S — 100 + 000, I — 060900 + G000, (18.60

and, if g(X) # 0O,
I# I1#
0 (f{g)(x) gX)REX) - f(X)gx. X) (18.67)
07X [9(X)]?

If £(X) exists at every point of a set D < R", then it defines a function f;/(X) on D.
If this function has a partial #-derivative with respect to x; on a subset of D, we
denote the partial #-derivative by

o ((OM(X) _ 0%(X) _
8/#Xj( 0¥ Bl 8’#xj8’#xi Bl X'XJ(X) (14.68
The function obtained by differentiating f(X) successively with respect to

Xiys Xiy, - - -1 Xi, IS denoted by

0"#(X)
6’#xir6’#xi g .al#xi1

= x.1 Xi_ 1x.,( ) (1869)



it is an r th-order partial derivative of f(X).
Theorem 18.32.Suppose that f,f{,f), and f}§ exist on a #neighborhood Q of (xo, Yo),
and f, is #-continuous at (xo,Yo). Then % (xo,yo) exists, and

T (X0, Yo) = f(Xo,Yo0). (18.70

Theorem 18.33.Suppose that f and all its partial #-derivatives of order r are
#-continuous on an #-open subset Sof R#". Then

f;(#i:_,Xiz,---)(ir(x) = fl# ij,...)(jr(x)!x € S’ (18.71)

Xjq»
if each of the variables x1,X»,...,X, appears the same number of times in
{Kiys Xipy -« o Xip p and {Xj,, Xj,, - . . ,.Xj, r. If this number is r¢, we denote the common
value of the two sides of (18.71) by

0" (X)
6’#xir6’#xi g .al#xi1 '

Definition 18.31. A function f(X) is #-differentiable at Xo = (X10,X20, - - . ,Xn0) if there
are constants my, my, ..., m, such that

f(X) — f(Xo) — (Ext- 207, mi(xi —Xio))
[X = Xol -
Theorem 18.34. If f is differentiable at at Xo = (X10,X20, - - . ,Xn0), then £ (Xo),
1 <i < n,exist and the constants m;,1 < i < n,in EQ.(18.73) are given by
m; = f,(Xo). (18.74
Theorem 18.35.1f f is #-differentiable at X, then f is #-continuous at Xo.
Definition 18.32. A linear function L : R#™ — R# is a R#-valued function of the form
L(X) = Ext-3_", mix;, (18.79

where m;, 1 < i < nare constants. From Definition 14.31, f is #-differentiable at Xo
if and only if there is a linear function L such that f(X) — f(Xo) can be
approximated so well near X, by

f(X) = f(Xo) = L(X = Xo) + E(X) [ X = Xoll, (18.76

(18.72)

#lIM x o4 0 0. (18.73

where

#-lim IX=Xo|l»# O E(X) =0. (18.77)
Remark 18.3.Theorem 18.34 implies that if f is #-differentiable at Xo, then there is
exactly one linear function L that satisfies (18.76) and (18.77).
This function is called the #-differential of f at Xo. We will denote it by dy f and its
value by (d¥ f)(X); thus,

(d¥,H(X) = Ext—Zinzlf;ﬁ‘o(Xo)xi. (18.78

For convenience in writing d¥ f , and to conform with standard notation, we introduce
the function d#x; : R - R% defined by dx(X) = x;. That is, d*x; is the function whose
value at a point in R¥" is the i-th coordinate of the point. It is the #-differential of the
function g;(X) = xj.From Eq.(18.78)

dy.f = Ext- 2" £ (Xo)d"xi. (18.79

19.#-Analytic functions f : C# - C%,



19.1.C%-valued #-analytic functions f : C# - C%.

The class of #-analytic functions is formed by the complex functions of a complex
variable z € CZ = R% + iR% which possess a #-derivative wherever the function is
defined. The term #holomorphic function is used with identical meaning. For the
purpose of this preliminary investigation the reader may think primarily of functions
which are defined in the whole plane C%.

The definition of the #-derivative can be written in the form

f(z+ h) —f(2)
h

f#(2) = #limn., o (19.1)

As a first obvious consequence f(2) is necessarily #-continuous. Indeed, from
f(z+h) — (20 = hx (f(z+ h) — f(2))/h one obtains #lim., o(f(z+ h) - f(2)) =

0 x f"#(2) = 0.If we write f(2) = u(2) +iv(2) it follows, moreover, that u(z) and v(2)
are both #-continuous.

Remark 19.1. When we consider the #-derivative of a C#-valued function, defined on a
set Ac C¥ in the complex plane C%, it is

of course understood that z € A and that the limit is with respect to values

h such that z+ h € A. The existence of the #-derivative will therefore

have a different meaning depending on whether zis an interior point or a
#-boundary point of A. The way to avoid this is to insist that all #-analytic
functions be defined on open sets.

Definition 19.1. A C¢-valued function f(z), defined on an open set Q, is said to be
Ct-analytic in Q if it has a #-derivative at each point of Q. And more explicitly that
f(2) is #-analytic function. A commonly used synonym is #-holomorphic function.
Definition 19.2.A function f(z) is #-analytic on an arbitrary point set A if it is the
restriction to A of a function which is #-analytic in some open set containing A.
Remark 19.2. Note that the real and imaginary parts of an #-analytic function in Q
satisfy the generalized Cauchy-Riemann equations

ofx oty oy ox’
Conversely, if u and v satisfy these equations in Q, and if the partial #-derivatives are
#-continuous, then u + iv is an #-analytic function in Q.
Theorem 19.1. An #-analytic function f in a region QQ whose #-derivative vanishes
identically must reduce to a constant. The same is true if either the real part, the
imaginary part, the modulus, or the argument is constant.

19.2.The C%-valued #-Exponential Extexp(z).

We define the #-exponential Extexp(z) function as the solution of the differential
equation

ofu _ o*v.o%u _ o' (19.2

f*(2) = 1(2),1(0) = 1. (19.3)
We solve it by setting
f(z) = Ext ) anz",f#(z) = Ext ) _nanz". (19.4
n=0 n=0

If Eq.(15.4) is to be satisfied, we must have a1 = nay,n € N* and the initial condition
gives ap = 1. It follows by hypee infinite induction that a, = 1/nl.



Abbreviation 19.1. The solution of the Eq.(15.4) is denoted by Ext-e? or Ext-exp(z)
or Extexpz Thus finally we obtain

OC#
Extexp(z) = Ext Y ﬁ—? (19.5)
n=0 "™

19.3.The C#-valued Trigonometric Functions Extsin(z),
Ext-cog2).
The C%-valued trigonometric functions Extsin(z), Ext-cogz) are defined by
Extsin(z) = %(Ext— exp(iz) — Ext-exp(-iz))
and
Extcoyz) = %(Ext— exp(iz) + Ext-exp(-iz)).
Substitution (19.)-(19.) in (19.) gives that
Extsin(z) =
and
Extcogz) =
From (14) we obtain generalized Euler’s formula
Extexp(iz) = Ext-cogz) + i(Extsin(z))
and as well as the identity
(Ext-sin(z))? + (Ext-cogz))? = 1.

19.4. The periodicity of the #-exponential Extexp(iz).
Definition 19.4.We say that f(z) has the period cif f(z+ ¢c) = f(2) for all z e CZ.

(19.6)

(19.7)

(19.9)

(19.9)

(19.10)

(19.11)

Thus a period of Ext-e* satisfies Exte*¢ = Ext-e?, or Ext-e® = 1. It follows that ¢ = i®
with real o € R# we prefer to say that o is a period of Exte”?. We shall show that there

are periods, and that they are all integral multiples of a positive period wg.From

(Extsin(y))"” = Extcogy) < 1 and Extsin(0) = 0 one obtains Ext-sin(y) < y fory > 0,

either by integration or by use of the generalized mean-value theorem. In

the same way (Ext-cogy))"” = —Extsin(y) > -y and Extcog0) = 1 gives
Ext-coqy) > 1-y?/2, which in turn leads to Ext-sin(y) >y — y3/6 and finally to
Extcogy) < 1-y2/2+y*/24. This inequality shows that Ext-cos(y3) < 0, and

therefore there is a yo such that 0 < yo < /3 and Extcogyo) = 0. Because
(Ext-sin(yo))? + (Ext cogyo))? = 1,we have Extsin(yo) = +1, that is, Exte¥o = +i,
and hence Ext-e®Yo = 1. We have shown that 4y, is a period. Actually, it is the
smallest positive period. To see this, take 0 < y < yo.

Then Extsin(y) > y(1-y?/6) > y/2 > 0, which shows that Ext-cogy) is

strictly decreasing. Because Extsin(y) is positive and

(Ext-sin(y))? + (Extcogy))? = 1it follows that Ext-sin(y) is strictly increasing, and
hence Extsin(y) < Extsin(yo) = 1.

The double inequality O < Ext-sin(y) < 1 guarantees that Ext-eV is neither + 1 nor
+i. Therefore Ext-e® + 1, and 4y, is indeed the smallest positive period.We denot

e



it by wo.Consider now an arbitrary period wo. There exists an integer n such that
Nwo < < (N+ L)wo. If wwere not equal to nwo, then o - nwo would be a positive
period < wo. Since this is not possible, every period must be an integral multiple of
o.

Abbreviation 19.2.The smallest positive period of Exte” is denoted by 27 4.
Remark 19.3.Note that st(7%) = 7 € R.

19.5.The C#-valued Logarithm.

Together with the exponential function Ext-e? we must also introduce its inverse
function, the Cg-valued logarithm. By definition, z = Ext-logw is a root of the equation
Exte? = w. First of all, since Ext-€? is always + 0, the number 0 has no logarithm.
For w = 0 the equation Ext-e*"V = w is equivalent to

Exte? = |w|,ExteY = ﬁ (19.12

The first equation has a unique solution x = Extlogjw|, the R%-valued logarithm of

the positive number |w| € R%. The right-hand member of the second equation (15.12)
is a complex number in C% of absolute value 1. Therefore, as we have just seen, it has
one and only one solution in the interval 0 <y < 274 In addition, it is also satisfied by
all y that differ from this solution by an integral multiple of 2z4. We see that every
complex number other than 0 has hyper infinitely many logarithms which differ from
each other by multiples of 27 4i.

The imaginary part of Extlogw is also called the argument of w, Ext-argw, and it is
interpreted geometrically as the angle, measured in radians, between the positive real
axis and the half line from 0 through the point w. According to this definition the
argument has hyper infinitely many values which differ by multiples of 274, and

Ext-logw = Ext-logjw| + i argw. (19.13
Remark 19.4.The addition property of the exponential function Ext-€’ implies

Ext-log(z: x z2) = Extlogz; + Ext-logz,,

(19.19
Extargzi x z,) = Extargz; + Ext-argz,
but only in the sense that both sides represent the same hyper infinite set of
complex numbers.The inverse of Ext-cogz) is obtained by solving the equation
Ext cogz) = %(Ext—eiz + Exte?) = w. (19.15
This is a quadratic equation in Ext-€” with the roots
Exte? = w+ Jyw? -1 (19.16
and therefore
z = Ext-arccogw) = —i (Ext— Iog(wi m> ) (19.17)
or in the form
Extarccogw) = i (Ext—log<w+ w2+ 1 )) (19.18

The hyper infinitely many values of Extarccogw) reflect the evenness and periodicity
of Extcogw). The inverse sine is most easily defined by formula

Extarcsinw) = % — (Ext-arccogw)). (19.19



20.Complex Integration of the C#-valued function f(t).

20.1.Definition and basic properties of the complex

integral.

If f(t) = u(t) +iv(t) is a #-continuous function, defined in an interval (a,b), we set by
definition

b b b
Ext—jf(t)d#t — Ext j u(t)dt + i (Ext— j v(t)d#t>. (20.1)

This integral has most of the properties of the real integral. In particular, if c = a +ip
is a complex constant we obtain

b b
Ext j cf(t)d?t = c(Ext— j f(t)d#t) (20.2)

a a

The fundamental inequality

b
< Ext [[f(t)[d*t (20.3)

a

b
Ext j f(t)d*t
a

holds for arbitrary CZ-valued function f(t).

We consider now a piecewise #-differentiable arc y with the equation
z=z(t),a<t<h

If the function f(z) is defined and #-continuous on y, then f(z(t)) is also #-continuous

and we can set

b
v Ext j f(z)d*z = Ext j f(z(t))Z*(t)d*t. (20. 4
% a
The most important property of the integral (20.4) is its invariance under a change of
parameter. A change of parameter is determined by an increasing function t = t(r)

which maps an interval a < 7 < g onto a <t < b; we assume that t(z) is piecewise
#-differentiable. By the rule for changing the variable of integration we get

b B
Ext j f(z(t))Z*(t)dt = Ext j f(z(t(1))) Z*(t(0))t*(r)d"r. (20.5)

We defined the opposite arc—y by the equation z = z(-t),-b < t < —-a.We have thus

Ext j f(2)d*z = —| Ext j f(z)d*z |. (20.6)
4 14
The integral (20.4) has also a very obvious additive property. It is clear what is meant
by subdividing an arc y into a finite or hyperfinite number of subarcs. A subdivision can
be indicated by a symbolic equation:y = y1 + y2 +...+yn,n € N¥, and the corresponding
integrals satisfy the relation



n
Ext I f(2)d*z = Ext Z Ext I f(2)d*z |. (20.7)
Y1+y2t.4yn =1 7i

Finally, the integral over a closed curve is also invariant under a shift of parameter.
The old and the new initial point determine two subarcs y1,y2, and the invariance
follows from the fact that the integral over y1 + y2 is equal to the integral over y> + y1
In addition to integrals of the form (20.4) we can also consider line integrals with
respect to z. The most convenient definition is by double conjugation

Ext-jf(z)d_#z — Ext j f(z)d*z (20.8)
14 14
Using notation (20.7), line integrals with respect to x or y can be introduced by

Ext j f(z)d*x = % Ext j f(z)d*z + Ext j f(2)dz |,
Y Y ¥ (20.9)

Ext j f(z)dty = % Ext j f(z)d*z — Ext j f(z)dz
Y Y Y

With f = u+ iv we find that the integral (16.4) can be written in the form

Ext f(ud#x —vdfy) +i| Ext j(ud#y +vdix) . (16.10
14 14
Of course we could just as well have started by defining integrals of the form
Ext f(pd#x + qdty), (20.11)

4

in which case formula (20.10) would serve as definition of the integral (20.4).
An essentially different line integral is obtained by integration with
respect to arc length. Two notations are in common use, and the definition is

Ext-jfd#s — Ext j f(2)|d"z| = Ext j f(Z(t)|2#(t) [d*t. (20.12)
14 14 14
This integral is again independent of the choice of parameter. In contrast to (20.6)
we get
Ext j f(2)|d"z| = Ext j f(2)|d*z, (20.13
4 14
while (20.7) remains valid in the same form. The inequality

Ext [ f(2)d"z| < Ext [[f(2)|ld"2 (20.14)
Y Y

is a consequence of (20.3).
Remark 20.1.For f = 1 the integral (20.3) Generalized Cauchy’s Theorem for a



ectangle reduces to Z which is by definition the length of y. As an example
R le red yd hich is by definition the | hofy. A I

we compute the length of a circle. From the parametric equation
z=2(t) = a+ p(Extel), 0 <t < 2r4r, of a full circle we obtain Z#(t) = i p(Ext-e't)
and hence

277:# 277:#

j|z’#(t)|d#t - j pdft = 274p (20.15
0 0

as expected.

20.2.Line Integrals as Functions of Arcs.

Remind that the length of an arc can also be defined as the least upper bound of all
hyperfinite sums

Ext ) Jz(t) — (i), (20.16)
i=1

n e N*/N, where a =ty < t; <... <ty = b. If this least upper bound is finite or
hyperfinite we say that the arc is rectifiable. It is quite easy to show that piecewise
#-differentiable arcs are rectifiable, and that the two definitions of length coincide.
It is clear that the sums (20.16) and the corresponding sums

Ext- Z|x(ti) — X(ti1) |, Ext Z|y(ti) —y(ti)), (20.17)
i=1 i=1

where z(t) = x(t) +iy(t),are bounded or hyperbounded at the same time. When the
latter sums are bounded (or hyperbounded), one says that the functions x(t) and y(t)
are of bounded (or hyperbounded) variation. An arc z = z(t) is rectifiable if and only if
the real and imaginary parts of z(t) are of bounded (or hyperbounded) variation.

If v is rectifiable and f(z) #-continuous on y it is possible to define integrals of type
(20.12) as a #-limit

n
Ext I fd*s = #lim__+ (Ext— Z f(z(tk))[z(ti) — z(ti-1) I>. (20.18
) k=1
General line integral of the form Ext—fy(pd#x+ qd*y) can be considered as functional
of the arc y. It is then assumed that p and g are defined and #-continuous in a region
Q and that y is free to vary in Q. An important class of integrals is characterized by the

property that the integral over an arc depends only on its end points. In other words, if
y1 and y» have the same initial point and the same end point, we require that

Ext | ) (pdx + qdfy) = Ext | ) (pd*x + qd*y). (20.19
1 2
To say that an integral depends only on the end points is equivalent to saying that the
integral over any closed curve is zero. Indeed, if y is a closed curve, then y and —y

have the same end points, and if the integral depends only on the end points, we
obtain

Ext I(pd#x + qd*y) = Ext I(pd#x +qd*y) = —| Ext I(pd#x + qdy) (20.20

14 d 14



and consequently fy(pd#x+ qd?y) = 0. Conversely, if y; and y, have the same end

points, then y1 — ¥ is a closed curve, and if the integral over any closed curve
vanishes, it follows that Ext-.[y (pd*x + qdy) = Ext—jy (pd*x + qd?y).
1 2

Pic.20.1.

The following theorem gives a necessary and sufficient condition

under which a line integral depends only on the end points.

Theorem 20.1.The line integral Ext—fy(pd#x+ qd?y), defined in Q, depends only on
the end points of y if und only if there exists a function U(x,y) in Q with the partial
#-derivatives 0*u/o*x = p,o*ulo?y = q.

The sufficiency follows at once, for if the condition is fulfilled we can write, with the
usual notations,

b
. # oy _ Ext (| OFU o*U \ ¢ #r _
Ext I(pd X+ qd'y) = Ext I[ T X7(t) + a#yy (t)}d t =

Y a

X (20.2))
#
Ext- | L2 Ux(D),y)dt = U(x(b),y(b) - U(x(@),y(@).
a
and the value of this difference depends only on the end points. To prove the
necessity we choose a fixed point (Xo,Yo) € Q, join it to (X,y) by a polygon v,
contained in Q2, whose sides are parallel to the coordinate axes (Pic.1) and define
a function U(x,y) by
U(xy) = Ext j(pd#x + qdy). (20.22

14

Since the integral depends only on the end points, the function is well defined.
Moreover, if we choose the last segment of y horizontal, we can keep y constant and
let x vary without changing the other segments. On the last segment we can choose x
for parameter and obtain

U(x,y) = Ext I p(x,y)d#x + const, (20.23

the lower limit of the integral being irrelevant. From Eq.(20.23) it follows at once that



o*U
o#x

‘?Tl; = . Itis customary to write d*U = (6*U/o0*x)d*x + (6*Ulo%y)d*y and to say that

an expression pd“x + qd*y which can be written in this form is an exact #-differential.
Thus an integral depends only on the end points if and only if the integrand is an
exact differential. Observe that p,q and U can be either real or complex. The function
U, if it exists, is uniquely determined up to an additive constant, for if two functions
have the same partial #-derivatives their #-difference must be constant.

When is f(2)d*z = f(2)d*x + if(z2)d*y an exact #-differential? According to the definition
there must exist a function F(z) in Q with the partial #-derivatives

0"F(z) 0*F(2)
d*x =@, oty

If this is so, F(2) fulfills the generalized Cauchy-Riemann equation
*F(z) . 0"F(2)
= s
o*x oty
since f(2) is by assumption #-continuous F(z) is #-analytic with the #-derivative f(2).
The integral Ext-.[y fd*z, with #-continuous f, depends only on the end points of v if

= p. In the same way, by choosing the last segment vertical, we can show that

= if(2). (20.24)

(20.25

and only iff is the derivative of an analytic function in Q. Under these circumstances
we shall prove later that f(2) is itself #analytic.
As an immediate application of the above result we find that

j (z—a)"dz=0 (20.26)
Y

for all closed curves y, provided that the integer n e N* is > 0. In fact, (z— a)" is the
#-derivative of (z— a)™/(n+ 1), a function which is #analytic in the whole plane C%.
If nis negative, but + —1, the same result holds for all closed curves which do not
pass through a, for in the complementary region of the point a the indefinite integral
is still #-analytic and single-valued. For n = -1, Eq.(20.26) does not always hold.
Consider a circle C with the center a, represented by the equation z = a+ p(Exte"),
0 <t < 274 We obtain

21y
% - { it = 274 (20.27)
Y
This result shows that it is impossible to define a single-valued branch of Ext-log(z— a)
in an annulus p1 < |z— al < p2. On the other hand, if the closed curve y is contained in
a half plane which does not contain a, the integral vanishes, for in such a half plane a

single-valued and #-analytic branch of Extlog (z— a) can be defined.

20.3.Generalized Cauchy’s Theorem for a Rectangle.

We consider, specifically, a rectangle R — CZ defined by inequalities a < x < b,

c <y < d. Its perimeter can be considered as a simple closed curve consisting of
four line segments whose direction we choose so that R lies to the left of the directed
segments. The order of the vertices is thus (a,c),(b,c),(b,d), (a,d). We refer to this
closed curve as the boundary curve or contour of R, and we denote it by 6*R



(a,d) (b, d)
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Pic.20.2.Bisection of rectangle.

Theorem 16.2. If the function f(2) is #-analytic on R, then

Ext j f(z)d*z = 0. (20.28
"R
Proof. The proof is based on the method of bisection. Let us introduce the notation
n(R) = Ext j f(z)d*z. (20.29
"R
If Ris divided into four congruent rectangles R, R® R® R® we get
n(R) = n(R®) +n(R®) + n(R®) + n(R®). (20.30

for the integrals over the common sides cancel each other,see Pic.201.1t follows from

Eq.(16.30) that at least one of the rectangles R®,k = 1,2, 3,4, must satisfy the
condition  |(R®)| > [n(R)|[/4.This process can be repeated inductively by hyper infinite
induction,

and we obtain a hyper infinite sequence of nested rectangles R> R; D R....o

S Rp...D...with the property [n(Rn)| = 4"[n(Rn-1)|,n € N*. Thus

In(Rn)| = 47" n(R)|. (20.31)
The rectangles R, converge to a point z* € Rin the sense that R, will be contained
in a prescribed neighborhood |z— z*| < & as soon as n € N*\N is sufficiently large.

First of all, we choose ¢ so small that f(2) is defined and #-analytic in |z— z*| < o,
0 ~ 0.Secondly, if ¢ > 0,6 ~ Ois given, we can choose § such that

—f(zlii(*z*) —f¥z)| <, (20.32
and therefore
f(2) - f(z") - (z— ) *(z") | < elz—7*]. (20.33

for |z— z*| < 6. We assume that § satisfies both conditions and that R, is contained in
|z—z*| < 6. We make now the observation that
Ext I d#z = 0,Ext- _[ zd’z=0 (20.39)
0*Rn 0*Rn

By virtue of the equations (20.34) we are able to write



Rl = Ext [ [i@) - 1(2) - (- 2)f (z")

0"Rn

d*z (20.35)

and it follows by (20.33) that

I(R)| < s(Ext— [ z-z1x |d#z|>. (20.36)

%R
In the last integral [z— z*| is at most equal to the length d, of the diagonal of Ry.
If L, denotes the length of the perimeter of R, the integral is hence < dnL,. But if
d and L are the corresponding quantities for the original rectangle R, it is clear that
dn = 27"dand L, = 2"L.By (20.36) we have hence

In(Rn)| < 47"dLe (20.37)
and comparison with (20.31) yields
m(R)| < dLe. (20.38

Since ¢ ~ 0is arbitrary, we can only have n(R) = 0, and the theorem is proved.
Theorem 20.3.Let f(2) be #-analytic on the set R’ obtained from a rectangle R by
omitting a finite or hyperfinite number of interior points ¢; If it is true that

#lim .., (- ¢)f(2) = Ofor all j € N*, then Ext ja#Rf(z)d#z = 0.

Proof. It is sufficient to consider the case of a single exceptional point ¢, for evidently

R can be divided into smaller rectangles which contain at most one £;. We divide now

R into nine rectangles, as shown in Pic.20.2, and apply Theorem 20.2 to all but the

rectangle Ry in the center. If the corresponding equations (20.28) are added, we
obtain,

after cancellations,

Ext j f(z)d*z = Ext j f(2)d*z (20.39
"R 0*Ro
i i
| |
| |
| |
________ l |_—————__;_.
of
________ | ]
| |
| |
I |
! f
Pic.20.3.

If ¢ > 0,6 = 0 we can choose the rectangle Rq so infinite small that [f(z)| < ¢|z— (|

on 0*Ro. By (16.39) we have thus
|o*z|
=¢g| Ext 16.4
( f <] (16:49
0"Ro

Ext I f(2)d*z

"R




If we assume, as we may, that Rp is a square of center {, elementary estimates show
that

]
Ext j <8 (20.41)

"R

Thus finally we obtain

Ext I f(2)d*z
"R

and since ¢ is arbitrary the theorem follows.We conclude that the hypothesis of the

theorem is certainly fulfilled if f(2) is #-analytic and bounded or hyperbounded on R'.

20.4.Generalized Cauchy’s Theorem in a Disk.

It is not true that the integral of an #-analytic function over a closed curve is always
zero. For example

< 8. (20.42)

d?z
|z—a
C

= 2irs. (20.43)

Theorem 20.4.1f f(2) is #-analytic in an open disk A, then 20
Ext j f(z)d*z=0 (20.44)

14

for every closed curve y < A.
Proof. We define a function F(z) by

F(2) = Ext-jf(z)d#z, (20.45

(e}

where o consists of the horizontal line segment from the center (Xo,Yo) to (X,yo) and
the vertical segment from (x,Yyo) to (x,y); it is immediately seen that 6*F/6%y = if(z).On
the other hand, by Theorem 20.2 ¢ can be replaced by a path consisting of a vertical
segment followed by a horizontal segment. This choice defines the same function
F(2),and we obtain 0#F/6%x = f(z). Hence F(2) is #-analytic in A. with the #-derivative
f(2), and f(2)d*zis an exact #-differential.

Theorem 20.5. Let f(2) be #-analytic in the region A" obtained by omitting a finite or
hyperfinite number of points ¢; from an open disk A. If f(z) satisfies the condition

#lim .., ¢;(z— {j)f(2) = Ofor all j, then (20.44) holds for any closed curve y < A'.



Pic.20.4.

The proof must be modified, for we cannot let rr pass through the exceptional points.
Assume first that no {j lies on the lines x = Xxo and y = yo. It is then possible to avoid
the exceptional points by letting o consist of three segments (Pic.20.4). By an obvious
application of Theorem 20.3 we find that the value of F(2) in (20.44) is independent

of the choice of the middle segment; moreover, the last segment can be either
vertical or horizontal. We conclude as before that F(2) is an indefinite integral of f(2),
and the theorem follows..

20.5.Generalized Cauchy’s integral formula.

Through a very simple application of the generalized Cauchy’s theorem it becomes
possible to represent an #analytic function f(z) as a line integral in which the variable
z € R% enters as a parameter. This representation, known in classical case as
Cauchy’s integral formula,has numerous important applications. Above all, it enables
us to study the local properties of an #-analytic function in full detail.

Lemma 20.1. If the piecewise #-differentiable closed curve y does not pass

through the point a, then the value of the integral

d?z
e (20.46)

Y
is a multiple of 2iry.
Definition 20.1.We define the index of the point a with respect to the curve y by the
equation

#
n(v.a) = 51t [ A (20.47)

Y
The index (20.47) is also called the winding number of y with respect to a. It is clear
that n(-y,a) = —n(y,a). The following property is an immediate consequence of
Theorem 20.4.
(i) If y lies inside of a circle, then n(y,a) = 0O for all points a outside of the same circle.
As a point set y is #-closed and bounded (or hyperbounded). Its complement is
#-open and can be represented as a union of disjoint regions, the components of the
complement. We shall say, for short, that y determines these regions.
If the complementary regions are considered in the extended plane, there
is exactly one which contains the point at infinity. Consequently, y determines one and



only one unbounded region.

(i) As a function of a the index n(y,a) is constant in each of the regions determined by
y, and zero in the unbounded region.

Any two points in the same region determined by y can be joined by a polygon which
does not meet y. For this reason it is sufficient to prove that n(y,a) = n(y,b) if y does
not meet the line segment from ato b. Outside of this segment the function
(z—a)/(z-b) is never real and < 0. For this reason the principal branch of

Extlog[(z— a)/(z— b)] is #analytic in the complement of the segment. Its derivative is
equal to (z—a)™ - (z—b)™1, and if y does not meet the segment we get

Ext-j(z}a —?1b>d#z=0; (20.48
Y

hence n(y,a) = n(y,b). If lal is sufficiently large, y is contained in a disk |z| < p < |4|
and we conclude by (i) that n(y,a) = 0. This proves that n(y,a) = 0 in the unbounded
region.

We shall find the case n(y,a) = 1 particularly important, and it is desirable to formulate
a geometric condition which leads to this consequence.

For simplicity we take a = 0.

Lemma 20.2. Let z1,z, be two points on a closed curve y which does not pass through
the origin. Denote the subarc from z; to z; in the direction of the curve by y1, and the
subarc from z, to z; by y». Suppose that z; lies in the lower half plane and z; in the
upper half plane. If y; does not meet the negative real axis and y, does not meet the
positive real axis, then n(y,0) = 1.

For the proof we draw the half lines L; and L; from the origin through z; and z,

(Pic. 4-5). Let s1,s2 be the points in which L1,L; intersect a circle C about the origin.

If Cis described in the positive sense, the arc C; from s; to s, does not intersect the
negative axis, and the arc C, from s; to s; does not intersect the positive axis. Denote
the directed line segments from z; to s; and from z; to s; by 61,62. Introducing the
closed curves 61 = y1+62—C1—61, o2=y2+01 - Cz - 62 we get

that n(y,0) = n(C,0) + n(c1,0) + n(o2,0) because of cancellations. But o1 does not
meet the negative axis. Hence the origin belongs to the unbounded region
determined by o1, and we obtain n(c1,0) = 0. For a similar reason n(c2,0) = 0, and
we conclude that n(y,0) = n(C,0) = 1.

Pic.20.5



Let f(2) be #analytic in an open disk A. Consider a closed curve y < A. and a point
aeA
which does not lie on y. We apply Cauchy’s theorem to the function

This function is analytic for z + a. For z = a it is not defined, but it satisfies the
condition #lim .., a[(z— a)F(2)] = #lim .., a[f(z) — f(a)] = O,which is the condition of
Theorem 20.5. We conclude that

Ext j @) =@ g+, _ o, (20.50

This equation can be rewritten in the form

f(z)d z

Ext j - f(a) Ext-j dz . (20.51)
Y Y
and we observe that the integral in the right-hand member is by definition 2z4in(y,a).

Theorem 20.6. Suppose that f(z) is #-analytic in an open disk A, and let y be a closed
curve in A. For any point asuch thata ¢ y

#
n(y,a)xf(a):%#i Ext j f(zzldaz , (20.52)

4

where n(y,a) is the index of a with respect to y.

In this statement we have suppressed the requirement that a be a point in A. We have
done so in view of the obvious interpretation of the formula (16.52) for the case that a
is not in A. Indeed, in this casebn(y,a) and the integral in the right-hand member are
both zero.

It is clear that Theorem 16.6 remains valid for any region Q to which Theorem 16.5
can be applied. The presence of exceptional points ¢; is permitted,provided none of
them coincides with a.

The most common application is to the case where n(y,a) = 1. We have then

f(z)d#z

f(a) = ﬁ#. Ext j (20.53

4

and this we interpret as a representation formula. Indeed, it permits us to compute
f(a) as soon as the values of f(z) on y are given, together with the fact that f(z) is
#-analytic in A. In (20.53) we may let a take different values, provided that the order
of a with respect to y remains equal to 1. We may thus treat a as a variable, and it is
#-convenient to change the notation and rewrite (20.53) in the form

Ext j fOde ) (20.54)

f(z) = =

214
Y

It is this formula which is usually referred to as Cauchy’s integral formula. We must

remember that it is valid only when n(y,z) = 1, and that we have proved it only when

f(2) is #-analytic in a disk.



The representation formula (20.54) gives us a tool for the study of the local properties
of #-analytic functions. In particular we can now show that an #-analytic function has
#-derivatives of all orders n € N#, which are then also #-analytic.

We consider a function f(z) which is #-analytic in an arbitrary region Q2. To a point

a € Q we determine a 6-neighborhood A < Q, and in A a circle C about a.

Theorem 20.6 can be applied to f(z) in A. Since n(C,a) = 1 we have n(C,z) = 1 for all
points z inside of C. For such zwe obtain by (20.54)

f(z) = (Ext j %) (20.55
C

Provided that the integral in (20.) can be #-differentiated under the sign of

integration we find
£%(2) = ( | f(g)d#§> (20.56)

and

'¢-2

If the #-differentiations can be justified, we shall have proved the existence

of all #-derivatives at the points inside of C. Since every point in Q lies inside of some
such circle, the existence will be proved in the whole region Q.

Lemma 20.3. Suppose that ¢({) is #-continuous on the arc y. Then the function

ey _ 1 f($)d*¢
f#(z) = H(Ext- > ) (20.57)

#
Fn(2) = ##I Ext-jg(”é‘:_—)g)ﬁ (20.58
Y
is #-analytic in each of the regions determined by y, and its #-derivative is
F#(Z) = nFn1(2).
It is clear that Lemma 20.3 is just what is needed in order to deduce (20.55) and
(20.56) in a rigorous way. We have thus proved that an #-analytic function has
#-derivatives of all orders which are #-analytic and can be
represented by the formula (20.57).
Theorem 20.7. (Generalized Morera’s theorem) If f(z) is defined and #-continuous
in a region Q, and if Ext—jy f(z)d*z = O for all closed curves y in Q, then f(2) is

#-analytic in Q.

20.6.Generalized Liouville’s theorem.

Theorem 20.8. (Generalized Liouville’s theorem) A function f(z) which is #-analytic
and bounded in the whole plane C# must reduce to a constant.

Proof. We make use of a simple estimate derived from (20.57). Let the radius of C
be r,and assume that [f(z)| < M on C. If we apply (20.57) with z = a, we obtain

|f ™#@)| < Mnir (20.59

We need only the case n = 1. The hypothesis means that [f(z)| < M on all circles.
Hence we can let r tend to «*,and (16.59) leads to f #(a) = 0 for all a. We conclude



that the function is constant.

20.7.Generalized fundamental theorem of algebra.

Liouville’s theorem leads to an almost trivial proof of the generalized fundamental
theorem of algebra.

Theorem 20.9. (Generalized fundamental theorem of algebra) Suppose that P(2) is
external polynomial of degree n e N*. The equation P(z) = 0 must have a root & € CZ.
Proof.Suppose that P(2) is a polynomial of degree n € N*\N. If P(z) were never zero,
the function 1/P(z) would be #-analytic in the whole plane C%. We know that P(z) - oo*,
and therefore 1/P(z) tends to zero. This implies boundedness (the absolute value is
#-continuous on the Riemann sphere and has thus a finite or hyperfinite maximum),
and by Liouville’s theorem 1/P(z) would be constant. Since this is not so, the equation
P(2) = 0 has a root.

21.The local properties of #-analytic function.

21.1.Removable Singnlarities. Taylor's Theorem.

Theorem 21.1. Suppose that f(2) is #-analytic in the region A' obtained by

omitting a point a from a region A. A necessary and sufficient condition

that there exist an #-analytic function in A which coincides with f(z) in A’ is

that #-lim .., a(z— @)f(z2) = 0. The extended function is uniquely determined.

Proof. The necessity and the uniqueness are trivial since the extended function
must be #-continuous at a. To prove the sufficiency we draw a circle

C about a so that C and its inside are contained in A. Cauchy’s formula is valid, and

therefore we have
#
f(2) = ##l (Ext— j %) (21.1)

Cc

for all z + ainside of C. But the integral in the right-hand member represents an
#-analytic function of z throughout the inside of C. Consequently, the function which is
equal to f(z) for z + a and which has the value

1 f({)d*¢
m(Ext-E[ﬁ). (21.2)

for z = ais #-analytic in A. It is natural to denote the extended function by f(z) and
the value (21.2) by f(a). We apply this result to the function F(z) = [f(2) — f(a)]/(z- a).
It is not defined for z = a, but it satisfies the condition #-lim .., a(z— a)F(2) = 0.

The #limit of F(2) as z »# ais f #(a). Hence there exists an #analytic function which
is equal to F(2) for z= aand equal to f #(a) f

Part Il. R%-Valued Lebesgue Integral.

1.External R#-Valued Lebesgue Measure.

Let us consider a bounded interval | = R% with endpoints a and b (a < b).The length of
this bounded interval | is defined by I(I) = b— a. In contrast,the length of an unbounded
interval, such as (a,«*), (—0#,b) or (—o*, ), is defined to be gyperinfinite. Obviously, the
length of a line segment is easy to quantify.However, what should we do if we want to



measure an arbitrary subset of R¥ ? Given a set E c R¥ of gyperreal numbers, we
denote the Lebesgue measure of set E by u(E). To correspond with the length of a line
segment, the measure of a set A c R¥ should keep the following properties:

(1) If Ais an interval, then p(A) = I(A).

(2) If A < B, then p(A) < u(B).

(3) Given A < R# and xo € R% , define A+ Xo = {X+Xo : X € A}>. Then

H(A) = H(A+ Xo).

(4) If A and B are disjoint sets, then p(AU B) = H(A) + U(B). If {Ai}y# IS @

hyperinfinite sequence of disjoint sets, then pu(| J,.+Ai) = Zlﬁ u(Ai).

2.External R#-Valued Lebesgue outer measure

Definition 2.1. Let E be a subset of R% . Let {I«} = {lx} .+ be a hyperinfinite
sequence

of open intervals such that E < [ J, .« Ax and let X be a set of the all such hyperinfinite

sequences. The external Lebesgue outer measure of E is defined by

W (E) = infgpes {Zgl(lk)}. 2.1)

Note that 0 < p*(E) < o*.

Definition 2.2. A set E is #-countable if there exists an injective function f from E to
the

gypernatural numbers N#. If such an f can be found that is also surjective (and
therefore

bijective), then E is called #-countably infinite or gyperinfinite, i.e. a set is #-countably

infinite if it has one-to-one correspondence with the set N*,

Theorem 2.1.The external Lebesgue outer measure has the following properties:

(a) If E1 < E», then p*(Ez) < p*(E2).

(b) The external Lebesgue outer measure of any #-countable set is zero.

(c) The external Lebesgue outer measure of the empty set is zero.

(d) The external Lebesgue outer measure is invariant under translation, that is,

H*(E+Xo0) = p*(B).

(e) Lebesgue outer measure is #-countably sub-additive, that is,

w(ULE) < > W (ED. 2.2)
(f) For any interval I, u*(1) = I(l).
Proof. Part (a) is trivial.
For part (b) and (c), let E = {xxk € Z#} be a #-countably hyper infinite set.
Let ¢ > 0,6 ~ 0 and let ¢« be a hyper infinite sequence of positive numbers such that
ijlgk = ¢/2.Since E < UY; (Xk — ek, Xk + £x), it follows that u*(E) < &. Hence,
u*(E) = 0. Since @ < E, then u*() = 0.
For part (d), since each cover of E by open intervals can generate a cover of E + X by
open intervals with the same length, then p*(E + xo) < p*(E).Similarly,
L*(E + xo) > u*(E), since E + X is a translation of E Therefore, u*(E + Xo) = pu*(E).
For part (e), if Z:i HW*(Ei) = o, then the statement is trivial. Suppose that
the sum is hyperfinite and let ¢ > 0,¢ ~ 0. For each i € N*, there exists a hyperinfinite
sequence {I¥> of open intervals such that E; < U, and ijll(IF) < W (E) +&l2'.



Now {IK} is a double-indexed sequence of open intervals such that
Ury B < uzp Ui Ifand

oot oo oo . il
YTl <Y W E)+e2) =D WE) e
oof
Therefore, p*(UF1 Ei) < Zi:l u*(E;) + . The result follows since ¢ > 0, ~ 0 was

arbitrary.

For part (f), we need to prove pu*(I) < I(1) and p*(l) > I(l) respectively.

We can assume that | = [a,b] where a,b € R% .

First, we want to prove pu*(l) < I(l). Let ¢ > 0,6 = 0, we have

Il (ab)U(@a-¢ga+e)U(b-¢gb+e).

Thus,u*(1) <I(a,b) +l(a—¢,a+¢) +l(b—¢g,b+¢) =
=(b-a)+2s+2c=b-a+4es.

As ¢ > 0,& = Qs arbitrary, we conclude that u*(1) <b—a = I(l).

Then, we want to prove that p*(1) > I(l). Let {lx} be any sequence of open
intervals that covers |. Since | is compact, by the generalized Heine-Borel
theorem, there is a gyperfinite subcollection {Ji|1 < i < n},n € N* of I that
still covers I. By reordering and deleting if necessary, we can assume that
ae = (a]_,bl),bl e Jo = (az,bz), b1 edn = (an,bn),where bni1 < b < bp.
We then can compute that

#

n n 0
b—a < byp—a; = Ext)_ (bi —bi_1) + (b1 —a1) < ExtX_1(J) < ExtD_1(lk).
i=2 i=1 i=1

Therefore, I(1) < p*(l). We can now conclude that p*(1) = I(l). This proves
the result for closed and bounded intervals.

Suppose that | = (a,b) is an open and bounded interval. Then, p*(l) < I(l)
as above and b—a = p*([a,b]) < p*((ab)) +p*(@ +p*(b) = p*((a,b)).
Hence I(l) < p*(1). The proof for half-open intervals is similar.

Finally, suppose that | is an hyper infinite interval and let M > 0. There exists
a bounded interval J < | such that p*(J) = I1(J) = M and it follows that

(1) > u*(J) = M. Since M > 0 was arbitrary, p*(1) = oo = I(l).

This completes the proof.

2.2.External Lebesgue inner measure

In previous subsection, we have discussed external Lebesgue outer measure. There
is

another external measure named external Lebesgue inner measure. Let’s define the

external inner measure and see some basic properties.

Definition 2.2. Let E be a subset of R* . The external inner measure of E is defined by

M*(E) = sup{i(K) : K < E and K is #-closed} (2.3)

iff supremum in RHS of the (2.3) exists.

Recall that external Lebesgue outer measure of a set E uses an infimum of the

union of a sequence open sets that cover the set E, while external Lebesgue inner
measure of a set E uses a supremum of a set inside the set E. Then, it is obvious that

H«(E) < p*(B) (2.4
for any set E. Also, for A < B, . (A) < p*(B).
Theorem 2.2. Let A and E be subsets of R.



(i) Suppose that u*(E) < «*. Then E is measurable if and only if p.(E) = p*(E).

(i) If E is measurable and A < E, then p(E) = p.(A) + p*(EWW).

Proof. For part (i), suppose that E is a measurable set and let £ > 0,6 ~ 0. According

to Theorem 2.9, there exists a #-closed set K such that K < E and pH(E\K) < e¢.

Thus,u*(E) > g« (E) > p(K) > U(E) — ¢ = p*(E) — &, which implies that the external
inner

measure and external outer measure of E are equal. Now let’s prove the reverse

direction. Suppose that p.(E) = p*(E). Let ¢ > 0,6 = 0. Then

there exists a #-closed set K and an #-open set G such that K € E < G and

H(K) > U« (E) — &/2 and u(G) < u*(E) + ¢/2.Then we find that

H*(G\E) < p*(GK) = H(G\K) = pu(G) — U(K) < e.

According to Theorem 2.9, the set E is measurable.

For part (2), let ¢ > 0,6 = 0. There exists a #-closed set K < A such that

H(K) > H«(A) — €. Then, u(E) = u(K) + L(E\K) > p.(A) — e + 1*(E\A)

and it follows that p(E) > p.(A) + u*(E\A). According to Theorem 2.9, there

exists a measurable set B such that E\A € B < E and u(B) = p*(E\A).

Since E\B c A, it follows that p.(E\B) > p.(A). Thus,

H(E) = U(B) + U(E\B) = u*(BE\A) + W(E\B) < " (B\A) + L. (A).

By combining these two inequalities, we can obtain p(E) = p.(A) + u*(E\A).

2.3.External Lebesgue measure

Definition 2.3. A set E < R¥ is Lebesgue measurable if for each set A < R,

the equality p*(A) = u*(AN E) + p*(AN EC) is satisfied. If E is a Lebesgue
measurable set, then the external Lebesgue measure of E is its external Lebesgue
outer measure and will be written as u(E).

Since the external Lebesgue outer measure satisfies the property of subadditivity,
then we always have p*(A) < p*(ANE) + u* (AN EL),EL = RAE and we only need to
check the reverse inequality.

Note that there is always a set E that can divide A into two mutually exclusive sets,
ANE and AN EC. But only when u*(A) = p*(AN E) + u*(AN EC) holds, the set E is
Lebesgue measurable. The latter theorem will show some properties of measurable
sets.

Theorem 2.3. The collection of measurable sets defined on R% has the following
properties:

(a) Both @ and R¥ are measurable.

(b) If E is measurable, then EC is measurable,where EC = R#\E.

(c) If u*(E) = O, then E is measurable.

(d) If E1 and E; are measurable, then E; U Ez and E> N E; are measurable.

(e) If E is measurable, then E + xo is measurable.

Proof. For part (a), let A = R% Then

W'(AND) + U (ANDL) = p (D) + P (A) = 0+ P (A) = px (A),

x (ANRE + 1+ (ANRE) = p(A) + (D) = 1*(A) +0 = W (A).

For part (b), if E is measurable, then for every set A < R¥, such that

H*(A) = i*(ANE) + p*(AN EL). Then,

(AN EC) + (AN (EC) = p*(ANEC) + p*(ANE) = p*(A).

For part (c), let A < R% . Since u*(E) = 0 and ANE < E, then u*(ANE) = 0.



We can obtain that p*(A) > u*(A N E)=pu*(A N E) + u*(A N E),which implies that
H*(A) = W*(ANE) + u*(A N E) by Theorem 2.1 part (e).

For part (d), let A < R% . Note that

AN(E1UE2) = (ANE)UANE2) = (ANE) UANELNE2)

Then, by De Morgan Law and Theorem 14.1 part (e), we know that

W (A) = w(ANE) + U (ANEL) =

= WANED) + W (ANE1NEY) + W*(ANE1NE2) > u*(AN(EL UEy)) +

+U* (AN (E1 U Ew)),

showing that E;1U E; is measurable. Since E1 N E; = (E1 U Ez), then the set

Ei1 N E2 is measurable by Theorem 12.1 part (b).

For part (e), let A < R%. Then,

W (A) = (A= X0) = W ((A=X0) N E) +l*((A—x0) N EL) =

L*(((A—X0) N E) +Xo) + M*(((A—Xo) N EL) + o) =

L*(AN (E+X0)) +H*(AN (EL +Xx0)).

Therefore, E + Xo is measurable.

Lemma2.1. Let Ei : 1 <i < n e N* be a gyperfinite collection of disjoint measurable
sets. If A < R%, then

(UL AnE)) =w(an (UL E)) = B wANED,

Proof. We will prove this by the principle of mathematical induction. When

n = 1, the equality holds. Suppose that the statement is valid for n— 1 disjoint
measurable sets when n > 1. Then, when there are n disjoint measurable sets,

w(an(ULE)) -

~w(An (UL E) nE) (a0 (U7, E) nER) -
“wenensie(an (Ure)) -

— (AN En) + Ext—Zi:l W(ANE) = Ext)" W (ANE).
Note that when A = R% p([nJl Ei> = Ext-zn; U(E).

Theorem 2.4. If {E;}] is a hyper infinite sequence of disjoint measurable sets, then

#

o0 O(J#
“(Ui=l Ei> = Ext- 3 u(E). (2.5)
n n #
Proof. According to Lemma 2.1, Ext-) WU(Ei) = u(U Ei> < u(Uil Ei>
i=1 i=1 B
for each positive integer n € N*, which implies that Ext-)_ u(E;) < p(Uii Ei).
i—1 N

0
i=1

OO# #
By #-countably subadditive property,Ext->_ u(E;) > p(U Ei )
i=1

Therefore, EXt-iz:; U(E) = p(Ui:l Ei).

The previous theorem shows that if A and B are disjoint measurable sets,
then p(AU B) = u(A) + u(B). If {Ai} o+ is a hyper infinite sequence of disjoint

of
measurable sets,then u(le Ei> = Ext)_u(A). As so far, we have already
i=1

seen that when the sets are measurable, Lebesgue measure satisfies property



(2),(2),(3) and (4). But what kinds of sets are measurable? Certainly every interval is
measurable.

Theorem 2.5. Every interval [a,b] < R¥ is measurable.

Theorem 2.6. If {E;},_+ is @ hyper infinite sequence of measurable sets, then

are measurable sets.
Definition 2.4. Let f be a function from E < R% into R¥ U (—o*,0%). The
function f is (Lebesgue) measurable if

3.External Lebesgue Integral

Let (R,B, 1) be the standard Lebesgue space on R.Our internal starting point
could be the internal measure space (*R, *B, *u). By transfer we can write down
internal Lebesgue integrals

L010] = | H0du),
where Ae *Bandf: R - R.

3.1.Lebesgue Integral of a R#-valued external function f(x).

First, in particular, we need external function that can help us distinguish whether

a given value x is in the measurable set A;. We call this function the characteristic
function. The following statement is the formal definition of characteristic function and
introduces the simple function.

Definition 3.1. For any set A, the function

%A(X){l, X A a1

0, otherwise

is called the characteristic function of set A. A linear combination of characteristic
functions,

$() = D" aixa (X (3.2

is called a simple function if the sets A; are measurable.

For a function f : R¥ - R# defined on a measurable set A that takes no more than
gyper finitely many distinct values ay, ...,an,n € N* the function f can always be written
as a simple function

f) = 3.0, aixa (), (3.3

where A; = {x € A|f(x) = a;}.That is a simple function of the first kind.
Therefore, simple functions can be thought of as dividing

the range of f, where resulting sets A; may or may not be intervals.

Let us pause for a second. We want to ask ourselves: is the simple function
#(X) unique? The answer is no. Because we might define different disjoint sets
that have a same function value. The simplest expression is

$() = D" aiya (X (3.4

where A; = {x € Aj¢(X) = a;}. At this case, the constants a; are distinct, the
sets A; are disjoint and we call that representation the canonical representation of ¢.
Then, for simple functions, we define the Lebesgue integral as follows:



Definition 3.2. If ¢(x) = Zinzl ai ya;(X) is a simple function and u(A) is gyperfinite
for all i, then the Lebesgue integral of ¢(x) is defined as

[o900 = 21 aixa (). (3.5

Definition 3.3. Suppose f : R% - R% is a bounded function defined on a measurable
set E with giperfinite measure. We define the upper and lower Lebesgue integrals if
exist, respectively, as

1#(f) = jE inf{$(x)|¢ is simple and ¢ > f} (3.6)
and
Lo (F) = jE sup{¢(x)|¢ is simple and ¢ < f}. (3.7)

If (i) the quantity 1§ (f) and 14 (f) exist and (i) If (f) = 14 (f), then the function f is called
Lebesgue integrable over set E and the external Lebesgue integral of f over set E is
denoted by I.(f) = IE fox.

The Lebesgue Integral for Simple Functions of the second kind

Let ¢(x) be some simple external function of the second kind which takes on the
gyperinfinitely many distinct values yi, ...,yn,...,n € N¥)y; = y; fori # j.

It is natural to define the integral of the function ¢(x) over the set E by the equation

[c000d*u = 3 YnpdXix € E,0(X) = Yn}. (3.9

Definition 3.4.The simple function ¢(x) of the second kind is called integrable (with
respect to the measure u) over the set E if the gyperinfinite series (15.8) #-converges
absolutely.

If (x) is #-integrable, then the sum of the series (15.8) is called the integral of ¢(x)
over the set E.

Remark 3.1. Note that in definition 15.4 we assume that all the y, are different. One
can, however, represent the value of the integral of a simple function as a sum of
products of the form cu(Bx) and not assume that all the c are different.

Lemma 3.1. Let A = Uk Bx,Bi N Bj = & fori # |, and assume that on each set By the
function f(x) takes on only one value cx. Then

[, 000d*u = 30, ckua(Bi). (3.9)

moreover, the function f(x) is integrable over A if and only if the gyper infinite series
(3.9) #-converges absolutely.

Proof. It is easy to see that every set A, = {X|x € A, f(X) = yn}

is the union of those By for which ¢k = y,. Therefore

Dot Ynit(An) = D0 ynzckzyku(Bk) = > Cktt(Bi). Since the measure is

non-negative,3_ s Vnlu(An) = 22 byl 20, 1(BK) = 20, slcklu(Bi).
i.e., the series D . ynu(An) and ), . .lck|u(Bk) both either #converge

absolutely or #-diverge.
Let us consider some properties of the external Lebesgue integral for simple external
functions:

J OO0+ [, g00d" = [, 100 + GO0 Tdu (3.10

moreover, from the existence of the integrals on the left-hand side it follows that the
integrals on the right-hand side exist.



To prove this assume that f(x) takes on the values f;j, on the sets F; < A, and g(x) the
values gi, on the sets G; < A, since

Ji = [ f00d*u = 30, fiu(F) (3.11)
and
J2 = [, 9000d*u = 3, Giu(Gy). (3.12
Then, by the Lemma 2.1 we get
3= [ [0 + g001d*u = 3o, 2ol + GiJu(Fi N Gy), (3.13
where
uF) = 2w BEFIN GG = X u(Fi N Gy). (3.14

From the absolute #-convergence of the series (3.11)-(3.12) it follows the absolute
#-convergence of the series (3.13); here J = J1 + Jo.
For any constant k € R#

k j fo)d*u = j [kf() Jd (3.15)
A A

moreover, the existence of the integral on the left-hand side implies the existence of
the

integral on the right.A simple function f(x) which is bounded on the set A — R is

#-integrable over A; moreover, if [f(xX)| <M € R% on A, then

‘ [ . f(x)d#u‘ < Mu(A). (3.16)

4.General Definition and Basic Properties of the external
Lebesgue Integral.

Definition.4.1. We shall say that the function f(z) is #integrable over the set A c R, if
there exists a hyper infinite sequence of simple functions f,(z),n € N* which are
#-integrable over A and #-converge uniformly to f(x). We shall denote the #-limit

3= #lim, s | faG0d*u 4.1

by
| food*p (4.2)

and call it the integral of the external function f : R% — R% over the set A.

This definition 4.1 is correct if the following conditions are satisfied:

1.The #-limit (4.1) for any uniformly #-convergent hyperinfinite sequence of simple

functions which are #-integrable over A exists.

2.This #-limit for a given function f(x) does not depend on the choice of the
hyperinfinite

sequence {fn(X)} o

3.For simple functions the definitions of #-integrability and #-integral are equivalent to

those given in section 3.

Notice that all these conditions are indeed satisfied.

To prove the first it suffices to note that by properties for #-integrals of simple
functions,



] 1000d%u— [ fnO00u| < u(A) sUPealio¥) - Tmn() (4.3)

To prove the second condition, we must consider the two hyperinfinite sequences
{Fn()} e and {Fn(X)} e, and use the inequality

‘ [ RECLVE | Afn'(x)d#y‘ < u(A)[ sUpeafin(0) — 10| + supea| i) ~ 00| ] (4.9)

Finally, to prove the third condition it suffices to consider the hyperinfinite sequence
fa(X) = f(X).

The basic properties of the external Lebesgue #-integral.

Theorem 4.1.

IA 1.d*u = u(A). (4.5)

Proof. Immediately from the definition of the #-integral.
Theorem 4.2.For any constant k € R¥

k j f(x)d*u = j [kf(x) ]d* (4.6)
A A

where the existence of the #-integral on the left-hand side implies the existence of the
#-integral on the right.

Proof. The proof is obtained from property (8.15) by proceeding to the #-limit for an
#-integral of simple functions.

Theorem 4.3. Assume that f(x) and g(x) are #-integrable over A then f(x) + g(x)
#-integrable over A and

J f0d%u+ [ good?u = | 00 +goold*u 4.7)
A A A

Let {fi(x)},,n € N be a hyperfinite sequence such that any fi(x) is #-integrable over
A
n . .
then Zi:l fi(x) is #-integrable over A and

> j f,(x)d*u = j " i (4.8)

where the existence of the #-integrals on the left implies the existence of the #-integral

on the right.

Proof. The proof of (4.7) is obtained from property A) by proceeding to the #-limit for
an

#-integral of simple functions.

Theorem 4.4. A function f : A —» R¥ which is hyperbounded on the set A is #integrable

over A.

Proof. The proof is obtained from property C) by proceeding to the limit for an integral
of

simple functions.

Theorem 4.5. If f(x) > 0, then

j f00d*u > 0 (4.9)

assuming that the #-integral exists.

Proof. For simple functions this follows immediately from the definition; for the general



case the proof is based on the possibility of approximating non-negative functions by
non-negative simple functions
Corollary 4.1. If f(x) > g(x), then

[ 0007 = [ g0odiu (4.10)
A A
Chapter IIl.*RZ-Valued abstract measures

1.0%-algebras

Definition 1.1 (¢*-algebra). Let X be any set. We denote by 2* = P(X) = {A: A c X}
the set of all subsets of X.A family & < 2% is called a s*-algebra (on X) if:

()T e F;

(il) F is closed under complements, i.e. A € F implies X\A € F;

(iii) F is closed under hypercountable unions, i.e. if (An) .« IS @ hyper infinite
sequence in F then | J, .+ An € F.

Proposition 1.1.If F is a s*-algebra on X then:

1. & is closed under hypercountable intersections, i.e. if (An),« IS @ hyper infinite
sequence in & then [ Ay € F.

neN?

2. Xe &.

3. F is closed under hyperfinite unions and hyperfinite intersections.

4. F is closed under set differences.

5. & is closed under symmetric differences.

Proposition 1.2.Suppose F < 2% is a family of subsets satisfying the following:
1. de &F;

2. & is closed under complements;

3. &F is closed under hyperinfinite intersections.

Then & is a ¢*-algebra.

Proposition 1.3.If (F ). is a collection of ¢*-algebras on X, then (| F , is also a

o*-algebra on X.

Proposition 1.4.(c%-algebra generated by subsets). Let K be a collection of subsets
of X.There exists a ¢#-algebra, denoted ¢*(K) such that K = ¢#(K) and for every other
o algebra & such that K < F we have that 6*(K) <« F

We call 6#(K) the ¢*-algebra generated by K.

Proof. Define ¢*(K) 2 (N{FF is a o*-algebra on X,K c F}.

This is a o*-algebra with the required properties.

Proposition 1.5.If K £ then ¢#(K) < ¢*(£). Also, if K = F and & is a

o*-algebra, then ¢#(K) c F.

Definition 1.2. (Borel ¢*-algebra). Given a topological space X, the Borel ¢*-algebra
is the o*-algebra generated by the open sets. It is denoted B*(X).

Specifically in the case X = *R# d e N*we have that

B £ B*(*R¥) = ¢#(U|U is an #open set ).

A Borel-#-measurable set, i.e. a set in B#(X), is called a #-Borel set.

Measurable functions. Let f be a *R#-valued function defined on a set X. We
suppose that some ¢*-algebra Q < P(X) is fixed.

Definition 1.3. We say that f is #measurable, if f ([a,b]) e Q for any hyperreals



a,b € *R% such that a < b.

The following three propositions are obvious.

Proposition 1.7. Let f : X - *R¥ be a function. Then the following conditions
are equivalent:

(a) f is #measurable;

(b) f-2([0,b)) € Q for any hyperreal b € *R%;

(©) f1((b,)) € Q for any hyperreal b € *R%;

(d) fX(B) € Q for any B € B(R).

Proposition 1.8 Let f and g be #-measurable functions, then

(@) a x f+ B x g is #measurable for any «,5 € *R%;

(b) functions max{f,g} and f x g are #-measurable.

In particular, functions f* := max{f,0},f~ := (-f) *, and [f|=f* +f~ are
#measurable.

82.#-Measures and measure #-space

Definition 2.1. A pair (X,F) where & is a ¢*-algebra on X is call a #measurable
space. Elements of & are called #-measurable sets.

Given a #-measurable space (X,¥), a function p# : F - [0,007] is called a #-measure
on (X,¥F) if

1. p*(@) = 0;

2. (Hyper infinite additivity) For all hyper infinite sequences (An) ¢ © F of pairwise

disjoint sets in &, we have that u#<U An> = Ext—Z u#(An).

neN# neN#

(X, F, ") is called a #-measure space.
Definition 2.2. A measure space (X, ¥, ¥) is called: (a) hyperfinite if u#(X) < «o*.
(b)lt is called o*-hyperfinite if X = U A, where A, € F and p#(A,) < o for all n e N#,

neN#
Definition 2.3. Let X be a o*-algebra of subsets of a set X, and let E = (E, ||- ||,,) be
a non-Archimedean Banach space.A function p# : T - EU {*w} is called a
vector-valued #-measure (or E-valued measure) if

(@) 1) = 0;

(b) p# U A | = Ext—Z u#(An) for any pairwise disjoint sequence An,n € N#,
neN# neN?#

AnC I

(c) for any S e X, p#(S) = «, there exists B € X such that B < Sand

0 < W (B)ll, < *co.

Definition 2.4.(a) A function p# : F - *CZ U {*o} is called a complex #-measure
if

1.p%(@) = 0,

2.u#<U An> = Ext—Z u#(An) for any sequence An,n € N* of pairwise disjoint
neN# neN?#

sets from &, and, for any A € F,u#(A) = *oo, there exists B € F such that

B < Aand 0 < [u*(B)|, < *c.

(b) A function p# : F - *R% U {*o} is called a signed #measure if



n @ =0
M(U An> = Ext—Z u#(An) for any sequence An,n € N* of pairwise disjoint

neN# neN#
sets from &, , and, for any A € F,u#(A) = *oo, there exists B € F such that
B < Aand 0 < |u#(B)|< *oo.
Definition 2.5. If a certain property involving the points of #-measure space is true,
except a subset having #-measure zero, then we say that this property is true
#-almost everywhere (abbreviated as #-a.e.).
Proposition 2.5. Let u# be a #measure on a ¢*-algebra F,A, € F, and A, - A.
Then A € F and p#(A) = #lim .-, B¥(An). In particular, if (Bn),3 is a decreasing
hyper infinite sequence of elements of & such that N,%, B, = @, then p#(Bn) -« 0.
Definition 2.6. If F is a o#-algebra of subsets of X and p* is a #-measure on &,
then the triple (X, &, p) is called a #measure space. The sets belonging to F
are called #measurable sets because the #measure is defined for them. .

82.1.#-Convergence of functions and the generalized

Egoroff theorem.

Definition 2.1.1. Let f,,n € N* be a hyper infinite sequence of *R¥-valued functions
defined on X. We say that:

1. fn -4 f pointwise, if fa(X) —# f(x) for all x € X;

2. fn —»# f almost #-everywhere (#-a.e.), if fan(x) -4 f(x) for all x € X except

a set of #measure 0;

3. fn =4 funiformly, if for any ¢ > 0,¢ = 0O there is n(e) such that

sup{[fn(x) — f(X)|: x € X} < ¢ for all n > n(e).

Theorem 2.1.1. (generalized Egoroff 's theorem) Suppose that p#(X) < *oo,

{fn+ and f are #-measurable functions on X such that f, -4 f #a.e. Then, for
every ¢ ~ 0,e > 0,there exists E < X such that u#(E) < ¢ and f, —4 f uniformly on
E°¢ = X\E.

Proof: Without loss of generality, we may assume that f, - f everywhere on
Xand (by replacing f, with f, — f) that f = 0. For k, n € *N, let

En(k) = U{x : fm(X) k- 1}.Then, for a fixed k,En(k) decreases as n increases,

m=n
and ﬂ En(k) = @. Since p#(X) < *oo, we conclude that p#(En(k)) —# 0as n - *oo.
n=1
Given ¢ ~ 0, > 0 and *N, choose n such that p*(Eng(k)) < e x 27%, and set
E= U Enk(k). Then p*(E) < ¢, and we have [fo(X)|< k'1(Vn > ng,X ¢ E).
n=1

Thus f, -4 0 uniformly on X\E.

Generalized exhaustion argument.

Let (X,Z, u¥) be a o”-finite #-measure space. Given a hyper infinite sequence
(Un)y5 < %, aset A e Xis called (Uy)n-bounded if there exists n € *N such that
A c U, p#-almost everywhere.

Theorem 2.1.2. (Generalized Exhaustion theorem) Let (Y,).5 < = be a



hyper infinite sequence satisfying Y, 1 X and p#(Y,) < *o for all n € *N.

Let P be some property of (Yn)n-bounded

#-measurable sets, such that A € P iff B € P for all B, u*(AAB) = 0. Suppose
that any (Yn)n-bounded set A, p#(A) > 0, has a subset B € X, u#*(B) > 0 with the
property P. Moreover, assume that either

(a) A1UA; € Pforevery Ai;,A; € P, or

(b) Unexv Bn € P for every at most hyper infinite family (Bn)n of pairwise disjoint
sets possessing the property P.

Then there exists hyper infinite sequence (X)), < Z such that X, 1 X, and

P> Xn< VYn

for all n € *N. Moreover, there exists a pairwise disjoint sequence (An);% S
such that Uney An = Xand A, € P for all n € *N.

Proof: Let A be a (Yn)n-bounded set with u#(A) > 0. Denote
Pa:={BeP:Bc A AMA) = sup{u*(B) : B € Pa}.

I(a) Suppose P satisfies (a). Then there exists a sequence (F,).~ < Pa such
that m(A) = #lim .-, W*(Fn), We may assume, that F,, 1. By Proposition 2.5
the set F = U,%, F,, satisfies u#(F) = m(A). We show that p#(A) = m(A). If not
then p#(A\F) > 0. The set A\F has a subset of positive #-measure Fo € P.

Then F, U Fo € Pa and p#(F, U Fo) > m(A) for a sufficiently large n € *N, which
contradicts to the definition of m(A). Therefore, p#*(A) = m(A).

Now we apply this for A = Y,. Thus, there exists hyper infinite sequence (Xp)n S X
such that X, < Yy, Xj,,n € P, and p#(Yn,\X},) < n~*for all n € *N. By (a), we may
assume that X;, 1. The set Xj = U3 X, satisfies Yo\Xy S Ya\X}, s0 p#(Ya\Xp) < nt
for all n € *N. Then p#(Ya\Xy) = 0, and p#((UyZ Yn)\Xp) = 0, or p#(X\Xp) = 0.
Let Xn = (X, U (X\Xp) N Yn, then the hyper infinite sequence (Xn)n has the required
properties. The desired pairwise disjoint sequence (An) % is given recurrently by
A1 = Xiand Ak = Xia\ UKy Al

I(b) Suppose P satisfies (b). Let Fa be the family of all pairwise disjoint

families of elements of P4 of nonzero measure. Then F4 is ordered by inclusion
and, obviously, satisfies the conditions of the Zorn lemma. Therefore, we have
a maximal element in Fa, say A. Then A is at most hyper infinite family, say

A = {Dn}n. By (b), its union D = Un Dy, is an element of P, as well. If D is

a proper subset of A, then u#(A\D) > 0. The set A\D has a subset F € P

of the positive measure. Then A; := AU {F} is an element of Fa which is
strictly greater then A. The obtained contradiction, shows that A € P for every
(Yn)n-bounded set A. So, we may take X, = Y, for each n € *N.

Now we apply this for A = Znm, = Y\ U Yk be a pairwise

disjoint union, where D' € P for all n,m € *N. The family {D7"} nm IS an at most
hyper infinite disjoint decomposition of X, say {DT}nm = (An). 5. The sequence
(An) = satisfies the required properties.

Theorem 2.1.3.(The generalized Borel-Cantelli lemma) Let (X, %, u¥) be a
#measure space. Assume that {An}n < X and Ext—Z;fl H(An) < *oo then

lim supn-+ H#(An) = 0.

§2.2.Vector-valued #-measures
In this section, we extend the notion of a measure. Then we study the basic



operations with signed measures and present the Jordan decomposition theorem.

2.2.1. Vector-valued, signed and complex #measures.

Let =# be a s”-algebra of subsets of a set X, and let E* = (E*, ||+ ,) be a
non-Archimedean Banach space.

Definition 2.2.1 A function p* : *# - E* U {*«} is called a vector-valued
#-measure (or E*-valued measure) if

(a) u*(@) = 0; *

(b) p*(U Ax) = Ext) ., i#(Ax) for any pairwise disjoint sequence (Ayx < =%
(c) for any A e ¥ p#(A) = *oo,there exists B € # such that B < A and

0 < [W*(B) |, < *eo.

Example 2.2.1 Take ¥ = P(*N), and c§ is the non-Archimedean Banach space
of all #-convergent C#-valuedhyper infinite sequences with a fixed element
(an)n € c§. Define now for any A < Ny(A) = (Bn)n,

where n = anifn e Aand g, = 0if n ¢ A. Then y is a c§-valued #measure on
P(*N).

Example 2.2.2 Let X be a set and let Q be a ¢*-algebra in P(X). Then for any
family {p i, 0f finite #measures on Q and for any family {w}; of vectors of
R#" the R#"-valued #-measure ¥ on Q is defined by the formula

Y(E) = Ext) " M(E) x Wy, (E € Q).

Example2.2.3 Let X be a set and let Q be a ¢#-algebra in P(X). Then for

any family {u},of finite #measures on Q, for any family {As}*; of pairwise
disjoint sets in Q, and for any family {w}; of R#¥",n € *N, the R#"-valued
#measure ® on Q is defined by the formula ®(E) = Ext—ZEll Hk(E N Ak) x W,
(Ee Q).

83. The Lebesgue #-Integral

In the following consideration, we fix a o*-finite #-measure space (X, F, u¥).
Definition 3.1.Let Aj € F,i = 1,...,n € *N, be such that p#*(A) < *oo for all i, and
AiNA; =@ foralli # j. The external function

i) = Ext Y dza (),

Ai € *R¥, is called a simple external function. The Lebesgue external integral
(Lebesgue #-integral) of a simple external function f(x) is defined as

Ext—j f(x)d*u* = Ext Z,nl/liu#(Ai).
X I=

The Lebesgue external integral of a simple function is well defined.
Notation 3.1.Let Aj € F,i = 1,...,n € *N, be such that u#(A;) < * for all i, and
AiNA; =0@foralli = j. Let f1(x),f2(x) be a simple external function such that

(i) 0 < f1(x) < f2(x) and (i) f1(x) = Ext—Zinzl/ll,i;(Ai (X),f2(X) = EXt—Zin:l/lz,i)(Ai ().

Ext " J1 SExt Y Ja,

then we will write f1(x) <s f2(x).
Definition 3.2. Suppose that u# is hyperfinite. Let f : X - *R¥ be an arbitrary

nonnegative bounded in *R¥ #measurable external function and let (f,) .., be a

(3.1)

(3.2)

(3.3)



hyper infinite sequence of simple external functions which #-converges uniformly
to f. Then the Lebesgue #-integral of f is

Ext IX f)d* P = #-lim.- o (Ext— IX fn(x)d#p#) . (3.9

Remark 3.1.It can be easily shown that the #-limit in Definition 3.2 exists and does
not depend on the choice of a hyper infinite sequence (fn),..,, and moreover, the

hyper infinite sequence (f,) .., can be chosen such that 0 < f, < ffor all n € *N.

Notation 3.2.Let f; : X » *R% and f, : X - *R¥ be an arbitrary nonnegative
bounded in *Rf #-measurable external functions and let (f1,) .., and (f2n) b€

a hyper infinite sequences of simple external functions which #-converges uniformly
to f; and to f, correspondingly. We assume that for all n € *N the inequality (3.3)
is satisfied, then we will write f1(X) <s f2(X).

Definition 3.3. Let f : X » *R¥ be a #-measurable function. Then the Lebesgue
#-integral of f is defined by
Ext j f(x)d*u* = Ext j f+(x)d*p* — Ext j f-(x)d*p. (3.5)
X X X
If both of these terms are finite or hyperfinite then the function f is called #-integrable.

In this case we write f € L} = L¥(X,F, u").
Notation 3.3.We will use the following notation. For any A € &F :

Ext IA f(x)d*p* = Ext- IX f(X) y A(X)d#p”. (3.6)

Lemma 3.1.(1) Let f : X » *R#% be an arbitrary nonnegative #-measurable function
then

Ext I f(x)d#p# =
X

3.7
sup{Ext— IX (D(X)d#p#‘(o is a simple function such that 0 < ¢(x) <s f(x)}.
(2) If f,g : X » *R% are #-measurable, g is #integrable, and [f(x)|<s g(x), then f
is #-integrable and
‘Ext— [ f(x)d#p#‘ < Ext- [ goodip. (3.8)
X X
(3) Ext—J.X|f(x) |d#u# = 0if and only if f(x) = 0 #a.e.
(4) If f1,f2,...fn 1 X > *R%,n € *N are integrable then, for 11,42, ...,An € *RE,
the linear combination Ext)_" fi is #-integrable and
Ext J-X<Ext-2i"=1/1ifi>d#u# = Ext-zi”:l(Ext- Ixiifid#u#)_ (3.9
(5) Let f € L{(X,&F,p#), then the formula
VA(A) = Ext jA f(x)d*u* = Ext jx f(X) y ()P (3.10)

defines a signed #-measure on the s*-algebra & .
Remark 3.2. Assume that f,g : X —» *R¥ are #integrable functions and such that
0<f<sg#a.e.,then



Ext—J‘ f(x)d#p* < Ext—J- g(x)d#p*.
X X

#-Convergence theorem

Definition 3.4. We say that a hyper infinite sequence {fn};fl of #-integrable functions

L#-#-converges to f (or #converges in L{(X,F, ")) if

Ext [ [fn—fld*u* —4 Oas n —» “c.
X

Theorem 3.1 (The monotone #-convergence theorem) If {fn};fl is a hyper infinite

sequence in L (X, F, ) such that f; <s fj;1 for all j and f(x) = supes fa(X) then
Ext—j f)d* P = #-lim .- Ext—j fa(x)d* .
X X

Proof: The #-limit of the increasing sequence

(Ext— I fn(x)d#u#)
X
(x-finite or x-infinite) exists. Moreover by (3.2),
Ext—f fa(X)d*u* < Ext J. f(x)d*u#
X X

*o0

n=1

forall n € *N, so
#-1im o (Ext—J- fn(x)d#p#) < Ext—J‘ f(x)d#p?.
X X

To establish the reverse inequality, fix o € (0, 1), let ¢ be a simple function with
0<¢<f andlet E, = {x: fa(X) > ap(X)}. Then (En),= is an increasing hyper
infinite sequence of #-measurable sets whose union is X, and we have

Ext—f fa(X)d*u¥* > Ext J. fn(X)d#p# > a(Ext— J. (p(x)d#u#)
X En En
By (3.10) and by Proposition 2.5,
#-lim oo (Ext—j <p(x)d#u#> = Ext—j o (X)d#p*,
En X
and hence
#-1im o, (Ext—J. fn(x)d#u#) > a(Ext—J. (p(x)d#u#).
En X
Since this is true for all &,0 < a < 1, it remains true fora = 1 :
#-1im oo (Ext—j fn(x)d#u#) > Ext—j e (X)d#p*,
En X

Using Lemma 3.1.(1), we may take the supremum over all simple functions ¢,
0<¢ <sf. Thus

T (Ext— | fn(x)d#u#) > Ext [ {09

Proofs of the following two corollaries of Theorem 3.1 are straightforward.
Corollary 3.1 If (f1),2 is a hyper infinite sequence in L1(X) and f = Ext—Z;flfn
pointwise then

Ext IX f(x)d*u* = Ext Z;fl (Ext— IX fn(x)d#p#) :

Corollary 3.2 If (fn),7 is a hyper infinite sequence in L}(X), f € L1(X), and
fn -« f p#-a.e., then

(3.11)

(3.12)

(3.13)

(3.14)

(3.19

(3.16)

(3.17)

(3.18)



Ext [ fn000u* 4 Ext [ f0d"y", (3.19

Theorem 3.2 (Generalized Fatou’s lemma) If (f,)%is any hyper infinite sequence
in L1(X) then
Ext [ #1im info..(F200)d** < #lim inf ... (Ext- [ fn(x)d#p#). (3.20)
X X
Theorem 3.3 (The dominated #-convergence theorem) Let f and g be #measurable,

let f, be #-measurable for any n € *N such that [fo(X)|<s g(X) #-a.e., and f, -4 f
#-a.e. If g is #integrable then f and f, are also #-integrable and

Ext | 100" = #-limi.. Ext |  fa00d". (3.21)

Proof: f is #measurable and, since |f | <s g p*-a.e., we have
f e L1(X). We have that g+ f, > 0 y*-a.e. and g - f, > 0 so, by Fatou’s lemma,

Ext IX gd*p* + Ext- IX fd#p#* < #-liminf .« (Ext— Ix[g - fn]d#p#) =

Ext I gd?u® + #-lim inf p_«o (Ext— J- fnd#u#) ,
i ¢ (3.22)
Ext jx g’ - Ext [ TP < #lim infie (Ext_ Ix[g ~ fn]d#u#) _

= Ext—f g — #lim supn-+w (Ext—f fnd#u#)
X X
Therefore
#1im info.-.. (Ext- | fnd#p#) > Ext- [ fd*p* > #lim sup,... (Ext- [ fnd#p#) (3.23)
X X X
and the required result follows from (3.23).

8 4. #-Convergence in #-measure.

Definition 4.1. We say that a hyper infinite sequence (fn);f’1 of #measurable
functions on (X, M, u¥) is Cauchy in #-measure if, for every ¢ ~ 0,¢ > 0,

P [fn(X) = fm(X)> ¢}) —» 0as mn - *oo, (4.1)
and that (fn);f’1 #-converges in #-measure to f if, for every ¢ ~ 0,6 > 0,
WX 1 [fln(X) —f(X) > ¢}) —»» 0asn - *oo. (4.2

Proposition 4.1. If f, >4 fin L then f, »4 fin #-measure.
Proof. Let En, = {X : [fn(X) —f(X)> ¢}. Then

EXt-J.x| fn - f|du# = EXt-IE | fn N f|du# = Su#(En,g),

S0 U(En,) < g-lExt-IX| fn— f|du# -4 0.

Theorem 3.1. Suppose that (fn);fl is Cauchy in #-measure. Then there is a
#measurable function f such that f, —# f in #measure, and there is a

hyper infinite subsequence (fy)je-n that #converges to f #-a.e. Moreover, if

fn »# g in #measure then g = f #-a.e.

Proof. We can choose a hyper infinite subsequence (g;); = (fn); of (fa),2 such

that if Ej = {X : |gj(X) — gia(X) > 279} then p*(Ej) < 27. If Fx = | JE; then
i



¥ (F) < Ext)_. 27 = 2%k and if x ¢ Fx we have fori >j > k
i=k
i1 i1 _
19i(¥) = gi(¥ [ Ext > Jgr1(X) - gi(X)|< Ext )] < 2%, 4.3
I=j I=j

Thus (g;); is pointwise Cauchy on F§. Let F = (| Fk = lim sup Ej. Then p*(F) = 0,
k=1

and if we set f(x) = limj.-, gj(x) for x ¢ F, and f(x) = Ofor x € F, then fis
#-measurable and g; —»« f a.e. By (4.3), we have that |gj(x) - f(X)|< 2%for x ¢ Fy
and j > k. Since p*(Fx) »# 0 as k - *wo, it follows that g; -4 f in #measure,
because

&) = TR &f = {x 1 [fn(¥) - i (1/2)e} U {x : |gi(X) — T (1/2)e}, (4.4)
and the sets on the right both have infinte small #measure when n and j are infinte
large. Likewise, if f, -4 g in #measure

KGO —g(B &f = X f() — fa(QE (1/2)e} U X 1 [fn(X) — 90 (1/2)e}  (4.5)
for all n € *N, hence p#({x : [f(xX) —g(X)}> ¢}) = Oforalle > 0, and f = g #a.e.
Theorem 3.2 Let f, -4 fin L% then there is a hyper infinite subsequence (fn, )«
such that f™ —4 f #-a.e.
Proof. Let En, . = {X : [fa(X) = f(X)|> ¢}. Then

Ext | o~ "y = Ext [ ffa—fidu > ep(Eno),

ne

so u#(En.) —# 0. Then, by Theorem 3.1, there is a hyper infinite subsequence
(fn )k such that f, — f #-a.e.

8 5.The Extension of #Measure
§ 5.1.0uter #-measures.

Definition 5.1.1. Let X be a nonempty set. An outer #-measure

(or #-submeasure) on X is a function & : P(X) - [0,*x],P(X) < P(X) that
satisfies:

(@) &®) = 0;

(b) &(A) < &(B) if A < B;

(©) cf#(U AJ) < Ext)_&*(Ay) for all hyper infinite sequences (A;)) in BPX).
=1 i=1

The common way to obtain an outer #-measure is to start with a family G of
“elementary sets” on which a notion of measure is defined (such as rectangles
or cubes in *R#"and then approximate arbitrary sets from the outside by hyper
infinite unions of members of G.
Proposition 5.1.1 Let G < 5(X) be a set such that@ € G,X € G and let
p : G - [0,*w] be a function such that p(@d) = 0. For any A < X, define

j=1

FHA) = p*(A) = inf{Ext-*fp(Gj) ' GjeGandAc GG,}. (5.1.1)
=1

if p*(A) exists. Then & is an outer #measure.
Definition 5.1.2.We will say that A < X is admissible if p*(A) exists.



Proof. For any admissible A < X, &#(A) is well defined. Obviously &#(@) = 0.
To prove x-countable subadditivity, suppose {Aj}(4 < 5()() and ¢ =,& > 0.

For each j e *N, there exists {Gl}% < G such that Ay < Uij and

Ethp(G‘) < & (A) +e27. Thenif A = UAJ,we have A ¢ U Gl and
j k=1

EXt—Zp(G ) < Zg“(AJ) + g,whence &#(A) < Eth{#(A,) +¢.Since e > 0is

j.k=1
arbitrary, we have done.
Definition 5.1.3. A set A < Xis called &#-measurable if p*(A) exists and
VB < Xsuch that p*(B) exists the equality (5.1.2) holds

F(B) = H(BNA) + (BN (XA)). (5.1.2

Of course, the inequality &#(B) < &#(BN A) + &#(B N (X\A)) holds for any
(admissible) set A and B.
So, to prove that A is &*-measurable, it suffices to prove the reverse inequality,
which is trivial if £#(B) = *oo. Thus, we see that A is &*-measurable iff for
any admissible B < X,&#(B) < *oo

&'(B) = F(BNA) + (BN (XW). (5.1.3

Theorem 5.1.1 (Generalized Caratheodory’s theorem) Let & be an outer
#measure on X. Then the family £ of all ##*-measurable sets is a ¢*-algebra, and
the restriction of & to T is a complete #-measure.

Proof: First, we observe that X is closed under complements, since the definition
of &#-measurability of A is symmetric in A and A 2 X\A. Next, if A,B € T and
EcX

FE) =FHENA+EFHENAY) =FENANB) +HENANBY) + H(ENACNB) +
+&#(E N A° N BO).

But (AUB) = (AN B) U (AN B® U (A°N B) so, by subadditivity,
FENANB)+FHENANBY) +F(ENASNB) > F(EN(AUB)),

and hence &(E) > F#(EN (AU B)) + & (EN (AU B)°).

It follows that AUB € X, so X is an algebra. Moreover, if A,B € £ and

ANB =0, AUB) = #((AUB)NA) + F(AUB) N A% = & (A) + &#(B),

so & is hyperfinitely additive on X.

To show that X is a ¢*-algebra, it suffices to show that X is closed under
x-countable d|510|nt unions. If (A)) is a sequence of disjoint sets in X, set

Bn = UAJ AB= UAJ Then, for any admissible E < X,
=1 =1

FENB) = FENBrN AN +FHENBrNAS) = é‘#(EmAn)+é‘#(Em Bn1),
so a hyperfinite induction shows that &#(E N By) = Ext Zé#(E N Aj). Therefore

¢H(E) = &(ENBn) +(ENBF) = EXth#(EﬂAj) +¢{(ENB°)

j=1
and, letting n — *o0, We obtain

&) = EXth#(EﬂAJ) +*(ENB°) = é#(UEﬂAJ> +EHENBY) =*ENB) +

=1



+ZH(E N BS) > &#(E).

Thus the inequalities in this last calculation become equalities. It follows B € .
Taking E = B we have &#(B) = Ext)_ & (A;), so & is o*-additive on X. Finally, if
-1

&*(A) = 0then we have for any admissible set E = X

FE) SFENA)+EFHENAS) = F(ENAS) < #(E), sOA € X

Therefore F#(EN A) = 0 and &5 is a complete #measure.

Combination of Proposition 5.1.1 and Theorem 5.1.1 gives the following corollary
which is also called generalized Caratheodory’s theorem.

Corollary 5.1.1 Let G < P(X) be aset such that® € G,X € G, and let

p . G - [0,*0] satisfy p(@) = 0. Then the family X of all p* #measurable sets
(where p*is given by (5.1.1)) is a ¢*-algebra, and the restriction p*|s of p* to T is a
complete #-measure.

Definition 5.1.4 Let A be an algebra of subsets of X, i.e. A contains @ and X, and
Ais closed under hyperfinite intersections and complements. A function

¢ A - [0,*0] is called a #premeasure if {(#) = 0 and C(Lj AJ) = Ext->_{(A) for
i=1 =1

any disjoint sequence (A))jc+n of elements of A such that | JA; € A.
=1

Theorem 5.1.2 If {is a #premeasure on an algebra A < P(X) and
¢ P(X) - [0,*0] is given by (5.1.1) then {*|a = (and every A € Ais
* #measurable.

8 5.2.The Lebesgue and Lebesgue — Stieltjes #-measure
on *R%

The most important application of generalized Caratheodory’s theorem is the

construction of the Lebesgue #-measure on *R%. Take G as the set of all intervals

[a,b], where a,b € *R¥ U {~—*w,+*0} and [a,b] = @ if a > b. Define the

function p : G » *R% U {*oo} by

vavb(a < b) [p([a,b]) = b-a] and Vavb(a > b)[p([a,b]) = 0]. (5.2.1)

The function p has the obvious extension (which we denote also by p) to the
algebra A generated by all intervals, and this extension is a #-premeasure on A.
The o*-algebra X given by Corollary 5.1.1 is called the the Lebesgue o*-algebra
in R, and the restriction of p* to ¥ = X(*R¥) is called the Lebesgue #measure
on *R¥ and is denoted by p”. By Theorem 5.1.2, u* is the unique extension of p.
By the construction, B*(*R%) < Z(*R%). Hence the Lebesgue #measure is a Borel
#-measure. It can be shown that B*(*R¥%) = Z(*R¥) and that the Lebesgue
#measure can be obtained also as the completion of any Borel #measure

w?* such that w*([a,b]) = b-a(va < b).

The notion of the Lebesgue measure on *R¥ has the following generalization.
Suppose that p# is a o*-finite Borel measure on *R¥, and let vx €* R¥%

F() = P ((=*o0,X]) (5.2.2
Then F is increasing and right #-continuous . Moreover, if b > a, (—*w,b] =
(=*o0,a] U (a,b], so p#((a,b]) = F(b) — F(a).



Our procedure used above can be to turn this process around and construct a
measure Y starting from an increasing, right-continuous function F. The special
case F(x) = x will yield the usual Lebesgue #measure. As building blocks we can
use the left-#open, right-#-closed intervals in *R% i.e. sets of the form (a,b] or

(a, *0) or @, where —*« < a < b < *oo. We call such sets h-intervals. The

family A of all finite disjoint unions of h-intervals is an algebra, moreover, the
o*-algebra generated by A is the #Borel algebra B*(*R¥).

Lemma 5.2.1. Given an increasing and right #-continuous function F :* R% - *R%,
if (a;,b;](j = 1,...,n),n € *N are disjoint h-intervals, let

Hg(LnJl(aj,bjO = Ext-Zn;,[F(bj) - F(a)], (5.2.3
1= j=

and let p§(@) = 0. Then p§ is a #-premeasure.
Lemma 5.2.2.f Assume that {(a,, b.)|a € G} is a hyperfinite or x-countable
family of intervals in *RZ such that [0, 1] S Usec (a4,b,) then Ext)_ . la, — bs| > 1.
Theorem 5.2.1 If F : *R¥ - *R% is any increasing, right #-continuous function,
there is a unique Borel #measure pf on *R¥ such that Vavb(a,b € *R¥)

uE((a b)) = F(b) - F(a.
If G is another such function then pf = g iff F — G is constant.
Conversely, if u# is a Borel #measure on *R¥ that is gyperfinite on all #bounded
#-Borel sets, and we define F(x) = p#((0,x]) if x > 0,F(x) = 0if x = 0,
F(x) = —pu#((x,0]) if x < O,
then F is increasing and right #-continuous function, and p* = p.
Proof: Each F induces a #-premeasure on B*(*R¥) by Lemma 5.1.1. It is clear
that F and G induce the same #-premeasure iff F — G is constant, and that these

#-premeasures are ¢”-finite (since *R¢ = | J(j,j + 1]). The first two assertions

follow now from Lemma 5.2.2. As for the last one, the monotonicity of p*

implies the monotonicity of F, and the #-continuity of u# from above and from
below implies the right #-continuity of F for x > 0 and x < 0. It is evident that

u# = ut on algebra A, and hence p# = pt on B*(*R¥) (accordingly to Lemma 5.2.4).
Lebesgue — Stieltjes #-measures possess some important and useful regularity
properties.

Let us fix a complete Lebesgue — Stieltjes #-measure p* on *R¥ associated to an
increasing, right #-continuous function F. We denote by %« the Lebesgue algebra
correspondent to p*. Thus, for any E € X,

*o0

W (E) = inf{Ext-E;[F(bj) - F(aj)]‘E < Lj;(aj,bj]} =
= 1=

" 5 (5.2.4)
= inf{Ext—_}%uﬁ((aj,bj])‘E c L{(ahbj]}
= =

if infinum in RHS of (5.2.4) exists. Since B*(*R¥) < X+, we may replace in the
second formula for u#(E) h-intervals by #-open intervals, namely
Lemma5.2.3 Forany E € X,



W#(E) = inf{Ext-z;pﬁ((aj,bj))‘E c _q(a,-,bj)}. (5.2.5
j= i=
Theorem 5.2.2 IfE € e then

EeX;=inf{u*(U) : U2 EandUis #-open} =

. (5.2.6
= sup{u*(K) : K < Eand K is # - compact}.

Proof By Lemma 5.2.2, for any € =,¢ > 0, there exist intervals (&, bj) such that

Ec U(aj,bj) and p*(E) < Ethu#((a,,b,)) +e. lf U = U(a,,b,) then U is #-open,
J_

Ec U, and p#(U) < p#(E) + . On the other hand, p#(U) > pu*(E) whenever E c U

so the first equality is valid.

For the second one, suppose first that E is bounded in *R%. If E is #-closed then E

is #-compact and the equality is obvious. Otherwise, given ¢ ~,& > 0, we can

choose an #-open U, (#E)\E < U, such that p#*(U) < p#((#E) \E) +e.

Let K = (#E) \U. Then K is #-compact, K < E, and

H*(K) = W*(E) - W*(EN V) = p*(E) - [W¥(U) - p*(U\B)] >

> WH(E) - u*(U) + W ((#E)\E) > p*(E) —e.

If E is unbounded in *R¥, let E; = EN (j,j + 1]. By the preceding argument, for

any ¢ ~,¢ > 0, there exist a #-compact K; < E; with p*(K;) > p#(EJ) —¢27. Let

Hp = U Kj. Then H, is #-compact, H, < E, and p*(Hn) > p* U(EJ —e.

Since P#(E) = #lim .« u#(U E,-), the result follows.
j=n

Theorem 5.2.3. If E < *R%, the following are equivalent:

(@ Ee€ Zu#;

(b) E = VAN, where V is a Gz—set and p#(Ny) =

(c) E = HU Nz, where H is an F_«—set and p#(N;) =

Theorem 5.2.4. If E € X+ and p*(E) < *oo then, for every ¢ ~,e > 0, there is

a set A that is a hyperfinite union of #-open intervals such that p#(EAA) < «.
Lemma 5.2.4 Let A < P(X) be an algebra, let pu§ be a o*-finite #-premeasure on
A, and let Q be the ¢#-algebra generated by A. Then there exists a unique
extension of uj to a #-measure p* on Q.

§ 5.3. Product #measures.

Definition 5.3.1.Let {(X,, F o, U¥)}4ca be a nonempty family of #measure spaces. We
define the family Q of blocks:

AAus Agyr - - Aay) =
= Ay, X Agy X + o+ XAy, x EXt H X, (5.3.1)

aeA,a+ak,1<k<n

where A, € &, and define a function



Hh 1 Q- "REU{*o0} 1=

5.3.
”#<Aa1> X (A, X o o o xp#(Agy) X |:EXt- H ,u#(X,x):|. ( 2

aeA,a+ak,1<k<n

This function possesses an extension (by #-additivity) on the #-algebra A generated
by Q. It is easily to show that pf is a #-premeasure on A.

Definition 5.3.2 The #measure [i* on the o*-algebra X generated by A accordingly
to Theorem 2.1.3 is called the product #-measure of {u#} .., and the triple

(]_[ Xa,z,ﬁ#> is called the product of #-measure spaces (X,,Z, u¥).

aeA

We denote the ¢*-algebra = by @.,, and the #-measure fi* by @ u?.

aeA aceA
Definition 5.3.3.If E € X3 x Xz and x1 € X1,X2 € Xz, we define
Ex, = {Xe Xz: (X1,X) € E} and B2 = {Xx € X1 : (X,X2) € E}..
If f : X3 x Xz - *REis a function, we define fy, : X, » *R% and 2 : X; - *R%
by fx, (X) = f(x1,Xx) and f*2(x) = f(x, X2).
Theorem 5.3.1. (The generalized Fubini's theorem) Let u#%, u4 be o*-hyperfinite
#measures on (X1,F 1) and (Xz,F2),

(X1 x X2,F1 ® Fa, Wi @ W) = (Xu,F 1, 4f) x (Xo,F 2, 3), (5.3.3
and letf e L¥(X1 x X2, F 1 ® Fo, 14 @ ). Then fy, € L{(Xo, F 2, U5) pf-#a.e.,

and 2 e L¥(Xy,F 1, 1Y) us-#a.e., and

Ext [ fd(uf@ug) —Ext [ [Ext— I szd#pﬁ]d#pg _

= Ext I § [Ext— IX fy, 0% g ]
1 2

Lemma 5.3.1. Let (X1,Z1, 1¥) and (X2,Z2, 4§) be #-measure spaces, E € ; ® X,
and let f be a ¥1 ® X,-measurable function on X; x X», then:

(@) Ex, € Zoforall x; € Xy and Ey, € X1 for all xo € Xp;

(b) fy,is Xp-measurable and fy,is £1-measurable for all x; € X; and x, € Xo.
Proof. Denote by A the collection of all A € X1 x Xz such that A, € X,and

AX2 e Zl(VXl € X1,X2 € Xz).

The family A contains all rectangles. Thus, since

X1><X2

d*uf (5.3.49

|:UAn:| = U[An]xly[Bn]Xz = [Bn]X2 (5-3-5)
n=1 X1 n=1
and

[Xl X Xz\A]Xl = X2\AX1, [Xl X X2\A X2 = xl\AX2, (536)

Ais a ¢*-algebra. So ; ® X, < A, and (a) is proved.Now the part (b) follows from
(a) due to 5, (A) = [f 1(A)]x, and [F2]L(A) = [FLA)]2(VA C *R¥).

Definition 5.3.4 A family M < P(X) is called a monotone class if M is

closed under x-countable increasing unions and x-countable decreasing
intersections.

Lemma 5.3.2. If A € P(X) is an algebra then the monotone class generated

by A coincides with the s*-algebra generated by A.



Lemma 5.3.3. Let (X1,Z1, 4¥) and (X2,X2, Y5) be #-measure spaces, E € 1 ® .
Then the functions x; - P4(Ex,) and x; — W¥(E*) are #-measurable on (X1,Z1)
and (X2,%»), and

ui ® pEE) = Ext [ pi(E)ds = Ext [ pi(E)d"u, (5.3.7)

Proof. First we consider the case when p¥ and p# are finite. Let A be the family
of all E € £1 ® X5 for which (5.3.7) is true. If E = A x B, then
HI(E*) = pi(A)xs(x2) and pi(Ex,) = HE(B)xa(x1), SO E € A. By additivity,
it follows that gyperfinite disjoint unions of rectangles are in A so, by Lemma
5.3.2,bit will suffice to show that A is a monotone class. If (En),Z is an increasing
hyper infinite sequence in Aand E = [ Ey, then the function f,(x2) = pi((En)*?)

n=1
are #-measurable and increase pointwise to f(y) = u%(E*). Hence f is #measurable
and, by the monotone convergence theorem,

Ext [ pi(E2)duf = #limy... Ext [ pf((En)2)duf =
X X (5.3.8)

#liMp.o P x pE(En) = pf x p3(E).

Likewise pf x u5(E) = Ext—j UE(Ex)duf, so E € A. Similarly, if (En),=, is a decreasing
X1

hyper infinite sequence in Aand E = [ En, the function x, - pf((E1)*) isin
n=1

L#(u%) because Pi((E1)xz) < p¥(X1) < *oo and p4(Xz2) < *oo, so the dominated
convergence theorem can be applied to show that E € A. Thus, A is a monotone
class, and the proof is complete for the case of finite #-measure spaces.
Finally, if p¥ and p are o"-finite, we can write X; x X, as the union of an
increasing hyper infinite sequence (le X ij)j";’?L of rectangles of finite or hyperfinite
#measure. If E € £; ® I, the preceding argument applies to EN (X, x X)) for each
| gives us

HEx WEEN (K x X)) = Ext- [ (B nXus = Ext [ WiE N Xt (5.3.9

Xo X1

The application of the monotone convergence theorem then yields the desired
result.
Lemma 5.3.3. (Generalized Tonelli’s theorem) Let (X1,Z1, 4%) and (Xz,Z2, u%)
be #-measure spaces, and f : X; x X, - *R% be a X1 ® X,-#measurable
function.Then the functions

fs(x1) = Ext j fr, 0"l and f(x2) = Ext j podfyt (5.3.10
X2 X1

are X;-#measurable and X,-#measurable, respectively, and



Ext [ fd'ufe®ps-Ext | |:Ext- | f"zd#pf:|d#p§ —

X1xX2 X2 X1

= Ext I |: Ext I fy, d#us :|d#p§.

X1 X2

(5.3.11)

Proof: In the case when f is a characteristic function, the statement of

this lemma follows from Lemma 5.3.3. Therefore, by linearity, it holds also

for nonnegative simple functions. If a nonnegative #measurable function f is
arbitrary, there exists a sequence of nonnegative simple functions which increase
pointwise to f, say (f,) . By the monotone convergence theorem,

Ext j fadud = #—Iimnﬁ*w|:Ext- j fﬂgd#u’f:| -

X1 X1

(5.3.12
- #—Iimnq*w|:Ext- j fodu? ® ug]
X]_XXZ
and
Ext [ faduf = #-nmw{[zxt- | fﬂ?d#u§:| _
X X (5.3.13
= #—Iimnﬁ*w[Ext- I fod?uf ® u§:|,
X1><X2
where
fi(xa) = Ext j [fo], 0“8, F (%) = Ext j (] ed it (5.3.19

X1 X2

This proves (5.3.11) and the lemma.

Proof of Theorem 5.3.1. Since an *R#-valued function f is Lebesgue #-integrable
iff its positive f* and negative f ~ parts are #-integrable, it is sufficient to

prove the theorem only for nonnegative function f € L{(X1 x X2, %, uf @ pd).

But this was exactly done in Lemma 5.3.3.

§ 5.4.Lebesgue #-measure and integral in *R#",

In this section, we study *R#",n € *N and functions from *R#"to *R# from the

point of view of the Lebesgue #measure and Lebesgue integration. All results
presented below possess obvious *C#"-valued analogs. Then we define and study
generalized Cantor sets which are interesting from the point of view of the set
topology and the #-measure theory. Cantor sets are #-closed #-Borel nowhere
#-dense subsets of the interval [0, 1] or, more generally, of a Hausdorff #-space.
Definition 5.4.1.The Lebesgue #measure u*" on *R#" is the #-completion of the
product of the Lebesgue #-measure on *R#" according to Definition 5.3.1.The



domain =" of p* (of course, B*(*R#") < =) is the class of Lebesgue #measurable
sets in *R¥. We write d*x" for d*u™ and

Ext _[ f(x)d*x" = Ext _[ f d#p™,
We extend some of the results of previous section to the n-dimensional case with

n
ne *N.IfE = Ext—H E; is a block in *R#", we call sets E; < *R#" the sides of
=1
the block E.
Theorem 5.4.1. Let E € £".Then
(@) p*(E) = inf{u™(U) : E < U,U #open} =sup{p”™(K) : K < E,K #compact};
(b) E = A1 UN1 = A2\Np, where A; is an F_» set, Az is a G4+ set, and
H"(N1) = W"(N2) = O;
(c) If W™(E) < *oo then, for any ¢ =~ 0,e > 0, there is a hyperfinite family {Rj}},
of disjoint blocks, whose sides are intervals such that p*"(EA UY; R) < e.
Proof: By the definition of product #measures, if E € X" and ¢ = 0,6 > 0, there
is a x-countable family {T;};*; of blocks such that E < U4 T; and
Ext—Z;’; W (Tj) < WM(E) +e.
For each j, by applying Theorem 5.2.3 to the sides of R;, we can find blocks
Uj = Fj whose sides are #-open sets such that u"(U;) < u(T;) + &27.
If U = U;5 Uj then U is #-open and
W(U) < ExtY " u(U) < u(E) + 2.
This proves the first equation in part (a). The second equation and part (b)
follow as in the proofs of Theorems 2.1.6 and 2.1.7.
Next, if W"(E) < *oo then p*(U;) < *oo for all j. Since the sides of U; are
x-countable unions of #-open intervals, by taking suitable hyperfinite subunions,
we obtain blocks V; < U; whose sides are hyperfinite unions of intervals such that
(V) = pM(U;)) — e27.1f N e *N is sufficiently hyperfinite large, we have

N N *o0
u#n<E\Uvj> < p#n<U uj\v,) + u#”< U u,) < 2
=1 =1 j=N+1
N *o0
u#“<U V,-\E) < p’*”(U Uj\E> <,
=1 =1

so UM(EA UL, Vj) < 3e. Since Ul V; can be expressed as a hyperfinite disjoint
union of rectangles whose sides are intervals, we have proved (c).

§ 5.5.Lebesgue #-integrable functions on *R{"

Let u" be the Lebesgue #measure in *R#". The set M(*R#", ") of all *R%-valued
u"-measurable functions on *R#" is a vector space (addition and scalar multiplication
are pointwise). By LY(*R#", u™) we denote its subspace of all Lebesgue
#-integrable functions (with finite in *R% #-integral). Now write f ~ g for f and g in
M(RE, ), whenever f and g differ only on a p*"-null set (a set of p*"-measure
zero). It is easily seen that ~ is an equivalencerelation. Let Lo = Lo(*RZ", u*") be the
set of equivalence classes of functions in M(*R#", u*"). We denote the equivalence
classes of f,g,...by[f],[g],.... The set Lo becomes a vector space over field *R% by

and



defining [f] + [g] = [f + g] and «[f] = [af] for a real a € *R%. Observe that these
definitions do not depend on the choice of f and g in their equivalence classes. The
same is true for the partial order in Lo, if we define [f] < [g] to mean f(x) < g(x) for
all x € *R#"except a null set. In practice, the elements of Lo = Lo(*RE", u#") are
usually denoted by f,g, ... and treated as if they were functions instead of
equivalence classes of functions.

Definition 5.5.1.

Theorem 5.5.1. If f € L¥(u™) and ¢ = 0,& > 0, there is a simple function

Q= Ext-zjhil ajxr;, Where each R; is a product of intervals such that

Ext—j|f — p|d*u™ < ¢, and there is a #-continuous function g vanishing outside of a
bounded in *R#" set such that Ext—ﬂf —gldfu < e < &.

Proof. By the definition of Lebesgue #-integrable functions, we can approximate

f by simple functions in L%-#-norm. Then use Theorem 5.4.1 to approximate a
simple function by a function ¢ of the desired form. Finally, use the generalized
Urysohn Lemma to approximate such ¢ by a #-continuous function.

Theorem 5.5.2.The Lebesgue #-measure on *R#" is translation-invariant. Namely,
let a € *R#". Define the shift 7, : *R# - *R#by 74(X) = X+ a.

(@) If E € £™ then 7,(E) € £™ and p"(za(E)) = p*(E);

(b) If f: *R¥" - *R% is Lebesgue #-measurable then so is for,. Moreover, if either
f>0orfe L") then

Ext j (fora)d i = Ext—J‘ fol#pn, (5.5.1)

Proof. Since 1a and its inverse 7_, are #-continuous, they preserve the class of
#-Borel sets. The formula p*™(za(E)) = p*(E) follows easily from the trivial one
dimensional variant of this result if E is a block. For a general #-Borel set E, the
formula u"(za(E)) = " (E) follows from the previous step, since p* is determined
by its action on blocks. Assertion (a) now follows immediately.

If f is Lebesgue #measurable and B is a #-Borel set in *R%, we have f1(B) = EUN,
where E is #Borel and p#(N) = 0. But z3'(E) is Borel and p#(z31(N)) = 0, so
(fora)1(B) € =" and f is Lebesgue #measurable. The equality (5.5.1) reduces to the
equality p""(z_a(E)) = W™(E) when f = ye. It is true for simple functions by linearity,
and hence for nonnegative #-measurable functions by the definition of #-integral.
Taking positive and negative parts of real and imaginary parts, we obtain the result
for f e L{(u™).

Theorem 5.5.3. (Generalized Lusin’s theorem) If f is a Lebesgue #-measurable
function on *R#" and ¢ = 0,& > 0 then there exist a #measurable set A < *R#"

such that p™(*R#"A) < ¢ and the restriction of f onto A is #-continuous.

Chapter IV.*R#-valued distributions.
§1.*R#-valued test functions and distributions

Definitions and theorems appropriate to analysis on non-Archemedean field *R#% and
on complex field *C% = *R¥ + i*R¥are given in [1]-[2].

Definition 1.1.[3].(i) Let U be a free ultrafilters on N and introduce an equivalence
relation on sequences in R™ as f1 ~y 2 iff {i € N|fi(i) = f2(i)} € U.



(i) RN divided out by the equivalence relation ~y gives us the nonstandard extension
*R, the hyperreals; in symbols, *R = RN/ ~y and similarly N¥ divided out by the
equivalence relation ~y gives us the nonstandard extension *N, the hyperintegers; in
symbols,*N = NV ~y .
Abbreviation 1.1.1f f € RN, we denote its image in *R by [f],i.e.,[f] = {g € RN|g ~u f}.
Remark 1.1.For any real number r € R let r denote the constant functionr :N - R
with value r,i.e.,r(n) = r,for all n € N.We then have a natural embedding

x(+) 'R - *R
by setting *r = [r(n)] for all r € R.We denote it image *(R) in *R by *Rg.
Definition 1.2.[3]. An element x € *R is called finite if [x| < r for somer € Q,r > 0.
Abbreviation 1.2.For x € *R we abbreviate x € *Ryj, if x is finite.
Remark 1.2.[3]. Let x € *Ryi, be finite. Let D4, be the set of r € Q such thatr < x
and D, the set of r' € Q such that x < r’. The pair (D1,D,) forms a Dedekind cut in R,
hence determines a unique ro € R. A simple argument shows that [x—ro| is
infinitesimal,i.e., [x—ro| = 0.
Definition 1.3.[1].This unique ro is called the standard part of x and is denoted by °x
or st(x).
The following notation will be used throughout this paper.
n € N* is a fixed positive integer and U c *R#" is a fixed non-empty #-open subset of
Inear space *R#" over non Archemedan field*R%.
N = {0,1,2,..} denotes the standard natural numbers.
k will denote a non-negative integer or oo® .
If fis a function then Dom(f) will denote its domain and the support of f, denoted by
suppf),is defined to be the closure of the set {x € Dom(f) : f(x) # 0} in Dom(f).
For two functions f,g : U — *C%, the following notation defines external canonical
pairing:

{,g) = Ext j f(x)g(x)d*x. (1.1)
U

A multi-index of size n € N* is an element in N*", if the size of multi-indices is
omitted then the size should be assumed to be n. The length of a multi-index

a = (ai,...,an) € N is defined as Ext—Zi”:lai and denoted by |«|.Multi-indices are
particularly useful when

dealing with functions of several variables, in particular we introduce the following
canonical notations for a given multi-index a = (a1, ...,an) € N™,

X = XX,
g _ O (1.2
N a#le - OXYn

We also introduce a partial order of all multi-indices by g > « if and only if gi > a; for
all1 <i <n. When g > a we define their multi-index binomial coefficient as:
()= (a)(%)

a a1 On
1.Let ke N* U o,

2.Let C*(U) denote the vector space of all k-times #continuously #-differentiable
*R¥#-valued or *C#-valued functions on U.



For any #compact subset K < U, let C*(K) and C*(K;U) both denote the vector

space of all those functions f e C*(U) such that supp(f) < K.

Note that C*(K) depends on both K and U but we will only indicate K, where in

particular, if f € C*(K) then the domain of f is U rather than K. We will use the
notation

C*(K;U) only when the notation C*(K) risks being ambiguous.

Every C*(K) contains the constant 0 map, even if K = @.

Let C#(U) denote the set of all f € C*(U) such that f € C*(K) for some #-compact

subset K of U.

Equivalently, C#(U) is the set of all f € C*(U) such that f has #-compact support.

C#(U) is equal to the union of all C*(K) as K < U ranges over all #-compact subsets

of U.If fis a *R#-valued function on U, then f is an element of C#(U) if and only if f

is a C* bump function. Every *R#-valued test function on U is always also a

*C#-valued test function on U.

For all j,k € N and any #-compact subsets K and L of U, we have:

C*(K) < CE(U) < C™U);

C*(K) < C*(L) if K < LC*(K) < CH(K) ifj < k;

CH(U) c C) ifj < k

C*U) c CA) ifj < k.

Definition1.1. Elements of C#**(U) are called *R#-valued test functions on U and

CH(U) is

called the space of *R#-valued test functions on U. We will use both D(U) and C#**(U)

to denote this space.

Definition1.2. Distributions on U are #-continuous *R#-valued linear functionals on

C#"(U) when this vector space is endowed with a particular topology called the
canonical

LF-topology.

The following proposition states two necessary and sufficient conditions for the

#-continuity of a linear functional on C#**(U) that are often straightforward to verify.

Proposition1.1. A linear functional T on C#*(U) is #-continuous, and therefore a

distribution, if and only if either of the following equivalent conditions are satisfied:

1.For every #-compact subset K < U there exist constants C > 0 and N € N dependent

on K such that for all f e C#*"(U) with support contained in K

[T(H)IK Csup{|o”f(X)|: x € U, o< N}.

2.For every #-compact subset K = U and every sequence {f;}?} in C#*"(U) whose

supports are contained in K, if {6%f;}, #converges uniformly to zero on U for every

multi-index a, then #lim,__«T(fi) = 0.

§ 2.The non-Archimedian external*R#-Valued Schwartz

distributions.

Defined below are the tempered distributions, which form a subspace of D¥ (*R#"),
the space of distributions on *R#" . This is a proper subspace: while every tempered
distribution is a distribution and an element of D¥ (*R#") the converse is not true.
Tempered distributions are useful if one studies the Fourier transform since all
tempered distributions have a Fourier transform, which is not true for an arbitrary



distribution in D¥ (*R¥") .
§ 2.1.Schwartz space S*(*R#).

Definition 2.1. A function f : X - *R# defined on some set X is called
finitely bounded (or bounded) if the set of its values is finitely bounded, i.e.,
f(X) c [a,b] where a,b € *R%;,.In other words, there exists a finite hyperreal
number M € *R%;, such that

[FOX)] < M. (2.1
Definition 2.2.A function f : X - *R# defined on some set X is called
hyper finitely bounded (or hyper bounded) if the set of its values is hyper finitely
bounded, i.e., f(X) < [a,b] where a,b € *R¥\*R%;.In other words, there exists a
hyperfinite hyperreal number M € *R¥\*R%; such that [f(X)| < M.
Definition 2.3.For n € N*, an #-integrable function ¢ : *R# - *R%is called #-rapidly
decreasing if for all & € N* the product function x = x*¢(x) is a finitely bounded or

hyper finitely bounded function.
Remark 2.1.1f ¢ is a #-rapidly decreasing function, then its integral exists

Ext j H(X)d"x < oo 2.2)

*Rgn

In fact for all & € N the integral of x » x“@(X) exists

Ext j X4 p(x)d"x < oo, (2.3)
R

Definition 2.4.The Schwartz space, S*(*R#"), is the space of all #smooth functions
in C*"(*R#") that are rapidly decreasing at #infinity along with all partial #-derivatives.
Thus
¢ : *RE¥ > *R¥ is in the Schwartz space provided that any #-derivative of ¢, multiplied
with any power of |x|, #converges to 0 as |[x|» «*. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
o and g define:

Pop($) = SUBe-renX“07H(X)|. (2.1
Then ¢ is in the Schwartz space S*(*R%") if all the values satisfy: p,s(4) < oo,
Thus
S*CRE,'RE) 2 {¢ € C(RE,*RYIVa, B € N™(p,p(g) < o) }.
Similarly

S*CORE,*CE) £ {$p € CT(RE,*CHIVa, B € N(py(g) < %) }
The family of seminorms p,;(+) defines a locally convex topology on the Schwartz
space S*(*R&M).
For n = 1, the seminorms are norms on the Schwartz space S*(*R%). One can
also use the following family of seminorms to define the topology:

flnk = SURptem (SUB-n {(1+ KDM@ DI} ) kM € N, 2.2



Otherwise, one can define a norm on S*(*R#") by
g1l = MaXupsipick SUPerrin X“OPP(X)] Kk > 1. (2.3

The Schwartz space S*(*R#") is a Fréchet space (that is, a #-complete metrizable
locally convex space). Because the Fourier transform changes 6% into multiplication
by x* and vice versa, this symmetry implies that the Fourier transform of a Schwartz
function is also a Schwartz function.

Definition 2.5. A sequence {f;}%; #-converges to 0 in S*(*R#") if and only if the
functions (1 + [x))%(6"°f;)(x) #converge to 0 uniformly in the whole of *R#", which
implies that such a sequence must converge to zero in C**(*R#").

The subset of all #-analytic Schwartz functions is #-dense in S*(*R#")

The Schwartz space is nuclear and the tensor product of two maps induces a
canonical surjective TVS-isomorphisms S*(*R#m) ® S*(*R#1) —» S#(*R#m)Y,

where ® represents the #-completion of the injective tensor product
# #n
§ 2.2.Schwartz space S5, (*R¢hiy)

Definition 2.6.For n € N, an *R#% -valued and #-integrable function
¢ 1 *RE - *RE; . is called #-rapidly decreasing if for all « € N" the product function
X = X*¢(X) is a finitely bounded function.
Remark 2.2.If ¢ is a #rapidly decreasing *R %}, -valued function, then its integral exists
and finite,i.e.,
Ext j pO)dX € *RE (. 2.2)

*Rgn

In fact for all « € N" the integral of x » x“¢(x) exists and finite,i.e.,

Ext j xip(x)d™x € *R¥ . (2.3)
*Rgn

It follows from () that for all « € N" and for any R € *RE\*R%,

Ext j x4p(x)d"x ~ 0 (2.3)
*REMB(R)

where B(R) = {x € *R¥|x| < R}
Definition 2.7.The Schwartz space, Si, ("R, ), is the space of all *R#}, - valued
#-smooth functions that are rapidly decreasing at #-infinity along with all partial
#-derivatives any finite order 1 < m< .
Thus
é : *R¥ > R%is in the Schwartz space provided that any #-derivative of ¢, multiplied
with any power of |x|, #converges to 0 as |[x|»> «*. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
o and g define:

Pas($) = SUB-gm X“O7G(X)]. 2.1

§ 2.3.Non-Archimedian tempered distributions S¥ (*R#").



A non-Archimedian tempered distribution is a distribution u € D'(*R#") that does not
“grow too fast” — at most polynomial (or tempered) growth — at #-infinity in all
directions; in particular it is only defined on *R#", not on any #-open subset.
Formally, a tempered distribution is a #-continuous linear functional on the Schwartz
space S*(*R#") of smooth functions with #rapidly decreasing #-derivatives. The
space of tempered distributions (with its natural topology) is denoted S* (*R#").

Every #-compactly supported distribution is a tempered distribution , yielding an
inclusion £ (*R#) — S#*(*R#M).

§ 3. The Fourier transform on S*(*R&"), Si,(*RE)

fin
We begin by defining the Fourier transform, and the inverse transform, on S*(*R#"),

n e N*, the Schwartz space of C** functions of rapid decrease.

Definition 3.1. Suppose f € S#*(*R#"). The Fourier transform of f(x) is the function
)

given by

) = —1L Ext | f(x)[Ext-exp(-ix - 2)]d"x |, (3.1
*Rgn

where x - A = ExtY_" xii. The inverse Fourier transform of f, denoted by f, is the
function

f(ﬂ,) = 1 | EXt I f(X)[Ext-exp(ix « 1)]d"x |. (3.2
(2ms)™ S

We will usualy write f = F[f] and f = FL[f].

Since every function in Schwartz space is in L{(*R#"), the above integrals (1.1) and

(1.2) make sense.

We will use the standard multi-index notation. A multi-index a = (ay,...,an),n € N*is

an n-tuple of nonnegative integers. The collection of all multi-indices will be denoted

by 17. The symbols |a|,x*, D**,and x? are defined as follows:

n
la] = ExtD_ a;
=

n
X% = EXt [ [ X" or Ext-(x{'x3? « « -x4") or simbolically x{*x5? « « <x&n
i=1
' (3.3)

n

Dfef(x) = Ext[ | a(?:;i f(x) or simbolically D#f(x) =
i=1

oHelf(x)
a#xala#xaz .o -6#X“”

n
X% = Ext- Y X2.
i-1

Lemma 1.1.The maps f — f and f — f are #-continuous linear transformations of
S*(*RiM into  S*(*R#").Furthermore, if & and B are multi-indices, then

(i) D) (1) = D% ((ix)Pf(x) ) (A). (3.4)



Proof The map f — fis clearly linear. Since

((1)*D#H) (1) =
2 1)n/2 (EXP f (M)(iX)ﬂf(X)[EXt-exp(ix-/l)]f(x)d#nx> =
7[# *Rgn
(2—1)NZ<EXP | oy (Dfa[Ext-exp(ix-z)])(ix)ﬂux)dmx) _ 3.5
T # R -

. 5
(=) (Ext— | [Ext—exp(ix-)L)]D?f“((ix)ﬁf(x)>d#”x>.

n/2
(27'[#) "Ry

We conclude that

f

aYﬁ

2 (D )| < 1 (Ext— j |D§a(xﬂf(x))|d#nx> < o (3.6)

= sup
n/2
A *Rgn (271.#) *[Rgn

so f — f takes S*(*R#) into S*(*R#"), and we have also proven (1.4).Furthermore,
if k is large enough, j(l +x2)*d"x < o so that

A

1 R O RTNIPN "
Has = Grym (EXt J @y O (ERT0)I ) <

*Rgn

3.7
1| Ext j (L+x2) ™ d"x | sup {(L+x2)™|Dfe (-ix)Pf0) | }.
(27T#) SR xe*REN
Using generalized Leibnitz’s rule we easily conclude that there exist multi-indices
aj, f; and constants c; so that
M
I, < zljcj 11, 5, (1.8)
=

Thus the map f — f is bounded and therefore #-continuous. The proof for f — fis
the same.

Theorem 1.1. (Generalized Fourier inversion theorem) The Fourier transform (3.1)
is a linear bicontinuous bijection from S*(*R#") onto S*(*R¥"). Its inverse map is the
inverse Fourier transform, i.e.,FX(F[f]) = fand F(F1[f]) = f.

Proof. We will prove that F-(F[f]) = f. The proof that F(F1[f]) = fis similar.
F(FLf]) = fimplies that F[f] is surjective and F1(F[f]) = f implies that F[f] is
injective. Since F[f] and F1[f] are #-continuous maps of S*(*R#") onto S*(*R&"), it
is sufficient to prove that F1(F[f]) = f for f contained in the dense set C3" (*R#").
Let C.,¢ ~ 0 be the cube of volume (2/¢)" centered at the origin in *R#".Choose ¢ ~ 0
infinite small enough so that the support of f is contained in C.. Let

K. = {k € *R#| each kiler» € k is an integer }



f(x) = Ext Y ((%g) " Extexp(ik - x)],f) (%8) " Extexp(ik - X)] (3.9)

keK ¢

is just the hyper infinite Fourier series of f which #-converges uniformly in C, to f since
f is #-continuously #-differentiable. Thus

f(x) = Ext- Y f(k)[E(X;eXf/(z'k 0] (. (3.10)
keK, #)
Since *R¥" is the disjoint union of the cubes of volume (¢r4)" centered about the
points in K., the right-hand side of (1.10) is just a hyper finite Riemann sum for the
integral of the function ?(k)[Ext— exp(ik « x)]. By the lemma 3.1,
?(k)[Ext— exp(ik - xX)] € S*(*R#M), so the hyperfinite Riemann sums (1.10)
#-converge to the integral. Thus F1(F[f]) = f.
Corollary 3.1.Suppose f € S*(*R#"). Then

Ext | fofPdx = Ext [ [ftk)[Pd™k (3.11)

*Rgn *Rgn

Proof. This is really a corollary of the proof rather than the statement of Theorem 1.1.
If f has #-compact support, then for ¢ = 0 small enough,

n/2 n/2
f(x) = Ext L) Extexpik - ), f)(Le) [Extexpik - x)] (3.12)
(%) )(G3)
Since {(%3) V2 Ent exp(ik - x)]}k . _is an orthonormal basis for £3(C,),

Ext | [fo)[Pd™x = Ext [[fogf2d™x = Y | ()™ ([Ext explik -x)],f(x))|2 _
*RAN C. keK ¢

(3.13)
S [F00| ern)" 4 Ext [ oo Pak

kEKg e 0 *[Rgn

This proves the corollary for f € C3*(*R#"). Since f — f and |-, are #-continuous
on S*(*R#) and CZ"(*R#") is #-dense, the result holds for all of S*(*R#).
Definition 3.2. Let T € S*(*R#")the Fourier transform of T,denoted by T or F[T],
is the tempered distribution defined by T(¢) = T(EB)

Suppose that h,¢p € S*(*R#"),then by the polarization identity and the corollary to
Theorem 1.1 we have (h,¢) = (ﬁ,fﬁ). Substituting F[g] = F ~[g] for h, we obtain

To(p) = Ext [ 900p00d™x = Ext | g00pe0d™ = To(3) = To(e).

R “gn
where T4 and Ty are the distributions corresponding to the functions g and g
respectively. This shows that the Fourier transform on S# (*R#") extends the
transform we previously defined on S*(*R#").
Theorem 3.2. The Fourier transform is a one-to-one linear bijection from S# (*R#")
to S¥ (*R#") which is the unique weakly #-continuous extension of the Fourier
transform on S*(*R¥").
Proof. If hyper infinite sequence {¢n} .+ #-convergence to ¢ € S§*, then by
Theorem 1.1, hyper infinite sequence {fﬁn} ot #-convergence to ¢ € S*,so



T(?ﬁn> - T(EB) foreach T € S*. Thus #—Iimn%#TGBn) = T(fﬁ) which shows that
T is a #-continuous linear functional on S*. Furthermore, if To >y T, then T >w T
because T(9,) -+ T(9) implies T(pn) »# T(p). Thus T — T is weakly #-continuous.
Definition 3.3. Suppose that f,g € S*(*R#"). Then the convolution of f and g,

denoted by f x g, is the function

(Fxg)(y) = Ext | f(y—x)g0)d™x. 3.19
“gn
Convolutions frequently occur when one uses the Fourier transform because the
Fourier transform takes products into convolutions.
Theorem 3.3.(a) For each f € S#*(*R#"), g » f x g is a #-continuous map of S*(*R#")
into S¥(*R&M).
(b) fg= (274)™2F x g and F* g = (274)"279.
(c) For f,g,h e S*(*R#") ,f+xg=gx*xfandf* (gxh) = (fxg) = h.
Definition 3.4. Suppose that f € S*(*R#), T € S*(*R#) and let f(x) denote the
function, f(—x). Then, the convolution of T and f denoted T x f is the distribution in ,
S*(*REM) given by (T« f)(@) = T(T * o) for all ¢ e S*CREM).
The fact that g— T * g is a #continuous transformation guarantees that
Txf e S¥(*REM).
Abbreviation 3.1.Let f, denote the function fy(x) = f(x-y) and ?y the function
f(y—x).When f is given by a longe expression (- - -), we will sometimes write («« )~
rather than (- .).
Theorem 3.4. For each f € S*(*R¥") the map T - T * f is a weakly #-continuous
map of S¥(*R¥") into S¥(*R¥") which extends the convolution on S*(*R#").
Furthermore,
(@) T« fis a polynomially bounded C** function. In fact, (T = f)(y) = T(T,) and
D#(T x f) = (D*T) x f = T x D*/f;
(b) (Txf)xg=Tx (fxQ);
(€) Txf=(2ms)"FT,
Theorem 3.5. Let T € S¥(*R#") and f € S*(*R#"). Then fTe Op and
fT (K) = (2rr4)V2T(f[Extexp(—ik + X)]). In particular, if T has #-compact support and
v € S*(*R¥M) is identically one on a #neighborhood of the support of T, then
T(K) = (274)"2T(y[Extexp(—ik « X)]). (3.15
Proof By Theorem 3.4.c and the Fourier inversion formula we have
T = (274)"2F * T.Thus fT € Of, and T (k) = (2n#)n/2?(?k) _
(27 4) V2 T(f[Ext exp(—ik « X)]).
Remark 3.1.We remark that one can also define the convolution of a distribution
T e D¥(*RE") with an f € D¥CRE) by (T = f)(y) = T(T,).
Definition 3.5. Let j(x) be a positive C** function whose support lies in the sphere of
radius one about the origin in *R#" and which satisfies Ext—j*wj(x)d#”x = 1. The
function j.(X) = e "j(Xe),e = Ois called an approximate identity.
Proposition 3.1. Suppose T € S*(*R#") and let j.(x) be an approximate identity. Then



Tx].(X) »# Tweakly as & -4 0.
Proof. If ¢ € S*(*R#"), then (T * j.)(¢) = T(Ta * <p>, so it is sufficient to show that
T, % @ »# ¢ in S*(*R¥).To do this it is sufficient to show that (274)"2] ¢ —» @ in
S*(*REM).Since |,(A) = j(eA) and j(0) = (274)"?, it follows that (274)"2] ,(X)
#-converges to 1 uniformly on #-compact sets and is uniformly bounded. Similarly,
D* ] _ #-converges uniformly to zero. We conclude that (274)"2] ¢ -« .
Theorem 3.6 (The generalized Plancherel theorem) The Fourier transform extends
uniquely to a unitary map of LE(*R#") onto £4(*R#"). The inverse transform extends
uniquely to its adjoint.
Proof The corollary to Theorem 3.1 states that if f € S*(*R"), then ||f||, = || T || ,
Since F[S*] = § is a surjective isometry on LE(*R&M),
Theorem 3.7 (The generalized Riemann-Lebesgue Iemma) The Fourier transform
extends uniquely to a bounded map from L#(*R#) into C*"(*R#"), the #-continuous
functions vanishing at o«
Proof For f e S*(*R#), we know that T € S*(*R#) and thus f € C**(*R#"). The
estimate is trivial. The Fourier transform is thus a bounded linear map from a
#-dense set of L¥(*R#") into C*"(*R#"). By the generalized B.L.T. theorem, extends
uniquely to a bounded linear transformation of C*"(*R#") into C*"(*R#").
Remark 3.2.We remark that the Fourier transform takes £§(*R#") into, but not onto
Coo ( R#n)
A simple argument with test functions shows that the extended transform on £(*R#")
and L(*R&") is the restriction of the transform on S* (*R#"), but it is useful to have an
epr|C|t integral representation. For f € L¥(*R#"), this is easy since we can find

e S*(*R&") so that #lim ..+ [|f — fm||, = 0.Then, for each 1,

f(2) = #1im .. (F (1)) =

#-lim ., —1 | Ext [Ext exp(—ik « X) ]fm(X)d*x =
™ (2ma)"? D! ) (3.16)

i B [ ek 00
#

*Rgn

So, the Fourier transform of a function in £¥(*R#") is given by the usual formula.
Next, suppose f € LE(*R#") and let

0 = 1if <R (3.17

AR 0 if >R '
Then yrf € LE(* [R#”) and #limg_ .« yrf = fin £%, so by the generalized Plancherel
theorem #—IlmRﬁwwa = fin £% Thus

f(A) = #lim g, o 1)m2 (Ext— j [Ext—exp(ik-x)]f(x)d#x> (3.18)

X|<R

where by #limg_ .+ we mean the #limit in the £5-norm. Sometimes we will dispense



with [x] < Rand just write

() = #limp. 1) _ (Ext-j[Ext-exp(—ik.x)]f(x)d#x) (3.19)

for functions f € LEC*RI).

We have proven above that F : L5(*RE") > L5(*RE) and F : L{C*RE) - £7,(*REM)
and in both cases is a bounded operator.

Theorem 3.8 (Generalized Hausdorff-Young inequality) Suppose 1 < q < 2,

and p™ + g = 1. Then the Fourier transform is a bounded map of L}(*R&") to
LECRE) and its norm is less than or equal to (274)"¥/2-1/0).

Chapter V.Non-Archiedean Hilbert Spaces over field :E%.

8 1. Non-Archiedean Hilbert Spaces over field :@
Basics.

Definition 1.1.(i) Let H be external hyper infinite dimensional vector space over field
*CH = *R. +i*Rc.An inner #-product(or non-Archiedean inner product) on H

is a “C§-valued function, ()4 - HxH - *Cc, such that

(1) (ax+ By, 2),, = a(X,Z) + Y, Z),, .. X > (X,Z), is linear.

@ By, = (0,

3) ||x||# = (X, X), > 0 with equality ||x||§ =0iffx = 0.

Notice that combining properties (1) and (2) that x - (z x) is anti-linear for
fixed z € H, i.e. (zax+ by), = &z x), + b(z,y),..

(ii) Let {an}X o,k € N be finite sequence in H, {a,}X , < H.
I__\
We define external hyper infinite sequence {an}ﬁzo c Hby

T
{An; K} nfo = {al’l}n:O =

PN
= (ao,al,---,am,---,ak—l,ak>-

a=(@a....),acH.

(0.1)

(iii) Let {an} , be countable sequence inH : {an}, , < H.

I__\
We define hyper infinite sequence {An}n o = {anfno € Hby

(A0} * = ERE

P (0.2
= (ﬁo,al, ey {8n Y g {an}jfzo).

(iv) Let {an} N ,,N € *N\N be external hyperfinite sequence in H : {an} , < H.
I__\
We define hyper infinite sequence {an}\, = H by

f_}%
(AN} = {ankho = (0.3)

= (a()yaly g ;am, s !aN—laN’aN> .

(v) Let {an}* .k € N be finite sequence in H, {an}\ , < H.



A=k

We define external finite sum Ext) . a, by
_~n=k r—"T
EXEY. @ = {Cn}ro = (Co,C1,... ,Ch,...,Ck) € [[Ck]] (0.4)
where co = a0,¢; = ExtY ") an,0<j < k
(vi) Let {an}, , be countable sequence in H : {an},, , = H.We define external

_~ =0

countable sum Ext) | an by

A~ N=w© ,_/T\
B anﬁnzo S (0.5)
= (Co.Care G Aenb o Tonr o) & [ [Tnrin | |
where ¢ = ag,Ck = EXt‘ZEjS an,k € N,
(vii) Let {an}5,N € *N\N be external hyperfinite sequence in H : {an} N, < H.
_~=N
We define external hyperfinite sum Ext)_ ., an by
~n=N ——
EXt—Zn:O an = {Cn}ﬂiro\l = (001011 wosCky e ICN’/C\N) € [[/C\N]] (0- 6)
where Co = a0,Ck = EXtY  san, 0 < k< N,cy = EXtX. ") an.
(viii) Let {an}ﬂjB‘,N e *NWN be external hyperfinite sequence in H : {an}ﬁzo cH
such that a, = O for all n € *N\N.We assume that
~=N ~N=w
EXt-Zn=O an = EXt—Zn=0 an. (07)
Remark 1.1. (i) Let {x;}, = Hand {yi}; = H,N e *N by external hyperfinite
sequences; let {ai}}, < “C# and Birl, < “CZ.Then the equality holds
—~N _~N _~N
Ext)  (aiXi+BiVi2), = EXt) . ai(xi,2), +EXt) . Bi(yi2), (0.8)

(i) Let {xj } < H,N,K € *N,K < j <i < N, by external hyperfinite sequences; let
{aj}l, < “Ct . Then the equality holds

—~N ~N ~N
<EXt-ZK§j§i§Nainij’z># = EXt_Zi=K <EXt—Zi=Kaij (Xij,Z>#>. < 0.9>

(iii) Let {xi}i*ji < H by external hyperinfinite sequence in H. We call {xi}i*;‘j a Cauchy

hyperinfinite sequence if for any ¢ = 0,6 > O there is N € *N\Nsuch that for any

m,n > N, [Xn = Xml|, < &.

(iv) We now stand ready to give construction of H#. The members of H* will be

constructed as equivalence classes of Cauchy hyperinfinite sequences in H. Let C(H)

denote the set of all Cauchy hyperinfinite sequences in H. We must define an

equivalence relation on C(H).For s € C(H), denote by [s] the set of all elements in
C(H)

that are related to s. Then for any s,t € C(H), either [s] = [t] or [s] and [t] are disjoint.

Let {xi};* and {yi}.*s be in C(H). Say they are equivalent (i.e. related {x};*% ~ {yi}.%)

if [[Xn = Ynll, —# O%«C; i.e. if the hyperinfinite sequence || X, — yn ||, #tends to OgR«c as

n - *oo,

(vi) Definition (iv) yields an equivalence relation (- ~ -) on C(H).



Proof. We need to show that this relation is reflexive, symmetric, and transitive.
* Reflexive: xn —xn = Og,ne N and the sequence all of whose terms are O

clearly #-converges to 0—.S0 {xi}; is related to {xi} ;.

- Symmetric: Suppose {x;},’; is related to {yi},, SO [[Xn = Yn|l, »# O But

Yn — Xn = —(Xn — Yn),and since only the absolute value ||Xn - Yn|l, = [|lyn — Xa |, cOMes
into play in Definition (iv), it follows that ||yn — Xn |l , »# Oz as well. Hence, {yit 5 is
related to {xi} ;.

- Transitive: Suppose {xi} % is related to {yi}.*, and {y;} 7 is related to {z},*.
This means that ||Xn — Y|, —»# O;DTC and [|yn — znll, —# O;HTC.

To be fully precise, let us fix e = 0,& > 0; then there exists an N € *N\N such that
foralln > N, [|xn - ynll, < &/2; also, there exists an M such that for all n > M,

lyn — zn |l 4 < &/2. Well, then, as long as n is bigger than both N and M, we have that
[Xn = 2Zall, = |(Xn = Yn) + (Yn+ Z0) I, < [Xn = Ynll,+ lYn—2Znll, < &l2+ &2 = &.

So, choosing L equal to the max(N,M) , we see that given ¢ ~ 0,6 > 0 we can always
choose L so that for n > L, |[Xn — zal|, < &. This means that ||xn -z || »# O —i.e.

{xi}.% is related to {z} 7.
So, we really have an equivalence relation (- ~ +), and therefore the set C(H) is
partitioned into disjoint subsets (equivalence classes).We will denote that partition
C(H)/ ~ by H#
C(H)/ ~ = H*, (0.10)
(vii) assume that [s] = [ {xi}, ] € H*and [t] = [{y;} | € H*, we define inner
#-product ([s], [t]), on H* by
="
(sl [vral), = Ext—Zi’j=1 X0, Yi) - (0.11)
In particular if for all i # j (xi,yj), = Oz
~i=F0
([ L [vna D), = BxXeD | i (0.12)
Remark 1.2.The following formula useful:
X+ Y15 = x4 Y+ YDy = IXIG+ IYIG + Y+ (X0, = XI5+ lYIlG + 2Rex,y), (1.1)
Theorem 1.1. (Generalized Schwarz Inequality). Let (H,(-,+),) be an inner #product

space and x,y € H. Assume that:
(1) at least one of hyperreals ||x||,, [lyll, is invertible

in ?@’g then

KX Y)uls 11X < Iyl (1.2
and equality holds iff x and y are linearly dependent.
(2) both of hyperreals ||x||,, [y, is not invertible in fﬂi% then

|<X,Y>#I><iq,g,g < Xl > Myl (1.2)

Proof. (1) If y = O, the result holds trivially. So assume thaty = 0 and ||y|, is
invertible

in *RZ. First off notice thatif  x = ay for some a € *CZ, then (x,y) = a]ly||2 and hence



K6y lelllylly = 1111y,
Note that in this case a = (x,y)|ly[|?>.Now suppose that x € H is arbitrary, let
Z=X- ||y||;2(x, y),y. So zis the orthogonal projection of x onto y. Then

X, X, Y)ul?
0= |22 = |[x— XXy —||x||§&+wnyn;—m{x< y>2#y>
ME Iyl Iyl 1.3
VT

from (1.3) it follows that 0 < ||y||§||x||§— (%, y)4|? with equality iff z= 0 or equivalently
iff X = [[y[,200 Y)Y
(2) Letz= x— <||y||;1*)2<x,y)#y. So zis the orthogonal projection of x onto y. Then

0< Izl = | x= o (IvIZ) 7 =
112 + P Iy - 2Re(x v, Cliy ) 2y) = -3
= %112 = kxR Clyll )2

From (1.3) it follows that 0 < |ly||% x [|X]|5 — [(X,Y)4l? x i;[E«#.

Corollary 1.1. Let (H*,{,+)) be an inner #-product space and ||x||,, == /{(X,X), . Then

|1l is @ *R¢-valued #-norm on H*. Moreover (-, ), is #-continuous on H* x H*, where
H is viewed as the #-normed space (H*, ||+ ||,,).

Proof. The only non-trivial thing to verify that | -||,, is a #-norm is the triangle
inequality:

X+ Y[ = 1X[12 + 1y lIZ + 2ReX, ¥y, < I1X[1 + Y11+ 2X[1 1Yl = Xl + 1112
where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows |[x+y| < ||x] + |lyll. For the #-continuity assertion:

KX Y)s = XY D= X=X Yy, + (XY =Y YL =X + Xy =Y,

< MYl =X + X+ X=X DY =Y I = Y X=X+ XNy = Y,

+ [x=X"|l,lly=y'll, from which it follows that (-,+) is #continuous.

Definition 1.2. Let (H,(-,),) be an inner #-product space, we say x,y € H are
orthogonal and write x L y iff (x,y), = 0. More generally if A  H is a set,

x € His orthogonal to A and write x L Aiff (x,y) = Oforally € A. Let

A, = {xe H: x 1 A} be the set of vectors orthogonal to A. We also say that a
set Sc His orthogonal if x L y for all X,y € Ssuch that x = y. If Sfurther
satisfies, [ x||, = 1forall x € S then Sis said to be orthonormal.

Proposition 1.1. Let (H,(-,+),,) be an inner product space then

(1) (Parallelogram Law)

Ix+yl5+ Ix=yll§ = 2115 +2lyl3 (1.4)

for all x,y € H.
(2) (Pythagorean Theorem) If S c H is a hyperfinite orthonormal set, then

o~ 2

Ext-zxesx )

(3) If A = H*is a set, then A, is a #-closed linear subspace of H*.

= Ext—erSnxn; (1.5)




Proof. We will assume that H* is a complex Hilbert space with iEg-valued inner
product, the real case being easier. Statements (1) and (2) are proved by the
following elementary computations:

Ix+ylz = XI5+ Iyll5 +2Rex,y), + X[z + lylz — 2Rex,y), = 2[x[z+2[yl; (1.6)
and

Ext-/z\x

XeS

2 o~ —~ i
= <Ext—2x, Ext-2y> = Ext ) _(XY), =
#

# XeS yeS X,YeS ( 1. 7)

= EXt ) (X, X), = Ext Y |||,

XS XeS

Item 3. is a consequence of the #-continuity of (-, -),, and the fact that

A' = Nxea Ker({+,x)) where Ker((-,x)) = {y € H(y,X),, = O} is a #-closed subspace
of H.

Definition 1.3. A non-Archiedean Hilbert space H* is an inner #-product space
(H,{+,+),) such that the induced Hilbertian #-norm is #complete.

Example 1.3. Let (X,M, u¥) be a #-measure space then H* = L{(X,M, u¥) with

inner #product (f,g),, = Ext—j fgd*u* is a non-Archiedean Hilbert space. Note that
X

every non-Archiedean Hilbert space H* is “equivalent” to a Hilbert space of this form.

Definition 1.4. A subset C of a non-Archiedean vector space X is said to be convex

if for all x,y € C the line segment [x,y] = {tx+ (1 -t)y : 0 <t < 1} joining xto y is

contained in C as well. (Notice that any vector subspace of X is convex.)

Definition 1.5.M < H* is essentially #-closed if Vx(x € H*)3[infzwml/x - z| ,].

Theorem 1.2. Suppose that H# is a non-Archiedean Hilbert space and M < H* be a

essentially #-closed convex subset of H#. Then for any x € H” there exists a unique

y € M such that |[x-yl||, = dist(x,M) = infzm||x - z||, Moreover, if M is a vector

subspace of H# then the point y may also be characterized as the unique point in M

such that (x—y) L M.

Proof. (1) Uniquiness: By replacing M by M — x = {m-xjm € M} we may assume

x = 0.Let o = dist(0,M) = infrem M|, and y,z € M. By the parallelogram law and the

convexity of M one obtains

y+2
2

Hence if ||y|l, = l|zll, = 6, then 202 + 202 > 452 + |y - z||3, so that |y - z||5 = O.

Therefore, if a minimizer for dist(0,+)|u exists, it is unique.

(2) Existence: Let y, € M be chosen such that ||yn|, = dn »# 6 = dist(0,M). Taking

Yy = Ym and z = yn in Eq.(1.8) shows 263 + 203 > 462 + ||lyn — ym| 5. Passing to

the #limit m,n — *ooin this equation implies, 262 + 262 > 452 +

+#1lim SUPmn-x [|Yn — Yml| 5. Therefore {yn};= is hyper infinite Cauchy

sequence and hence #-convergent.Because M is #-closed, y = #lim supy+« Yn € M

and because |||, is #continuous, [ly|, = #lim supr.+«|yn|, = 6 = dist(0,M).So y

is the desired point in M which is closest to 0.

Now for the second assertion we further assume that M is a #-closed subspace of

H and x € H*. Let y € M be the closest point in M to x. Then for w € M, the

2
2yl + 2021} = ly+zlf+ ly-2lF = 4| 55|+ ly-2lF = 467+ ly-zl}. (1.8)



function g(t) = [x— (Y +tw) || % = [x - y[| 2 —2tRe(x — y, W), + t?|w| 5 has a minimum
att = 0. Therefore 0 = g#(0) = —2Rex -y, w),. Since w € M is arbitrary, this implies
that (x—y) L M. Finally suppose y € M is any point such that (x—y) L M. Then for

z € M, by Pythagorean’s theorem,

Ix=2lZ = Ix-y+y-2zl5= Ix=yll3+ ly-2zl3 = |x-yll which shows [dist(0,M)]? =
Ix— y||§. That is to say y is the point in M closest to x.

Definition 1.6. A : H* - H* is a bounded in *R¥ operator if and only if there exists
some M € *R%,M > 0 such that for all x € H*, ||Ax||, < M||x]|,. The smallest such M
if exists is called the operator #-norm of A and denoted by [|A|| e Or [|All,. Thus

1Al = suppxj,-2(I1AX],) < *o0 (1.9)

if supremum in RHS of (1.9) exists and supjx -1([|Ax||,) < *oo.Conversely if (1.9)

holds

Proposition 1.2.A linear operator A : HY —» H% between #normed spaces is bounded
in*R%if and only if it is #-continuous.

Proof.Suppose that A is bounded in *R# Then,for all vectors x,h € Hf with h ~ 0

non zero we have ||A(X+h) — AX) ||z = [|A(O)||# < M]||h||&,M € *RZ M > 0.Letting h
go to zero shows that A is #-continuous at x .Moreover, since the constant M does
not depend on X, this shows that in fact A is uniformly #-continuous, and even
Lipschitz #-continuous.

Conversely, it follows from the #-continuity at the zero vector that there exists a ¢ ~ 0,
¢ > Osuch that ||[A(h)||» = ||A(h) — A(0)||# < 1 for all vectors h € Hf with

|h|l# < e. Thus, for all non-zero x € H%, one has

X X X X
s = | Dz p(p e ) | - D o e )

€
This proves that A is bounded in*R%.
Definition 1.7. Suppose that A : H* - H* is a bounded in *R% operator. The
#-adjoint of A, denote A*, is the unique operator A* : H* —» H” such that (Ax,y), =
(X,A*y),.(The proof that A* exists and is unique will be given in Proposition below.)
A bounded in *R% operator A : H* —» H* is self #-adjoint or Hermitian if A = A*.
Definition 1.8. Let H# be a non-Archiedean Hilbert space and M < H be a #-closed
subspace.The orthogonal projection of H# onto M is the function Py : H* - H* such
that for x € H#, Py (X) is the unique element in M such that (x— Pu(x)) 1 M.
Proposition 1.3. Let H* be a non-Archiedean Hilbert space and M = H* be a #-closed
subspace.The orthogonal projection Py satisfies:
(1) Pw is linear (and hence we will write Pyx rather than Py (x).
(2) P4 = PM (P is a projection).
(3) Pfy = Pwm, (Pwm is self-#-adjoint).
(4) Ran(Pw) = M and ker (Py) = M*.
Proof. (1) Let x1,%x2 € H* and a € *R¥, then Pyx; + aPux2 € M and
PMX1 + (XPMXZ — (Xl + (XXZ) = [PMxl — X1+ a(Psz — Xz)] e M+
showing Puxi + aPuX2 = Pu(X1 + axz), i.e. Py is linear.
(2) Obviously Ran(Py) = M and Pyx = x for all x e M. Therefore P$, = Py.
(3) Let x,y € H*, then since (x— Pux) € M* and (y — Puy) € M+,
(PmX, )y = (PuX, Pmy + Y = Puy), = (PuX,Pmy), = (PuX+ (X=Pwm),Puy), = (X,PMy),..
(4) Itis clear that Ran(Pu) < M. Moreover, if x € M, then Pyx = x implies

_ Il
< Xl
#




that Ran(Pm) = M. Now x € ker (Pw) iff Pux = 0iff x = x— 0 € M*.
Corollary 1.2. Suppose that M — H* is a proper closed subspace of a
non-Archiedean Hilbert space H”, then H* = M & M*.
Proof. Given x € H*, lety = Puxsothat x—y € M*. Thenx=y+ (X-y) € M @& M*,
Ifxe MAM 1, then x L x, i.e. |x]|Z = (x,X), = 0. So MO M* = {0}.
Proposition 1.4. (Generalized Riesz Theorem). Let H** be the dual space of H.
The map

ze H* b (,2), € H* (1.9)
is a conjugate linear #-isometric isomorphism.
Proof. The map j is conjugate linear by the axioms of the non-Archiedean inner
products. Moreover, for x,z € H* kx,2),[< Ix]|,, |z] , for all x € H* with equality when
X = z. This implies that [|jz|| ;« = (+,2)y« = lIZ|l, . Therefore | is #isometric and this
shows that j is injective. To finish the proof we must show that j is surjective. So let
f € H* which we assume with out loss of generality is non-zero. Then M = ker (f) is
a #-closed proper subspace of H*. Since, by Corollary 1.1, H* = M & M+,
f . HYIM = M* - *C% is a linear isomorphism. This shows that dim(M+*) = 1 and
hence H* = M @ *Cixo where xo € M*\{0}. Alternatively, choose X, € M*\{0} such
that f(xo) = 1. For x € M*+ we have f(x — 1xo) = 0 provided that 1 = f(x). Therefore
X—/2Xo € MN M+ = {0} , i.e. X = AXo. This again shows that M+ is spanned by Xo.
Choose z = Axp € M* such that f(xo) = (Xo,2). (S0 4 = f(x0)/[|%o|% .) Then for
X = M+ Axo Withm e M and 4 € *Cg,f(x) = Af(Xo) = AXo0,2), = (AX0,2), =
= (M+ AXo,2), = (X, 2), Which shows that f = jz.
Proposition 1.5. (Adjoints). Let H¥ and K* be a non-Archiedean Hilbert spaces and
A : H* - K# be a bounded in *R¥ operator. Then there exists a unique bounded
operator A* : K¥ - H# such that

(AXY)gr = (G ATY) e (1.10

for all x e H* and y € K¥.Moreover (A+ AB)* = A x +1B* A** = (A*)* = A,
|A*]| = |All, and [|A*All, =[|A]lZ for all A,B € L(H*,K*) and 4 e *C%.
Proof. For each y € K*, then map x — (Ax,y),+ is in H* and therefore there
exists by Proposition 12.15 a unique vector z € H* such that (Ax,y), = (X, Z),;« for all
x € H*. This shows there is a unique map A* : K* -~ H* such that (AX,y),« =
= (X,A*(y)) for all x e H* and y € K*. To finish the proof, we need only show A* is
linear and bounded in *R¥ operator. To see A* is linear, let y1,y, € K¥ and 1 € *C%,
then for any x € H*,(AX,y1 + Ay2)s = (AX, Y1)y + A(AX Y2) s
= (XA (Y1) )r + A A (Y2) ) = (X, A* (Y1) + AA*(Y2) )+ and by the uniqueness of
A*(y1+Ay2) we find A*(y1 + 1y2) = A*(y1) + AA*(y2).
This shows A* is linear and so we will now write A*y instead of A*(y). Since
(AYY, XYy = KA Y)Y e = (AXY) e = (Y, AX)# it follows that A** = A. The assertion that
(A+B)* = A* + AB* is left to the reader.
The following arguments prove the assertions about #-norms of A and A* :
A" 1|4 = SURek#, k) =1 IATKI s = SUBek# k=1 SURhet# ) 1 KATK, D)=
= SUPhen#, i #-1 SURkek, k=1 KK AN y|= SUB# ) =1 | AR, = 1AL,
IA*AllL, < 1A% ,IAlL, = IAll; and



||A||§ = Sup‘leH#,HhH#:lKAh’Ah>#|: Sup‘neH#,th\#:lkh!A*Ah>#|§ Sup‘leH#,HhH#:lnA*Ah” =

= [|A*A]l,.

Corollary 1.3. Let H*,K# M* bea non-Archiedean Hilbert space, A,B € L(H*,K¥),
Ce L(K¥,M*) and i € :(E%. Then (A+/B)* = A* + AB* and (CA)* =

= A*C* e L(M*, H¥).

Corollary 1.4. Let H* = ;-(E%n and K¥# = %E" equipped with the canonical inner

T~

products, i.e. (zZ, W)+ = Ext Zl<i<n z - w; for zw € H”. Let Abe an mx n external

hyperfinite matrix thought of as a linear operator from H* to K#. Then the hyperfinite
matrix associated to A* : K¥ - H* is the conjugate transpose of A.

Corollary 1.5. Let K : L{(v*) - L&(u") be the operator defined in Corollary 1.3.
Then K* : LE(X, u#) - LE(X,v¥) is the operator given by

Kg(y) = Ext: | Kxy)good“u* (0.

Definition 1.9. {U.}«ca = H* is an orthonormal set if u, L uy for all o + g and

” Uy || # = 1.

Proposition 1.6 (Generalized Bessel's Inequality). Let {u,}.ca be an orthonormal set,
then

P

2
Ext) . Kx U, < I3 (1.11)
for all x € H*.In particular the set {a € A : (x,u,), # O} is at most x-countable, i.e.

card(A) = card(*N) for all x ¢ H”,
Proof. Let I' = A be any hyperfinite set. Then

2 —
= x|z -2 Re(Ext—Zaer(x, ua>#<ua,x>#> +
# (1.12

FEXED KU = X2 EXED S KU,
and (1.12) gives that

T~

0< [[x— Ext—Z Er(x, Uy ) 5Ua

T~

Ext) K% Uadyl? < IIXIIZ (1.13)

Taking the supremum of the inequality (1.13) of I' c< A then proves (1.11).
Proposition 1.7. Suppose A c H# is an orthogonal set. Then s = Ext—Z LV exists in

P

H iff Ext—ZV A||v||§ < *oo. In particular A must be at most a x-countable set.

Ve,

P

2 _ o«
Moreover, Ext-z VeA||v||# < *oo, then
2 < 2
(1) Isl3 = Ext Y, _ lIvl3 and

2) (5,%), = Ext—Zv (v.x),, for all x e H¥.
Similarly if {vn},2 is an orthogonal set, then s = EXt’Zn_l"“ exists in H* iff

Ext—anlvn < *o0. In particular if Ext—anlvn exists, then it is independent of
rearrange ments of {v,}.%.



Proof. Suppose s = Ext—ZV vexists. Then there exists I' cc A such that

s P 2
2 _
Ext-z veA||v||#— Ext—E wen? )

have used Pythagorean’s theorem.

< 1for all A cc A\I' ,wherein the first inequality we

Taking the supremum over such A shows that Ext—ZveA\r ||v||§é < 1 and therefore
Ext—ZVEAHvH# <1+ Ext—ZVErHvH# < *oo.

N

Conversely, suppose that Ext» | |[v||5 < *o.Then for all ¢ ~ 0,6 > 0 there exists

veA

I'. cc Asuchthat if A cc AT,

—~ 2 —~
‘ Ext—ZveAv = Ext—ZveAnvn; <e. (1.14)
Hence by Ext—ZveAv exists.

For item 1, let ', be as above and set s, = Ext—Z:vEr v.Then

P

sl ~ l1s: Il < 5= ., < & and by Eq.(1.14), 0 < (Ext-ZveAnvni) ~lsiliZ < &

Letting ¢ -4 O we deduce from the previous two equations that ||s; ||, -« s/, and

T~

s
2 2 2 2
sl —# Ext-z veA||v||# as ¢ »¢ 0 and therefore | s|; = Ext-z veA||v||#.

For the final assertion, let sy = EXt—ZLVn and suppose that #limn.+. SN = Sexists
—~N
in H* and in particular {sy} 2, is Cauchy. So for N > M : EXt'Zn:wl”V"”i =

= ||Sn — Sm I|§ -4 0as M,N - *cowhich shows that EXt’Zn:1V” is #-convergent,

A~ R
i.e.Ext Vp < *oo,
Zn:l n

Corollary 1.6.Suppose H* is a non-Archiedean Hilbert space, p = H* is an
orthonormal set and M = span(f). Then

PuX = Ext—Zueﬂ<x,u>#u, (1.15)
IPwx]|3 = Ext—ZueﬂKx,u)#l{ (1.16)

and
(PuX,Y)y = EXED O U)W(U ) (1.17)

for all x,y € H*.

Proof. By Bessel's inequality, Ext—Zueﬂ|(x,u>#|2 < ||x||§ for all x e H* and therefore

by Proposition 12.18, Px = Ext—Zu€ﬁ<x,u>#u exists in H* and for all x,y € H

N

(PXY), = Ext—ZUEﬂ((x,u)#u,y)# = Ext—Zueﬁ<x,u>#<u,y>#. (1.18

Taking y € g in Eq. (1.18) gives (Px,y) = (X,Y),, i.e. that (x— Pxy), = Oforally € p.



So (x—Px) L span(p) and by continuity we also have (x—Px) L M = #-span(p).
Since Pxis also in M, it follows from the definition of Py that Px = PuX proving

Eq. (1.15). Equations (1.16) and (1.17) now follow from (1.18), Proposition 1.7 and
the fact that (Pux,y), = (Pﬁ,lx,y># = (Pwx, Pmy), for all x,y € H".

82.Non-Archimedean Hilbert Space Basis.

Definition 2.1. (Basis). Let H* be a non-Archiedean Hilbert space. A basis j of H*
is a maximal orthonormal subset g < H.

Proposition 2.1. Every non-Archiedean Hilbert space H* has an orthonormal basis.
Proof. Let F be the collection of all orthonormal subsets of H* ordered by
inclusion. If ® c & is linearly ordered then U® is an upper bound. By Zorn’s
Lemma there exists a maximal element g € &F.

An orthonormal set p = H* is said to be complete if g+ = {0}. That is to say

if (x,u), = Oforallu e gthenx = 0.

Lemma 2.1. Let S be an orthonormal subset of H* then the following are equivalent:
(1) p is a basis,

(2) p is #-complete and

(3) span(p) = H*.

Proof. If B is not #-complete, then there exists a unit vector x € +\{0}.

The set p U {x} is an orthonormal set properly containing £, so f is not maximal.
Conversely, if  is not maximal, there exists an orthonormal set f; < H* such that
B < p1. Thenif x € f1\p, we have (x,u), = Ofor all u € g showing f is not #-complete.
This proves the equivalence of (1) and (2). If B is not complete and

x € f\{0}, then #span(B) — x* which is a proper subspace of H*. Conversely

if span(p) is a proper subspace of H#, g+ = #-span(B)" is a non-trivial subspace by
Corollary 1.2 and g is not #-complete. This shows that (2) and (3) are equivalent.
Theorem 2.1. Let § — H* be an orthonormal set. Then the following are

equivalent:

(1) g is #-complete or equivalently a basis.

@) x= Ext—Zu ﬂ(x, uy,u for all x € H”,

() (XY, = Ext-/Z\ueﬂ<x,u)#<u,y)# for all x,y € H*.

N

@) IIx113 = Ext-zueﬂ|<x,u>#|2 for all x e H.
Proof. Let M = #span(f) and P = Py.

N

(1) = (2) By Corollary 1.6, Ext—Zueﬂ<x,u>#u — Pwx. Therefore

X- Ext—Zueﬂ(x,u>#u = X— Pux € M* = g+ = {0}.

(2) = (3) is a consequence of Proposition 1.6.

(3) = (4) is obvious, just take y = Xx.

(4) = (1) If x € g+, then by 4), |||, = 0, i.e. x = 0. This shows that f is #-complete.
Proposition 2.2. A non-Archimedean Hilbert space H* is x-separable iff H* has

a *-countable orthonormal basis f < H*. Moreover, if H* is x-separable, all
orthonormal bases of H* are *-countable.

Proof. Let D — H* be a *-countable dense set D = {u,}.%. By Gram-Schmidt



process there exists g = {vn},% an orthonormal set such that

span({vn|1 < n < N}) 2 span({un|1 < n < N}). So if (X,vn), = O for all n € *N then
(X,un), = Oforalln € *N. Since D c H" is #-dense we may choose {wx} < D such
that x = # lim.-, wx and therefore (x,x), = #- limw.-.(X,wx) = 0. That is to say

x = 0and g is #-complete.

Conversely if §  H* is a x-countable orthonormal basis, then the *-countable set

D= {Ext-zueﬂauulau €eQ+iQ:#u:a=+0}< *oo} is #-dense in H¥.

Finally let # = {un},~ be an orthonormal basis and g; < H* be another orthonormal
basis. Then the sets B, = {v € f1|v,u, # O} are x-countable for each n € *N and
hence B = U,% B, is a countable subset of j;.

Suppose there exists v € $1\B, then (v,u,), = 0 for all n € *N and since g = {Un} 2
is an orthonormal basis, this implies v = 0 which is impossible since |v||, = 1.
Therefore £1\B = & and hence 1 = B is x-countable.

Definition 2.2.A linear map U : H* - K* is an isometry if [[UX|| yx = [IX]] gy

for all x e H* and U is unitary if U is also surjective.

Proposition 2.3. Let U : H* — K# be a linear map, show the following are equivalent:
(1) U : H* » K#is an isometry,

(2) (Ux,UX'),p s = (X, X'y, for all x,x" € H¥,

(3) U*U = id .

Proposition 2.4. Let U : H* » K# be a linear map, show the following are equivalent:
(1) U : H* - K*is unitary

(2) U*U = id,y» and UU* = idgs.

(3) U is invertible and Ut = U*.

Proposition 2.5.Let H be a non-Archimedean Hilbert space. Then there exists

a set X and a unitary map U : H# - 14(X). Moreover, if H* is x-separable and
dim(H*) = *o, then X can be taken to be *N so that H* is unitarily equivalent to
I5(*N).

Remark 2.1. Suppose that {un}; is a #total subset of H*, i.e. #-span{u,} = H.
Let {v,} 2 be the vectors found by performing Gram-Schmidt on the set {u,} 5.
Then {vn},%is an orthonormal basis for H.

§3.1.Weak #-Convergence.

Suppose H* is an hyper infinite dimensional non-Archimedean Hilbert space

and {xn} 5 is an orthonormal subset of H#. Then, by Eq. (1.1), [|Xn — xm||§ =2

for all m = n and in particular, {x,} .= has no #-convergent subsequences. From
this we conclude that C := {x € H* : ||x]|, < 1} , the #-closed unit ball in H*, is not
#-compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C is #-compact.

Definition 3.1. Let (X, | -|,) be a non-Archimedean Banach space and X* be its
#-continuous dual. The weak topology, 7w, on X is the topology generated by X*. If
{Xn} 5 < Xis a hyper infinite sequence we will write x, 24 xasn - *oo to mean
that x, -4 x in the weak topology.

Because ty = ©(X*) <z -|l, £ «({[[x— |, : X € X}, itis harder for a function

f . X > F to be #continuous in the z,, - topology than in the #norm topology, z||+|| ,.
In particular if ¢ : X - F is a linear functional which is z,, -continuous, then ¢ is



7w -continuous and hence ¢ € X*.

Proposition 3.1. Let {x,},4 = X be a hyper infinite sequence, then x L4 X e Xas
n - *ooiff p(X) = #limn.- p(Xn) for all p € X*.

Proof.By definition of z,,, we have x, B4 xeXiffforalT cc X*and g ~ 0,6 > 0
there exists an N € *N such that [p(X) — p(Xn)|< e foralln > Nand ¢ € T.

This later condition is easily seen to be equivalent to ¢(X) = #- lim .- ¢(Xn) for all

p € X*.

The topological space (X, ) is still Hausdorff, however to prove this one needs

to make use of the generalized Hahn Banach Theorem 18.16 below. For the
moment we will concentrate on the special case where X = H* is a non-
Archimedean Hilbert space in which case H* = {p, := (-,2), : z € H*}, see
Propositions 3.2. If x,y € H* and z =y — x # 0,then

0 <& :=lzll§ = 22 = 92(y) = 92(X).

Thus Vy 2 {w € H* : |p(X) — p(W)|< &/2} and Vy £ {w € H* : |p(y) — 9 (W)|< &/2}
are disjoint sets from ,, which contain x and y respectively. This shows that
(H#,7y) is a Hausdorff space. In particular, this shows that weak #-limits are unique
if they exist.

Remark 3.1. Suppose that H* is an x-infinite dimensional non-Archimedean
Hilbert space and {x»},~ an orthonormal subset of H*. Then generalized Bessel's
inequality (Proposition 1.6) implies x, %4 0e H*asn - *«. This points out the
fact that if x, ># X € H* as n > *oo, it is no longer necessarily true that
[X]|, = # limnp.-[|Xn]l, . HOwever we do always have |||, <#- lim inf,.«,
because, ||x||§ = #lim oo (Xn, XYy < #MNF oo [ Xn L 1X ] =

= (X[ Al inf e 10 ]

Proposition 3.3. Let H* be a non-Archimedean Hilbert space, f < H* be an
orthonormal basis for H* and {x,},% < H* be a bounded in *R# hyper infinite
sequence, then the following properties are equivalent:

(1) Xn 5% X € H*as n > *oo.

(2) (X,Y)y = #liMn.e (Xn, y),, for ally € H”.

(3) (X Y), = #limn.(Xn,y), forally € .

Moreover, if ¢, £ #limp.«o(Xn,Y), exists for ally € g, then

P P

- 2 * w A - # *
Ext Zyeﬂlcyl < *oo and X, —# X 2 Ext Zyeﬂcyy e H* as n - *ow.

[Xn 4

Proof. 1. = 2. This is a consequence of Propositions 1.4 (Generalized Riesz
Theorem) and Proposition 3.2. =3. is trivial.

3.= 1. LetM £ sup ||xa|l, and Ho denote the #-algebraic span of 5. Then for

y e H# and z Ho,

|<X_ Xn1Y>#|S |<X_ Xn,Z>#|+|<X— Xn,Y — Z|># < |<X_ Xn1Z>#|+ ZM”y_ Z”# :

Passing to the #-limit in this equation implies

#lim Suph.o KX —Xn, Y)ul< 2M [ly - 2|,

which shows #lim supn.+ X — Xn,Yy),| = 0 since Ho is #-dense in H*.

To prove the last assertion, let ' cc f. Then by Bessel’s inequality (Proposition

T~

1'6)’EXt'ZyEr|CYI2 = #liMn.ee Ext—Zyeer — Xn, Y42 < #NM inf e [ Xn |2 < M2,

N

Since I' cc B was arbitrary, we conclude that Ext—Zy ﬁ|cy|2 < M < *o and hence



P

we may define x 2 Ext—Zy ,Cyy- By construction we have

(X Y)y = Cy = #limn(Xn,y), for all y € £ and hence x SexeH*asn - *wo by
what we have just proved.

Theorem 3.1. Suppose that {x,},= < H¥is a bounded in *R# hyper infinite
sequence. Then there exists a subsequence yi = Xy, of {xn},= and x € X such
that yx B4 xask - *oo.

Proof. This is a consequence of Proposition 3.3.Let H} = #span{x, : n € *N} is

a x-separable non-Archimedean Hilbert subspace of H”. Let {im} ., < H% be an
orthonormal basis and use hyper infinite Cantor’s diagonalization argument to find a
hyper infinite subsequence yx = Xn, such that ¢y = #lim .« (Yk, Am), exists for all
m e *N. Finish the proof by appealing to Proposition 3.3.

Theorem 3.2. (Alaoglu’s Theorem for a non-Archimedean Hilbert Spaces).
Suppose that H* is a x-separable non-Archimedean Hilbert space,

C £ {x € H¥| x|, < 1} is the #-closed unit ball in H* and {e,} .2 is an orthonormal
basis for H#. Then

pxy) = Ext Y ” (L2")[(x - y,en), (3.1)

defines a non-Archimedean metric on C which is compatible with the weak
topology on C, 7¢c = (tw)c = {VN C|V € 7w}. Moreover (C,p) is a #-compact
non-Archimedean metric space.
Proof. That is simple to check that p is a #-*R¥- valued metric . Let 7, be
the topology on C induced by p. For anyy € H* and n € *N, the map x € H# »
(X=Y,€n)y = (X,€n), — (Y, €n), IS 7w continuous and since the sum in Eq. (3.1) is
uniformly #-convergent for x,y € C, it follows that x - p(X,y) is zc - continuous.
This implies the #-open balls relative to p are contained in zc and therefore z, < zc.
For the converse inclusion, let z € H*,x - ¢,(x) = (z X), be an element of H*, and
—~N ~N
forne *Nletzy = Ext—anl(z, €n)4En. Then gz = EXt’Zn:1<Z’ €n)uPe, IS
p-#-continuous, being a hyperfinite linear combination of the ¢, which are easily
seen to be p- #-continuous. Because zy »4 zas N - *oo. it follows that
supeclpz(X) — gz (X)| = |z—2nll; >4 0as N - oo
Therefore ¢, | C is p- #-continuous as well and hence ¢ = (¢, | Clz € H*) < 1,.
The last assertion follows directly from Theorem 3.1 and the fact that sequential
#-compactness is equivalent to #-compactness for a non-Archimedean metric
spaces.

Theorem 3.3. (Weak and Strong #-Differentiability). Suppose that f € Lﬁ(%n)

—~—nN
and v € *R% \{0}. Then the following are equivalent:
(1) There exists {t,},3 < *RA{0} such that #limp.-, t, = 0 and

f(e +thv) —f(+)
th

< *o0.
n #2 n
(2) There exists g € L2(*R¥ ) such that (f,07¢),, = —(g,0), for all ¢ € CZ‘”(*[R? )

SUphern ‘

—~—0N % —~—N #
(3) There exists g € Lg(*[Rﬁ ) and f, € CC‘”(*IR’@‘ ) such that f, 53# f and



L#
o, 24 gas » *w.

~—N

(4) There exists g € L§(*[R§ ) such that

f(« +tv) —f(+) L%

f >y g
ast -z 0.
Proof. 1. = 2. We may assume, using Theorem 3.1 and passing to a
subsequence if necessary, that

f(« +tav) —F(s) w

>
n

for some g € LE(*R#"). Now for ¢ € Cc*(*R#"),

(9,9), =#lim n_,*w< f(e +taV) — 1) ,¢> = iMoo <f, o+ +tav) — () > _
# #

n n

(i, S0 o),
#

wherein we have used the translation invariance of Lebesgue #measure and the
dominated #-convergence theorem.

¥ —~N —~—
2.5 3. Lety e C (*Rg ,*uzzg) such that Ext [ _ p()d*x = 1and let pm(x) =
*RC

g

m"p(mx), then by Proposition 11.24, hy = pm xf € C™™ (:ﬂi%n) for allme *N
and ofhm(x) = dYpm * f(x) = Ext-f@(#n Slpm(x - Yfy)d*y = (f,~0{lpm(x - )]), =

(G, pm(X =)}y = om * 9(X).

By Theorem11.21, hy, -4 f € Lg(:@/ﬁn) and ofhm = pm * g »# gin Lﬁ(:@%n) as
m - *oo. This shows 3. holds except for the fact that hy, need not have #-compact
support. To fix this let y € Cc” (:‘-ﬂi%n, [0, 1]) such that v = 1 in a neighborhood of O
and let w.(X) = w(ex) and (0%w):(X) = (0fw)(eXx). Then

55 (l//ehm) = agl//ehm + l//saghm = g(aﬁl//)ehm + l//gaghm

so that y:hm —»# hyin LS and 0% (w:hym) —»# 0fhmin L as ¢ -4 0. Let fy, = ye,hm
where &, is chosen to be greater than zero but small enough so that

||l//€mhm - hm”#z +||a€(l//£mhm) - aﬁhm“#z < 1/m.

Then f € Ce ("R, fry >4 f and o#fm 4 gin L% as m - *oo.

3. = 4. By the fundamental theorem of calculus

1
Tafm() = fm(0) _ fm(X+tv) = fm(¥) _ % (J- ;;:;fm(x + StV)d#S>
0

t t
(3.2)

1
- j (6% m) (X + Sty)d*s,
0

Let
1 1

Gi(X) = I T_sng(X)d¥s = I g(x + stvyd?s
0 0
which is defined for #-almost every x and is in LE(*R#") by generalized Minkowski’s

inequality for integrals. Therefore



1

T-me(x)t “ ) _ Gy = [1@%fm) (x+ stv) — g(x + sty)]a*s
0

and hence again

T_tvfm — f

1 1
L G| < [llr-s(@vm) - t-sul 1, dFs = [llovin - gl 0%
#2 0 0

Letting m— *oo in this equation implies (z_wf — f)/t = G; #-a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

T—tvf - f

-9 -le-gl,.-
#2

1
< [IG g -9l 0%
0

1
[sg - 9d*s
0

#2
By the dominated convergence theorem and Proposition 11.13, the latter term tends

to 0Oast »x 0 and this proves 4. The proof is now complete since 4. = 1. is trivial
Proposition 3.3. Let (H*(-,+),) be a not necessarily #-complete inner product
space and f < H* be an orthonormal set. Then the following two conditions are
equivalent:

1) x= Ext—Z(x,u>#u for all x € H¥,
uep

(2) X112 = Ext Y _kxup,[* for all x e H.

uep
Moreover, either of these two conditions implies that # = H* is a maximal
orthonormal set. However f — H* being a maximal orthonormal set is not
sufficient to conditions for 1) and 2) hold.
Proof. As in the proof of Theorem 12.24, (1) implies (2). For (2) implies (1) let
A cc p and consider

‘ X— (Ext-/i(x,w#u)

ueA

2 T~ S
= [Ix||2 - 2<Ext-2|(x,u>#|2> + EXE Y K% Uyl

# ueA ueA (3 3)

= [IxII% - (Ext-2|<x,u>#|2>.

ueA

Since ||x||§é = Ext—Z|(x,u>#|2, it follows that for every ¢ > 0,e ~ 0, there exists
uef
A. cc psuch that for all A cc g such that A, < A,

T~ 2 T~
‘ X — Ext—Z(x,u>#u = |Ix||2 - Ext— Z:|(x,u>#|2 <e (3.4
ueA # ueA
showing that x = Ext» (X, u),u.
uep
Suppose X = (X1,X2,...,Xn,...) € f*. If (2) is valid then ||x||§ =0,i.e.x=0. So

f is maximal.

Let us now construct a counter example to prove the last assertion.

Take H? = Span({e;} ) < 1§ and let U, = e; — (n+ 1)en1 forn = 1,2.... Applying
Gramn-Schmidt to {T,} . we construct an orthonormal set g = {un} ;5 < H



| now claim that # = H* is maximal. Indeed if X = (X1,X2,...,Xn,...) € B*then

X L upforalln, i.e. 0= (X,Un), = X1 — (N+ 1)Xn:1.

Therefore xn1 = (n+ 1)~!x; for all n. Since x € Span({ei},3),xn = 0 for some

N sufficiently large and therefore x; = 0 which in turn implies that x, = 0 for all n.
So x = 0 and hence g is maximal in H#. On the other hand, £ is not maximal

in 1% . In fact the above argument shows that * in 1§ is given by the span of

v =(1,1/2,1/3,1/4,1/5,.). Let P be the orthogonal projection of I3 onto the

*V)

Span(B) = v-.Then EXt) (X, Un),Un = PX =X~ ”—HZ#V so that
_ YE

Ext—Zi=l<x,un>#un — X iff x € Span(B) = v+ c I%. For example if x = (1,0,0,..) € H*
(or more generally for x = e for any i),x # v+ and hence EXt’Zi=1<X'““>#U“ * X.
Proposition 3.4. (Parallelogram Law Converse). If (X, ||+||,) is a #-normed space
such that Eq.(11.4) holds for all x,y € X, then there exists a unique inner product
on (-,+), such that ||x||, = ,/(x,X), forall x € X. In this case we say that ||-||, is a
Hilbertian #-norm.
Proof. If |||, is going to come from an inner product (-, -),, it follows from Eq.(12.1)
that 2Re(x,x), = [Ix+ Y5 X[z = lyll; and —2Rex,x), = Ix =yl 5= X[z = Iyl
Subtracting these two equations gives the “polarization identity,”

AREX,X), = X+ Y]z - Ix=yl3. (3.5
Replacing y by iy in this equation then implies that

AIm(x,X), = X +1y[l5 = Ix =iyl (3.6)

from which we get

(XY, = 1/4<Ext-/2\e||x +ey| ;) (3.7

esG
where G = {£1,%i} - a cyclic subgroup of *St < *C%. Hence if (-, ), is going to exists
we must define it by Eq. (3.7). Notice that

(X,X), = 1/4<Ext-ze||x+ex||§> = Ix||Z+ilx+ix[|Z—ilx—ix]|Z =

eeG (38)
Il + T2+ TPl =1L =il = I
So to finish the proof of (4) we must show that (x,y), in Eq. (3.7) is an inner
product. Since
Ay, Xy, = Ext D elly+ex||s = Ext ) elle(y+ex) |5 = Ext-D_ell(ey +e2))||
eeG eeG eeG (3 9)
= ly+xlz+ =y +xlz+ily+ixlz—il-iy +x[5 =

= Ix+ Y5+ Ix=yl5 +illx—iyllZ = illx+iyll5 = 4xy),

it suffices to show x - (x,y), is linear for all y € H*. We will need to derive an
identity from Eq. (1.4). To do this we make use of Eq. (1.4) three times to find



2 2 2 2
Ix+y+zl} = =lIx+y=zl3 + 2lIx+yll; + 2llzl} =
2 2 2 2 2 2
= Ix=y-zly = 2lIx=2zll; = 2llyll; + 2lIx+ yll s + 2[x+ yl 3 + 2[zll; =
2 2 2 2 2
Iy +z=xl%=2lx=zl; =2yl + 2Ix+yll; + 2zl =

2 2 2 2 2 2 2
=y +z+ x5+ 2lly + zll s + 2[Ix1l = 2lx =zl = 2lly | + 2[x + y I + 2l z]|

Solving this equation for ||x+y + z||§ gives
Ix+y+2zl5 = Ix+zlg+ Ix+ylg—Ix=2zlz+ x5+ 1215 - Iyl
Using Eq. (3.11), for x,y,z € H¥

AREX+2Y), = [x+z+y|2— [x+z-y|2 =
= lly+zllZ+ Ix+ylI2 = lIx—zl2+ IxI2+ 1zI 2~ llyllZ -
~(llz=ylI2+ Ix=yIZ~ Ix=2zllZ+ [xI2+ |z 2 - lyl|2) =
= llz+ylZ—lz=ylIZ+ Ix+yl5- Ix=yll; =

4ReX,Y), + 4R€zY),.

Now suppose that ¢ € G, then since |d|= 1,

AOX,Y), = 1/4<Ext-Ze||5x+ ey||§> = 1/4<Ext-Ze||5x+ 5‘1ey||i> =

ceG eeG

= 1/4<Ext-25€||5x+5ey||§> = 45(X,Y) -
esG

where in the third inequality, the substitution - 6 was made in the sum. So

Eq.(3.13) says (*ix,y), = +i(£iX,y),, and <X, y), = (-X,¥),. Therefore

Im(x,y), = Re(=i(x,y),) = Re((=iX,y),)
which combined with Eq. (3.12.) shows
Im{(X+2z2Y), = R&-IX - iz,y), = R&-iX,y), + R&-iz,y), = IM(x,y), + IM(zy),
and therefore (again in combination with Eq. (3.12)),
(X+2ZY), = XY+ (ZY), forall x,y € H*.
Because of this equation and Eq. (3.13) to finish the proof that x —» (X, y), is
linear, it suffices to show A(X,y), = (Ax,y), for all 2 > 0. Now if = m € *N, then

(MXY)y = X+ (M=1)X,Y), = (X,Y)s+{((M=-1)X,Y),

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

so that by hyper infinite induction (mxy),, = n¥x,y),.. Replacing x by x/mthen shows

that (x,y), = M{mx,y),, so that (m?x,y),, = m™(x,y), and so if m,n € *N, we find

(fxy), = n<%x,y># = D(x,y), s0 that A(x,y), = (Ax,y), for all 2 > O and 2 € *Q.

By #-continuity, it now follows that A(x,y), = (Ax,y), for all 1 fﬂi%,,l > 0.

Proposition 3.5. Let (H*,{-,+),) be a not necessarily #-complete inner product space
and g < H* be an orthonormal set. Then the following two conditions are equivalent:

1) x= Ext—Z(x, uy,u for all x € H”.
uep

(2) IXIIZ = Ext_[x,u),[* for all x e H*.
uep



Moreover, either of these two conditions implies that # < H* is a maximal ortho-
normal set. However f < H* being a maximal orthonormal set is not sufficient to
conditions for 1) and 2) hold.

Proof. As in the proof of Theorem 2.1, (1) implies (2). For (2) implies (1) let

A cc p and consider

S 2 S S
- (Ext—Z(x,w#u) = 2(Ext—2|(x,u>#|2> + EXt Y kx u), | =
ueA

# ueA ueA (3 15)

IXI12 - (Ext—ZKx, u>#|2>.

ueA

Since ||x||# Ext—ZKx u>#| it follows that for every ¢ ~ O.gy,& > O-gy there exists
uef
A cc psuch that for all A cc g such that A, < A,

7 2 7
_ (Ext—Z(x,w#u) = |Ix||2 - (Ext—Z|(x,u>#|2> <e (3.16)
ueA

# ueA
—

showing that x = Ext) _(X,u),. SUPPOSE X = (X1,X2, ... Xn,...) € B*. If (2) is valid
uep

then ||x||# 07{#, i.e. x = 0. So g is maximal. Let us now construct a counter example

to prove the last assertion. Take H* = Span{e;};% < 1 and let 0, = e; — (N + 1)ens
for n € *N. Applying Gramn-Schmidt to {0} %, we construct an orthonormal set
B = {un}p < H.

We now claim that #  H* is maximal. Indeed if X = (X1,X2,...,Xn,...) € B* then

X L upforallne *N, i.e. 0% = (X, Un)y = X1 — (N+ 1)Xns1.

Therefore xn1 = (N+ 1)7*x; for all n € *N. Since x € Span{e;};%5, xn = 0 for some
N sufficiently large and therefore x; = 0 which in turn implies that x, = O~ for all

ne N.Sox=0— and hence p is maximal in H#. On the other hand, S is not

maximal in |%. In fact the above argument shows that B+ in |5 is given by the span of
V=(1—,1—-/2— 1¢«/3~ 1~/4~ 1= / ..). Let P be the orthogonal

projection of |5, onto the Span(ﬁ) = vl

Ext—Z(x,un>#un =Px=Xx- <|| ”># v, so that Ext—Z(x Un)uUn = Xiff
ueA # ueA

X € Span(B) = v+ < I4. For example if x = (1—,0~;,0~,...) € H"(or more

*[R#’ IR#’ *[R#’

generally for x = e for any i € *N), x ¢ v* and hence Ext—Z(x,un>#un + X.
ueA

§ 3.2.#-Analytic vectors.Generalized Nelson’s #-analytic
vector theorem.

Let H* be a #-complex Hilbert space over field :(E%.The most natural way to construct

a #-continuous one-parameter unitary group U(t) : H* - H* is to try to make sense



/\w#

of the power series Ext—ano(itA)n on a #-dense set of vectors. Notice that this can
certainly be done if A is self-adjoint. For let Eq be the family of spectral projections for

/\w#

A.Then on each of the spaces E;_wmj, Ais a bounded operator and Ext—ano(itA)“/n!
#-converges to Extexp(itA) in #norm. In particular, for any ¢ € UM>O MM

N
#—IimNﬁw#<Ext-Zn=O (itA) ) — Extexp(itA). 3.1)

n!

Since UM>O Erwmwm is #-dense in H*, we see that the group generated by a self-adjoint
operator A is completely determined by the well-defined action of the hyper infinite

o
series Ext—ano(itA)”/n! on a #-dense set. We will prove the #-converse: namely,

/\oo#

if A is symmetric and has a #-dense set of vectors to which Ext—Zn:O(itA) "/nl can be
applied, then A is essentially self-#-adjoint. We need several definitions.
Definition1.1. Let A be an operator on a non-Archimedean Hilbert space H*. The set
c(A) = n:jo D(A" is called the C” -vectors for A. A vector ¢ € C**(A) is called an
#-analytic vector for A if

OO

n n
Ext Zn_ 1A 1AelE (LS. 3.2)

for some t > 0.If Ais self-adjoint, then c* (A) will be #-dense in D(A). However, in
general, a symmetric operator may have no C*"-vectors at all even if A is essentially
self-#-adjoint. We caution the reader to remember that #-analytic vectors and vectors

uniqueness (defined below) must be C”’- vectors for A. A vector @ € D(A) can be an
#-analytic vector for an extension of A but fail to be an #-analytic vector for A because
it is not in C**(A).

Definition1.2.Suppose that A is symmetric. For each ¢ € C*"(A), define

—~N
D, = {Ext—anoanA”q)

—~N _~N
Let H¥ = #-D, and define A, : D, - D,, by A¢<Ext-2n=0anA”go> = Ext)  anA™o.

N e *N,an G:E%}. (3.3

¢ is called a vector of #-uniqueness if and only if A, is essentially self-#-adjoint on D,,
as an operator on H.

Finally, a subset S — H* is called #-total if the set of hyperfinite linear combinations of
elements of Sis #dense in H*,

Lemma (Generalized Nussbaum’s lemma) Let A be a symmetric operator and
suppose that D(A) contains a #-total set of vectors of #-uniqueness. Then A is
essentially self-#-adjoint.

Proof We will show that Ran(A + i) are #dense in H*. By the fundamental criterion
this will show that A is essentially self-#-adjoint. Suppose v € H* and ¢ > 0 are given
and let Sdenote the set of vectors of #-uniqueness. Since Sis #-total we can find
(an)N, and (wn)N, with v, € Sso that



< ¢l2. (3.4)

#

—~N
H VS EXt—Zn:lany/n

Since v, is a vector of #uniqueness, there is a ¢, € D, So that

—~N -1
lyn = (A+Denll, < %(Ext-zn=1|an|> : (3.5

Setting ¢ = EXt—ZLanq)n we have ¢ € D(A) and |y — (A+i)p]l, < e.

Thus Ran(A +1i) is #-dense. The proof for (A—1i) is the same.

Theorem 3.1. (Generalized Nelson’s #-analytic vector theorem) Let A be a symmetric
operator on a non-Archimedean Hilbert space H*. If D(A) contains a #total set of
#-analytic vectors, then A is essentially self-#-adjoint.

Proof By Generalized Nussbaum’s lemma, it is enough to show that each #-analytic
vector y is a vector of #uniqueness. First notice that 4,, always has self-#adjoint
extensions, since the operator

—~N
C: Ext—Zn:OanA”y/ (3.6)
extends to a conjugation on Hi which commutes with 4,,. Suppose that B is a
self-#-adjoint extension of 4,, on H}, and let u* be the spectral #measure for B
associated to y. Since vy is an #-analytic vector for A,

/\N

- n | *
Ext) ATyt < oo (3.7)
forsomet > 0. Let0 < s< t. Then

/\oo#

Sn
Exty, S| Bxt [ diut | <
*Rg
“ 1/2 1/2
S [ et [ xengtyt ST (3.8)
< EXth:o = Ext J. Xd"u Ext I d*u =
*RE R
/\00#
n
Iyl Exe) ] SrIAY I, < *oo.
Therefore by generalized Fibini’'s theorem
*o0 n
Ext j (Ext-zn:0%|x|”)d#u# — Ext j Ext-(sxX|)du* < *oo. (3.9)
R R
As a result, the function
(v, [Extexp(itB)Jy), = Ext [ [Extexp(it)]d"u* (3.10)

*Rg

has an #-analytic continuation

Ext j [Ext exp(izx)]d"u* (3.11)

*Rg



to the region |[Imz< t. Since

(%)k Ext I[Ext—exp(izx)]d#u# =
"R 20 (3.12)
= Ext | [Extexpix)*Jd"u’ = (. (A)y),,

*[Rg
we obtain

/\00# s\ N
(y, [Extexp(isB) Jy ), = Ext-Zn:0 (ﬁ!) = (w,(iA)ky/># (3.13
for [sl< t. Thus, for [sl< t (and therefore for all ), the function (w1, [Extexp(isB)]y2).,

is completely determined by the numbers (y1,A"y2),,n € *N.

Similar proof shows that (y 1, [Ext-exp(isB)Jy2),, is determined by the numbers
(y1,A"2),,n € *Nfor any y1,y» € D,. Since D, is #dense in H}, and Extexp(isB)

is unitary, Extexp(isB) is completely determined by the numbers (y1,A"y2),,n € *N
for any v1,y2 € D,.Thus, all self-#-adjoint extensions of A, generate the same unitary
group, so by generalized Stone’s theorem A, has at most one self-#adjoint extension.
As we have already remarked, A, has at least one self-#-adjoint extension. Thus A, is
essentially self-#-adjoint and v is a vector of uniqueness.

Corollary 3.1 A #-closed symmetric operator A is self-#-adjoint if and only if D(A)
contains a #-dense set of #-analytic vectors.

The statement of Corollary 1 is not true if “self-#-adjoint” is replaced by “essentially
self-#-adjoint.” A self-#-adjoint operator A may be essentially self-#-adjoint on a
domain D < D(A) and D may not even contain any #-vectors.

Corollary 3.2 Suppose that A is a symmetric operator and let D be a #-dense linear
set contained in D(A). Then, if D contains a #-dense set of #-analytic vectors and if D
is invariant under A, then A is essentially self-#-adjoint on D.

Proof Since D is invariant under A, each #-analytic vector for Ain D is also an
#-analytic vector for 4 | D. Thus, by Theorem 3.1 4 | D is essentially self-#-aadjoint.
The reason that one needs the invariance condition in Corollary 2 is that for a vector

v € D to be #-analytic for 4 | D, it must first be C* for 4 | D. This requires that

A" € Dforalln e *N.

84.The generalized Spectral Theorem

8 4.1.The #-continuous functional calculus

In this section, we will discuss the generalized spectral theorem in its many guises.
This structure theorem is a concrete description of all self-#-adjoint operators. There
are several apparently distinct formulations of the spectral theorem. In some sense
they are all equivalent.

The form we prefer says that every bounded self-#-adjoint operator is a multiplication
operator. (We emphasize the word bounded since we will deal extensively with
unbounded self-#-adjoint operators in the next chapter; there is a spectral theorem for
unbounded operators which we discuss in Section § 4.3)

This means that given a bounded self-#-adjoint operator A on a non-Archimedean



Hilbert space H* over field :@/ﬁ or i@, we can always find a #measure u* on
a #-measure space M and a unitary operator U : H* - L(M,d*u#) so that
(UAU)(x) = F(X)f(X) 4.1.)

for some bounded real-valued #-measurable function F on M.

In practice, M will be a union of copies of *R% and F will be x so the core of the proof of

the theorem will be the construction of certain #-measures. This will be done in
Section

§ 4.2 by using the generalized Riesz-Markov theorem. Our goal in this section will be
to

make sense out of f(A), for f a #-continuous function.

In the next section, we will consider the #-measures defined by the functionals

fr= (w. f(Ay), (4.1.2
for fixed y € H.
Given a fixed operator A, for which f can we define f(A)? First, suppose that A is an
arbitrary bounded in*R# operator. If f(x) = Ext—ZL cnX", N € *Nis a polynomial,
we let f(A) = EXt‘ZL chA". Suppose that f(x) = Ext—Z;fl cnX" is a hyper infinite
power series with radius of #-convergence R. If |Al|, < Rthen hyper infinite power
series Ext—Z;fl ChA" #-converges in £(H*) so it is natural to set

f(A) = Ext Y. “ ChA" (4.1.3

In this last case, f was a function #-analytic in a domain including all of o(A).
The functional calculus we have talked about thus far works for any operator in any
Banach space. The special property of self-adjoint operators or more generally normal
operators is that ||P(A)|ls = SUp.esa)|P(A)| for any polynomial P, so that one can use the
B.L.T. theorem to extend the functional calculus to #-continuous functions. Our major
goal in this section is the proof of:
Theorem 4.1.1. (#-continuous functional calculus) Let A be a self-#-adjoint operator on
a Hilbert space H*. Then there is a unique map ¢ : C*(c(A)) - L(H¥) with the
following properties:
(a) ¢ is an algebraic x-homomorphism, that is,

¢(fg) = ¢(F)$(9), ¢(Af) = 26(F),$(1) = 1,4(f) = ¢()".
(b) ¢ is #-continuous, that is, ||¢(f) ||£<H#> < C||f|.,.
(c) Let f be the function f(x) = x; then ¢(f) = A.
Moreover, ¢ has the additional properties:
(d) If Ay = Ay, then ¢(f)y = f(L)y.
(e) a[p(f)] = {f(V)|A € a(A)} [spectral mapping theorem].
(fH 1ff >0, then ¢(f) > 0.
@le¢® I, = lIfll .. [this strengthens (b)].
The proof which we give below is quite simple, (a) and (c) uniquely
determine ¢(P) for any hyperfinite polynomial P(x). By the generalized Weierstrass
theorem, the set of polynomials is #-dense in C*(c(A)) so the main part of the proof is
showing that

”P(A)”#Op = ”P(X) ”c#(g(A)) = Supxleo(A)lp(l)l- (4- 1-4)



The existence and uniqueness of ¢ then follow from the generalized B.L.T. theorem.
To prove the crucial equality, we first prove a special case of (e) (which holds for
arbitrary bounded operators):

Lemma 4.1.1.Let P(x) = ExtY_ " Cox", N € *N. Let P(A) = Ext>_" | c,A". Then

o(P(A)) = {P(V)IA € a(A)}. (4.1.5
Proof Let 1 € o(A). Since x = 4 is a root of P(x) — P(1), we have
P(x) - P(1) = (x—21)Q(X), so P(A) —P(1) = (A—1)Q(A). Since (A—A) has no
inverse neither does P(A) — P(A) that is, P(1) € o(P(A)).
Conversely, let 1 € o(P(A)) and let A4, ...,An be the roots of P(x) — u, that is,
PO) —p=a(Ext[]',(x— 1)) .1f A1,....An £ o(A), then
PA) -t =at(Ext[] (A-2)™) (4.1.6)
so we conclude that some 1; € o(A) thatis, u = P(1) for some A € o(A).
Definition Let r(A) = Supes(a) |A]- Then r(A) is called the spectral radius of A.
Theorem 4.1.2. Let X be a Banach space, A € £(X) Then lim_« 4| A" exists
and is equal to r(A) . If Xis a Hilbert space and A is self-#-adjoint, then r(A) = ||A||#op.
Lemma 4.1.2. Let A be a bounded in *R% self-#-adjoint operator. Then

[IP(A)]l = SUpreoa) IP(D)]- (4.1.7
Proof By Theorem 4.1.2 and by Lemma 4.1.1 we obtain

IPAIE = IPAY*P(A)ls = [IPPYA) ]l =

|| #op

_ 2 (4.1.8)
= sudi| =sup [PP(1)|= (SUp P(MI) :

rea((PPY(A) Aea(A) Aea(A)

Proof of Theorem 4.1.1. Let ¢(P) = P(A). Then ||¢(P)||£<H#> = [IPll c#(o(ay SO ¢ has a

unique linear extension to the #-closure of the polynomials in C#*(c(A)). Since the
polynomials are an algebra containing |, containing complex conjugates, and
separating points, this #-closure is all of C*(c(A)). Properties (a), (b), (c), (g) are
obvious and if ¢ obeys (a), (b), (c) it agrees with ¢ on polynomials and thus by
#-continuity on C#(c(A)) To prove (d), note that ¢(P)y = P(1)y and apply
#-continuity. To prove (f), notice that if f > 0, then f = g? with g *R%-valued

and g € C*(a(A)). Thus ¢(f) = ¢(g)? with ¢(g) self-#-adjoint, so ¢(f) > 0.

Remark 4.1.1. In addition:

(1) ¢(f) > Oif and only if f > O.

(2) Since fg = gf for all f,g, {f(A)|f € C*(c(A))} forms an abelian algebra closed
under adjoints. Since [|¢(f) ||, = |If]l., and C*(c(A)) is #complete, {f(A)[f € C*(a(A))}
is #-norm-#-closed. It is thus an non-Archimedean abelian C* algebra of operators.
(3) Ran(¢) is actually the non-Archimedean C* algebra generated by A that is, the
smallest C*-algebra containing A.

(4) This result, that C*(c(A)) and the non-Archimedean C*-algebra generated by A
are #-isometrically isomorphic

(5) (b) actually follows from (a) and Proposition 4.1.1. Thus (a) and (c) alone
determine ¢ uniquely.



Proposition 4.1.1. Suppose that ¢: C#(X) - £(H*) is an algebraic *-homomorphism,
X a #-compact metric space. Then

(@) If f > 0, then ¢(f) > 0.

(b) le) 115 < 11l

Definition 4.1.1 if n,k € *N with k < n, then we define

( ) k|#(r?l#k)|# (4.1.8)

where nt¥ = Ext[ ], msee ref [7].
Lemma 4.1.3. Whenever n,k € *N are such that k < n,then

<E>:<n2k>- (4.1.9

Proof. Directly from the formula (4.1.8)

n — n! # . nl# B ni# /n
(a") = - In-(-K* (M- K-k (R) @110
Lemma 4.1.4. Let n,k € *N with 0 < k < n,then
ny_(n-1 n-1
<k>_<k—1>+< k /J° (4.1.13)

Proof. Directly by hyper infinite induction [7].
Proposition 4.1.2. (Generalized binomial theorem) Let x,y € *R% and let n € *N,
then we have

x+y)" = Ext—ZE:C)( E )x”‘ky" = Ext—Z::c)( E )x"y”‘k. (4.1.8
Proof.We prove the result by hyper infinite induction. When n = 1, we trivially have
. 1 . . 1 1
X+y)  =x+y= <O>x+ (1>y.

Suppose that there is an n € *Nfor which the statement (4.1.8) is true. We then
have

n+1

X+W™ = x+y)"(x+y) =
[Ext—ZE:C)( K )x”‘ y }(xiry) =

[Ext—Z::c)( E )x”"‘yk}x+ [Ext—Z::c)( E )x”"‘yk}y =
[Exe (R ey ]+ [Be TR )xmy ] -
e B EL (1) () Jo
(75t y e B L) () Jeor (e

- Ext Zn+1< n+1 X 1-ky

where we have used Lemma 4.1.4.
Definition 4.1.2 (Hyperfinite Bernstein Polynomials). For each n € *N, the n-th
Bernstein Polynomial BZ(x,f) of a function f € C#([a,b], *R¥) is defined as

Bi(x,f) = Ext-zgzof(%) ( } )xk(l —x)™, (4.1.9



Lemma4.1.3.Forany n € *N :

Ext Ty, (1 )xa-»m -1, (4.1.10
Ext—Z::C)( I )xk(l — )" (k=nx) = 0, (4.1.11)
Ext—ZEz()( n )xk(l — )™ (k= nx)2 = nx(1 - x). (4.1.12

Proof. To prove these identities, first, from the generalized binomial theorem, for any
n € *N one obtains that

2 Wl n k(1 _ v\ kK _ : _ n_
Ext 2o o (0 )X —0™* = x+ (1-x)]" = 1. (4.1.13
By the generalized binomial theorem we have
n K .
Ext X ( R )ye = v+ 2)". (4.1.14

By the #-differentiating with respect to y of the identity (4.1.14) we obtain

S BT (R )yr ] - exe T (§ iz -

“ (4.1.15
= dd—#y(y+ 2" =ny+2)"™.
Thus
n ok _ Lol
Ext—ZEzO( e )kyk Ik = ny +2)™* (4.1.16
and therefore
Ext—Z::C)( N )kykzn—k — ny(y + 2™~ (4.1.17
Replacing y by x and zby 1 — x in the above expression, we have identity
Ext—ZEz()( n )kxk(l — )" = nx. (4.1.18
From (4.1.18) we obtain
Ext—Z::C)( N )%xk(l )= x, (4.1.19

From (4.1.19) and (4.1.13) we obtain the identity (4.1.11).By the #-differentiating with
respect to y of the identity (4.1.17) we obtain

dd_j;/ [ Ext ZLO( E )kykz”"‘} = Ext ZLO( E )kzyk‘lz“‘I< =

d* s o o (4.1.20
= nd—#yy(y+ ) 7 =nly+z) +n(n-1y(y+2 .
Thus
Ext ZL,( E )kzy"‘lz""‘ =ny+2"t+n(n-1yy+2)"2 (4.1.2)
and therefore
Ext Ty o( 1)Ky 2™ = nyty + )™ + n(n - 1)y*(y + 2)™2 (4.1.22

Replacing y by x and zby 1 — x in the expression (4.1.22) we have identity



Ext Ty o (1)KL =)™ = nx+ n(n - 1)x2 (4.1.23

From (4.1.23) and (4.1.10)-(4.1.11) one obtains (4.1.12).

Theorem 4.1.2. (Generalized Weierstrass Approximation Theorem). Let

f € C*([a,b], *R%). Then there is a hyper infinite sequence of polynomials

pn(X),n € *N that #converges uniformly to f(x) on [a,b].

Proof. For a #-continuous function f defined on [0, 1] by (4.1.9) and (4.1.10) we obtain

() — BE() = Ext- 3o [ 1) — (&) ]( ! )xk(l —x)k, (4.1.24
From the identity (4.1.24) one obtains that
| () — BEX) | < Ext X0 [f(0) - f(%) | ( I )xk(l— ) (4.1.25

Since f is #-continuous on [0,1], it is bounded in *R%on [0, 1], i.e., there exists a
number M e *R% such that [f(x)l< M,x € [0, 1]. Moreover f is uniformly #-continuous
on [0, 1].Choose ¢ ~ 0,e > 0, then there exists 6 ~ 0,0 > 0 such that x,y € [0, 1] with

[x — y|< 0 implies that [f(x) — f(y)|< . For x € [0, 1], split the sum in the righthand side of
(4.1.1) into two parts:

Ext > |f(x)—f(%)|(2)xk(1—x)k (4.1.12
[x-k/n|<6
and
Ext . |f(x)—f(%)|(2)xk(1—x)k (4.1.13
IX=k/n|>o6

From (4.1.9) we obtain
Ext > |f(x)—f(%)|(2)xk(1—x)k53. (4.1.14
[x-k/n|<é

From (4.1.9) we obtain

Ext > |f(x)—f(%)|(2)xk(1—x)ks2M[Ext- > (E)x"(l—x)k:|

Ix=k/n|>6 Ix=k/n|>6

= |:EXt (x_£> ( )Xk(l X) :| (4.1.19
pkinf>d

M kK)2( n k M
= F[Ext'zk:o(x—ﬁ) (R)xa-»] < 2L,
Finally we obtain
[f(x) — BE(X)| < & + 2(';’; (4.1.16
By choosing n € *N large enough the righthand side can be made less than 2¢. This
estimate is independent of x € [0, 1]. Hence, for ¢ > 0O there exists a number N € *N
such that n > N and x € [0, 1] imply [f(x) — B4(X)[< 2¢. Therefore f is the uniform #-limit
of the polynomials Bf.
Theorem 4.1.3.(Generalized B.L.T.theorem) Suppose that Z is a #-normed space, Y
is a non-Archimedean Banach space, and S c Zis a #-dense linear subspace of Z. If
T : S- Yis abounded linear transformation (i.e. there exists C < *o such that



ITz||, < C|lz||, for all ze §), then T has a unique extension to an element of £(Z,Y).

8 4.2.The spectral #-measures

Theorem 4.2.1.(Generalized Riesz-Markov theorem) Let X be a locally #-compact
non-Archimedean metric space endowed with *R%-valued metric.Let CZ(X) be the
space of #-continuous #compactly supported *C%-valued functions on X.
For any positive linear functional ® on C%(X), there is a unique #measure x* on X
such that

vf e C4(X) : o(f) = Ext-jx fO)d*u*(X).
Theorem 4.2.2.(Generalized Riesz lemma) Let Y be a #-closed proper vector
subspace of a normed space (X, ||+||#) and let « € *R% be any real number
satisfying 0 < a < 1.Then there exists a vector u € X of unit #norm |ju|# = 1
such that [[u—-y||# > aforally €Y.
We are now introduce the #-measures corresponding to bounded in*R# self-#-adjoint
operators. Let A be an bounded in*R¥ self-#-adjoint operator. Let v € H*. Then

f (., H(AY), 4.2.0)

is a positive linear functional on C#(c(A)). Thus, by the generalized Riesz-Markov
theorem, there is a unique #-measure pj,(+) on the #compact set o(A) with the

property

WL AW, = Ext [ f(A)diui. (4.2.2
a(A)
Definition 4.2.1.The #-measure }(+) is called the spectral #-measure associated with
the vector y € H.
The first and simplest application of the uf (-) is to allow us to extend the functional
calculus to B*(*R¥), the bounded in*R% #Borel functions on *R%. Let g € B*(*R%).

It is natural to define g(A) so that (y,g(A)y), = Ext J. g(A)d*uf . The polarization
a(A)

identity lets us recover (y,g(A)e), from the proposed (yv,9(A)y), and then

the Generalized Riesz lemma lets us construct g(A).

Theorem 4.2.1.(spectral theorem-functional calculus form) Let A be a

bounded in*R# self-#-adjoint operator on H*. There is a unique map

¢ : B*(*R#) > £(H") so that

(a) ¢ is an algebraic x-homomorphism.

(b)  is #-norm #-continuous: ||$(f) || - If]l...

(c) Let f be the function f(x) = x; then ¢(f) = A.

(d) Suppose f.(x) -« f(x) for each x as n - *o0and hyper infinite sequence
Ifall....n € *N is bounded in*R%. Then ¢(f,) —4 ¢(f) as n - *costrongly.
Moreover §(+) has the properties:

(e) If Ay = Ay, then ¢(f) = f(L)y.

(f) 1ff > 0,then ¢(f) > 0.

() If BA = ABthen ¢(f)B = Bo(f).

Remark 4.2.1. Note that: (i) Theorem 4.2.1 can be proven directly by extending
Theorem 4.1.1, part (d) requires the dominated #-convergence theorem. Or,



Theorem 4.2.1 can be proven by an easy corollary of Theorem 4.2.3 below.

The proof of Theorem 4.2.3 uses only the #-continuous functional calculus, ¢
extends ¢ and as before we write $(f) = f(A). As in the #-continuous functional
calculus, one has f(A)g(A) = g(A)T(A).

(i) Since B*(*R¥) is the smallest family closed under #-limits of form (d) containing
all of C*(*R¥), we know that any $(f) is in the Smallest non Archimedean C*-algebra
containing A which is also strongly #-closed; such an algebra is called a von
Neumann #-algebra or non Archimedean W*-algebra. When we study von Neumann
#-algebras we will see that this follows from (g).

(iii) The #-norm equality of Theorem 4.2.1 carries over if we define ||’ to be the
L%, #norm with respect to a suitable notion of “#-almost everywhere.” Namely, pick
an orthonormal basis {y/n};fl and say that a property is true #-a.e. if it is true #-a.e.

with respect to each uf, Then ||$(f) || £y = |If]\.

Definition 4.2.2. A vector v € H* is called a cyclic vector for A if gyperfinite linear
combinations of the elements {A"y} % are #dense in H*,

Not all operators have cyclic vectors, but if they do.

Lemma 4.2.1. Let A be a bounded in*R¥ self-#-adjoint operator with cyclic vector v.
Then, there is a unitary operator U : H* - L5(c(A),d*ui), with (UAU-)(1) = Af(1)
where equality holds is in the sense of elements of L5(c(A),d*uj)).

Proof Define U by U¢(f) = f where f is #-continuous. U is essentially the inverse

of the map ¢ of Theorem 4.1.1. To show that U is well defined operator we compute
I3 = " OoMwd, = (w.o(F xF)w), = Ext[id) Pd?uf.

Therefore, if f = g a.e. with respect to uj,, then ¢(f)y = ¢(g)y. Thus U is well
defined on {¢(f)y|f € C*(c(A))} and is #-norm preserving. Since v is cyclic it
#-closure #{p(f)y|f € C*(c(A))} = H* so by the generalized B.L.T. theorem U
extends to an #isometric map of H” into L5(c(A),d?ui). Since C#(a(A)) is #-dense
in L%, Ran U = L3(c(A),d*ui).Finally, if f € C#*(c(A)) one obtains

(VAU () = [UAG(H)](A) = [Up(xD](A) = Af(A).

By #-continuity, this extends from C#(c(A)) to L.

To extend this lemma to arbitrary Ay we need to know that A has a family of
invariant subspaces spanning H* so that A is cyclic on each subspace:

Lemma 4.2.2. Let A be a self-adjoint operator on a x-separable Hilbert space H.

N
Then there is a direct sum decomposition H# = Ext@ H# with N € *N or
n=1

H* =Ext@ H? such that:

n=1
(a) A leaves each HY invariant, that is, v € Hf implies Ay € H# = Ext@ H?#
n=1

so that:

(b) For each n € *N, there is a ¢ € H}; which is cyclic for A} H},i.e.

HE = #{f(A)gnlf € CT(a(A)}

Theorem 4.2.3 (spectral theorem-multiplication operator form) Let A

be a bounded in*R# self-#adjoint operator on H*, a x-separable Hilbert space.
Then, there exist #-measures {uﬁ}lr’\llzl with N € *N or {yﬁ};fl ono(A) and a




N *o0
unitary operator U : H* - @ LE(*R%,d”u?) or U : H# > @ LE(*R¥,d*uf)
n=1 n=1
s0 that (UAU2y)n(1) = Ayn(1)
N
where we write an element v € @ L(*R%, d*u?) as an N-tuple (w1(1),...,un(A))
n=1

or x-tuple
This realization of A is called a spectral representation.
Proof. Use Lemma 4.2.2 to find the decomposition and then use Lemma 4.2.1
on each component.
This theorem tells us that every bounded self-#-adjoint operator is a multiplication
operator on a suitable #-measure space; what changes as the operator changes
are the underlying #-measures. Explicitly:
Corolarly 4.2.1. Let A be a bounded in*R¥ self-adjoint operator on a x-separable
Hilbert space H*. Then there exists a finite in*R# measure space (M, u*), a
bounded in*R# function F on M, and a unitary map, U : H* - Lj(M, d”u*) so that
(UAU)(m) = F(m)f(m).
Proof Choose the cyclic vectors ¢, so that |[¢nll, = 27". Let M = U RE
i.e. the union of N € *N copies of *R¥. Define u by requiring that its restriction
to the n-th copy of *R¥ be yn. Since u(M) = Ext Y"1 ph(*R¥) < *oo, pn is finite
in*R%. We also notice that this last theorem is essentially a rigorous form of the
formaal Dirac notation. If we write ¢, = ¢(x; n), we see that in the “new
representation defined by U” one has
W $)y = EXtX ExXE[d*ufy (in)e(a:n)

and

(v, Ap), = ExtY, Ext|d*ufy (A n)A¢(A;n).
These are the Dirac type formulas familiar to physicists except that the formal
sums of Dirac are replaced with integrals over spectral measures, where we define:
Definition 4.2.3. The #-measures d*u, are called spectral measures; they are just
d*w, for suitable .
Remark 4.2.2. Notice these #measures are not uniquely determined.
We now investigate the connection between spectral measures and the spectrum.
Definition 4.2.3. If {uﬁ}L,N € *Nis a family of #measures, the support of {uﬁ}L
is the complement of the largest #-open set B with uf(B) = 0for alln € *N so

supp({uiin,) = #Un . supp(uf). (4.2.0)

N
n=1’

Proposition 4.2.1. Let A be a self-#-adjoint operator and {u}
spectral #measures. Then

o(A) = supp ({uf}n,)-

Definition 4.2.4. Let F be a *R¥-valued function on a #-measure space (M, u*) .
We say A is in the essential range of F if and only if

W {mA —e < F(m) < A+¢} > 0.

forall e ~ 0,6 > O.

Proposition 4.2.2. Let F be a bounded in *R% *R%-valued function on a #measure
space (M, u#). Let T; be the operator on L{(M, d”u#) given by (Teg)(m) = F(m)g(m)

N € *N a family of



Then o(Tg) is the essential range of F.

Definition 4.2.5. Let A be a bounded in *R¥ self-#-adjoint operator on H*

Let Hj, = {w|ujis pure point}, Hi = {y|uj is absolutely #-continuous},

H¥,g = {wlui is #continuous singular}.

We have thus proven.

Theorem 4.2.4.H* = Hj, @ Hi @HZ%,,. Each of these subspaces is invariant under A.
A H, has a #-complete set of eigenvectors, A | H%: has only absolutely #-continuous
spectral #measures and A | Hf,, has only #continuous singular spectral #measures.
Definition 4.2.6. opp(A) = {4|1 is an eigenvalue of A},

Oxcont(A) = (A} Hﬁcont = Hgng ® HL),

oac(4) = (AT H),

Gsing(A) =o(A ) Hgng)'

These sets are called the pure point, #-continuous, absolutely #-continuous, and
singular (or #continuous singular) spectrum respectively.

Remark 4.2.2. While it may happen that cac(A) U osing(4) U opp(4) = o(4) this is only
true because we did not define opy(4) as o(A | Hjp) but rather as the actual set of
eigenvalues.

Proposition 4.2.3. cuont(A) = 6ac(A) U Gsing(4),

o(A4) = #opp(4) U oscont (A).

The sets need not be disjoint, however. The reader should be warned that osng(4)
may have nonzero #-Lebesgue measure. For many purposes, breaking up the
spectrum in this way gives useful information.

Finally, we turn to the question of making canonical choices for the spectral
#-measures, a subject which goes under the title of “multiplicity theory.” We will
describe the basic results without proof:

§ 4.2.1. Multiplicity free operators

We must first ask when A is unitariiy equivalent to multiplication by x on LE(*R%, d”u#),
that is, when only one spectral #measure is needed. An symple examples tells us this
happens in the finite-dimensional case only when A has no repeated eigenvalues, so
we define:

Definition 4.2.7. A bounded in *R%self-#-adjoint operator A is called multiplicity
free if and only if A is unitarily equivalent to multiplication by A on L(*R%, d*u*) for
some #-measure u?.

One is interested in intrinsic characterizations of “multiplicity free” and there are
several:

Theorem 4.2.5. The following are equivalent:

(@ Ais multiplicity free.

(b)  Ahas a cyclic vector.

(c) <{BJAB = BA} is an abelian algebra.

#-Measure classes

Next we must ask about the nonuniqueness of the #measure in the multiplicity free
case. Suppose d*u* on *R¥ is given and let F be a #-measurable function which is
positive and nonzero #-a.e. with respect to u# and locally L¥(*R%, d*u*), that is,

jz IF|d*u* < *oo for every compact set = < *R¥. Then d*v = Fd*u* is a #Borel



#measure and the map, U : L{(*R%,d*v) — L{(*RE, d*u*) given by (Uf)(1) = U(Af)
is unitary (onto since F # 0 #a.e.) and A(Uf) = U(Af), Thus, an operator A with a
spectral representation in terms of pi could just as well be represented in terms of v.
By the generalized Radon-Nikodym theorem, dv = Fd*u* with F #-a.e. nonzero if
and only if v¥ and u* have the same sets of #measure zero. This suggests the
definition:

Definition 4.2.8. Two #-Borel #measures u* and v* are called equivalent if and only
if they have the same sets of #-measure zero. An equivalence class (u*) is called a
#measure class.

Then, the nonuniqueness question is answered by:

Proposition 4.2.7. Let p* and v# be #-Borel #measures on *R¥ with bounded in
“R¥ support. Let A+ be the operator on LE(*R%,d”u*) given by (A +f)(1) = Af(2)

and similarly for A+ on L5(*R%,d*v¥). Then A« and A+ are unitarily equivalent if and
only if u# and v* are equivalent #-measures.

8 4.2.2. Operators of uniform multiplicity

If one wants a canonical listing of the eigenvalues of a matrix, it is natural to list all
eigenvalues of multiplicity one, all eigenvalues of multiplicity two, etc. We thus need
a way of saying that A is an operator of uniform multiplicity two, three, etc. It is natural
to take:
Definition 4.2.9. A bounded self-adjoint operator A is said to be of uniform multiplicity
m e *N if Ais unitarily equivalent to multiplication by A on Ext®Li(*RE, d*u*) where
there are mterms in the external sum and p* is a fixed #-Borel #-measure.
That this is a good definition is shown by
Proposition 4.2.8.1f Ais unitarily equivalent to multiplication by A on

Ext@Li{(*RE, d*u¥)
(mtimes) and on Ext®Li(*RE, d*v) (ntimes), then m-n and p* and v* are equivalent
#measures.

8 4.2.3.Disjoint #measure classes.The multiplicity

theorem

In listing eigenvalues of multiplicity one, two, three, etc. in the finitedimensional case,

we must add a requirement that prevents us from counting an eigenvalue of
multiplicity

three once as an eigenvalue of multiplicity one and once as an eigenvalue of
multiplicity

two. In the hyperfinite-dimensional case, we avoid this “error” by requiring the lists to
be

disjoint. The analogous notion for #-measures is:

Definition 4.2.10. Two #measure classes (u*) and (v*) are called disjoint if any

ui e (u*yand vi e (v¥) are mutually singular.

We can now state the basic theorem:

Theorem 4.2.6.(commutative multiplicity theorem) Let A be abounded in

*R¥self-#-adjoint operator on a Hilbert space H”. Then there is a decomposition

Ext®,2, HE so that



(a) A leaves each Hf invariant.

(b) A} Hf has uniform multiplicity m € *N.

(c) The #measure classes (uf) associated with the spectral representation of A} H%

are mutually disjoint.

Remark 4.2.3. Moreover, the subspaces {HE};ﬁl (some of which may be zero) and

the #-measure classes {(uﬁg};‘; are uniquely determined by (a)-(c).

The spectral theorem with the multiplicity theory just described is thus one of those

gems of mathematics: a structure theorem, that is, a theorem that describes all
objects

of a certain sort up to a natural equivalence. Each bounded in *R# self-#-adjoint

operator A is described by a family of mutually disjoint #measure classes on

[=IIAll. IAll.]; two operators are unitarily equivalent if and only if their spectral

multiplicity #-measure classes are identical.

8 4.3. Spectral projections.

In the last section, we constructed a functional calculus, f » f(A) for any #-Borel
function and any bounded in*R# self-#-adjoint operator A. The most important
functions gained in passing from the continuous functional calculus to the #-Borel
functional calculus are the characteristic functions of sets.

Definition 4.3.1. Let A be a bounded self-#-adjoint operator and Q2 a #-Borel set
of *R%. Pq = ya(A) is called a spectral projection of A.

As the definition suggests, Pq is an orthogonal projection since yo = y3 = 1
pointwise. The properties of the family of projections{PQ|Q an arbitrary #-Borel set}
is given by the following elementary translation of the functional calculus.
Proposition 4.3.1. The family {Pq} of spectral projections of a bounded
self-#-adjoint operator A, has the following properties:

(a) Each Pq is an orthogonal projection.

(b) Pz = 0; P(aa = | for some a € *RE.

() If @ = ExtJ.”, Qn With Qn N Qm = for all n = mthen

Po = s#-limy. (Ext 3.1 Po, ). (4.3.9)

(d) Pleﬂz = PQlﬂﬂz'

Definition 4.3.2. A family of projections obeying (a)-(c) is called a projection-valued
#measure (p.v.#m.).

We remark that (d) follows from (a) and (c) by abstract considerations.

As one might guess, one can integrate with respect to a p.v.#m. If Pq is a p.v.#m.,
then (¢,Pa¢), is an ordinary #-measure for any ¢. We will use the symbol
d*(¢,P.¢), to mean integration with respect to this #-measure. By generalized Riesz
lemma methods, there is a unique operator B with (¢,B¢),, = Ext—jf(/l)d#<¢, Pi¢).,.

Theorem 4.3.1. If Pg is a p.v.#m. and f a bounded in *R¥ #-Borel function on
supp(Pq), then there is a unique operator B which we denote Ext-.[f(/’L)d#P,l so that

(§,Bo), = Ext: [f(1)d*$, Pag),.. (4.3.2

Theorem 4.3.2.(spectral theorem-p.v.#m. form) There is a one-one correspondence
between (bounded) self-#-adjoint operators A and (bounded) projection valued
#measures {Pq} given by



A {Pa} = {xa(A)} 4.3.3
and

{Pa} ~ A = Ext [ Ad*P;. (4.3.4

Spectral projections can be used to investigate the spectrum of A.
Proposition 4.3.1. 1 € o(A) if and only if P14 (A) for any € > 0.
The essential element of the proof is that ||[(A— 1)~ ||# = [dist(1,c5(A))] ™.

This suggests that we distinguish between two types of spectrum.

Definition 4.3.3. We say that (i) 1 € oes(A), the essential spectrum of A if and only
if Po—ea1e)(A) is hyper infinite dimensional for all ¢ > 0.

(i) If A € o(A) but P14 (A) is hyperfinite dimensional for some ¢ > 0, we say
A € odisc(A), the discrete spectrum of A.P is hyper infinite dimensional means
Ran(P) is hyper infinite dimensional.

Thus, we have a second decomposition of o(A). Unlike the first, it is a
decomposition into two necessarily disjoint subsets. We note that o s iS not
necessarily #-closed, but notice that.

Theorem 4.3.3 oes(A) is always #-closed.

Proof Let A, »# 4 with each 1, € oes(A). Since any #-open interval | about A
contains an interval about some 1,,P;(A) is hyper infinite dimensional.

The following three theorems give alternative descriptions of o4ic anNd Cess;
Theorem 4.3.4 A € o4 if and only if both the following hold:

(a) A is an #-isolated point of o(A) that is, for some ¢ ~ 0,

A-gA+e)No(A) = {A}.

(b) 1 is an eigenvalue of hyperfinite multiplicity, i.e., {w]Ay = Ay} is hyperfinite
dimensional.

Theorem 4.3.5 1 € o« if and only if one or more of the following holds:

(a) Ae O'#Cont(A) « O'aC(A) U O'Sing(A)-

(b) 4 is a #Ilimit point of opp(A).

(c) 4 is an eigenvalue of hyper infinite multiplicity.

Theorem 4.3.6 (Generalized Weyl's criterion) Let A be a bounded in *R#
self-#-adjoint operator. Then (i) A € o(A) if and only if there exists {y/n};fl with
Ivall, = 1 and #lim .| (A= A)yall, = O.

(A € oes(A) if and only if the above {y,} can be chosen to be orthogonal.
As one might guess, the essential spectrum cannot be removed by essentially
hyperfinite dimensional perturbations. In Section 4.4, we will prove a general
theorem which implies that ces(A) = oess(B) if A\B is #-compact.

Finally, we discuss one useful formula relating the resolvent and spectral projections.
It is a matter of computation to see that

0 if xeab]
fo(X) -4 1/2 if x=avx=Dhb
1 if xe(ab)

if ¢ »» 0, where



b
fo(X) = (2n#i)-l<Ext-j[(x— A—ig) P —(x-A+ is)‘l]d#/l) (4.3.5

Moreover, [f.(x)]is bounded in x €* R% uniformly in ¢ ~ 0, so by the functional
calculus, one obtains that.

Theorem 4.3.7 (Generalized Stone’s formula) Let A be a bounded in *R#
self-#-adjoint operator. Then

b
slimg., 0(2n#i)-1(Ext-j[(A— A—ig) P —(A-1+ ig)‘1:|d#/’L> =
a (4.3.6)

= %[P[a,b] +Pap)]-

8 4.4.The #-continuous functional calculus related to

unbounded in*R% self-#-adjoint operators

In this section we will show how the spectral theorem for bounded in*R#%
self-#-adjoint operators which we developed in § 4.3 can be extended to unbounded
in*R% self-#-adjoint operators. To indicate what we are aiming for, we first prove the
following:

Proposition 4.4.1. Let (M, u*) be a #measure space with u* a hyperfinite
#-measure. Suppose that f is a #-measurable, *R#-valued function on M which is
finite or hyperfinite a.e.u”. Then the operator Ts : ¢ - fo on LE(M, d*u*) with domain

D(Ty) = {oplfp € LZ(M,d"u")} (4.4.1)

is self-#-adjoint and o(T) is the essential range of T;.
Proof T; is clearly symmetric. Suppose that v € D(T{) and let

{ 1 if f(m)[ < N
AN =

0 otherwise
Then, using the generalized monotone #-convergence theorem,

Ty ll, = #limaew | nTiv ], = #—Iimm( sup |<¢,xNT:w>#|> =

loll=1

#-lim Nm( sup I<xNTf<0,l//>#I> = #lim Nm( sup |<<P1ZNfl//>#|> =

lol,=1 ol =1

H-limnseo || ynfy Il
Thus, fy € LE(M,d**), so v € D(T¢) and therefore T; is self-#-adjoint. That ¢(T;)
is the essential range of f follows as in the bounded case.
With more information about f, one can say something about the domains on which
Tt is essentially self-#-adjoint:
Proposition 4.4.2. Let f and T; obey the conditions in Proposition 4.4.1. Suppose
in addition that f € L}(M,d*u*) for 2 < p < *«. Let D be any #-dense set in
L&(M,d*u*) where g + p = 1/2. Then D is a #-core for T.
Proof Let us first show that L} is a #-core for T;. By the generalized Holder’s
inequality gl < 1111« 19ll4q and [Ifgll,, < Ifll4, - 1914 SO LE = D(TY).
Moreover, if g € D(Ty) let gn,n € *N be that function which is zero where



l[a(m)| > n and equal to g otherwise. By the generalized dominated convergence
theorem, gn -4 g and fg, -4 fgin L5. Since each g, is in L}, we conclude

that L} is a #-core for Ti.Now let D be #-dense in L} and let g € L}. Find g, € D
with gn 4 gin L§. Since [[gn - gll4, < 11114, - 190 — 9l 4, and

ITi(n = D ll4o < [Ifll s * 190 = 9ll g, 9 € # D(Ts 1 D).

Thus L < D(Ts | D) so D is a #-core. Unless fe L%, (M,d*u*) the operator T;
described in Propositions 4.4.1 and 4.4.2 will be unbounded.

Thus, we have found a large class of unbounded self-#-adjoint operators. In fact,
we have found them all.

Theorem 4.4.1. (spectral theorem-multiplication operator form) Let A be a
self-adjoint operator on a *co-dimensional a non-Archimedean Hilbert space H*
with domain D(A). Then there is a #measure space (M, u*) with u* a hyperfinite
#-measure, a unitary operator U : H* - L§(M,d*u#), and a *R#-valued function f

on M which is finite or hyperfinite u#-a.e. so that

(@) w e D(A)ifand only if f(-)(Uw)(+) € LE(M,d*u?).

(b) If o € U[D(A)], then (UAU1p)(m) = f(m)p(m).

Proof It easily verify that A+ i and A—i are one to one correspondence and
Ran(A+i) = H*.Since A+ i are #-closed, (Ai i)_1 are #-closed and therefore
bounded in *R%. Note that the operators (A+i)~* and (A-i)~' commute. The
equality ((A- Dy, (A+ 1) (A+i)e), = (A+ 1) H(A-i)y,(A+i)e),and the fact that
Ran(A+i) = H* shows that ((A+i)™)" = (A—i)L. Thus the operator (A+i)1is
normal.

We now use the easy extension of the spectral theorem for bounded in *R¥
self-#-adjoint operators to bounded in *R% normal operators. The proof of this
extension is a straightforward. We conclude that there is a #-measure space (M, u*)
with u# a hyperfinite #-measure, a unitary operator U : H* - L{(M,d*u*), and a
#measurable, bounded, in *R¥ *C#-valued function g(m) so that

UA+i)TUtp(m) = g(m)e(m) for all ¢ € LM, d?u#).Since Ker ((A+i)™1) is empty,
g(m) # 0 a.e.u”, so the function f(m) = g~*(m) —i is hyperfinite a.e.u”. Now, suppose
v € D(A). Theny = (A+i)~2¢p for some ¢ € H* and Uy = gUg. Since fg is bounded
in *R¥, we conclude that f(Uy) e LE(M,d*u). Conversely, if f(Uy) e LE(M,d*u*),
then there is a ¢ € H* so that Up = (f +i)Uy. Thus, gUp = g(f +i)Uy = Uy, so

v = (A+i)"tp which shows that v € D(A). This proves (a).

To prove (b) notice that if y € D(A) then v = (A+i)~1p for some ¢ € H* and

Ay = ¢ —iy. Therefore, (UAy)(m) = (Up)(m) —i(Uy)(m) = (g7 (m) — i)(Uy)(m)

= f(m)(Uy)(m). Finally, if Im(f) > O on a set of nonzero Lebesgue #-measure, there
is a bounded in *R% set B in the upper half plane so that S = {x|f(x) € B} has nonzero
Lebesgue #-measure. If y(x) is the characteristic function of Sthen fy e L{(M, d”u#)
and Im{y,fy) > 0. This contradicts the fact that multiplication by /is self-adjoint
(since it is unitarily equivalent to A). Thus f is *R%-valued function.

There is a natural way to define functions of a self-#-adjoint operator by using the
above theorem. Given a bounded in *R# #-Borel function h on *R¥ we define

h(A) = UTypUt (4.4.2
where Ty is the operator on L5(M, d”u#) which acts by multiplication by the function



h(f(m)). Using this definition the following theorem follows easily from Theorem 4.4.1.
Theorem 4.4.2. (spectral theorem-functional calculus form) Let A be a self-#-adjoint
operator on H¥. Then there is a unique map ¢ from the bounded #-Borel functions on
*R¥ into £(H*) so that

(a) ¢ is an algebraic x-homomorphism.

(b)  is #-norm #-continuous, that is, ||$(h) || £y Ihl..

(c) Let hn(x),n € *N be a hyper infinite sequence of bounded in *R% #-Borel
functions with #lim .+, hn(X) = x
for each x and |hn(x)| < |x| for all xand n € *N. Then, for any v € D(A),
#lim v ¢(hn)y = Ay
(d) If ha(xX) -# h(x) pointwise and if the hyper infinite sequence | ha|.,,n € *N
is bounded in *R¥, then ¢(hn) —# ¢(h) strongly.
In addition:
(e) If Ay = Ay then ¢(h) = h(1)y.
(f) If h > 0, then ¢(h) > 0.
The functional calculus is very useful. For example, it allows us to define the
exponential Extexp(itA) and prove easily many of its properties as a function of t
(see the next section). In the case where A is bounded in *R% we do not need the
functional calculus to define the exponential since we can define Extexp(itA) by
the power series which #-converges in #-norm.
The functional calculus is also used to construct spectral #measures and can be
used to develop a multiplicity theory similar to that for bounded self-#-adjoint
operators.
A vector y € H* is said to be cyclic for A if {g(A)y|g € C*(*R¥)} is #dense in H”.
If v is a cyclic vector, then it is possible to represent H* as L(*R%,d*u#) where pi
is the measure satisfying Ext j g()d*ul (X) = (w,9(A)y),in such a way that A
*[Rg

becomes multiplication by x.In general, H* decomposes into a direct sum of cyclic
subspaces so the #-measure space, M in Theorem 4.4.1 can be realized as a union
of copies of *R%. As in the case of bounded in *R% operators we can define
cac(A),0pp(A),osing(A) and decompose H* accordingly.
Finally, the spectral theorem in its projection-valued #measure form follows easily
from the functional calculus. Let Pq be the operator yo(A) where yq is the
characteristic function of the measurable set Q — *R¥. The family of operators
{Pa} has the following properties:
(a) Each Pq is an orthogonal projection.
(b) Pz = 0; P(_*w,*w) =1.
(©) If @ = ExtJ.”, Qn With Qn N Qm= & for all n = mthen

Po = s#-limn. (Ext 3.1 Pa, ). (4.4.3
(d) Pleﬂz = PQlﬂﬂz'
Definition 4.4.1.Such a family is called a projection-valued #measure (p.v.#m.).
Remark 4.4.1. This is a generalization of the notion of bounded in *R# projection-

valued #measure introduced in § 4.3.In that we only require P+ ) = | rather
than P_aq = | for some a € *R%. For ¢ € H” (p,Pqo), is a well-defined Borel



#-measure on *R{ which we denote by d*(p,P,¢), asin § 4.3.
The complex *C{-valued #-measure d*(p, P,y ), is defined by polarization. Thus, given
a bounded in *R¥ #-Borel function g we can define g(A) by

(9.9A)p), = Ext [ g)dXp.Pip), (4.4.9

It is not difficult to show that this map g — g(A) has the properties (a)-(d) of
Theorem 4.4.1, so g(A) as defined by (4.4.4) coincides with the definition of g(A)
given by Theorem 4.4.1. Now, suppose g is an unbounded *C%-valued #-Borel
function and let

Dy = {9lExt [, g p,Prg), < "=} (4.4.5
Then, Dy is #-dense in H* and an operator g(A) is defined on Dg by
(9.9(A)p), = Ext[ . g(A)d%p,Pip),. (4.4.6
As in 8§ 4.3, we write symbolically
9(A) = Ext| - g(1)d*P;. (4.4.7)

In particular, for ¢,y € D(A),
(0. M), = EXE [, g0, Pig),. (4.4.8

if gis *RZ-valued, then g(A) is self-#-adjoint on Dg. We summarize:

Theorem 4.4.3. (spectral theorem-projection valued measure form) There is a
one-to-one correspondence between self-#-adjoint operators A and projection-valued
#-measures {Pq} on H* the correspondence being given by

A=Ext|[ _, Ad*P;. (4.4.9

We use the functional calculus developed above to define Ext-exp(itA).
Theorem 4.4.4. Let A be a self-#-adjoint operator and define U(t) = Extexp(itA).
Then

(a) For each t € *R%,U(t) is a unitary operator and U(t + s) = U(t)U(s) for alll

s,t e *RE%,

(b) If o € H* and t -4 to, then U(t)p —x U(to)o.

(c) Forany v € D(A) : w -4 iAy ast -4 0.

(@) If #lime., o =Y =Y. exists, then y < D(A).

Proof (a) follows immediately from the functional calculus and the corresponding
statements for the complex-valued function Ext-exp(itA1). To prove (b) observe that

|Extexp(itA)p — o7 = Ext [ [Ext-exp(itd) - 1°d*(P,0,),. (4.4.10

Since [Ext-exp(itA) — 1|° is dominated by the #integrable function g(1) = 2 and

since for each A € *R¥ : [Extexp(itA) — 1> -» 0 as t -4 0 we conclude that

Ut — go||§é -4 0ast -4 0, by the generalized Lebesgue dominated-#-convergence
theorem. Thus t » U(t) is strongly #-continuous at t = 0, which by the group property
proves t » U(t) is strongly #-continuous everywhere. The proof of (c), which again
uses the dominated #convergence theorem and the estimate |[Ext exp(ix) — 1[* < |X|.
To prove (d), we define



D(B) = {w‘#-limwow exists} (4.4.1D

and let

Uy —v
—— (4.4.12

A simple computation shows that B is symmetric.By (c), B © A,so0 B = A.

Definition 4.4.2. An operator-valued function U(t) satisfying (a) and (b) is called a
strongly #-continuous one-parameter unitary group.

Definition 4.4.3. If U(t) is a strongly #-continuous one-parameter unitary group, then
the self-#-adjoint operator A with U(t) = Extexp(itA) is called the infinitesimal
generator of U(t).

Suppose that U(t) is a weakly #-continuous one-parameter unitary group. Then
IU®e - oll; = [U®@ 15~ (UMD, 0), — (@,UD9), + @l »4 0ast 4 0. Thus

U(t) is actually strongly #-continuous. As a matter of fact, to conclude that U(t) is
strongly #-continuous one need only show that U(t) is weakly #-measurable,that is,
that (U(t)e,y),, is #measurable for each ¢ and y. This startling result sometimes
useful since in applications one can often show that (U(t)p,y ), is the #limit of a
hyper infinite sequence of #-continuous functions;(U(t)e,y), is therefore
#measurable and by generalized von Neumann’s theorem U(t) is then strongly
#-continuous.

Theorem 4.4.5. Let U(t) be a one-parameter group of unitary operators on a hy
infinite dimensional Hilbert space H”. Suppose that for all ¢,y € H* (U(t)y, ), is
#measurable. Then U(t) is strongly #-continuous.

Proof. Lety € H*.Then for all ¢ € H*, (U(t)y, ¢),, is a bounded in *R# #-measurable

iBy = #lime, o

a
function and ¢ ~ j(U(t)y/,go)#d#t is a linear functional on H* of #norm less than or
0

equal to al|l¢|| .. Thus, by the generalized Riesz lemma there is a y. € H” so that

Wa,9)s = (UMW, 0),d. (4.4.13
0

Note that

a

Ub)ya,0), = (Wa, Ub)p), = (UMY, U(-b)p),d* =
° (4.4.14

atb

[(ut+ by, o), dft = [ (U, p),d.
0 b

From (4.1.14) we obtain

KUB)ya, @)y — (Wa 0)yl =

b
[(uy, p),d
0

atb

[ (U, )% (4419
b

= + < 2a||o|lllvll,




and therefore #limy., o(U(b)ya, @), = (va, @), SO that U(b) is weakly and therefore
strongly #-continuous on the set of vectors of the form {yaly € H*}. It remains only
to show that this set is #-dense, since by by an ¢ = 0,¢/3 argument we can then
conclude that t ~ U(t) is strongly #continuous on H*. Suppose that

¢ € {yaly € H*,a e *R¥}" and let {y™} . be an orthonormal basis for H.

Then for each n € *N
a
Ext: £<U(t)w<n>,(p>#d#t = (v&,p), =0 (4.4.16

for all a € *RE which implies that (U(t)y ™, ¢),, = 0 except for t € S,, a set of
Lebesgue #measure zero. Choose tyg ¢ Unesn Si. Then (U(to)l//(n),([))# = O for all
n € *N which implies that ¢ = 0, since U(tp) is unitary.
Theorem 4.4.6.Suppose that U(t) is a strongly continuous one-parameter unitary
group. Let D be a #-dense domain which is invariant under U(t) and on which U(t) is
strongly #-differentiable. Then i~ times the strong #-derivative of U(t) is essentially
self-#-adjoint on D and its #-closure is the #-infinitesimal generator of U(t).
This theorem has a reformulation which is sufficiently important that we state it as a
theorem.
Theorem 4.4.7. Let A be a self-adjoint operator on H* and D be a #dense linear set
contained in D(A). If for all t, Extexp(itA) : D - D then D is a #-core for A.
Theorem 4.4.8.Let U(t) be a strongly #-continuous one-parameter unitary group on a
Hilbert space H¥*. Then, there is a self-#-adjoint operator A on H* so that
U(t) = Extexp(itA).
Proof Part (d) of Theorem 4.4.4 suggests that we obtain A by differentiating
U(t) att = 0. We will show that this can be done on a #-dense set of especially nice
vectors and then show that the #-limiting operator is essentially self-#-adjoint by
using the basic criterion. Finally, we show that the exponential of this #-limiting
operator is just U(t).Let f € Co*(*R#) and for each ¢ € H* define

or = Ext [ fHU)pd"t. (4.4.17

*[Rg

Since U(t) is strongly #-continuous the integral in (4.4.7) can be taken to be a
Riemann integral. Let D be the set of hyperfinite linear combinations of all such
or with ¢ € H* and f € Cy*(*R¥). If j.(t) is the approximate identity then

<

# (4.4.18
< (Ext— [ js(t)d#t> sup [[UMe — ol
“RE

te[-¢,¢]

Ext | j.(D[U(t)g — p]d*t

*[Rg

loi. —oll, =

Since U(t) is strongly #-continuous, D is #-dense in H. We have used the inequality

< Ext [ [lh()|,d% (4.4.19

# RE

Ext | h(tyd*
*R#

for non-Archimedean Banach space-valued #-continuous functions on the real line
*R¥% (which can be proven using the approximate partial sums as in the *R%-valued



case). For ¢ € D we obtain that

( U(s%—l )(Pf ~Ext | f(t)( U(s+té— u() )(pd#t _

*[Rg

(4.4.20
MU(T)(PC’#T -4 —Ext [ (0U@ed"t = _y
*R#

Ext |
*R#
since [f(t — s) — f(t)]/s #-converges to —* (t) uniformly. For ¢; € D we define
Aps = i‘l(p_f#r . Note that U(t) : D - D,A : D - D and U(t)Ap: = AU(t)¢: for ¢r € D.
Futhermore if ¢, pg € D we obtain that

(Apt,9g), = #-lims., 0<( U(Si)s_ | )(Df,(pg># =
= #lims., 0<(0f, (%)(pg% = T1<(Pf1(0_g#'># = (91, Apg),

so A is symmetric. Now we show that A is essentially self-#-adjoint. Suppose that
there is a u € D(A*) so that A*u = iu. Then for each ¢ € D(A) =D

%(U(t)w,U># = (AUMo,u), = —I(U(D)e,A"u), = -i{UDg,iu), = (UDe,u), (4.4.22
Thus, the *C¢-valued function f(t) = (U(t)e, u), satisfies the ordinary differential
equation f* = f so f(t) = f(O)[Ext-exp(t)]. Since U(t) has #-norm one, [f(t)| is bounded,
in *R¥ which implies that f(0) = (p,u), = 0. Since D is #dense, u = 0. A similar proof
shows that A*u = —iu can have no nonzero solutions. Therefore A is essentially
self-#-adjoint on D.
Let V(t) = Extexp(it(#A)). It remains to show that U(t) = V(t). Let ¢ € D(A). Since
¢ € D((#-A)), V(t)p € D((#A)) and V¥ (t)p = iAV(t)p by (c) of Theorem 4.4.4, We
already know that U(t)gp € D < D(#-A) for alle *R%. Let w(t) = U(t)p — V(t)p. Then
w(t) is a strongly #-differentiable vector-valued function and

wW# (1) = IAU() g — i#EB)V(D)e = IAW(D). (4.4.23

(4.4.2])

Thus
# . — . -
L WO [1Z = (ERWD, WD), + WO, ERWD), (4.4.24
Therefore w(t) = 0 for all t € *R¥ since w(t) = 0. This implies that U(t)p = V(t)p
for allt € *R¥,¢ € D. Since D is #-dense in H* U(t) = V(t).
Remark 4.4.2.Finally, we have the following generalization of Stone’s theorem 4.4.8.
If gis a *R%-valued #Borel function on *R¥, then

g(A) = Ext-[_, g(A)d*P; (4.4.25

defined on Dy (4.4.5) is self-#-adjoint. If g is bounded, g(A) coincides with #(9) in
Theorem 4.4.2.

We conclude with several remarks. First, generalized Stone’s formula, given in
Theorem 4.3.7 relates the resolvent and the projection-valued measure associated
with any self-#-adjoint operator. The proof is the same as in the bounded in *R# case.
The spectrum of an unbounded self-#-adjoint operator is an unbounded subset of
the real axis *R%. One can define discrete and essential spectrum; Theorem 4.3.6



(Generalized Weyl's criterion) still holds if one adds the criterion that the vectors {y,}

must be in the domain of A.

Finally, we note that the measure space of Theorem 4.4.1 can always be chosen so
that

Proposition 4.4.2 is applicable.

The following theorem says that every strongly #-continuous unitary group arises

as the exponential of a self-#-adjoint operator.

Theorem 4.4.9. Let U(t) = U(ty,...,tn) be a strongly continuous map of *R#" into the

unitary operators on a hyper infinite dimensional Hilbert space H* satisfying

U(t +s) = U(t)U(s) Let D be the set of hyperfinite linear combinations of vectors of

the form

or = Ext | o FOUD A (4.4.26

where ¢ € H*,f € C§(*R#").Then D is a domain of essential self-#-adjointness for
each of the generators A; of the one-parameter subgroups U(0,0,...}j,..,0), each

A; : D - D and the A commute, j = 1,...,n. Furthermore, there is a projection-valued
#measure Pg on *R# so that

(p,Uy), = Ext [ i EXEEXRI(, 1)), Pay), (4.4.27)

for all o,y € H.
Proof Let A; be the infinitesimal generator of Uj(tj) = U(O,... t,..,,0.The
procedure used in the proof of Theorem 4.4.8 shows that D < D(A)),
A : D - D,and U(tj) : D - D. Theorem 4.4.7 shows that A; is essentially
self-#-adjoint on D.Because of the relation U(t + s) = U(t)U(s), Uj(t;) commutes
with U;i(ti) for all tj,t; *RE.
Therefore, it follows from Theorem 4.5.1, that A; and A; commute in the sense
that is, their spectral projections commute.Let PjQ be the projection-valued
#-measure on *R# corresponding to A;. Define a projection valued #measure
n n
Pq on *RE" by defining it first on rectangles r, = Ext[ [(ai, bi) by Pr, = EXt[ [P, b,
i=1 i=1
and then letting Pq be the unique extension to the smallest #-algebra containing
the rectangles, namely the #-Borel sets. Notice that, by Theorem 4.5.1, the PJQJ.
commute since the groups Uj commute. For each ¢,y € H”, (¢,Pqy), is a
*CE-valued #-measure of hyperfinite mass which we denote by d*(p, Pay),,.
Applying generalized Fubini’s theorem we conclude that

(@, Uy ), = <(p,Ext-]£[U(ti)y/> = Ext—LWn Extexp(i(t, A))d o, Pay),.  (4.4.28
i=1 # ¢

8 4.5.Nearstandard C}, algebras generated by spectral
prodjections related to unbounded in*R# self-#-adjoint

operators.

Suppose that A and B are two unbounded self-#-adjoint operators on a
non-Archimedean Hilbert space H*. We would like to find a reasonable definition
for the statement: "A and B commute."”

This cannot be done in the straightforward way since AB - BA may not make sense



on any vector v € H* for example, one might have (Ran(A)) N D(B) = @ in which
case BA does not have a meaning. This suggests that we find an equivalent
formulation of commutativity for bounded self-#-adjoint operators. The spectral
theorem for bounded self-#-adjoint operators A and B shows that in that case
AB - BA = 0if and only if all their projections, {P4} and {Pg}, commute, We take
this as our definition in the unbounded case.

Definition 4.5.1.Two possibly unbounded in*R¥ self-#-adjoint operators A and B
are said to commute if and only if all the projections in their associated projection-
valued #measures commute.

Remark 4.5.1.The spectral theorem shows that if A and B commute, then all the
bounded in*R#% #-Borel functions of A and B also commute. In particular, the
resolvents R, (A) and R,(B) commute and the unitary groups Extexp(itA) and
Extexp(isA) commute.

The converse statement is also true and this shows that the above definition of
"commute" is reasonable:

Theorem 4.5.1. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert spaceHilbert space H*.

Then the following three statements are equivalent:

(a)  Spectral projections P(,,, and P, commute.

(b)  IfImA and Imy are nonzero, then R, (A)R,(B) — Ru(B)Ri(A) = 0.

(c) Forall sit € *RE,[Extexp(itA) ][Ext exp(isB)] = [Extexp(isB) ][Extexp(itA)].
Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The
fact that (b) implies (a) easily follows from the formula which expresses the spectral
projections of A and B as strong #-limits of the resolvents (generalized Stone’s
formula) together with the fact that

S#-1im.-., ofieRasis(A)] = P, (4.5.1)

To prove that (c) implies (a), we use some simple facts about the Fourier
transform. Let f € S*(*R¥). Then, by generalized Fubini’'s theorem,

EXt | s FO(EXE exp(itA)]p, ) 0%t =
~Ext[, f(t)(Ext— J o ((EXE exp(—it/l)]dﬁ(P/j(p,w#))d#t - (4.5.2)
- J2ms (Bxe [, FdiPRo.w), ) = V27 (o, TAw)
Thus, using (c) and generalized Fubini’'s theorem again,
(0. TA™IBY), =
Ext [, Ext [ f(1)g(s)(p, [Ext exp(-itA)][Extexp(-isB)]y),d*sd’'t = (4.5.3
= (0. 0B TAW),

so, for all f,g € S*(*R¥), T(A)§(B) — §(B)T(A) = 0.

Since the Fourier transform maps S*(*R#%) onto S*(*R#) we conclude that
f(A)g(B) = g(B)f(A) for all f,g € S*(*R¥). But, the characteristic function, y (ap)
can be expressed as the pointwise #-limit of a hyperinfinite sequence f,,n € *N
of uniformly bounded functions in S*(*R#). By the functional calculus,



S‘#‘llm n-*o fn(A) = P'(oé,b). (454)

Similarly,we find uniformly bounded g, € S*(*R%) #-converging pointwise to y c4)
and

s#limn.+ gn(B) = P&g). (4.5.5
Since the f, and g, are uniformly bounded in*R% and
fa(A)gn(B) = gn(B)fn(A) (4.5.6

for each n € *N, we conclude that P(;,, and P, commute which proves (a).

Definition 4.5.2. Let A : H* -~ H* be bounded in*R¥ self-#-adjoint operator. The
operator A is essentially bounded in*R¥ if there is st(||All,) € R and st(||All,,) # .
Remark 4.5.2. Note that if A is essentially bounded in*R¥ operator then for any
nearstandard vector y € H* vector Ay again nearstandard, i.e. st([|Ay | ,) # oo.
Definition 4.5.3.Let A and B be self-#-adjoint essentially bounded in*R¥operators on
a non-Archimedean Hilbert spaceHilbert space H*..The operators A and B are
~-commute if |ABJ, = [ BA,

Remark 4.5.3. Note that the operators A and B are =-commute if for any nearstandard
vector y € H? : Ay ~ By.

Theorem 4.5.2. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert space H* and essentially bounded in*R%. Then the following three statements
are equivalent:

(a) Spectral projections P, ,, and Pg ), =~commute.

(b) If ImA and Im u are nonzero, then R,(A)R,(B) and R,(B)R.(A) =-commute.

(c) For all st € *RE, [Extexp(itA) ][Ext-exp(isB) ] and [Extexp(isB) ][Ext- exp(itA)]
~-commute.

Theorem 4.5.3. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert space H*. Then the following three statements are equivalent:

(a) Spectral projections P(,,, and P4, ~-commute.

(b) For all s,t € *R%,[Ext-exp(itA) ][Ext exp(isB)] = [Ext-exp(isB) ][Ext- exp(itA)].
~-commute.

84.6. *C#-valued quadratic forms.

One consequence of the generalized Riesz lemma is that there is a one-to-one
correspondence between bounded in *R% quadratic forms and bounded in *R%
operators; that is, any sesquilinear

map q : Hx H - *CZ which satisfies |q(,y)#| < M| 4y ||, is of the form

a(e.yv) = (p,Ay), for some bounded operator A. As one might expect, the situation is
more complicated if one removes the boundedness restriction. It is the relationship
between unbounded forms and unbounded operators which we study briefly in this
section.

Definition 4.6.1. A quadratic form is a map q : Q(q) x Q(q) —» *C#, where Q(q) is a
#-dense linear subset of H called the form domain, such that q(-,y) is conjugate linear
and q(e, ) is linear for @,y € Q(q). If q(p,yv) = o(v, )« We say that g is symmetric. If
q(e,p) > Ofor all ¢ € Q(q), qis called positive, and if q(¢, @) > —M||go||i for some

M e *R¥we say that g is semibounded in *R%.

Notice that if g is semibounded, then it is automatically symmetric if H is complex.



Example 4.6.1. Let H = £4(*R¥) and Q(q) = C3" (*R¥) with q(f,g) = f(0)g(0). Then q

is a positive quadratic form. Since q(f,g) = 6*(fg) one could formally write
q(fg) = (f,Ag)

where A : g » §%(x)g(x). Since multiplication by 5(x) is not an operator, g is an
example

of a quadratic form not likely to be associated with an operator.

Example 4.6.2 Let A be a self-#adjoint operator on H*. Let us pass to a spectral

representation of A, so that A is multiplication by x on ®N ; LEC*RE, uf). Let

qm:&wmﬁmzLaquwwmwﬁ<w> (4.6.1)
and for o,y € Q(q) define
ao.v) = Ty, (EXt [, x0n00wn00d k). (4.6.2

We call q the quadratic form associated with A and write Q(q) = Q(A); Q(A) is called
the form domain of the operator A. For v, € Q(A), we will write q(,y) = (p,4y).,
although A does not make sense on all y € Q(A),then Q(A) is in some sense the
largest domain on which g can be defined.

To investigate the deep connection between self-#-adjointness and semi-bounded

in *R% quadratic forms we need to extend the notion of “#-closed” from operators to
forms. An operator A is #-closed if and only if its graph is #-closed which is the same
as saying that D(A) is complete under the #norm |y ||, = Ay [, + [y ..
Analogously we define:

Definition 4.6.2. Let g be a semibounded in *R% quadratic form, q(y,y) > —M||y/||i

is called #-closed if Q(q) is complete under the #norm
IV lls = Jaw.p) + M+ Dy % (4.6.3

If gis #closed and D < Q(q) is #-dense in Q(q) in the ||y | ,,, #norm, then D is
called a form #-core for q.
Notice that ||y || ,,, comes from the inner product

Vi @)uiq = Ay, 0) + (M + 1)y, 0),. (4.6.9
It is not hard to see that q is #-closed if and only if whenever

#

9n e Q@ ¢n > @ and d(gn — @m,¢n—pm) ~4 0, 8 N,M— *c0, then ¢ € Q(0)

and g(e¢n — @,0n — @) —# 0. This criterion and the dominated #-convergence

theorem show that the form q associated with a semibounded self-#-adjoint operator

(Example 4.6.2) is #-closed. Furthermore, any operator #-core for A is a form #-core

for g.

Now, let q(f,g) = f(0)g(0) as in Example 4.6.1 and ¢, € C3*(*R¥). Then ¢, -4 0, and

d(@n— @m,@n— @m) —# 0, but gq(en,@n) »# 1 = q(0,0) which proves that g has no

#-closed extensions. Therefore, even though q is positive (and therefore symmetric)

there is no semibounded self-#-adjoint operator A so that q(f,g) = (f,Ag), for all

f,g e CZ"(*RY) .

The deep fact about semibounded quadratic forms is that unlike the case for
operators,

they cannot be #-closed and symmetric, yet not self-#-adjoint.

Theorem 4.6.2. If qis a #-closed semibounded in *R¥ quadratic form, then q is the




guadratic form of a unique self-#-adjoint operator.

Proof We may assume without loss of generality that q is positive. Then, since q s
#-closed and symmetric, Q(q) is a Hilbert space, which we denote by H#,, under the
inner product (p,y),., = d(e,v) + {(p,y),.We denote by H*; the space of bounded

in *R¥ conjugate linear functionals on H¥,. Let j, given by v R (*,v), be the linear
imbedding of H* into H”; is bounded in *R¥ because

L)@l < llollallvily < lollvily < ol v, (4.6.9
Since the identity map i embeds H#, in H# we have a “scale of spaces”
HY, D HE L He (4.6.6)

We now exploit the generalized Riesz lemma. Given ® € H#,, let B be the element
of H*, which acts by [/édb](q)) = ((p, D) + (¢, D)4 By the generalized Riesz lemma, B
is an isometric isomorphism of H#; onto H*;. Let D(B) = {y/ e H% By e Ran(j)}.
Define now B on D(B) by B = j‘l/E’\;. Notice that

First, we prove that the range of j is #-dense in H*,.If it were not, there would

beal e H* sothat A = 0, and A[j(w)] = O for each v € H*.By the generalized
Riesz Lemma, there is a ¢, # 0in H% so that 0 = A[j(y)] = [[(¥)1(®2) = (@2, y),
for all y € H*.Since ¢, # 0, this is impossible. Therefore Ran(j) is #-dense in H¥;.
Since B is an isometric isomorphism we conclude that D(B) is |||l ,,, #-dense in H,.
Further, since |+||, < ||+|l,,, and H%, is #norm #-dense in H*, D(B) is #norm #-dense
in H*.Suppose ¢,y € D(B). Then one obtains that

(@, By)y = Ao, v) + (0, ¥)y = Ay, 0) +{v,0), = (v,Bo), = (Bo,y),. (4.6.8
Thus, B is a #-densely defined symmetric operator.
AN\ —1
We will prove now that B is self-#-adjoint. Let C = (B) j. C takes H* into H* and is

an everywhere defined symmetric operator. By the generalized Hellinger-Toeplitz
theorem, C is a bounded in *R¥ self-#-adjoint operator. Moreover, C is injective.

A simple application of the spectral theorem in multiplication operator form shows that
C!: Ran (C) » H" is a self-#-adjoint operator. But C* = B.

We now define 4 = B— 1. Then A'is also self-#-adjoint on D(A) = D(B) and for

@,v € D(A), (¢,Ay), =q(p,y). Since D(A) is | +|| .., #dense in H?; is the quadratic
form associated to A. Uniqueness is obvious.

Thus, there is an principal distinction between semi-bounded in *R¥ symmetric
operators and semi-bounded in *R# quadratic forms. For symmetric operators, there
is never any problem finding #-closed extensions.

Reark 4.6.1. Note that: (1) If A and B are self-#-adjoint operators and D(A) c D(B)
with B | D(A) = Athen A = B. But it can happen that a and b are #-closed
semibounded in *R¥ quadratic forms and b | Q(a)xQ(a) = a without having a = b.

(2) Let A be a symmetric operator that is semibounded in *R%. Let g be the quadratic
form q(e,y) = (p,Ay), with Q(a) = D(A). Suppose that q has a #-closure , that is,

a smallest #-closed form which extends it. Then the self-#-adjoint operator A which
corresponds to G (by Theorem 4.6.2) may be bigger than the operator #-closure of A.




(3) While a general quadratic form may have no #-closed extensions, forms that come
directly from semibounded in *R% operators always have #-closures and thus
semibounded in *R¥ operators always have self-#-adjoint extensions.

§ 4.7. #Convergence of unbounded in *R# operators

One of the main difficulties with unbounded in *R# operators is that they are only
#-densely defined. This difficulty is especially troublesome when one wants to find a
notion of #-convergence for a hyper infinite sequence A, -4 A,n € *N of unbounded
in *R% operators since the domains of the operators A, may have no vector in
common. For example, if Ay = (1-n1)x on L{(*R¥), it is clear that in some sense
An —-# A = X; yet we could have been given domains D(A,) and D(A) of essential
self-#-adjointness for these operators which have no nonzero vector in common. Of
course, in this simple case the #-closures of A, and A all have the same domain, but
in general this will not be true, and in any case, one is often forced to deal with
domains of essential self-adjointness since closures of operators are sometimes
difficult to compute. It is very natural to say that self-#-adjoint operators are “close” if
certain bounded in *R¥ functions of them are “close.” Most of this section is devoted
to this approach. However, we also introduce graph #-limits, a topic which will be
explored further.

Definition 4.7.1.Let (An),.-nand A be self-#-adjoint operators. Then A, is said to

#-converge to A in the #-norm resolvent sense (or #-norm generalized sense) if
R.(An) »# Ry(A) in #norm for all A with ImA + 0. A, is said to #-converge

to Ain the strong resolvent sense (or strong generalized sense) if Ry (An) »# Ri(A)
strongly for all 2 with ImA + O..

We have not introduced the notion of weak resolvent #-convergence since weak
resolvent #-convergence implies strong resolvent #-convergence. The following
theorem shows that #-norm resolvent #-convergence is the right generalization of
#norm convergence for bounded in *R#% self-#-adjoint operators. A similar result
holds for strong resolvent #-convergence, but the analogue for weak #-convergence
is not true.

Theorem 4.7.1.Let (An);fl and A be a family of uniformly bounded in *R¥
self-#-adjoint operators. Then A, - Aas n - *oo in the #norm resolvent sense

if and only if A, -4 Aas n - *woin #norm.

Proof. Let A, -4 Aas n - *woin #norm. Thenif ImA = 0, (An —A)(A-A1)" >4 0

in #-norm. Thus, using the equality (An— )™ = (A-2)"[1 + (An - A)(A - ;L)—lj‘l
we obtain that (An— )™ »4 (A— 1) in #norm as n - *oo.

Conversely, suppose A, -»# Aas n - *win the #-norm resolvent sense. Then,
since An — A = (An—)(An—D)H(A-1) - (An—i)L](A-i), we conclude that
1An—All, < (SumllAnll, + DIA= )™= (A=), (1A, +1) >4 0asn - *w.
The following theorem shows that to prove generalized convergence one need only
show #-convergence of the resolvents at one point off the hyperreal axis *R%.
Theorem 4.7.2. Let (An).%, and A be self-#-adjoint operators, and let Ao € *C%.

(@) If ImAo # 0 and |[|Rz,(An) — Ry (A) ||, —# O, then Ay -4 Aas n - *woin

the #-norm resolvent sense.

(b) If ImAo = 0 and if Ry,(An)e — Ri,(A)p -4 O, for all ¢ € H? then A, »4 A as

n - *ooin the strong resolvent sense.



Proof (a) Both R;(A) and R;(A,) are analytic in the half-plane of *C# containing A9
and have hyper infinite power series around Ao,

Ri(A) = Ext- > (%o — 2) ™[R, (A)]™,
-0 4.7.)

Ri(An) = Ext ) (Ao — A)"[Ry,(An)]™!
m=0
which #converge in #norm in the circle |1 — Ao| < [Im Ao ™. Since Ry, (An) —# Ri,(A)
in #-norm, R;(An) —-# R.(A) in #norm for A in this circle. Therefore, by repeating this
process, we get #-convergence for all A in the half-plane of *C# containing Ao.
Furthermore, since

IR%(An) = R (A I, = [I(Rio(An) = R (A) "Il =

4.7.2
R (An) =Rz (A) |, »# 0as n —» *owo

the same argument shows that the resolvents converge in #-norm in the hal-fplane
of *C¥ containing Ao.

(b) The proof is the same as the proof of (a) except for two things. First, we consider
the vector-valued functions R;(An)e and R;(A)e. Secondly, sincethemap T - T*

is not #-continuous in the strong topology, one needs a separate argument to get
from one half-plane of *C% to the other. Suppose that A is in the lower half-plane of
*CE. Then, as in (a), we get #-convergence everywhere in the lower half-plane of *C%,
in particular at 2 = —i. The formula

(An—D)t = (A=) =

: : : : : : (4.7.3
[An + DA =D A+ D7 = (A+ DA+ D (A= 1)7]

which follows from elementary calculations, can then be used to prove that hyper
infinite sequence (A, —i)™1,n € *N #-converges strongly to (A—i)~1. The above
argument then shows that hyper infinite sequence R;(An) ,n € *N #-converges
strongly to R;(A) everywhere in the upper half-plane of *C%.

For alternative ways of proving that strong #-convergence, Ri(An) Se Ri(A) in one
half-plane implies strong #-convergence in the other half-plane, see Theorem 4.7.9.
We will investigate several aspects of generalized #-convergence. First, we ask how
resolvent #-convergence is related to the #-convergence of other bounded functions
of A, and A. Secondly, we investigate the relationship between the spectra of A, and
the spectrum of A if A, -4 Ain a generalized sense. Finally, we give criteria on the
operators A, A themselves which are sufficient to guarantee that A, »# Aasn - *w
in a generalized sense.

Theorem 4.7.3. Let A, and A be self-#-adjoint operators.

(@) If An »# Aas n - *win the #norm resolvent sense and f is a #-continuous
function on*R¥ vanishing at *«, then [|f(Ay) = f(A) ||, -4+ 0as n - *oo

(b) If Ay >4 A'in the strong resolvent sense and f is a bounded in *R% #-continuous
function on *R%,then f(An)g —« f(A)p as n - *oo,for all ¢ € H”.

Proof By the generalized Stone-Weierstrass theorem, polynomials in (x +i)™* and
(x—i)" are #-dense in C"*(*R#), the #-continuous functions vanishing at hyper



infinity. Thus, given ¢ = 0, > 0, we can find an hyperfinite polynomial P(s,t) so that

If00) = P((x+)™ L (x=)™ ), < %. (4.7.4)
Therefore,
11A) = P((An+D " (A=) )N, < £ (4.7.5
and
If(A) - P((A+D) ™ A-D)™)], < %. (4.7.6)
If An -2 Aas n - *ooin the #-norm resolvent sense, then
P(An+D) (A -1 =4 P((A+D) (A=) (4.7.7

in#-norm as n - *co0,and thus for hyperfinite n large enough, [|f(An) — f(A) ||, < &.
This proves (a).

To prove (b) we first note that the same proof as above shows that if A, >4 Ain the
strong resolvent sense and h e C™*(*R¥), then h(A))¢ —x h(A)e. Let v € H* and

¢ ~ 0,6 > 0 be given and define gm(X) = Extexp(—x3/m). Since gm(X) —»# 1 pointwise,
gm(A)y -4 v by spectral theorem , so we can find an m with

lgm(A)y — v ll,, < £(6]f].,) ™" Furthermore since gm e C'*("RE), gn(An)y ~# Gm(A)y
by the remark above, so we can find an Ng, so that n > No implies

lgm(An)Y — gm(A)v ||, < £(6]fl|.,)"". Therefore, if n > No,

lgm(An)y — v Il < &@Ifll.,) 7" (4.7.9
Since fgm is #-continuous and goes to zero at *«o, there is an N; so that n > N;
implies
[f(An)gm(An)y — F(A)Im(A)y |, < % (4.7.9
Let N = max(No,N1). Then for n > N,

Ay — (AW Il < [IT(A)Im(An)y — F(A)Im(A)w I, +

(4.7.10
+HAn [l 4 1Im(An)y — w4 + Al Im(A)Y — ]l 4

Since y and ¢ were arbitrary, this proves (b).

As an example of an application of part (a) let (An);fl and A be positive self-#-adjoint
operators. Then, if A, —»# Ain the #-norm resolvent sense Extexp(—tA,) #-converges
in #-norm to Ext-exp(—tA) for each positive t. To see that part (a) does not extend to all
of C*(*R¥%), notice that on L(*R¥) the operators A, = (1 - n~1)x #-converge to the
operator A = x in the #norm resolvent sense but ||Ext-exp(iAn) — Extexp(iAn) ||, = 1
foralln e *N.

An important application of part (b) is the following generalization of the classical
Trotter theorem.

Theorem 4.7.4. Let (An),”, and A be self-#-adjoint operators. Then A, -4 Ain the
strong resolvent sense if and only if Extexp(itA,) #-converges strongly to Extexp(itA)
for each t.

Proof Since Extexp(itx) is a bounded #-continuous function of x, Theorem 4.7.3
implies that if A, -4 A in the strong resolvent sense, then

Extexp(itAn) -4 Extexp(itA) as n - *oo,strongly for each t.

To prove the theorem in the other direction, we first derive a formula for the resolvent



of a self-#-adjoint operator A. Suppose that Imu < 0. Then, by the functional calculus

WiRA), = Ext [ (25 )dw Pao), -

c

Ext [ (Ext— | i[Ext—exp(ity)][Ext—exp(it/l)]d#t> -
0

*Rg

o (4.7.1))
Ext j i[Ext exp(—itu) ]y, EXt exp(itA)p), =
0
<1//,Ext- [ i[Ext—exp(ity)][Ext-exp(itA)]god#t> .
0 #
Therefore,
R.(A)g = Ext j i[Ext exp(—ity) ][Ext exp(itA)Jpdt (4.7.12

0

where the #-integral is a Riemann #-integral. The third step in the computation uses
generalized Fubini’'s theorem. Applying (4.7.12) to the operators A, and A we obtain

IRu(An)p — Ru(A)e ||, <
e _ _ (4.7.13
Ext J.[Ext- exp(tim u)]||[Ext exp(itAn) — Ext exp(itA)]e || .t
0

so if Extexp(itAn) —# Extexp(itA) as n — *oofor each t, [|R,(An)o — R, (A)e|l, —# O
as n - *ooby the generalized Lebesgue dominated convergence theorem. Using a
formula similar to (4.7.12) one concludes in the same way that

R.(An)p —R.(A)p|, —»# Ofor Imu > 0.We remark that it is possible to show that if
An —# Ain the strong resolvent sense, then Extexp(itAn) —# Extexp(itA) for each ¢
uniformly for t in any gyperfinite interval.

Theorem 4.7.5. (Generalized Trotter-Kato theorem) Let (An);f1 be a sequence of
self-#-adjoint operators. Suppose that there exist points, 4o in the upper half-plane
of *C# and o in the lower half-plane of *C# so that R;,(An)e and R,,(An)e
#-converge as n - *oo for each ¢ € H*. Suppose further that one of the limiting
operators, T,, or T,,, has a #dense range. Then there exists a self-#-adjoint operator
A so that A, »# A as n - *woin the strong resolvent sense.

Proof Since [|[Ri,(An) [l < IMmAo|™, I T2 || < [IMmAo[™, and so

T, = Ext Z(/lo — )"(Ta,)™™ (4.7.19
n=0
is well defined for |1o — A| < [Im Ao|™.Furthermore, since R;,(An)o —# T.,0,
R.(An)p -4 T,¢ in the same circle.
Continuing in this way we can define an #-analytic operator valued function T, in the
half-plane containing 1o which is the strong #-limit of R, (A,). Since the half-plane is
simply #-connected, the determination of T, at a point 4 is independent of the path



taken from Ao to A. The same argument for the half-plane containing shows that we
can extend the definition of T, to that half-plane of *C#% so that for all 1 with ImA = 0

Tag = #liM a0 RL(An) 9. (4.7.15

The T, commute, satisfy the first resolvent equation, and T} = T, since these
statements are true for each R, (A) It follows from the first resolvent formula and
the commutativity that the ranges of all the T, are equal; we denote this common
range by D. By hypothesis, D is #-dense and this implies that the kernel of T, is
empty, since Ker(T,;) = (Ran(T3))" = (Ran(T,))" = D™ = {0}. We can therefore
define A = Al — T;* on D and a short calculation with the resolvent equation shows
that this definition is independent of which A with ImA =+ O, is chosen. Since
Ran(A+i) = Ran(T3!) operator A is self-#-adjoint. It is clear that the resolvent of A
is T,.

Notice that in the Trotter-Kato theorem we need convergence at two points, one in
the upper half-plane and one in the lower half-plane of *C%. For, we cannot use
Theorem 4.7.3 until we know that the #-limiting operator is self-#-adjoint, and the
self-#-adjointness proof depends on the #-convergence in both half-planes of *C%.
The Trotter-Kato theorem is important since its hypotheses do not assume the a
priori existence of a #-limiting operator A. It can be used to assert the existence of a
generalized #-limit of a sequence of self-#-adjoint operators. This can also be done
with the one-parameter groups. To see why it is necessary to use the resolvents or
groups rather than the operators themselves to prove such an existence theorem
consider the following example: Let A be a closed symmetric operator which is not
self-#-adjoint but which has a self-#-adjoint extension A. Let P, be the spectral
projection of A corresponding to the interval [-n,n]. Then PAP, are bounded
self-#-adjoint operators (and therefore essentially self-#-adjoint on D(A)) such that
forall ¢ € D(A) : PnKan) >y K(p = Ap.Thus the P,AP, are essentially self-#-adjoint
on D(A) and the strong #-limit exists but the #-limit is not essentially self-#-adjoint.
One of the most useful aspects of generalized #-convergence is that the spectra and
projections of the A, are related to the spectrum and projections of A.

Theorem 4.7.6. Let (An);fland A be self-#-adjoint operators and suppose that

An —-# Ain the #-norm resolvent sense. Then

@ If u ¢ o(A), then u ¢ o(An) for n € *N sufficiently large and

IRu(An) = Ru(A) [l »# O (4.7.16
(b) Let a,b € *R%, a < b, and suppose that a € p(A), b € p(A). Then
IP@b)(An) = Pan(A) [, »# 0 (4.7.17)

Proof (a) We need only consider the case where u € *R%. Since u € p(A), there
isao ~ 0,0 >0sothat (u—-36,u+0d)Nao(A)= . Thus, by the functional calculus,
IRusis3(A) ||, < 1/5. Now, we can find N so that ||R,+is3(An) ||, < 2/6 for n > N which
implies that the power series for R, (An) about u + 16/3 has radius of #-convergence
at least 5/2. We already know that where the series #-converges it is an inverse for
An.So, u € p(An) forn> Nand ||R,(An) — Ru(A) ||, -4 0as n - *o.

To prove (b), we note that since a,b € p(A), there exists ¢ < (1/2)(b—a) and an N,
so that supen{ [[(An—a) ||, [[(An—b) "]} < 1/e. Therefore, by the functional

calculus, o(An) N (a,b) = (a+¢&,b—¢) forn > N. Let f, be a #continuous function



which equals one on (a+ ¢,b—¢) and is equal to zero outside (a,b). Then

Pap) (An) = f:(An) and Pap) (A) = f-(A) and so by Theorem 4.7.3 one obtains
IP@p)(An) = P@by(A) ||, »# 0as n - *oo.

Theorem 4.7.7. Let (An);fl and A be self-#-adjoint operators and suppose that

An —-# Ain the strong resolvent sense. Then

(@) Ifa,b € *R¥ a < b, and (a,b) N c(A,) = & for all n € *N, then

(a,b)No(A) = J. That is, if A € o(A), then there exists A, € 6(An) so that 1, >4 A.
(b) If a,b € *R¥ a < b,and a,b ¢ opp(A) then

P(a,b)(An)(D —># P(a,b)(A)(D for all (NS H#.

Proof By the functional calculus, the statement that (a,b) N o(An) = & is equivalent
to the statement that | (A— A¢) " I, < J2/(b—a) where 1o = (a+b)/2+i(b-a)/2.
But (A — A0) * #-converges strongly to (A— 10) ! so we have

1A= 20)7 1, < #liMaee || (An = 20) ], < V2/(b—a).This proves (a).

To prove (b), we find uniformly bounded sequences of #-continuous functions (fn);fl
and (gn),% SO that 0 < fo < yap,fa(X) 4 x(@p)(X) pointwise and y g < g,

On(X) =# xrab)(X) pointwise. Then f,(A) —# Pap (A) and gn(A) —# Pap (A) strongly.
Since a,b ¢ opp(A), Pap) (A) = Pap)(A) which means that given y and ¢ = 0,& > 0,
we can find #-continuous functions f,g, with f < y@ap) < xap < g So that

[f(A)y — (A, < &/5 By Theorem 4.7.3(b) we can find N € *N so thatn > N
implies [[f(An)y — (A, < e/Sand ||g(An)y — g(A)y ||, < /5 so by an ¢/3 argument
we get [|[g(An)y — g(An)y ||, < 3¢/5.Since the functional calculus implies

[f(A)w = Pap(Avll, < [If(A)y —a(A)y ||, another &/3 argument implies

P Ay — Pan(Ayl, < &

Remark.Part (a) of Theorem 4.7.7 says that the spectrum of the #-limiting operator
cannot suddenly expand. It can, however, contract rather spectacularly as the
following example shows: Let (An);fl = (x/n);fl on LE(*R¥) then A, #-converges to
the zero operator in the strong resolvent sense. For each n, o(An) = *R¥, but the
spectrum of the #-limiting operator contains only the origin. An easy application of
part (a) is the statement that if the A, are positive and A, —# A in the strong resolvent
sense, then Ais positive.

If An #-converges to A in #-norm resolvent sense, Theorem 4.7.6 tells us that the
spectrum of the #-limiting operator cannot suddenly contract in the sense that if

A € o(An) for all sufficiently infinitely large n, then 2 € o(A). Notice that in the
example A, = x/n above, A, does not #-converge to A in the #-norm resolvent sense.
The principle of noncontraction of the spectrum under #-norm resolvent
#-convergence remains true even when A, and A are not self-#-adjoint. But the
principle of nonexpansion of the spectrum in the strong resolvent #-limit is not always
valid for general not-necessarily-self-#-adjoint operators. In fact, there exists a #-norm
#-convergent sequence of uniformly bounded operators A, - A with o(A,) the unit
circle in *C% for each n € *N and o (A) the entire unit disc. Thus the reader should

be careful to apply Theorem 4.7.7 only in the self-#-adjoint case.

In applications, one is usually given the operators (An);fl and A on domains of
self-#-adjointness or essential self-#-adjointness and it may be very difficult to
compute the resolvents. Thus, in order to use Theorem 4.7.6 and Theorem 4.7.7
one must have criteria on the operators (An);fl and A themselves which guarantee



#norm or strong resolvent #-convergence.

Theorem 4.7.8. (a) Let (An);f1 and A be self-#-adjoint operators and suppose that

D is a common #-core for all A, and A. If Anp - Ap for each ¢ € D then Ay -4 A

as n - *oo in the strong resolvent sense.

(b) Let (An);fl and A be self-#-adjoint operators with a common domain, D.

Norm D with [[pl 4 = |A@ |, + @1l 1f Supigy,1(ll (An = A)pll,) —# Oasn — *o

then A, - Ain the #-norm resolvent sense.

(c) Let (An);f1 and A be positive self-#-adjoint operators with a common form domain
H%; which we norm with [y |l .., = (W, Aw), + (v, v),.If Ay >4 Ain #norm in the sense
of maps from H%, to H”, that is, if

sup KOA—AL Ko A=Al

W¢O’(peD ||g0||#+1||l//”#+1 _lllio,I/JED <W’(A+ I)l//>#

then A, —»# Aiin the #-norm resolvent sense.

Proof (a) Letp € D, v = (A+i)p, then [(An+1) " = (A+1) 7y = (An+i) (A= An)g
#-converges to zero as as n - *o, since (A— Ay —»# 0and the (A, +i) ™ are
uniformly bounded. Since D is a #-core for A the set of such y is #-dense so for all

@ € H* : (An+1)Yp >4 (A+i) " o.A similar proof holds for (A, —i)™ .

We sketch the proofs of (b) and (c). For (b), first one proves that the hypothesis is
equivalent to (A, — A)(A+i)™* -4 0in the ordinary H*-operator #-norm. Thus

(+ (A -A A+ i)‘l)_1 exists and #converges to | in #norm as as n - *w.As a
result (An+1)7" = A+ + (A -AA+D)™) Ly (A+i)7lin #norm. Similarity
(An—i)™ -4 (A—i)"1.To prove (c), we first prove that the hypothesis is equivalent

to (A+1)™Y2(An - A)(A+ 1) 54 0in the ordinary operator #-norm. Using the identity
An+ D™ = A+ D1+ A+ D) ™A - A A+ |)—1’2]‘1(A+ 1)"Y2 one then follows
the proof of (b).

§ 4.8.Graph #-limits.

Definition 4.8.1.Let (An);fl be a hyper infinite sequence of operators on a non
Archimedean Hilbert space H*, We say that a pair (y,¢), € H* x H" is in the strong
graph #limit of A, as as n - *wif we can find v, € D(A) so that yn -4 v,
Anvin —# . We denote the set of pairs in the strong graph #limit by I'2_. If 'S, is the
graph of an operator A we say that A is the strong graph #-limit of A, and write

A = st.gr.-#limA,. (4.8.1)
First, we consider the case where all the A, are self-#-adjoint and A is also
self-#-adjoint
Theorem 4.8.1. Suppose that (An);fl and A are self-#-adjoint operators. Then
An —-# Ain the strong resolvent sense if and only if A = st.gr.-#Ilim A,.
Proof Suppose first that (A +i)™* -»» (A+i)~! strongly. Suppose ¢ € D(A).
Then ¢n = (An+1)H(A+1)p »4 ¢ and Anpn = (A+1)p —ip, S0 (p,Ap), € T%,.
Thus I'(A) < I's,.. On the other hand, suppose ¢n € D(An),@n >4 @
and Anpn —»» w. We let nn = (A+i)1(An +i)on € D(A), then

(4.7.18



Mn—@n = [(A+D)™ = (An+ ) [(An+1)on] =
= [(A+D) = (A + D) [(An+Don—y —igp] + (4.8.2
+HA+D) = (An+iD) [y +ip] »4 0

as n - *o.Thus, nn »# @ and Ann, = (An+1)@n — inn »# v SO since Ais #-closed
(p,v), € T(A). Thus, T'(A) =T%,.

Conversely, suppose that A = st.gr.-#lim A,. Let ¢ € D(A). Then there exist

on € D(An) so that o, -4 ¢ and Anpn »# Ap as n - *o. Thus,

[(An+ D)7 = (A+ DA+ D)e] = (An+ D (An + Do — (An +1D@n] = (9 — ¢n) >4 0

as n - *oosince [[(An+1i)7t, < 1,(An+)on % (A+i)e , and ¢n -4 ¢. Since
Ran(A +i) = H.* the strong #-convergence of (A, +i)™* to (A+i)? follows.

Remark 4.8.1.Thus, we see that if the #-limit is self-#-adjoint, then strong graph and
strong resolvent #-convergence are the same. It is in the case when we do not know
a priori that the #limit is self-#-adjoint that strong graph #-limits are particularly
important. For example, the existence of graph #-limits can sometimes be combined
with other information to prove that the #-limit is self-#-adjoint.

Theorem 4.8.2. Let (An).” be a hyper infinite sequence of symmetric operators.

(a) Let Dz, = {1//|<1//,(p># e 'S, for some (p}.lf D2, is #-dense, then 'S is the graph
of an operator.

(b) Suppose that D%, is #-dense and let A = st.gr.-#lim A,,.

Then A is symmetric and #-closed.

Proof We will prove (a); the proof of (b) is obvious. Suppose ¢n, ¢, € D(An) and

On ~# ©,0n = @ and Anon —# v,Anpn, »# v'. Letn € DS,. Then there is an

nn € D(An), so that n, -4 n and Annn —»# p as n - *oo. Thus,

(W =y, )y = #liMnvw(An(@n = ¢n),n), = FliMneco(@n — o, Antin), = 0

so y = y' since D¢, is #-dense.

We also define weak graph #-limits. We give the definition and state one theorem.
Definition 4.8.2. Let (An);fl be a gyper infinite sequence of operators on H*. We
say that (y,¢), € H* x H* is in the weak graph #limit T'Y,, if we can find y, € D(An)

so that v, uf v and Anwn —# @ weakly. If 'Y is the graph of an operator, A we

say that A is the weak graph #-limit of A, and abbreviated as A = w.gr.-#Ilim A,.
Theorem 4.8.3. Let (An);fl be a gyper infinite sequence of symmetric operators. If
Ds, = {l//Kl//,(p)# e I'?_for some <p} is #-dense, then 'Y, is the graph of a symmetric
operator.

Remark 4.8.2.Finally we note that if A, is a uniformly bounded sequence of operators
then A =w.gr.-#lim A, if and only if A, »# Aas n - *win the weak operator
topology. This fact shows that the notions of weak graph #-limit and weak resolvent
#-convergence are distinct. It is not true that weak graph #-limits are necessarily
#-closed if each A, is symmetric.

8 4.9. Generalized Trotter product formula

Theorem 4.9.1. (Generalized Lie product formula) Let A and B be external
hyperfinite-dimensional matrices.Then

Extexp(A + B) = #-lim .- {[Ext-exp(A/n)] x [Ext-exp(B/n)]}". (4.9.1



Proof Let S, = Extexp((A+ B)/n) and T,, = [Ext-exp(A/n)] x [Ext-exp(B/n)]. Then

n-1
S - Th = Ext ) SIS, - Ty TH™* (4.9.2
m=0
so that
1SR = Tal, < n(max(ISnllz I Tall )" ISk = Tall, < 4.9.3
< n||S = Tall [Extexp([|All, + [IBIl,)].
Since
[Sh—Tall, =
S 1 fALB\T S 1 AN S 1 /BAM
m=0 m=0 m=0 #
< CIn

where constant C depends only on ||A|,, and ||BJ| ,we conclude that
#limn. [|Sh = Thll, = 0.
Remark 4.9.1.This theorem and its proof can be extended to the case where A and B
are unbounded self-#-adjoint operators and A + B is self-#-adjoint on D(A) N D(B).
Theorem 4.9.2 Let A and B be self-#-adjoint operators on H# and suppose that A+ B
is self-#-adjoint on D = D(A) N D(B). Then

Extexgit(A+ B)] = s#-lim .- {{Extexp(itA/n)] x [Extexp(itB/n)]}". (4.9.5
Proof Let y € D. Then

s H{[Extexp(isA)] x [Ext exp(isB)] — |}y =

1 . 1 . _ (4.9.6
S {[Extexp(isA)] — I}y + s {[Extexp(isB)] — |}y -4 i(A+ B)y

and
s H[Extexp(isA)] x [Extexp(isB)] — I}y —# i(A+ B)y (4.9.7
as s -4 0. Letting
K(s) = s{[Ext-exp(isA)] x [Ext-exp(isB)] — [Ext-exp(is(A + B))]* (4.9.8
we see that K(s)y —»» 0as s -4 0, for each v € D. Since A+ B is self-#-adjoint on D,
Disa
Banach space under the #norm
I lsase = A+ B I, + [yl (4.9.9

Each of the maps K(s) : D - H* is bounded and K(s)y —'j; Oas s -4 0or *wo for

each y € D.

Thus, we conclude from the uniform boundedness theorem that the K(s) are uniformly
bounded, that is, there is a constant C so that [|[K(S)y ||, < Clly || 4,5 fOr all s € *R
and y € D.Therefore, an ¢/3 argument shows that on |- ||,,,,z #compact subsets of D
K(s)y —# 0 uniformly.Since A + B is self-#-adjoint on D, [Ext exp(isS(A+B))]y € D if

v € D. Moreover, s - [Extexp(is(A + B))]y is a #-continuous map of *R% into D

when D is given the |[|+|| ,,,5 #norm topology. Thus {[Extexp(is(A+ B))]y|s € [-1,1]}
is a [|+]| 4o, #-cOmpact set in D for each fixed y.



We are now ready to mimic the proof of the generalized Lie product formula. We
know that

t1{[Extexp(itA)] x [Ext-exp(itB)] — [Ext-exp(it(A+ B))]} x (4.9.10
x[Ext exp(is(A+ B))]y —# O o

uniformly for s € [-1, 1]. Therefore, we write

({[Ext-exp(itA/n)] x [Ext-exp(itB/n)]}" — [Ext-exp(it(A + B)/In)]M)y =

Ext n Ext exp(itA/n)] x [Ext-exp(itB/n)]}* x
X k;{[ xt-exp(itA/n) ] x [Extexp(itB/n) ]} 4.9.11
[({[Extexp(itA/n)] x [Ext exp(itB/n)]} — [Extexp(it(A+ B)/n)])] x
[Extexp(it(A+ B)/n)]" ™y

The #norm of the RHS of (4.9.11)

ft] >
max || (L) {[Ext-exp(it(A + B)/n)] - {[Ext-exp(itA/n)] x [Ext-exp(itB/n)]} } || ) (4.9.12
S|<t
and so we conclude that
{[Ext-exp(itA/n)] x [Ext-exp(itB/n)]} "y 'if# Extexp(it(A+ B))y (4.9.13

as n - *oo if y € D;Since D is #dense and the operators are bounded by one, this
statement holds on all of H#. The above proof shows that on a fixed vector the
#-convergence is uniform for t in a #-compact subset of *R%.

Remark 4.9.2.The same argument can be used to show that

S#-lim - {[Ext exp(itA/n) ] x [Ext-exp(itB/n)]}" = Extexp(t(A+B)) (4.9.14

if A and B satisfy the same hypotheses and in addition are semibounded. The
following

result is considerably stronger than Theorem 4.9.2 since it only requires essential

self-#-adjoint ness of A+ B on D(A) N D(B).

Theorem 4.9.3 (the generalized Trotter product formula) If A and B are self-#-adjoint

operators and A +B is essentially self-adjoint on D(A) N D(B) then

S#-lim - {[Ext- exp(itA/n) ] x [Ext-exp(itB/n)]}" = Extexp(it(A+B)) (4.9.15
Moreover, if A and B are bounded from below, then
S#-lim - {[Ext- exp(—tA/n)] x [Extexp(—-tB/n)]}" = Extexp(-t(A+ B)). (4.9.16

8 4.10.The polar decomposition

Note that an arbitrary bounded operator T can be written T = U[T| where [T| is positive
and self-#-adjoint and U is a partial isometry. Moreover, the conditions that Ker (|T|) =
= Ker(T) and that the initial space of U equals (Ker(T))* uniquely determine [T| and

U. In this section we extend this result to closed #unbounded operators. As in the
bounded case, U is easy to construct once [T| has been constructed and, as in

the bounded case, we will let [T| = /T*T. In the bounded case, the hard part was the
construction of the square root. Now that we have the spectral

theorem, it is easy to construct JT*T if we can prove that T*T is a positive self-



#-adjoint operator. It is this fact that is hard in the unbounded case. A priori, it is not
clear that {y|y € D(T) and Ty € D(T*)} is different from {0}. In fact, this set is
#-dense, but our approach using the theory of semi-bounded quadratic forms does not
require us to prove this.

Theorem 4.10.1. (the polar decomposition) Let I" be an arbitrary #-closed operator on

non Archimedean Hilbert space H*. Then, there is a positive self-adjoint operator [T|,
with D(|T|) = D(T) and a partial isometry U with initial space, (Ker(T))*, and final
space #-Ran(T) so that T = U|T| and U are uniquely determined by these properties
together with the additional condition Ker (|T|) = Ker(T).

Proof. Define the *C#-valued quadratic form s(y,¢) on D(T) by

S(y, ) =Ty, Tp),. (4.10.1
Quadratic form s(y, ¢) is clearly positive. Now suppose [yn — ymll,, —# 0. Then

lvn—wmll, =»# 0and [ T(yn—ym)ll, »# 0. Since T is #-closed there is a y € D(T)
with

lva=wlly+ 1TWa =), —# 0, (4.10.2

i.e. [lyn- l//H#;Ll -4 0.

Thus s(y, @) is a #-closed form. Therefore, by Theorem VIII.15, there is a unique,
positive self-#-adjoint operator Swith Q(S) = D(T) and s(y,¢) = (v,Sp), in the sense
of *C#-valued quadratic forms. Let [T| = S¥2. Then D(|T|) = Q(S) = D(T) and by
construction [||Ty |15 = s(v,w) = || Ty |5 so Ker (IT|) = Ker(T). Define the operator

U : Ran([T]) » Ran(T) by U[T|y = Ty.Since |||T|y |, = [Ty . U is well defined and
#-norm preserving. Thus U extends to a partial isometry from Ran(|T|) to Ran(T).
Finally, since [T|is self-#-adjoint, #Ran(T) = (Ker(|T|))* = (Ker(T))*. Uniqueness
is obvious.

8§ 5.Tensor products and second quantization.

§ 5.1.Tensor products.

In this section we describe some aspects of the theory of tensor products of operators

on non Archimedean Hilbert spaces. Let A and. B be #-densely defined operators on

non Archimedean Hilbert spaces H¥ and H% respectively. We will denote by

D(A) ® D(B) the set of hyperfinite linear combinations of vectors of the form ¢ ® v

where ¢ € D(A) and vy € D(B). D(A) ® D(B) is dense in Hf ® H5 We define A® B on

D(A) ® D(B) by

AQBp®y) =A4p ® By (5.1.2)

and extend by linearity.

Proposition 5.1.1 The operator A ® B is well defined. Further, if A and B are
#-closable,

sois A® B.

Proof Suppose that Ext) ¢ ¢; ® yi and Ext)_ djp; ® v are two representations of

the same vector f € D(A) ® D(B). Using Gram-Schmidt orthogonalization we

obtain bases {n«} and {0} for the spaces spanned by {¢i} U {pi} and {y;} U {y;}

respectively so that nx € D(A) and 6, € D(B). ¢; ® yi and ¢ ® v can be expressed



Qi @yi = Ext D, ali(nk ® 61) (5.1.2
and

9] ® v = Ext 3, B ® 61). (5.1.3
Since the two expressions for f give the same vector, Ext->_. Cialy = Ext—Zj dj/}{d for
each pair (k,1).Thus,

(A®B)[Ext Y ci(pi ® vi) ] = Ext X, (Ext Y cialy ) (Ank ® BO)) =
Ext Y, (Ext X, difl ) (Ank ® B)) = (A® B)[ Ext 3, di(of ® v) |

so A® B is well defined. If g is any vector in D(A*) ® D(B*) then
(A® B)f,0), = (f.(A* ® B*)g), so

D(A*)  D(B*) c D((A® B)™). (5.1.9
If A and B are #-closable, D(A x) and D(B*) are #dense. Therefore, in that case
(A® B)" is #-densely defined which proves that A ® B is #-closable.
Similarly, if Aand B are #-closable then A® | + 1 ® B defined on D(A) ® D(B) is
#-closable.
Definition 5.1.1. Let A and B be #-closable operators on a non Archimedean Hilbert
spaces H% and H%. The tensor product of A and B is the #-closure of the operator
A ® B defined on D(A) ® D(B). We will denote the #-closure by A ® B also. Usually
A+ B will denote the #-closure of A®Q | +1 ® B on D(A) ® D(B).
Proposition 5.1.1. Let A and B be bounded in *R% operators on a non Archimedean
Hilbert spaces Hf and H. Then |[A® B, = [|All, x ||IB]l,.
Proof Let {¢«} and {y} be orthonormal bases for H} and H% and suppose
Ext—ZkI Cu@k ® v is a gyperfinite sum. Then

(5.1.4

2 2

I(A® D[Ext 30, cupr @ wi 11, = Ext 35, |Ext 35, culpkll, =
2
< Ext 30 AN (Ext X0 Jcal?) = IAIZIEXE X, cupk @ il

Since the set of such gyperfinite sums is #-dense in HY ® H%, we conclude that
IA® Il < Al Thus [A® B, < [A®@ 1, x IB& I, < [All,x Bl
Conversely, given ¢ ~ 0,¢ > 0,there exist unit vectors ¢ € H¥, v € H% so that

1Al = [IAll, - (5.1.7

(5.1.6

and

1Byl = [IBIl, — . (5.1.9

Then

IA® Bl @ ) I, = lApll, x By ll, > Al x Bl - ellAll,—€lBll, + &> (5.1.9
Since ¢ > Ois arbitrary |[A® B, > [|All, x ||B]l,. which concludes the proof.
Remark 5.1.1.We notice that both of the above propositions have natural
generalizations to arbitrary hyperfinite tensor products of operators. This can be
proven directly or by using the associativity of the hyperfinite tensor product of a non
Archimedean Hilbert spaces.
Remark 5.1.2.We turn now to questions of self-adjointness and spectrum. Let (Ak)E=l
be a hyperfinite family of operators, A, self-#adjoint on Hf. We will denote the



#-closure of 1 ® + + - A ® + - - ®In Oon D = Ext®} ; D(Ax) by Ak also. Let P(Xy, ... ,Xn)
be a polynomial with *R%-valued coefficients of degree ng in xx. Then, the operator
P(A1,...,An) makes sense on Ext®y D(An,) since D(An,) < D(A)) for all | < ny. In fact,
P(A4,...,An) is essentially self-#-adjoint on that domain.
Theorem 5.1.1. Let A« be a self-#-adjoint operator on Hf.. Let P(xy,...,Xn) be a
polynomial with *R#-valued coefficients of degree ny in the k-th variable and suppose
that D} is a domain of essential self-#-adjointness for Af*. Then,
(@) P(Ay,...,An) is essentially self-adjoint on D' = Ext®}; D\.
(b) The spectrum of #-P(Ay, ...,An) is the #-closure of the range of P(As,...,An) on the
product of the spectra of the Ax. That is o (#-P(A1, ... Ax)) = #P(c(A1),...,0(An)).
Proof We will first prove that P(As,...,Ax) is essentially self-#-adjoint on
D = Ext®},; D(A). By the spectral theorem, there is a #-measure space (M, uf) so
that Ak is unitarily equivalent to multiplication by a *R#-valued #measurable function
fx on LE(My, d*uf). Thus we may assume that uf is hyperfinite and that
fk € Nisperoo LH(My, du). Furthermore Ext®p; L5(My, d?uf) is naturally isomorphic
to LE(Ext x{; My, Ext @R, d#uf). Under this isomorphism P(Aq, ...,An) corresponds
to multiplication by P(fy,...,fn) and D corresponds to the set of hyperfinite linear
combinations of hyperfinite linear combinations of functions Ext—]_[i“il@(mi)
such that fx¢x € LMy, d*uf).
To prove essential self-#-adjointness we use result from functional calculus. First,
since uf is hyperfinite and ¢y € LE(My, duf) we conclude that f, € LMy, dui)
for 1 < p < *co. From this it follows immediately that P(f, ... ,f) is in L} for all such
p; in particular P(f1, ... ,fn) € LE(Ext xR, My, Ext @, d#uf). Since fi* is self-#-adjoint
on Dy, Dk contains the characteristic functions of #-measurable sets in M.
Thus D contains all hyperfinite linear combinations of the characteristic functions of
rectangles. By the property on product #measures we conclude that the characteristic
function of any #measurable set in My is equal to such a hyperfinite linear
combination except on a set of arbitrarily small Ext®L ; d*uf #measure. Thus the
simple functions on Extx}; M can be approximated in the Lj sense with 1 < p < *oo
by elements of D.In particular D is #-dense in L}(Ext x} ; M, Ext @R, d*uf). Essential
self-#-adjointness now follows from Proposition 5.1.2.
To show that P(Ay, ... ,Ay) is essentially self-adjoint on D' we need only show
that #P(A1,...,An) | D' extends P(As,...,An) | D. Suppose Ext®} ; ¢k € D. Then
ok € D(AY), so since D} is a domain of essential self-#-adjointness of A* there is a
hyper infinite sequence (‘f’L):Ol so that ¢} —»#» ¢« and ARdk -« Adk. An easy estimate
shows that this implies that Al'¢l —# Al'¢ for all 1 < m < ny. Therefore
EXt®N, ¢l »» Ext®N; ¢k and P(Ay, ..., AN)(EXt ®F; ¢k) =4 P(A1,...,AN)(EXt QN dk)
The same argument works for hyperfinite linear combinations of vectors of the form
EXt®R, ¢k SO #P(Ay,...,Ax) | D' extends P(Ay,...,Ax) | D. This completes the proof
of (a).
To prove (b), suppose that 2 € o (#P(A1,...,An)). If I is any #-open interval about 1
then P1(Ay,...,An)(l) contains a product Extx{ ; I of open #intervals so that
LN o(A) # @. Since o(Ac) = #essrange(fy), uf[ (ff) (1) ] # 0so

u[P(f1,...,fn)(1)] # 0. That is, A € #-essrange(P(fy, ...,fn)) which equals




o(#P(AL, . AY)).

Conversely if 4 ¢ #P(a(A1),...,0(An)) then (A — P(f1,...,fn))* is bounded #a.e.

on Extx}ly Mcso A € p(#P(A1,... Av)).

Remark 5.1.3.If A;...,An,N € *N are bounded in*R%, P(A4,...,Ay) is #-closed,

but in general it is not.

Corollary 5.1.1. Let A;...,An, N € *N be self-#adjoint operators on H%, ... ,H and
suppose that, for each k, D is a domain of essential self-#-adjointness for Ax. Then,
(a) The operators A, = Ext®} ; Ax and Ay = Ext—Zi’il Ay are essentially self-#-adjoint
on D = Ext®Y; Dx.

(b) o(As) = #Ext[ ], o(Ac) and o(As) = #Ext > o(A) .

Example 5.1.1. Suppose that V(x) is a potential so that H; = -V + V(X) is essentially
self-#adjoint on S*(*R%3). Then H, = -V§ + V(X) — V{ + V(y) is essentially
self-#-adjoint on the set of hyperfinite sums of products ¢(x)w(y), with

o,y € S*(*RE). Further o(H32) = #o(H1) + o(Hy).

is obvious.

§ 5.2.Non-Archimedean Fock spaces.

Let H* be a non-Archimedean Hilbert space and denote by H",n € *N the n-fold
tensor product H™ = Ext®}_, H"and define

FHH?) = Ext @, H™ (5.2.1)
F#(H*) is called a non-Archimedean Fock space over H¥; it will be x-separable if H*

is. For example, if H* = L{(*R¥), then an element y € F(H¥) is a hyper infinite
sequence of functions

v = {vo,wi(X1),y1(X1,X2), ¥ 1(X1,X2,X3), ..., } (5.2.2

so that
ol + Ext—Z;Z(Ext-LRgan(xl,...,xn)d#nx> < *oo, (5.2.3

where yo € *C¥,d"x = Ext[]", d™x;. Actually, it is not F*#(H*) itself, but two of its
subspaces which are used in quantum field theory. These two subspaces are
constructed as follows: Let Pn,n € *N be the permutation group on n € *N
elements and let {p«},”, be a basis for H*. For each ¢ € P, we define an operator
(which we also denote by a) on basis elements of H ™, n e *Nby

o(Ext ®in=1 (Dki) = Ext ®in=1 Pks) (5. 2. 4)

a extends by linearity to a bounded in *R#% operator (of #-norm one) on H* so we can
define

S, = (Wl#)Ext-ZGGPn . (5.2.5

It is easy to show that S2 = S, and S}, = Sy, S0 S, is an orthogonal projection The range
of S, is called the n-fold symmetric tensor product of H*. In the case where

H* = L5(*R?) and H™ = Ext®Q, L5(*R¥) = L(*R#), S,H™ is just the subspace of
LE(*R#M) of all functions left invariant under any permutation of the variables. We now
define



FH(H*) = Ext @ SoH™ (5.2.6
n=0
FE(H*) is called the symmetric non Archimedean Fock space over H* or the non
Archimedean Boson Fock space over H”,

§ 5.3.Second quantization of the free Hamiltonian.

Let H” be a non Archimedean Hilbert space, F#(H*) the associated non Archimedean

Fock space over H*. Suppose that A is a self-#-adjoint operator on H* with a domain
of

essential self-#-adjointness D. Corresponding to each such A we can define an
operator dI'*(A) on F#(H*) as follows.Let

AD AR 1 ®-+-RI+IQ® A®R -+ R1+1®:---®1 ®A (5.3.1)

on Ext®!, D as follows. Let Do = F#(H¥) be the set of {yo,y1,...} such that y, = 0
for n large enough and y, € Ext®J; D for each n. Da is #-dense in F#(H*) since D is
#-dense in H*. Define A® = 0and dI'*(A) = Exty_ “ A®™. dI'*(A) makes sense on
Da and obviously to be symmetric. By Theorem 5.1.1, A™ is essentially self-#-adjoint
on Ext®{; D.Thus A™ + ui has a #dense range on Ext®}_; D whenever p € *R¥
and p # 0. From this it follows that dI'*(A) i has a #dense range on Da. Thus dI'*(A)
is essentially self-#-adjoint on Da . If Ais the quantum mechanical operator which
corresponds to the free energy, dI'#(A) is called the second quantization of the free
energy. dI'¥(A) commutes with the projections onto the symmetric and antisymmetric
non Archimedean Fock spaces and it follows that dI'*(A) | F%(H*) and

dr'*(A) I FAHY)
are essentially self-#-adjoint on D N F%(H*) and D N Fi(H*) respectively.

Chapter IV.Non-Archimedean Banach spaces endroved
with*R#-valued norm.

1.Definitions and examples

A non-Archimedean normed space with*R%-valued norm (#-norm) is a pair (X, || [ #)
consisting of a vector space X over a non-Archimedean scalar field *R%or complex
field *C% together with a distinguished norm ||-||4 : X - *R%. Like any norms, this
#-norm induces a translation invariant distance function, called the canonical or (norm)
induced non-Archimedean *R%-valued metric for all vectors x,y € X, defined by

d*(x,y) = [X=ylls = ly =Xl (1.1)
Thus (1.1) makes X into a metric space (X,d*). A hyper infinite sequence (xn)%’; is
called d#*-Cauchy or Cauchy in (X,d*) or |-| « -Cauchy if for every hyperreal r € *R%,
r > 0, there exists some N € N* such that
d#(Xn,Xm) = ||Xn - Xm”# < r, (12)

where mand n are greater than N. The canonical metric d” is called a #-complete
metric if the pair (X,d") is a #-complete metric space, which by definition means for
every d*-Cauchy sequence (x,)Z2%; in (X,d*), there exists some x € X such that



#-lim ]| Xn — X||# = O (1.3
where because || xn — X||# = d#(xn,X), this hyper infinite sequence’s #-convergence to x
can equivalently be expressed as: #-lim,,_ .+ Xn = X in (X,d¥).
Definition 1.1. The normed space (X, ||+||#) is a non-Archimedean Banach space
endroved with*R%-valued norm if the #-norm induced metric d* is a #-complete
metric, or said differently, if (X,d¥) is a #-complete metric space. The #norm ||+|» of a
#-normed space (X, ||+||) is called a #-complete #norm if (X, ||+||») is a
non-Archimedean Banach space endroved with*R#-valued #-norm.
Remark 1.1.For any #normed space (X, ||+]|,), there exists an L-semi-inner product
(+, )4 Xx X - *RE such that ||x]|, = /{x,x), forall x € X; in general, there may be

infinitely many L-semi-inner products that satisfy this condition. L-semi-inner products
are a generalization of inner products, which are what fundamentally distinguish
non-Archimedean Hilbert spaces from all other non-Archimedean Banach spaces.
Characterization in terms of hyper infinite series,see ref. [1].

The vector space structure allows one to relate the behavior of hyper infinite Cauchy
sequences to that of #-converging hyper infinite series of vectors.

Remark 1.2.A #-normed space X is a non-Archimedean Banach space if and only if

each absolutely #-convergent hyper infinite series Ext—Z:fjl Vn in X #-converges in

# #

X,i.e., Ext Z [vall < oo implies that Ext Zvn #-converges in X.
n=1 n=1

2.Linear operators,isomorphisms

If X and Y are #-normed spaces over the same ground field *R%, the set of all
#-continuous *R¥-linear maps T : X - Y is denoted by B#(X,Y).In hyper infinite-
dimensional spaces, not all linear maps are #-continuous. A linear mapping from a
#-normed space X to another normed space is #-continuous if and only if it is
bounded or hyper bounded on the #-closed unit ball of X. Thus, the vector space
B#(X,Y) can be endroved with the operator norm

ITI = sup{lITX[ly | X € X [IX[lux < 1}. 2.1

For Y a non-Archimedean Banach space, the space B#(X,Y) is a Banach space with

respect to this #-norm.

If X is a non-Archimedean Banach space, the space B#(X) = B*(X, X) forms a unital

Banach algebra; the multiplication operation is given by the composition of linear
maps.

Definition 2.1.1f X and Y are #-normed spaces, they are #isomorphic #-normed
spaces

if there exists a linear bijection T : X —» Y such that T and its inverse T are

#-continuous. If one of the two spaces X or Y is #-complete then so is the other space.

Two #-normed spaces X and Y are #-isometrically isomorphic if in addition, T is an

#-isometry, that is, ||T(X)|| = ||x]|| for every x € X.

Definition 2.2.Let {X, ||+||} be standard Banach space.Forx € *X and ¢ > 0,6 = 0

we define the open =-ball about x of radius ¢ to be the set

B:(X) = {y € "X|"l[x-yll <&}

Definition 2.3.Let {X, ||+||} be standard Banach space, Y c Xthus *Y < *X and let



x € *X.Then xis an x-accumulation point of *X if for every

e> 0,6 = 0,YN(B:(X)\{x}) + .

Definition 2.4.Let {X, |||} be a standard Banach space, let Y < *X,Y is x-closed if

every x-accumulation point of Y is an element of .

Definition 2.5.Let {X, |||} be standard Banach space.We shall say that internal hyper

infinite sequence {X,}n—,” in *X x-converges to x € *X as n - *wif for any

g > 0,6 ~ Othere is N € *N such that forany n > N : *||x, = X|| < &.

Definition 2.6.Let {X, ||| },{Y, |||} be a standard Banach spaces. A linear internal

operator A : D(A) < *X - *Yis x-closed if for every internal hyper infinite

sequence {Xn}n,” in D(A) *-converging to x € *X such that Ax, - y € *Y as

n - *oo one has x € D(A) and Ax = y. Equivalently, Ais x-closed if its graph is
x-closed

in the direct sum *X @ *Y.

Given a linear operator A : *X - *Y, not necessarily x-closed, if the x-closure of its

graph in *X & *Y happens to be the graph of some operator, that operator is called

the x-closure of A, and we say that A is -closable. Denote the x-closure of A by x-A.

It follows that A is the restriction of x-A to D(A).

A x-core (or x-essential domain) of a x-Aclosable operator is a subset C = D(A) such

that the x-closure of the restriction of Ato Cis x-A.

Definition 2.7. The graph of the linear transformation T : H - H is the set of pairs

{o, Te)l(p € D(T))}.

The graph of T, denoted by I'(7), is thus a subset of H x H which is a
non-Archimedean

Hilbert space with inner product ((¢1,¥1),{(Q2,w2)).

T is called a #-closed operator if I'(T) is a #-closed subset of H x H.

Definition 2.8. Let T1 and T be operators on H. If I'(T1) > I'(T), then T; is said to be
an

extension of T and we write T; © T. Equivalently, T; > Tif and only if D(T1) > D(T)

and T1p = Te for all ¢ € D(T).

Definition 2.9. An operator T is #-closable if it has a #-closed extension. Every
#-closable

operator has a smallest #-closed extension, called its #-closure, which we denote by
#-T.

Theorem 2.1.1f T is #-closable, then T(#T) = #L(T).

Definition 2.10.Let T be a #-densely defined linear operator on a non-Archimedean

Hilbert space H. Let D(T*) be the set of ¢ € H for which there is an & € H with

(Ty, ) = (v, &) for all y € D(T).

For each ¢ € D(T*), we define T*p = £. T* is called the #-adjoint of T. Note that

@ € D(T*) if and only if |(Ty,¢)| < C|lw | for all y € D(T). We note that S < T implies

T < S

Theorem 2.2. Let T be a #-densely defined operator on a non-Archimedean Hilbert

space H.

Then:(i) T* is #-closed.

(ii) T is #-closabie if and only if D(T*) is #-dense in which case T = T**.

(iii) If T is #-closabie, then (#T)* = T*.

Definition 2.11. Let T be a #-closed operator on a Hilbert space H. A complex number



A € *C# isin the resolvent set,p(T),if Al — T is a bijection of D(T) onto H with a

a finitely or hyper finitely bounded inverse. If 1 € p(T), Ri(T) = (Al = T) L is called the
resolvent of T at A.

The definitions of spectrum, point spectrum, and residual spectrum are the same for

unbounded operators as they are for bounded operators. We will sometimes refer to

the spectrum of nonclosed, but closabie operators. In this case we always mean the

spectrum of the closure.

3. Symmetric and self-#-adjoint operators: the basic

criterion for self-#-adjointness.

Definition 3.1. A #-densely defined operator T on a non-Archimedean Hilbert space is
called symmetric (or Hermitian) if T < T*, that is, if D(T) < D(T*) and Tp = T*¢ for
all o € D(T).

Equivalently, T is symmetric if and only if (Te,w) = (¢, Ty) for all ¢,y € D(T)

Definition 3.2. T is called self-adjoint if T = T*, that is, if and only if T is symmetric and

D(T) = D(T*).

A symmetric operator is always #-closable, since D(T*) o D(T) is #dense in H. If Tis

symmetric, T* is a closed extension of T so the smallest #-closed extension T** of T

must be contained in T*. Thus for symmetric operators, we have

T < T* < T*.For #-closed symmetric operators,T = T** < T* and, for self-adjoint

operators,T = T** = T*

From this one can easily see that a #-closed symmetric operator T is self-adjoint if

and only if T* is symmetric.

The distinction between #-closed symmetric operators and self-adjoint operators is
very

important. It is only for self-adjoint operators that the spectral theorem holds

and it is only self-adjoint operators that may be #-exponentiated to

give the one-parameter unitary groups which give the dynamics in

QFT. Chapter X is mainly devoted to studying methods for proving that operators are

self-adjoint. We content ourselves here with proving the basic criterion for
selfadjointness.

First, we introduce the useful notion of essential self-adjointness.

Definition 3.3 A symmetric operator T is called essentially self- #-adjoint if its
#-closure #-T is self- #-adjoint. If T is #-closed, a subset D — D(T) is called a core for T
if

#-T|D=T.

If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.

The importance of essential self-#-adjointness is that one is often given a nonclosed

symmetric operator T. If T can be shown to be essentially self-#-adjoint, then there is

uniquely associated to Ta self-adjoint operator T = T**. Another way of saying this is
that if A is a self-#-adjoint operator, then to specify A uniquely one need not give the

exact domain of A (which is often difficult), but just some #-core for A

Chapter V. Semigroups of operators on a
non-Archimedean Banach spaces.



81.Semigroups on non-Archimedean Banach spaces and

their generators.

A family of #-bounded operators {T(t)|0 < t < «*} on external hyper infinite
dimensional

non-Archimedean Banach space X endoved with *R%, - valued norm |- ||, is called a

strongly #-continuous semigroup if:

@ T =1

(b)  T(T(t) = T(s+1) for all s,t € *RE,

(c) Foreach ¢ € X/t » T(t) is #continuous mapping.

We will see that strongly continuous semigroups are the “exponentials,”

T(t) = Extexp(—tA), of a certain class of operators. .

We begin by studying a special class of semigroups:

Definition 1.1. A family {T(t)|0 < t < «*} of bounded or hyper bounded operators on

external hyper infinite dimensional Banach space X is called a contraction semigroup

if it is a strongly #-continuous semigroup and moreover |[T(t)|ls < 1 for all t € [0,0%).

Note that the all theorems about general strongly #-continuous semigroups are easy

generalizations of the corresponding theorems for #-contraction semigroups. Thus,

we study the special case first. We then briefly discuss the general theory and

conclude the section by studying another special class, #-holomorphic semigroups.

Proposition 1.1. Let T(t) be a strongly #-continuous semigroup on a

non-Archimedean Banach space X and set Ap = #-lim.., o Arp where

D(A) = {op| #lim ., 0 Arp exists}. Then Ais

#-closed and #-densely defined. A is called the infinitesimal generator of T(t). We will

also say that A generates T(t) and write T(t) = Extexp(—tA).

Proof.Let T(t) be a contraction semigroup on a Banach space X. We obtain the

generator of T(t) by #differentiation. Set A; = t=%(I — T(t)) and define

D(A) = {p| #limw, o Aip exists}.
For ¢ € D(A), we define Ap = #limw., o Atp. Our first goal is to show that D(A) is
#-dense. For ¢ € X, we set

S
0s = Ext-jT(t)god#t. 2.1)
0

For any r > 0, we get

T(Ngs = Ext [ T(t+n)pd't 2.2)
0

thus

Arps = —L (Ext— j[T(t +)p - T(t)gp]d#t) _

0

-1 (Ext— f T(t)god#t> +1 (Ext— j T(t)(pd#t>.

(2.3)



From Eq.(2.3) one obtains #lim.., 0 Arps = —T(S)p + ¢. Therefore, for each ¢ € X

and s > 0, s € D(A). Since s™ps —# ¢ as »x 0, A is #-densely defined.
Furthermore, if o € D(A), then A T(t)p = T(t)Arp, so T(t) : D(A) - D(A) and

#
LTOp = -ATp = ~TMAp (2.4
A'is also #-closed, for if ¢, € D(A), #lim . on = @, and #lim__+Apn = v, then
#lime, 0 Arp = #lim e, o#-lim o[ L (T(Dgn - pn) | =

r
#lim ., o#-lim_+ % (EXt— I T(t)A(Dnd#t> =

S

r
#lim ., oL (Ext— j T(t)l//d#t>

S

(2.9)

so ¢ € D(A) and Ap = .
The formal Laplace transform

ot
1 __ . - exp(— - exp(— #
L (Ext { (Ext exp(—At) ) (Ext exp(—tA))d t) (2.6)
suggests that all u € *C# with Reu < O are in p(A). This is in fact true and the

formula (2.6) holds in the strong sense. For suppose that ReA > 0. Then, since
|Extexp(—tA) || < 1, the formula (2.7)

ot

Rp = Ext I(Ext— exp(—At) ) (EXt exp(—tA)p)d#t 2.7)
0

defines a hyper bounded linear operator of #norm less than or equal to (Rel)™.
Moreover, forr > 0,

ARp = —% (Ext— I(Ext— exp(-At) ) (Extexp(—(t+r)A) — Ext exp(tA))god#t> =
0

1- Ext—rexp(/lr) (Ext— I(Ext— exp(—-At))(Ext exp(tA))(Dd#t> + (2.9)

0
M (Ext— I(Ext- exp(—At) ) (Extexp(~tA) )¢d#t>
0

soasrt -4 0,A/Rp -4 (¢ — ARp). Thus Rp € D(A) and ARp = ¢ — ARp which
implies (A + A)Rp = ¢. In addition, for ¢ € D(A) we have ARp = RAp since



A(Ext— I (Ext-exp(—At) ) (Ext exp(tA))god#t> =
0

o

Ext j (Ext-exp(—At) )A(Ext exp(—tA) ) pd*t = (2.9
0

ot

Ext j (Ext exp(—At) ) (Ext exp(—tA) )Apd?t.
0

The first equality follows by approximation with external hyperfinite Riemann
sums (see [1]) from the facts that (Extexp(—4t))(Extexp(—tA))e and
A(Extexp(—At))(Ext exp(—tA)) are #-integrable, A is #-closed. Thus, for ¢ € D(A),
R(A +A)p = ¢ = (A + A)Rp which implies that

R=Q1+A™1 (2.10
The properties of A which we have derived are also sufficient to guarantee that A
generates a contraction semigroup. In fact, we only need information about real
positive A.
Theorem 1.1. (Generalized Hille-Yosida theorem) A necessary and sufficient
condition that a #-closed
linear operator A on a Banach space X generate a contraction semigroup is that
(i) (-%,0) = p(A)
(i) [(A+ A1, forall 2 > 0.
Furthermore, if A satisfies (i) and (ii), then the entire #-open left half-plane is
contained in p(A) and

ot

(A+A)1p = -Ext I(Ext— exp(—At) ) (Ext exp(—tA))d*t (2.13)
0

for all ¢ € X and A with ReA > 0. Finally, if T1(t) and T»(t) are contraction semigroups
generated by A; and A, respectively, then Ta(t) = T1(t) for some t implies that
A1 * Az.
Proof. Since we showed above that conditions (i) and (ii) are necessary and that
(2.11)
holds, we need only show sufficiency. So, suppose that A is a #-closed operator on X
satisfying (i) and (ii). For A > 0, define A® = 1 — 2%2(1 + A)~1. We will show that as
A — o, A® -, Astrongly on D(A) and then construct Ext-exp(—tA) as the strong
#-limit of the semigroups Extexp(—tA™).For ¢ € D(A), AWgp = A(1 + A)*Ap.
Moreover, by (ii),
#-lim,__+[A(A+A)p — @] = #lim,__+«[-(1 + A)Ap] = 0. (2.12
By condition (ii) the family {A(12 + A)~Y|]A > O} is #-uniformly hyperfinitely bounded
in #-norm, so since D(A) is #dense, #lim,__+«[A(1 + A)ly] = w forall y € X.
Thus #lim,__«A® ¢ = Ag for all ¢ € D(A). Since A is hyperfinitely bounded, the
semigroups Extexp(—tA®)) can be defined by hyper infinite power series. Since



|Ext-exp(—tAM) ||, = || (Extexp(-At)) (Extexp(tA*(A + A) ™)) ||, <

o 2.13
< (Ext—exp(—lt))(Ext— %H(MA)-W ;) <1 (213
n=0
they are contraction semigroups. For all u,A,t > 0, and all ¢ € D(A), we have
[Ext-exp(—tAW) ] — [Extexp(—tAH)]p =
(2.149)

t
Ext [ L (Ext exp(-sAD)) (Ext exp(—(t - HAD) p)ds
0

SO,

I [Ext exp(—tA™D) ] — [Extexp(—tA1)]p ||, <
t
Ext I|I (Extexp(—sAM))((Ext exp(~(t = S)AM)) || AW — APp | d*s < (2.15)
0

< t[|AWep - AWg]..

We have used the fact that Extexp(—tA®) and [Ext-exp(—(t — S)A®)] commute
since {AW|1 > 0} is a commuting family. Since we have proven above that
#lim, AP = Ag, {Ext-exp(—tA?M)} is Cauchy as 1 - «* for eacht > 0 and
¢ € D(A). Since D(A) is #-dense and the Extexp(—tA®)) are uniformly hyperfinitely
bounded, the same statement holds for all ¢ € X. Now, define
Tt e = #-lim,__+[Ext exp(—tA®)p]. (2.16)
T(t) is a semigroup of contraction operators since these properties are preserved
under strong #-limits. The above inequality shows that the #-convergence in Eq.(2.16)

is uniform for t restricted to a hyperfinite interval, so T(t) is strongly #-continuous since
Extexp(—tA®) is. Thus, T(t) is a contraction semigroup.It remains to show that the

infinitesimal generator of T(t), call it A is equal to A. For all t
and ¢ € D(A),

t
[Ext-exp(—tAW)p] — ¢ == —|: Ext—|:f Ext-exp(—sA®) :|A(“<pd#s:| (2.17)
0
so, since #lim,__ «AWgp = Ap, we have
t
T(p — ¢ = —[ Ext j T(S)Agod#5:|. (2.18)
0

Thus, Ktq) -4 Ap ast -4 0. Therefore D(K) > D(A) and A I D(A) = A. For A > 0,

~ _1
(A + A)~* exists by hypothesis and (l +A> exists by the necessity part of the

theorem.

82 Hypercontractive semigroups

In the previous section we discussed LE-contractive semigroups. In this section we will
prove a self-adjointness theorem for operators of the form A+ V where Vis a



multiplication operator and A generates an £5-contractive semigroup that satisfies a
strong additional property.

Definition 2.1. Let (M, u*) be a #measure space with z#*(M) = 1 and suppose that A
is a positive self-adjoint operator on £3(M,d?u”). We say that Ext-exp(—tA) is a
hypercontractive semigroup if:

(i) Extexp(—tA) is L£b-contractive;

(ii) for some b > 2 and some constant Cy, there isa T > 0 so that

|Extexp(-tA)p |, < Colle|l, for all ¢ € £L3(M,d*u¥).

By Theorem X.55, condition (i) implies that Ext-exp(—tA) is a strongly #-continuous
contraction semigroup for all p < «*. Holder’s inequality shows that

lllg < 1111, (1)
if p > g.Thus the £5-Spaces are a nested family of spaces which get smaller as p gets
larger; this suggests that (ii) is a very strong condition. The following proposition

shows
that b plays no special role.

Proposition 2.1. Let Extexp(—tA) be a hypercontractive semigroup on £%(M, d*u*).
Then for all p,q € (1,0%), there is a constant Cpq and a tpq > 0 so that if t > tpq then
IExtexp(~tA)¢ ||, < Cyqlloll, for all ¢ e L4,

Proof. The case where p < g follows immediately from (i) and (1). So suppose that
p > q. Since Extexp(—tA) : £2 - £P and Extexp(—tA) : £3" — £%" the generalized
Riesz-Thorin theorem implies that there is a constant C so that for all r > 2,
|Extexp(—tA)e¢ |, < Cllell,,,- We now consider two cases. First, if g > 2 we choose
n large enough so that 2(b/2)" > p. Then [[Ext-exp(—-nTA)@|| 54, < Cllg|l, so the
conclusion follows if 2 < g,p > 2(b/2)", by using (1), and hypothesis (i). If 1 < g < 2,
then we choose n large enough so that 2(b/2)" > p and q > ¢ where

ct+(2(b/2)")1 = 1. Since Aiis self-adjoint and Extexp(—-nTA)¢ is a bounded or hyper
bounded map from £3 to £2”?" (Extexp(—nTA))* = Extexp(-nTA) is a bounded or
hyper bounded map from £§ to £2. Thus Extexp(—2nTA) is a bounded or hyper
bounded map from £5 to £2”?". Since ¢ < q < p < 2(b/2)", (1) implies the proposition.
Theorem 2.1. The operator —+d*2/dx? + xd*/d*x on £Z(*R¥, m,*Extexp(-x2)d*x))
is positive and essentially self-adjoint on the set of hyperfinite linear combinations of
Hermite polynomials, and generates a hypercontractive semigroup.

As a preparation for our main theorem, we prove the following result.

Theorem 2.2 Let (M, u) be a #measure space with u(M) = 1 and let Hq be the
generator of a hypercontractive semigroup on £3(M,du). Let V be a real-valued
measurable function on (M, u*) such that V € £5(M,d*u#) for all p € [1,00%) and
Exte™ e £3(M,d*u*) for all t > 0. Then Ho + V is essentially self-#-adjoint on
C~"(Ho) N D(V) and is bounded below. C*"(Ho) = Ny D(HP)

Chapter VI. Singular Perturbations of Selfadjoint
Operators on a non-Archimedean Hilbert space.
81. Introduction



We study the sum A + B of two #-selfadjoint operators on a non-Archimedean

Banach spaces, and we find sufficient conditions for C = A + B to be #-selfadjoint.

Our technique is to approximate B by a hyperinfinite sequence of bounded
#-selfadjoint

operators Bp,n € *N and so to approximate C by #-selfadjoint operators C, = A+ By.

We answer three questions separately:

1.When do the operators C, have a #lim C? 2.When is C a #-selfadjoint operator?

3.WhenisC=A+B?

In Theorem 8 we give a set of estimates on the relative size of A and B which

ensure a positive answer to all three questions. Hence these estimates show that

A+ B = Cis #-selfadjoint. In another paper [5], we use Theorem 2.8 to prove

the existence of a self-interacting, causal quantum field in 4-dimensional

space-time. Formally this field theory is Lorentz covariant and has non-trivial

scattering; this application was the motivation for the present work.

In order to investigate the meaning of #lim,.-, C,, we give a new definition for

the strong #-convergence of a hyperinfinite sequence of operators. Consequences

of this definition

are worked out in Section 2. In Section 3 we give estimates on operators C,

which are sufficient to ensure that the #-lim.-. C, = C exists and that C is maximal

symmetric or #-selfadjoint. This result is given in Theorem 5 and Corollary 6.

In Section 4 we investigate whether #-lim,.«, C, = Cis equal to A+ B.

We combine this work in Theorem 8, our second main theorem, where B is

a singular, but nearly positive #-selfadjoint perturbation of a positive #-selfadjoint

operator A. To illustrate this theorem, let A > | and let B be essentially #-selfadjoint on

D* = (,.-y DAY). (1.0)
Assume now that, for some g > 0 and some a,
A" -ABA--H) and APBA* (1.1

are #-densely defined, bounded operators. Also, for some positive a,& € *R%,
satisfying 2a + ¢ < 1, suppose that there is a constant b € *R#% such that, as bilinear
formson D x D,

0<aA+B+b (1.2
and
0 < gA? + [AY2 [AY2,B]] + b. (1.3

Then A+ B is #-selfadjoint.

We see from this example that neither the operator B nor the bilinear form B
need be bounded relative to A.

While it may not appear evident, the conditions (1.1)-(1.3) are closely related
to a more easily understandable estimate on D# x D,

A2 + B%c(A+B)? +c. (1.4
In fact, estimates (1.1)-(1.3) are chosen because they allow us not only to prove (1.4),
but also the similar inequality where B is replaced by B.

Let us now see that if A+ B is #-selfadjoint, then (1.4) must hold for every
vector in D(A+ B) = D(A) N D(B).



Proposition 1.1. Let A and B be #-closed operators. Then A + B is #-closed if and
only if there is a constant ¢c € *R¥ such that for all y € D(A + B)

Ay, + 1By, < I((A+B)yll,+cllyll, (1.5
and (1.5) is equivalent to (1.4) on D(A + B) x D(A + B).
Proof: Certainly (1.5) implies that A + B is #-closed. Conversely, assume that
A+ B is #-closed and introduce the #norms on D(A + B) = D(A) N D(B),

Il = lvil,+ 1A, + By, (1.6)
and

Iy il = Ny il + A+ Byl (1.7)

Then D(A+ B), ||-]|4, is @ non-Archimedean Banach space because A + B is #-closed.
The identity map from D(A+ B), ||-||,, to D(A+ B), ||+ ,, has a #-closed graph because
A,B, and A + B are c#-losed. By the #-closed graph theorem, the identity map is
#-continuous; hence

I ll4y < Clly 4o 1.7)

Proposition 1.2.Let A > |, B be #-selfadjoint operators with D¥ < D(B) and
suppose (1.2) and (1.3) hold. Then (1.4) is valid on D x D¥,

Proof The operators A%,B?,AB,BA, and AY?BAY? define bilinear forms

on D¥ x D*. Using (1.2) and (1.3), we have the inequality:

A? + B2 = (A+B)? - 2AY2BAY? — [A2 [AY?2,B]] < (A+B)2+(2a+¢)A?+2Ab+b
which establishes (1.4).

82. Strong #-Convergence of Operators

Let £(C) be the graph of the operator C. For any hyperinfinite sequence {C,},n € *N
of #-densely defined operators we define

L+(C) = {¢, xlp = #liMnoso o, dn € D(Ch), ¥ = #liMp.soe Crpn ;- (8)

In general, £+, will not be the graph of an operator. If the hyperinfinite sequence
{Ci:}, n e *N#-converges strongly on a #-dense domain D to an operator C*, namely,

C*y = #Ilimp+ Chy,y € D,
then £, is the graph of some operator C*. In particular, if each C, is self #-adjoint,
and if the C,, #-converge on a #-dense set D to an operator C defined on D,
then £+, = £-,(C+») and C, is a symmetric extension of C.

Definition 2.1. G #CONVERGENCE. The hyperinfinite sequence of operators
Ch,n € *N #-converge strongly to C-,, in the sense of graphs, written

Ch -4 Cio (8)
if £+, is the graph of a #-densely defined operator C+, .
Remark 2.1.Note that for a hyperinfinite sequence of uniformly bounded operators
{Ch} sy SUch that C, »4c C+o, Cxy is the usual strong #limit of the operators
Cn,n € *N and is everywhere defined.
Definition 2.2.R#CONVERGENCE. Let the resolvents Ry(2) = (Ch—2)1,n € *N
exist for some z € *C#, and be uniformly bounded in n. The operators C, #converge
strongly to C-, in the sense of resolvents, written



Cn —>#R C*oo (8//)

if the resolvents Rn(z) #-converge strongly to an operator R(z), which has a #-densely

defined inverse.

Remark 2.2.Note thatln that case, the operator C+,, = R™%(2) + z exists for all z € *C%

for which the strong #-limit of the Rn(2) exists, and R*(2) + zis independent of z

Remark 2.3.Note that G #-convergence is weaker than R #-convergence, in the case

Cnh = C}, at least, because, as we shall show, in this case C, -« C- implies

Cn »uc C-. It seems likely that G #-convergence is strictly weaker than

R #-convergence; this could be established by giving an example for which

Ci = Cp »uc Cx with C+,, not maximal symmetric. The importance of

G #-convergence is that it is technically easier to verify-and gives less information

about the #-limit-than R #-convergence, while automatically selecting the correct

domain in the case that R #-convergence also holds. The most familiar examples of

G #-convergence occur where there is C,, strong #-convergence on a #-dense domain.

A less trivial example occurs where there is D(Cp) is independent of n,but apparently
D(C) N D(Cp) = {0;}.

We have the following connection between G and R #-convergence for a hyperinfinite

sequence of #-selfadjoint operators.

Proposition 3.Let Cy,n € *N be #-selfadjoint.

(a) The domain D+, = {¢|{¢,X} e L+, for some ;(} Is #-dense in H and oniy if

Ch »#c C+»,and in this case C-,, is necessarily symmetric.

(b) If Ra(2) = (Ch —2)7%,n € *N #-converges to a bounded operator R(z) for an

unbounded set of Zs with ||zR (2) ||, bounded uniformly inz € *C{ and n € *N

and if C,, -4 C-,then each R(z) is invertible.

(c) If Ra(2) #-converges to an invertible R(z), then C,, -4« C.

(d) If C,, »4r C,then C,, 46 Croo, £+ = £(C),and C is maximal symmetric.

(e) Conversely, if C, -4 C, where C is maximal symmetric, then C, -4 C.

In case the #-limit of the Cn,n € *N is actually selfadjoint, there are further
connections between G and R #-convergence.

Theorem 4.

(@) Cn -4 C,and C = C*.

(b) C, »4r C,and C = C*.

(c) The hyper infinite sequences {Rn(2)} and {[Rn(2)]*},n € *N #-converge
strongly and #-lim .-, Rn(2) is invertible for some z

(d) Statement (c) holds for all non-real z € *C%

83.Estimates on a G #-convergent hyper infinite

segquence

In this section we give estimates which are sufficient to assure that it G #-convergent
sequence of operators is R #-convergent, and that the limit is maximal symmetric or
selfadjoint. In order to measure the rate of #-convergence, we introduce a selfadjoint
operator N > | and the associated non-Archimedean Hilbert spaces H;, with the scalar
product



W)y = (NP2 N2y (3.1)

By standard identifications we have for A > 0 : H, < Ho < H_1 and Ho = H.
If D : H, - Hp is a #densely defined, bounded operator from H, to Hg, we let
||D||#a,ﬁ denote its #-norm. Setting ||D||, = [|D| 4, we obtain

1Dl 5 = [INFZDN=2]. (3.2

Let Ch,n € *N be a hyper infinite sequence of #-selfadjoint operators, and consider
the following three conditions.

(i) Suppose that C, — Cy, is a #-densely defined, bounded operator from H;to H_,, for
some A,and that as n,m » *o

ICn = Cmll 4, »# 0. (3.3

(i) Suppose that, for some p and for an unbounded set of z = x+iy € *C% in the
sector [x| < constx ly|,

IR@ ., < M@, (3.4)

where the bound M(2) is uniform in n € *N.
(i) Suppose that, for the above Zs,

IR@ I, < M@ (3.5)

Theorem 5. Let Cy,n € *N be a hyper infinite sequence of #-selfadjoint operators
with a common domain, such that
Ch —»uc C.
If conditions (i) and (ii) hold, then
Ch-w C
and C is maximal symmetric.
Corollary 6. If in addition to the hypothesis of Theorem 5, condition (iii) also holds,
then C is #-selfajoint.
Remark 3.1.(1) If u = 0'in (ii), then the resolvents #-converge uniformly.
(2) If the C, are uniformly semibounded from below, then we may choose
the zin condition (ii) to be infinite large negative numbers. In that case the conclusion
of Theorem 5is that C,, »sw C = C*.

8 4.Estimates for singular perturbations

In this section we consider a singular perturbation B of a #-selfadjoint operator A.
We give estimates on B which ensure that the sum A + B is #-selfadjoint.
Abbreviation 4.1.We abbreviate A* instead #A.

Definition 4.1. A #-core of an operator C is a domain D contained in D(C) such
that C = (C | D)*.

Lemma7. Let A /An,n € *N,B,Bn,n € *Nand C, = A,+B,,n € *N be

#-selfadjoint operators with a common #-core D. Assume the hypotheses of
Theorem 5 and Corollary 6 for Cn,n € *N and suppose also that, for 6 € D,

I(A=An)0ll,+ I(B-Bn)fll, »» 0asn - *w (4.9
and
A0 ]|2+ 1Baf]|5 < constx||0]|5 + constx||Cnd || 2, (4.10)



with constants independent of n. Then A + B is #-selfadjoint and C,, -« A+ B.
Remark 4.1.As hypothesis for our next theorem, our second main result, we assume
that N < A and that N and A commute. Let

D™ (A) = (oo AGAY) (4.11)

the elements of D" (A) are called C™* vectors for A. Assume that D"*(A) is a #-core
for the #-selfadjoint operator B. Also assume that, as bilinear forms on D™ x D",
and for some « and ¢ in the indicated ranges,

O<aN+B+const,0<a < 1/2 4.12
and
0 < gA? + constx B + [AY? [AY2 B]] + const, 20 + & < 1. (4.13
Let B be a bounded operator from H, to H_, and from H, to Hs for some «,  and
v,B > 0 (H, is defined following Theorem 4.) If v > 2, assume that for all ¢ > 0
0 < eN#2 4 [NWD2 IN®wD2 B]] + const (4.14)

as bilinear forms on D™ x D™, for some u > v - 2.
Theorem 8. Under the above hypothesis, A + B is #-selfadjoint.

Chapter IX.
81.Free scalar field

oft
Let H* be a #-complex Hilbert space over field C# and let F(H*) = @ H
n=0

n
(where H{” = @ H*) be the Fock space over H*. Our goal is to
k=1

define the abstract free field on F s(H*), the Boson subspace of F(H*); to do this we

need to introduce several other families of operators and some terminology. Let f € H*
be

fixed. For vectors in Hf#”) oftheformn=y1 Qw2 ® + -« Qy,, we define a map b (f) :
HY ~ HE™ by

b=(Hn = Fy)(y2® -+ - Qyn) 1)
b~(f) extends by linearity to finite linear combinations of such n, the extension is well
defined, and [b~(f)n|| < [fIx|m]l- Thus b~(f) extends to a bounded map (of norm |f]]) of
H into H{™. Since this is true for each n (except for n = 0 in which case we define
b-(f) : HY - 0), b-(f) is in a natural way a bounded operator of norm ||| from F(H*)

to
F(H™). It is easy to check that b*(f) = (b~(f))* takes each H{" into H{™" with the
action

b*Mn =fQyiQy2® -+ ®yn (2)
on product vectors. Notice that the map f — b*(f) is linear, but f — b~ (f) is antilinear.

#

Let S, be the symmetrization operators introduced in Section I.4. Then S = @ S, is
n=0



oft
the projection onto the symmetric Fock space Fs(H*) = @ SyH*™ We will write
n=0

S H ™ = HE™ and call HE™ the n-particle subspace of Fs(H*). Notice that b~(f) takes
F s(H*) into itself, but that b*(f) does not. A vector ¥ = {W(")}:jl for which y™ =0

for all except finitely many n is called a finite particle vector. We will denote the set of
finite particle vectors by Fo. The vector Qo =(1,0,0,..) plays a special role; it is

called the vacuum.

Let A be any self-adjoint operator on H* with domain of essential selfadjointness D.

Let Da = {¥ € Foly™ e ®_, D for each n e N*} and define dI'*(A) on Da N HE™ as

dlr*(A) =AQ1++ Ql+I QAR ++ @l +++++Ql -+ QI QA 3)
Note that dI'*(A) is essentially self-adjoint on Da ; d'*(A) is called the second
quantization of A. For example, let A = I. Then its second quantization N = dr'#(l) is

essentially self-adjoint on Fo and for v € HE™, Ny = ny. Nis called the number
operator. If U is a unitary operator on H*, we define dI'*(U) to be the unitary operator
on Fs(H*) which equals Ext®}, U when restricted to H&™ for n > 0, and which

equals
the identity on HE®. If Extexp(itA) is a #-continuous unitary group on H*, then
[*(Ext-exp(itA)) is the group generated by dI'#(A), i.e., T#(Extexp(itA)) =
Extexgitd*(A)].
Deinition1.1. We define the annihilation operator a-(f) on &Fs(H*) with domain Fo by

a (f) = JN+1b(f) 4)

a (f) is called an annihilation operator because it takes each (n+ 1)-particle
subspace into the n-particle subspace. For each v and n in Fo,

(JN+Ib (y,n) = (v,Sb(f) /N+1). (5)
Then Eq.(5) implies that
(@) 1 Fo=Sb(f)yN+1 (6)

The operator (a (f))* is called a creation operator. Both a~(f) and a~(f)* | Fo are
#-closable; we denote their #-closures by a~(f) and a~(f)* also.

Example 1.1. If H* = LM, d*w), then @, LE(M, d*u) = LE(x; M,®"; d*u) and that
S, LAM, d¥u) = LE (x4 M, @14 d#y),where L% is the set of functions in L3 which
are invariant under permutations of the coordinates. The operators a (f) and a (f)*
are given by

a(fHy™img,....my) =Jn+1 (Ext— IM f(m)y ™D (mmy, ... ,mn)d#u)

a‘(f)*l//(n)(ml, . ,mn) = % Z|n=1 f(mi)l//(n_l)(ml, U 1 1 T ’mn)

where m; means that m; is omitted. If A operates on L5(M,d*u) by multiplication by the
*R%-valued function w(m), then

@A) O (my, ... mp) = (Zi”:l co(mi)>y/(”)(m1, L., Mh) (8)
Eq.(6) implies that the Segal field operator ®%(f) on Fo defined by

()



D) = —L[a~(f) +a (f)" 9

s(H) 7 [a~(f) +a(f)"] 9)
is symmetric and essentially self-#-adjoint. The mapping from H* to the self-#-adjoint
operators on Fs(H¥) given by

f - @F(f) (10)
is called the Segal quantization over H¥*. Notice that the Segal quantization is a real
(but not complex) linear map since f —» a (f) is antilinear and f » a~(f)* is linear. The
following theorem gives the properties of the Segal quantization.
Theorem 1.1. Let H* be hyper infinite dimensional Hilbert space over field
*Ce = *R¥ + i*R¥and ®%(f) the corresponding Segal quantization. Then:
(a) (self-adjointness) For each f € H* the operator ®%(f) is essentially self-adjoint on
Fo,

the hyperfinite particle vectors.
(b) (cyclicity of the vacuum) Qg is in the domain of all hyperfinite products
[T, @&fi).,n e N
and the set {[ ", ®&(fi)Qo|fi and n arbitrary } is #-total in Fs(H*).
(c) (commutation relations) For each y € Fp and f,g € H*

[@E(HDE(Q) — BEQ)DE(D) ]y = i1Im(f,g) v (11)
Further, if W(f) denotes the external unitary operator Extexp(i®%(f)) then
W(f+Q) = [Ext— exp(%) }W(f)W(g) (12)

(d) (#-continuity) If {fn}ff:lis hyper infinite sequence such as #lim,,__«f, = fin H¥,
then: (i) #lim,__« W(f,)y exists for all y € Fs(H*) and

#-lim .« W)y = W(Fy (13)
(i) #lim .« ®E(fo)y exists for all y € Fo and
#-lim .« ®L(fn)y = ®4(F)y. (14)

(e) For every unitary operator U on H*, T#(U) : D((I) (f)) - D((I) (Uf)) and for
y e D(@¥(UN))
r*(U)@EHI*(U) 'y = @&Uhy (15)

for all f € H*.
Proof. Lety € HE™. Since @ £(f) : Fo > Fo, v is in C**(®%4(f)). Further, it follows
from Eq.(5)-Eq.(6), and the fact that |o~(f)|E |ff]|, that

@@ty |, < (Bxe TS, Jo+T)Iflslvl, (16)
where a*(f) represents either a-(f) or a~(f)*. Therefore,
IDEH w I, < 22+ K)H)IF Il I, (17)

Since ExtY_, 5 t22((n+ K)D ™[Iy ||, < *oo for all t,y is an #analytic vector
for ®(f). Since Fo is #-dense in F(H*) and is left invariant by ®%(f) is essentially
self-adjoint on Fo by generalized Nelson’s analytic vector theorem (Theorem ).
The proof of (b) is obviously.

To prove (c) one first computes that if v € Fo, then



a(ha (@) 'y -a (@ a by = .oy (18)
Eq.(11) follows immediately. Although Eq.(11) and Eq.(12) are formally equivalent,
Eq.(11) by itself does not imply Eq.(12) We sketch a proof of Eqg.(12) which uses
special properties of the vectors in Fo.Let y € HE® Then

|0&(H) &) ||, < 2™ (Ext [T o +T ) IfIZIglFlw I, (19)

which implies that hyper infinite series Ext)_" 0m=0<||<1) (H)"@&Q) "y |l /nim!)
#—converges for all t € *R¥.Since y is an #-analytic vector for ®%(g),

Ext).~ O((|<I>§(g) Ymhy = (Ext-expi®%(g)])w.Further, for each n e N#,
(Extexgi®%(g)])v is in the domain of (cI) (f)) since any finite and hyperfinite sum

Ext—expz (|(I) (g) )
with M e N* is in it and @%(f)"(Ext- X m=0((|cI> (g) )/m')ny) #-converges as M — oo

Thus the estimate Ext)~ m@(”q’ H"0E(Q) "y | /n'm|>t“tm < oo* shows that
(Extexp[i®%(g)])y is an #analytic vector for ®%(f) and therefore can be computed by
the external hyper infinite power series. Thus

sor (10K(F)"(10%(g))"

(Ext-expli®4(f)]) (Ext-expli®&(g) )y = Ext 370 i (20)
Similarly one obtains
(Ext— ex —% Im(f,g)H#D(Ext—exp[itcbg(f+ 9w =
(21)

ot oot it2 m
Ext X7 e [ (- im(t,g),,0 ) (i@ + 9)" Jw

where the hyper infinite series in RHS of Eq.(21) #-converges absolutely. Direct
computations using Eq.(11) now show that Eq.(12) holds by a term-by-term
comparison of the #-convergent external hyper infinite power series.

To prove (d) let y € HE® and suppose that #lim,,. .+ f, = fin H*. Then

104(fa)y — ®EF)w || < J2(k+ 1) [Ifa —flllw (22)
so #lim .« ®&(f,) = ®E(f). Thus, ®5(/,) #-converges strongly to ®%(f) on Fo.
Since Fo is a core for all ®%(f,) and ®%(f), Theorems VIII.21 and VIII.25 imply that
#lim .« (Ext-expit®%(fn) Jy) = Extexpit®E(f) ]y for all y € F(H¥).

To prove (e), let n € H*" be of the form = w1 ® - + - ®yn. Then

(Wb~ (Hr*(U)n = r* (Wb H Uty ® - - - @Uyy) =

r*(U)EU ) (Uye @ < - - QU tyn) = (Ufp1)(y2 @ « + - ®yn) = b (Uf)n.
Since finite linear combinations of such n are dense in H*™ and b~(g) has norm
llgll, we conclude that T*(U)b~(H)I'*(U)™* = b-(Uf). But N and S commute with
I'*(U) so this immediately implies that IT*(U)a (f)['*(U) ™ = a~(Uf) on Fy. Taking
adjoints and restricting to Fo we also have I'*(U)(a~(f))*T#(U) ™ = (a~(Uf))".
Thus for y € Fo, T*(U)®LHI*(U) 1y = @&(Uf)y. Since the operators on both the
right- and left-hand sides of this equality are essentially self-#-adjoint on Fo, we
conclude that T#(U)@&H#(U)™ = OE(UF).

Remark 1.1. Henceforth we use ®%(f) to denote the #-closure of ®%(f).
Definition 1.1. For each m > 0,m € *R%;, let



Hi = {p € *R¥p-p = m?po > O}, (23)
where p = (p°,—pt,—p?,—p3). The sets H, which are called mass hyperboloids, are
invariant under °£%. Let j, be the #homeomorphism of H% onto *R#3 (or in the case

m = 0 onto *R¥\{0}) given by jm : (Po,P1,P2,P3) — (P1,P2,p3) = p. Define a
#measure Q% on Hf, by

QHE) - Ext [ 2P (24)

in®) IPI+m?

for any measurable set E — H%. The measure Q% (E) can easily be seen to be
ol -invariant. In fact, up to a constant multiple, Q% is the only °£}-invariant measure
on H# . Furthermore, every polynomially bounded °£!-invariant measure on V, is the
sum of a multiple of § and an integral of the measures Qf,. We state this fact as a
theorem.

Theorem 1.2. Let u* be a polynomially bounded #measure with support in V, . If u# is
? £l -invariant, there exists a polynomially bounded #-measure p on [0,%%) and a
constant c so that for any f e S*(*R#4)

o [t = ci0) +ext [ arprom((Ex | o). (25)

Theorem 1.3.

We can now use the Segal quantization to define the free Hermitian scalar field of

mass m. We take H* = £5(H%,d*Qf,.), where H, m > 0, is the mass hyperboloid in

*R#4 consisting of those p € *R¥* satisfying p-p—-m? = 0 and po > 0, and d*Q%,

is the Lorentz invariant #measure.

For each f € S*(*R#) we define Ef € H* by Ef = 274 | H% where the Fourier
transform

(2n#)‘2(Ext- [(Expexdi(p- %) ])f(x)d#4x) (26)

is defined in terms of the Lorentz invariant inner product p - X. The reason for the

extra /2z4 in our definition of E and the plus sign in the definition of Fourier transform

is that if f is the distribution f(x) = g(x)5%(t), then /274 f is the ordinary
three-dimensional

Fourier transform of g. If ®%(-) is the Segal quantization over £4(H#,d*Qf.), we
define

for each *R#-valued f € S*(*R#*)

D (F) = DYES). (27)
For *C%-valued function f € S*(*R%*) we define
of () = OF . (Ref) + i} (Imf) (28)

The mapping f = ®f(f) is called the free Hermitian scalar field of mass m.
On L4(Hf,d*Qm) we define the following unitary representation of the restricted
Poincare group:

(Un(a M)y)(p) = (Expexpi(p- &) | )y(A™p) (29
where we are using A to denote both an element of the abstract restricted Lorentz
group



and the corresponding element in the standard representation on *R% = R4,
Remark 1.3. Recall that a #-conjugation on a Hilbert space H* is an antilinear
#-isometry C* so that C*? = |.
Definition 1.2. Let H* be a *C#-complex Hilbert space, ®%(-) the associated Segal
quantization. Let C* be a #-conjugation on H* and define HZ. = {|C*f = f}. For each
f € HE. we define ¢*(f) = ®4(f) and 7#(f) = @(if). The map f — ¢*(f) is called the
canonical free field over the doublet (H*,C*) and the map f — z*(f) is called the
canonical conjugate momentum. We often drop the (H# C*) and just write H* if the
intended #-conjugation is clear.
Remark 1.4.Note that the set of elements of H* for which the maps f — ¢#(f) and
f — n*(f) are defined depends on the #conjugation C*.
Theorem 1.4. Let H* be a *C#-complex Hilbert space with #-conjugation C*. Let
¢*(+) and 7#(+) be the corresponding canonical fields. Then:
(i) Foreach fe HE, ¢*(f) is essentially self-adjoint on Fo.
(i) {o*(HIf € HZ.} is a commuting family of self-adjoint operators.
(iii) Qo is a #-cyclic vector for the family {o*(f)lf € HZ:}.
(iv) If #lim .+ fn = fin HE., then
#lim .+ o*(fn)y = o*(f)y for all y € Fo

and

#lim _«(Exp-explio®(fn)Jy) = Expexfip®(f)]y for all y € Fs(H¥)
(v) Properties (i)-(iv) hold with ¢ (f) replaced by =#(f).
(vi) Iff,g e H%, then

" (Hr*(@y - *(@e* Py = i(f,9)y (30)
forall y € Fp and
(Expexp| ip*(f)]) ( Expexp in*(@)]) =
(Exp-exdi(f,9)]) ( Expexp ir*(@)]) ( Expexy ip*(f)]).
Proof. (i) and (iv) follow immediately from the corresponding properties
of ®%(-) proven in Theorem 1.1. To see that {p*(f)[f € HL+} is a commuting family,
notice that (12) implies
( Expexg itp*(f)]) ( Expexp] isp*(9)]) =
(Exp-exp—itsim(f,9)]) ( Exp-exp isp*(9) ]) ( Exp-exy[ itp*(f)])
where we have used the fact that ¢*(-) is real linear. If f,g € HE«, then it follows
from polarization that (f,g) = (C*,C*g) = (g,f),so Im(f,g) = 0. Thus
( Expexg itp*(f) ]) ( Expexp| isp*(9) ]) =
(Expexp| isp*(g) ]) ( Expexf ite*(f)])
for sand t. Therefore, by Theorem VIII. 13, ¢#(g) and ¢*(f) commute.
The proof of (b) is similar to the proof of (a). (X.70) and (X.71) follow immediately from
(X.64), (X.65), and the fact that if f,g € HZ,, then Im(f,ig) = Re(f,g) = (f,9).

Definition 1.3.We write f € £4(HE, d*Q% ) as f(po, p) and define now the
#-conjugation by (C*f)(po,p) = f(po,—p).

(31)

(32)

(33)



Remark 1.4.Note that C* is well-defined on L£5(H#, d*Qf.) since (po,p) € HE if
and only if (po,—p) € H#. C*is clearly a #-conjugation.

Definition 1.4.We denote the canonical fields corresponding to C* by ¢*(+) and
n#(+) and define o (f) = ¢*(Ef) and n}(f) = #*(uEf),u = ,/p? + m? for *R%-valued
f e L(*R#*), extending to all of L(*R%*) by linearity. In terms of a=(f),

o) = {(@ (Ef))" +a (C*EN}//2,
() = i{(a (Ef)* + a (C*uER 2.

Remark 1.5.Note that the a’s in these last formulas differ from those most often
used in discussing the free field and that the correct space-time free field is ®% and
not ¢# as we will discuss below, ¢, and =, are useful for discussing the time-zero
field. The maps f » ¢#(f) and f » 7% (f) are complex linear and ¢#(f), 7 (f) are
self-adjoint if and only if Ef € HZ,.

Because of the projection E we can extend the class of functions on which ¢f(-) and
n%(+) are defined to include distributions of the form &(t — to)g(X1, X2, X3) where

g € *R%. In particular, if to = 0,g is *R#-lvalued, and Ext-§ is the usual Fourier
transform on *R#3, then

(C*E3G) (Po.-p) = (224 2G(P) = (7)™ *9(-P) = ESG, (35)

Thus E(5g) and pE(5g) are in HZ.. Therefore ¢i(59) and ni,(5g) are self-adjoint if

g € L(*R#) is real. For obvious reasons, the maps g = ¢%(59),g » n/(5g) are

called the time-zero fields. From now on we will only use test functions of the form §g
in  @i(+) and 7% (+) and write ¢%(g) and 7%(g) if g € S”*RE instead of ¢f(5g) and
7n(59).

If f and g are *R%-valued functions in £L(*R#3), then

(X.70) implies that for v € Fo,

[oh®. 7@y = i(Bxt [ TOI@uEWh, ). (36)

For convenience and also so that our notation coincides with the standard
terminology,

we now transfer the fields we have constructed from the Fock space built up from

LE(HE, dQ% ) to the Fock space built up from £4(*R#3). For notational simplicity, we

define for f € LE(HE, dQ%,)

al(f) = (a (f))*,a(f) = a (C*). (37)

First notice that each function f(p) € £5(H#,dQf.,) is in a natural way a function
f(p) = f(u(p),p) on *RE. For each f € L4(Hf,dQ%,.,.), we define

(INP) = f(up),p)!/up) . (38)

Jis a unitary map of £5(H#%,dQf ) onto L5(*RE3), so T'#(J) is a unitary map of
F s(LE(HE, dQF,)) onto Fs(L5(*R%E3)). The annihilation and creation operators on
Fs(LECRE)), A(+), A'(+), are related to a(-) and a’(+) by the formulas

(34)



f(p) _T# #(1)-1
al —BL | = r#dadr#Q)
(./u(p) >

i f(p) _T# T #01y-1
Al —=— | =T"Ja'(Hr-QJ
(./u(p) >

We use the unitary map I'*(J) to carry the Wightman fields over to Fs(£4(*R%%)) by
defining:(i) for *R%,-valued f € L£# (*RE*)

(39)

Bma(f) = THIOma(HIH(I) T =

1 [afe*EL Y, af EL (40)
Ee(em) = (7))
(ii) for *REg,-valued f € £7 (*RE)

Brn(®) = T*DPm (HIH(I) L =

1 [ (m#EE) | [ EG5) (41)
ﬁ{a(c /T >+a( /T >}

where G = JC*J acts by (C#g>(p) — g(=p). Having established this
correspondence,

we now drop the ~ and the bold face letters; from now on we will only deal with the
fields

on Fs(L4(*R%)) and three-dimensional momenta. Further, we recall that the
restriction of

the four-dimensional Fourier transform that we have been using in this section to

functions of the form 6(Xo)g(X1, X2, X3) the usual three-dimensional Fourier transform.
Notice that

T = Exthh = (C*) (42)

so C*f = fif and only if f is *R#-valued.
For f and g *R%-valued, (36) becomes

[0k, 7h(@)] ~ i(Ext [ 00900 )d*x (43)

(43) is the space form of the canonical commutation relations (CCR).

In the Appendix to this section we prove that for each m > 0, this representation of the

CCR is irreducible and for different m, the representations are inequivalent. Thus, the

time-zero fields in the free scalar field theories give rise to different representation of
the

CCR.

As a final topic before turning to interacting fields we will show how the structures

developed above are related to the “fields” and “annihilation and creation

operators” introduced in physics texts. We let now

Dy, = {vlv € Fo.y® e S, (REN.n e N} (44)
and for each p € *R¥® we define an operator a(p) on & s(L5(*R%3)) with domain



(a(p)l//)(n)(kli v ’kn) = yn+ 1V/(n+l)(p1 kl’ cee !kn)' (45)

The adjoint of the operator a(p) is not a #-densely defined operator since it is given
formally by

n

@ EW) ™ ki, ... kn) = % > 5(p—k)y ™Dk, ki, K, - Kn). (46)
i1

However, a'(p) is a well-defined quadratic form on Dys x Dy . For example, if

v1={0,y®,0,...},and vy, = {0,0,y?,0,...},then

(22 (P)w2) = - {Ext [[yP Rl ) + yPpky ko) Jaap. - (47)
Remark 1.1.Note that the formulas
a(g) = Ext [ a(p)g(-p)d'p (48)
and
al(g) = Ext [ a'(pa(p)dp (49)

hold for all g € §,(*R%) if the equalities are understood in the sense of quadratic
forms. That is, (48) means that for y1,y2 € Dy we have

(vra@y2) = Ext [ (v1a@y2)g-p)dep (50)

and similarly for (X.76b).
Since a(p) : Dys —~ Dy the powers of a(p) are well-defined operators on D g .

As before we can write down a formal expression for (a’(p))", but it does not make
sense as operator, only as *C%-valued quadratic form on Dys x Dy .

Notice that

(v @'(P)"v2) = ((@P)"v1,v2) (31)
so for each n, (a'(p))" and (a(p))" are formally adjoints in the sense of *C#-valued
quadratic forms. We could of course have defined the quadratic form (a'(p))" by (50)

and then calculated that it arises by taking the n-th power of the formal object given by
(45). Since a(p1) : Dyz — Diﬁn,(wl,a*(pz)a(pl)y/z) is a well-defined *C%-valued
quadratic form for all (p1,p2) € *R% x *R%. Notice, however, that

(v1,a(p1)a’(p2)v2) does not make sense since a'(py) is only a quadratic form. In
general any product ]_[INzll a(fy) isa

well-defined operator from D¢ to D« and ]_[INzll a'(fy) is a well-defined quadratic
formon Dz x Dy . Thus

N2 N1
(w, ( I a*(pi)> (H aT(—m))w) (52)
i=N1+1 i=1

is also well-defined *C#-valued quadratic form on D,z x Dys . One can check
directly that if f € £# (*R%) then as *C§-valued quadratic forms



N2 N1
( I1 a*(ﬁ)) (1‘[ a*(ﬁ)) -
i=Ni+1 i=1

N2 N1 N2 (53)
EXE [, ( [1 a*(pi)> (]_[ a*(—pi)> (H fi(p ))d#pl. .d*pn,
i=Ny+1 i=1 i=1
and
N = Ext J-*[R§3 a'(p)a(p)d*p (54)
The generator of time translations in the free scalar field theory of mass mis given by
Ho = Ext [ u(p)a (ma(p)d‘p (54)

Ho is called the free Hamiltonian of mass m. (52), (53), and (54) involve no formal
manipulations, but are mathematical statements about quadratic forms.

Theorem X.44 Let n; and n2 be nonnegative integers and suppose that

W e £§(*R’§3(”1+”2)>. Then there is a unique operator Tw on Fs(£5(*R#3)) so that
Dy < D(Tw) is a core for Tw and

(a) as *C#-valued quadratic forms on Dy x Dy

Tw = Ext I*Rmrw W(K1, ... Kny, P1s - - - ,pn2)<H aT(ki)> (H a(pi)>d#”1kd#”2p (55)
¢ i=1 i=1

(b) If m; and my are nonnegative integers so that m; + my = n1 + Ny, then
(1+ N)"™2T\(1 + N)"™2 is a bounded operator with

1L+ N)™2Tw(1 + N)™™2 || < C(my, m2) [W]] 4. (56)
In particular, if my = n; and mp = ny, then

1L+ N)™™2Tw(1 + N) 22| < C(my, m2) W] 4. (57)

(c) As *Ci-valued quadratic forms on Dz x D gz

no ng
Tiy = Ext LWWZ) W(Ka, . .. ,Kny, P1, - - - ,pnz)(]_[ af(ki)> (H a(pi)>d#n1kd#n2p (58)

i=1 i=1

(d) If Wy 5 Win Iﬁ(*ﬂ?\ﬁ?’(””m), then Tw, —# Tw strongly on D .

(e) Fo is contained in D(Tw) and D(Tyy), and on vectors in Fo, Tw and Ty, are given
by the explicit formulas

(Twy) M) = K(1,ng,n2)S x

(59)
|:EXt— J.*[R#snz W(kL ces ,knp P1,... apnz)l//(l)(pL - sPny, kn1+11 e ,kn1+|—n2)d#n2p:|

(Tvvl//)n =0ifn< Ny — Ny
(Tiy) 2 — K(1,n,,n1)S x
|:EXt' J.*R#‘?‘(nl) W(kl, cas ,knl, pl, . ,pnz)l//(l)(kl, . ,knl, pn2+1, . ,pn2+|_nl)d#n1k:|

(60)

(Tiw)"™ = 0if n < n2 — ny where Sis the symmetrization operator and



[ id+ng—nyt 2
K("”l'n”_[ (= n))? J ' ©0

Proof. For vectors in D, , we define Twy by the formula (X.82a). By the Schwarz
inequality and the fact that Sis a projection,

| Ta) 2 |12 < Kl na, o)y © 12w . (62)
If we now define an operator Tyy, on D by using the formula in (62),
then for all ¢ and y in D« one easily verifies that (¢, Twy) = (T, y).
Thus, Tw is #-closable and Tjy is the restriction of the adjoint of Tw to D .

From now on we will use Ty to denote Tw and Ty, to denote the adjoint of Tw.
By the definition of Tw, D is a #-core and further, since Tw is bounded on the

|I-particle vectors in D , we have Fo < D(Tw). Since the right-hand side of (59) is

also bounded on the I-particle vectors, (X.82a) represents Tw on all [-particle vectors.
The proof of the statements in (e) about T3y are the same.
To prove (b), lety € D . Then by the above computation

| (L N)™2T (L4 Ny a2y ) ) |1 <

K(l,n1,n) L2 Wi (63)
(1+| _n2+nl)m1/2(1+|)m2/2 ||l// ” || ||
so that
€@+ N) ™2 T (L -+ N)mi2y ) 200 || <
K(l,n1,n (64)
|:sup T in 1)m52)(1+|)m2/2 an“)n IW[| < C(ma,ma) [y ® ||| W]
leN — 12 1
where
C(ma, mz) =sup Kd,n1,nz) # (65)

2 7 <®
ey (L+1=n2+n)™(L+1)™

since my + my = ny + n2. In all the sup’s only | so that | — n2 + ny > 0 occur since
the other terms are annihilated by the action of Tw. Thus, (1 + N)™™/2Ty(1 + N)~™/2
extends to a hyper bounded operator on & s(H#) with norm less than or equal to

C(mg,my).If my = ny and mz = ny, then C(myg,my) = 1.
To prove (d) we need only note that if y = (0,...,y®,0,...) € Dz and Wy —4 Win £3,

then
[Twow = Twy | = [[(Twe-w)y || < K2, n2) [[Wh = W[ [y, (66)

where #lim .+ K(I,n1,n2) [Wh = W|| ||| = O.
Since Dy consists of finite linear combinations of such vectors, we have shown that

Tw, #-converges strongly on Dys 1o Tw if Wy —»# Win £5.
To prove (a) let y1,y2 € Dy with ya = (0,...y™"),0,...) and y1 =

©,...x0,0,..).
Then, if W= (TT™ fitk)) (T, 9i(ki)) the definition of the form



(IT%a' ki) (T, ai(ki)) shows that
(w1, Twy2) = Ext-j WKL, Kny P Pny) X

(v (1102 00) ([T 00 Yy kg

Since both sides of (X.83) are linear in W, the relationship continues to hold for the all
such Ws that are hyperfinite linear combinations of such products. Since

<l//l (H a’ (ki ))(l‘[ a.(k.))w) c £#< R#3(n1+n2)> (68)
and since (d) holds, both the right- and left-hand sides of (X.83) are continuous linear
functionals on *RE¥™*?) Since they agree on a #dense set, they agree everywhere.
Finally, (68) extends by linearity to all of Dz x Dy .

This proves (a); the proof of (c) is similar. |
Finally, we note that as quadratic forms on D+ we can express the free scalar field
and the time zero fields in terms of a'(k) and a(k) :

(67)

D (X, 1) =

[ {IEXt expu(p)t - ipa'(p) + [Ext-exp(-u(P)t + P Ja(p)} b (69

(275 )3/2 . J2u(p)
#3
Fx(X) = Ext exp(—ipx)]a’(p) + [Ext-exp(ipx)]a(p) P (70
Pk (X) = (Zn#)s,zlpL{[ P(-ipx)Ja’ (p) + [Ext-exp(ipx)] p}p—() )
Th(0 = Ly [ {(Bxtextipolal(p) - [Extexipnlam) [ 4P . (71
KL E

2.Q%-space representation of the Fock space structures

In this section the construction of Q*-space and L4(Q# d*u), another representation
of the Fock space structures are presented. In analogy with the one degree of
freedom case where F#(*R¥) is isomorphic to L(*R#%,d*x) in such a way that ®s(1)
becomes multiplication by x, we will construct a #measure space (Q, u#), with
p(Q*) = 1,and a unitary map S: FE(*RE) - LE(Q¥ du) so that for each f € HE,,

Sp#(f)S? acts on LE(Q, d*u*) by multiplication by a #-measurable function. We can
then

show that in the case of the free scalar field of mass min 4-dimensional space-time,
V = SH (g)S™ is just multiplication by a function V(q) which is in L5(Q,d*u) for each

p € N Let {f,}*", be an orthonormal basis for H* so that each f, € H, and let
{9}, N € N* be a finite or hyperfinite subcollection of the {fn}ﬁl. Let Py be a set of

the all external hyperfinite polynomials Ext-P[uy, ...,uy] and F% be the #-closure of the
set

{ExtP[p*(01),....0"(ON)]IP € P} 1)
in F£(H*) and define F) = F N Fo From Theorem X.43 (and its proof) it follows that
¢*(gv) and 7#(g)), for all 1 < k,I < N are essentially self-adjoint on F} and that



(Ext-exdito”(gk)]) (Extexpist#(g1)]) =

2
(Ext-expg—istdw]) (Extexplist#(g1)]) (Ext exgite*(ge)]). @
Thus we have a representation of the generalized Weyl relations in which the vector
Qo satisfies ([¢*(gk)]° + [7#(g)]* - 1)Qo = 0 and is #-cyclic for the operators
{*(@)} N € N*. Therefore there is a unitary map 5™ FH - LECRIN) so that
~ ~ -1
S(N)¢#(gk) (S(N)> — Xk
3)

~ ~ -1 #
Seeo(s") -

N
3Vq, = n;N"‘{Ext- exp|:—<Ext- > x—f) J} 4
k=1

It is convenient to use the Hilbert space

2
Lg(*ﬂ?\ﬁ”, n;N’Zd#Nx{Ext- exp[—(Ext— ZkN:1 %) ]})

instead of LE(*R#N) so let d*pux = ;2 exp(—x&/2) d#x, and define
2
(TH(X) = ng"“[Ext- exp(Ext-Zfl %) Jf(x). (5)

Then T is a unitary map of L(*REN) onto Lﬁ(*RﬁN,Ext-Hi’ll d#pif> and if we let
s™ = 13 we get

and

S™ : Ff > LECRIN Exe [T, duf),

SMe'(@gas™) " = X,
6)
(N)  # Ny Xe 1 df (
S T (gk)(s ) - | + | d#Xk’

S(N)Q0 =1,

where 1 is the function identically one.Note that each uff has mass one, which
implies that

(Qq (Ext T, Pule™(@9]) Qo) =

I (EXt'Hszl Pk[xk]><EXt-HE=ld#uﬁ _
- (7

Ext [, | Phxddut = Ext[TY, [ (QoPp*(001Q0)
R

*Rg

where P4,...,Py are external hyperfinite polynomials. This formula (7) can also be
proven by direct computations on F#(H¥).

Now it is easy to see how to construct (Q¥, d*u*). We define Q* = x", *R¥.Take the
o*-algebra generated by hyper infinite products of #measurable sets in *R% and set
p* = @7 uif.We denote the points of Q* by q = (q1,0z,...). Then (Q* d*u*)is a
#measure space and the set of functions of the form P(q1,0z2,...), where P is a



polynomial and n € N* is arbitrary, is #dense in £4(Q¥ d*u*). Let P be a polynomial in
N e N* variables

P(Xiy, - Xky) = EXE D i Xids - X, (8)
I1,...IN
and define
S P(0*(fi), -, 0" (fi))Qo = P(Gkys - - - ,Qkn)- 9)
Then

P(0*(fio). . ...0*(fla)) Qo = Ext Z 6itm(Qor 9% (i) ™, ... p¥(fiy) "™ Qg) =

(10)
Ext Z CiCm J- q|1+m1 . |N+mN (Ext H d# # ) = J. [P(Xky, - - - ,XkN)lzd#.U#

R #N Q#

by (X.92) and the fact that each ujf has mass one. Since Q, is cyclic for polynomials
in the fields (Theorem X.42), S extends to a unitary map of FZ(H*) onto L5(Q*,d*u*).
Clearly

Sp*(f)S™ = g and SQ, = 1. (1)
Theorem 1. Let ¢}, (f),x € *RE\*RE;, | be the free scalar field of mass m (in
4-dimensional space-time) at time zero. Let g € L{(*R%) N LE(*R%3) and define

Hix(9) = l(X)Ig(X)Z P 00 1d¥x, (12)

where A(x) € *R%,A(x) ~ 0. Let Sdenote the unitary map of FZ(H*) onto £5(Q*,d*u*)
constructed above. Then V = SH,,,(g)S™ is multiplication by a function V,,(q) which
satisfies:

(@  Via(q) € LH(Q",d"u*) for all p e N*.

(b)  Extexp(-tV..(q)) € L1(Q* d*u*) for all t € [0,).

Proof. We will prove (a) By Eq.() we get

[ {[Ext-exp-ipx)]a’ (p) + [Ext-exp(ipx)Ja(p)

3
oo J u(p) '

Then ¢#%.(x) is a well-defined operator-valued function of x € *R#3. We define

: of(X)* : by moving all the a's to the left in the formal expression for ¢f,,(x)*.
By Theorem X.44 : ¢ .(x)* : is also a well-defined operator for each x € *R¥3 and
s o (X)* : takes Fo into itself. Thus for each x € *R%3,

Ph(X) = (13)

L oh 0! 1 = 0h00* + da(x)9Hh (0 + do(x) (14)
where the coefficients d,(x) and do(x) are independent of x. For each x € *R%3,

#(X)Stis just the operator on #measurable space £4(Q*, d*u*) which operates by
multiplying by the function

Ext Z Ck(X, x)qk (15)
Py

where



ck(x,x) = (2m#) " (fi, Ext exp(ipx) (u(p)) ™). (16)

Furthermore,

Ext > _Jok(x 1) 2 = (27) 2| (u(p) 2 >, (17)
k=1

S0 Spih(X)*Stand S, (x)2S™ are in £5(Q, d*u*) and the £5(Q* d*u*) norms are

uniformly bounded in x. Therefore, since g € £¥(*R#3), SH,....(9)S* operates on

LE(Q*,d*u*) by multiplication by an £4(Q*,d*u*) function which we denote by V,,(q).

Consider now the expression for H,,.(9)Q,. This is a vector (0,0,0,0y“,0,...)
Ag(x)[ Ext exp(—ix b ) Jd*x

v ®(p1,P2,P3,pa) = Ext _
I (22T, u(p)) ™

) (18)
_ l@<2i=1 ki)
(7)1, u(pi) 2
where |pi| < x,1 <i < 4.We choose now the parameter A = A(x) = 0 such that
ly @I, € R,thus
IH12200(@)Qoll, € R, (19)

since [|Hix0(@Qoll, = v @ |, But, since SQ, = 1, we get
”Hl,x,l(x)(g)Qo”z = ”SHI,X,/I(X)(g)S_l”I§<Q#’d#u#> = ”Vx,/l(x)(q) ||£g<Q#,d###> (20)

From (19) and Eq.(20) we get that ||V, 1) (Q) ||I,§<Q#’d#u,;¢> is finite. It is easily verify that
each P(Q1,0z2,...,0n),n € N* is in the domain of V, 14)(q) and SH1,14)(9)S™ = Vi (Q)
on that domain. Since Q, is in the domain of [H; .. (g)]" for alln e N#, 1is in the
domain of [V, (q)]" for all n e N*. Thus, for all n € N*¥,V, 3, € £5,(Q%,d*u*). Since
pH(Q%) < oo, Vi € LA(Q%, d*u*) for all p < oo*.

Chapter X. A non-Archemedean Banach algebras and
C;-Algebras.
§1. A non-Archemedean Banach algebra B(H¥)

81.1. Basic Properties

Definition 1.1.An linear operator T on a non-Archemedean Hilbert space H* is a linear
map H¥ - H*.We can define a #-norm by

TV,

— " 1.1
VI, (1.5

Tl = SUReH" 10
if supremum in RHS of (1.1) exists.
This is a #-norm since
1. By definition of the #-norm on H¥, it is always positive.
2.We havethat T=0 & Vv e H¥, Tv=0 © Vv € H* \ {0},

[Tv]
£ =0« |T|,=0.
IVl




ATV [TV
3. ATl 4 = SURen 0 — I, ———= s URen™ 10y o v, ——= =PIT|
[Tav+ Tov|| [Tavl, + [ T2V
4. | T1+ T2l 4, = SUReH™ (0 L. £ < SUPewn 0 ﬁV” £ <
#
[Tav|| [ Tav||
< SURey 10y —T oy — e = [ Tally + T2l

VIl
Definition 1.2. Let H” be a non-Archemedean Hilbert space over *C%. A linear map A:
H* - H* is called bounded in *R¥ operator iff [|A||, < *o.
Definition 1.3. Let H be a non-Archemedean Hilbert space over *C%. We denote by
B(H#) the set of all bounded in *R¥ operators A: H# - H¥,
Definition 1.4. Algebra A is called an algebra over *C% if it is a vector space over *C%
and a binary map - : Ax A - A Satisfying:
1. Left distrubitivity: Vv,w,u € A[(V+W) U= V-U+W-W]
2. Right distrubitivity: Vv,w,u € A[v.(W+U) =V-W+V-U]
3. Vv,w e A Va,B € *Célapv W = (aV) - (BW)]
We note that B(H*) is an algebra over *C% where for A,B € B(H*),1 € *C¥ we
define:
JA: H* - H*,v » JAv
A+ B: H* > H*,v » Av+ Bv
A B: H* > H* v » A(B((V))
In B(H*) we have the #-adjoint operator. This maps each A to the unique A*
such that for all v,w € H* we have (Av,w), = (v, A*w),. We denote the adjoint of an
operator A by A* and define the adjoint of a subset M < B(H*) by
M* £ {A* € B(H*) | A € M}. The adjoint has the following key properties:
Lemma 1.4. Adjoint Properties (Algebraic)
VB, A € B(H*) we have
A* always exists is unique.
If Ais bounded in *R¥ then A* is also bounded in *R%.
. A** = A (Involutivity)
AL = [TA* 1],
If Ais invertible, A* also is, with (A*)™t = (A1)*
(A+B)* = A* + B*,JA)* = 1A*
. (AB)* = B*A*
AALL = AL,
Proof. 1. Let x € H* and consider the bounded in *R¥ linear functional f: H# - *C%,
f(v) » (Av,x), we have [f|| < ||All, |x] .. By generalized Riesz representation
theorem there exists a unique y € H* with f(v) = (v,y),Vv € H*. So we set A*x = y.
Then for any y,z € H* and Va € *C% we have:
VA 0y +2))y = (AV,ay + 2, = TAV,Y), + (AV, 2, = TV, ATY), + (V,AZ), =
= (v,aA*y + A*z),, Vv € H*. In particular, if we choose v = A*(ay + 2) — aA*y + A*z,
we see that ||v||, =0 = v =0= A*is linear.
2. Following from 1. we have
IA™XIL = Iyl = 1Ifll < IAlLIYIL.
3. We can see this as
(A**v,W), = (v, A*w), = (AV,W),VVv,w € H".

©®NOO A BN R



4. Combining the estimate from above and involutivity, we have

1A 1 < A" < Al = TA™ ],

So we must have equality everywhere.

5. We have (v, (A™)*A*w), = (Alv,A*w),, = (AA"lv,w), = (v,w), Vv,w € H".
Hence, (A1)*A* = 1. The argument for A*(A1)* = 1is the same.

6. This follows clearly from conjugate linearity in the second argument of an inner
product.

7. This is clear since, (ABv,w), = (BV,A*w), = (v,B*A*w), Vv,w € H".

8. For this we have [|T||3 = supyx, 1| TX|I5 = Supjx, —1(Tx TX),| =

SUP x| 1T TXX) s < SUPyx <2 | T*TXI x|, = IT*T][ .. But also,

ITTl, < T [LITI, = ||T||§, and so there is equality everywhere.

81.2 Types of Operators

Definition 1.2.1. Ais called normal if A*A = AA*~.

Definition 1.2.2. Ais called positive if A = B*B for some B € B(H¥)

Definition 1.2.3. A is called self #-adjoint if A* = A.

Lemma 1.2.1. Let A € B(H¥). Then A = A; +iA, where A; and A; are both self
#-adjoint.

Proof. Let A; = A+2A* Ay = iA*2— A

It is then clear from basic algebra.

Definition 1.2.4. U is called unitary if U*U = UU* = 1

Example 1.2.1. If U is unitary, we have Vh,k € H*,(h,k), = (Uh,Uk),.This is
because (Uh,Uk), = (h,U*Uk),, = (h,1k),, = (h,K),..

Definition 1.2.5. Ais called isometric if A*A = 1.

We also have a relaxed definition, a partial isometry.

Definition 1.2.6.Ais called a partial isometry if it is an isometry on the orthogonal
complement of it's kernel,i.e.A*Av = v,Vv € Ker(A)* =

= {v e H*|v,w), = 0,vYw € Ker(A)}.

Definition 1.2.7. p € B(H") is called a projection if p = p* = p2.

Example 1.2.2. Consider H* = [5(*N) the set of all square summable *C%-valued
series. An example of a projection would be:

pn:H? - HY (a, @, . .. .. an,ani1,aN2...) = (ar,az,...,an,0,0,...).

We see this is self #adjoint as (pna, b), = Ext> ¢ akbk = (a, pab), and idempotent
as pi = pn.

Lemma 1.2.2. Multiplication and #-norm property

VAB € B(H"), [A-Bll, < IAll,IBI,

Proof. For all h € H*, we always have the estimate ||Ahl|, < [|A] ,]lh]l .

Using this we have

IABI, = supner o [ (AB)D /I[Nl = SUpher (o IABH) [/ 11l

< SUphervop [|ALLLIBRIL/ DML, = [[AlLIIBIL,

Lemma 1.2.3. (B(H*),|l+|,) is complete, i.e. if (An)nesn < B(H") is cauchy with
respect to the operator #norm ||| ,, it #-converges in #-norm to some element

A e B(H%).

Proof. Let (An)nesnv be cauchy with respect to the operator #-norm. This means that
Ve(e = 0,6 > 0) AN € *Ny [n,m > N = [|Ay - Anl, < &].




In particular then ||Aq| is bounded above, say by K € *R%,. Now fix v e H* and let
N,m,n € *N, be as before. We have that

[AnV = AV, < [[An = Amll VI, < VI,

Hence,(AnV)ne+n is cauchy in H#. By completeness of H#, we have a #-limit and can
define A:H#* - H* v » #-lim.- Anv, this is our candidate for our #limit.

A'is linear since (by algebra of #-limits)

A(av + W) =#IliMmpe An(av+ W) = o (#liMposo ApV) + #1iM e AW = aAV+ AW

and bounded in*R%, because

|V = #im e [ Anv ], = #lim e [ AV, < Bl | Aall V] < KV,

Hence, A € B(H*). Finally we show convergence in #-norm. Fix ¢ ~ 0, > 0 and let
N € *N, be as in the definition of cauchy. If n > N we have:

[A=Anll;=supyy,-1 [I#IMm.-x(Am = An)V|, <

SUP| 1 F Mmoo [ (Am = AV LIV, S #liMme = €.

Definition 1.2.8. A € B(H*) is #-compact if for all bounded subsets j of H* the
image of A restricted to g has #-compact #-closure:

A € B(H*) #-compact < Vf bounded , #-Ag is #compact.

We denote by K#(B(H#)) the set of all #compact operators in B(H¥).

Lemma 1.2.4. A is #-compact iff

V (Vo) aex bounded = (AV,).cx has a #-convergent subsequence.

Definition 1.2.9. For A € B(H*) the rank R(A) of A is the dimension of the range of A
Lemma 1.2.5. If A has rank N € *N, then we can write

A(s) = EXtD nenan(, Vn),Wn where {Vn}nen, {Wn}nen © H?, {an}nen < *CE

Proof. This follows immediately from the generalized Riesz representation theorem
noting that if {wn}nn forms a basis of A(H*), then (A -, wy), is a linear functional

H* — *C%. So for some vp,(A +,Wn), = (+,Vn), SO setting an = 1/[wn |, we have

A-= Ext—Z:n an(A «,Wn),Wn = Ext—ZnSN an(*Vn)4Whn.

We denote by F#*R(B(H*)) the set of hyperfinite rank operators in B(H).

Lemma 1.2.6. Any operator with hyperfinite rank is #-compact

Proof. Say A has hyperfinite rank, then if (v,).ex is bounded, then (Av,).ex is bounded,
and lies in a hyperfinite dimensional Hilbert space. By generalized Bolzano Weirstrass
theorem [1], we have that it omits a #-convergence subsequence so by lemma 1.2.5,
A is #-compact.

Theorem 1.2.1.. Let H; = <{h € H*|||h||, < 1} The following are equivalent:

1.A e {C | R(C) < *o} = F*R(B(H¥)) where the #-closure is with respect to the
#norm topology

2. A € K#¥(B(H%))

3. A(H;) has #-compact #-closure

Proof. 1= 2.

If Ae {C | R(C) < *o} then the #compactness A is clear, since hyperfinite rank
operators are in K#(B(H#)) and K#(B(H#)) must be #-closed with respect to the #norm
topology.

2= 3.

This is clear by definition since H; is bounded subset of H.

3> 1.

Say this did not hold, i.e. we had some A that has property 3 but not 1. Then, let




(P.)«ea be a net of hyperfinite rank projections tending towards the identity map. We
have that P,A also must have hyperfinite rank, and so P,A »4 A in #norm sense.
Well, then there exists some ¢ ~ 0,6 > 0 and some v, € H; such that

(A= P.A)V.|, > €.Since these v, are in H1, we can apply 3 to get some subnet such
that Av, —# v in #norm. Then we have:
0<e<[[(A=PAV.,=[IV-Puv+(1-P)(Va =V) ||, <...

o Z V=PI + 1A= POAV = V) [ < 1= Pl (VI + 1AV = V], —4 0.

A contradiction. Hence, 3 = 1.

Corollary 1.2.1. A #-compact < A(- = Ext—ZwN 0+ Vn) ;Wn Where {Vn}nerw,

{Wn}nE*N (e H#, and {an}ne*N (e *(C?g and S.t. #'“m ns*w On = O
The #-convergence on the RHS is with respect to the operator #norm.

§1.3 Basic Spectral Theory

Spectrum is a generalisation of eigenvalues which is crucial for understanding
operator

algebras.Much of it is built upon whether operators or aren'’t invertible.

Definition 1.3.1. A € B(H*) is said to be invertible if there exists a B € B(H*) such

that AB = BA = 1. If X is an algebra, we define Inv(X) = {x € X | xis invertible }.

Lemma 1.3.1. Neumann Series is #-convergent

Let |All, < 1. Then, 1 - Alis invertible with inverse

A-AT=Ext> A" (1.3.1)

ne*N

Where
Ext Y, | AT = #limy (Exe Y A (1.3.2

where N € *N..
Proof. The first question to ask is whether the series on the right hand side even
#-converges. It does as by lemma 1.2.2 one obtains
IEXEY nenAM ||, < EXEXne-n [A 14 < EXEXnen Al = (1- Al )
Say it #-converges to B. Then, we see that because we have a telescoping sum
N N

Bt (ANA-A) = 1-A% = (1-p)(Ext Y7 A7)
Hence, it is sufficient to check that 1 - A" -4 1asn - *«. Fixe = 0,6 > 0, and
choose N € *N,,N > Extlog|aj,c Then we have forn > N

I1-AM— 1], = A", < Al < A} < &
Lemma 1.3.2. Inv(B(H¥)) is #-open in B(H#). Furthermore, the map
L Inv(B(H*)) - Inv(B(H)),A » A
is #-continuous with respect to the operator #norm.
Proof. Say A € Inv(B(H")). Then, if [B-A|, < ||A‘1||;1, we have
IBA™ = 1], = [(B-A)A, < IB- Al A" <1
Which by lemma 1.3.1 gives
1-(BA1-1) =BA! e Inv(B(H*)) = BAA =B e Inv(B(H¥)).
Then if we consider BA™, we can note that 1/(1 || 1-BA™ ||) > 1 and hence
IBA, <Ext) [I1-BALI;=Ext) [(A-BAL;<

<Ext) . I(A-B)IFIAL = UL~ I(A-B)IIIA ).



Therefore [|[|A™ - B, = [A(ABHY (B -AAL, <

IAL[1Z1B = Al I (AB 2|, < AL 2B - All[1/(1 - (A= B) [ IIA L] ,)]

We can see then that as |[A—-B|, »# O, [[A™ - B™||, -« 0 as required.

Definition 1.3.2. (Spectrum)

Let A € B(H*). We define the spectrum of A, denoted ¢(A) by

o(A): ={l e *Ct | (A-1-+1) ¢ Inv(B(H*))},i.e. the set of all complex numbers
such that A — 11 is not invertible. We denote the complement of ¢(A) by ¢(A).
Lemma 1.3.3. Spectrum is a generalisation of an eigenvalue (eigen(A) < o(A)), i.e.
if 2 is an eigenvalue of A,1 € a(A)

Proof. Say / is an eigenvalue of A. Then v e H* \ {0} s.t. (A—A)v = 0 However, by
linearity, (A—1)0 = 0. As (A— 1) is not injective it cannot be invertible, hence 1 € ¢(A)
Corollary 1.3.1. Let H* be hyperfinitefinite dimensional. Then, if A € B(H*) we
have that spectrum agrees with the eigenvalues, i.e. eigen(A) = o(A).

Proof. By lemma 1.3.3, we only need to check the other direction. Up to choosing
bases, we can assume H* = *CE9™M) |n this case, B(H*) is just the

dim(H#) x dim(H#) square matrices. By standard results in linear algebra, we have that

(A-1) ¢ Inv(B(H?)) iff Extdet(A— 1) = Qiff 1 is an eigenvalue.

Lemma 1.3.4. If A € B(H¥) then o(A) is #-closed as a subset of the complex plane
*CH.

Moreover, it is a subset of the disc of radius ||Al|,, centred at the origin.

Proof. Say 4 > ||A|l,. Then, —27!||A||, < 1so 1 - A"*Alis invertible by lemma 1.3.1.

Then, 2 ¢ o(A). Now examine ¢(A)° = @(A) = {1 € *C% A- A € Inv(B(H*))}.

Say /1 € ¢(A). By lemma 1.3.2 we have that there exists some ¢ ~ 0,& > 0 such that

[A-1-Bl, < ¢ = B e Inv(B(H").

Now, we see that if |/1 - I| < ¢ we have:

|A-2-@Aa-7) ||#: -7 <e

Hence, A— 7 € Inv(B(H*)). Then ¢(A) is #open, and so o(A) is #-closed.

We need the following lemmas to show that o(A) + & ever.

Lemma 1.3.5. Let A € B(H*). Then let y:B(H*) - *C# be an arbitrary linear

functional (y € B(H*)*). We have that the map

fa:p(A) » *CE, 1 » yp(1I(A- 1)) is #analytic on ¢(A), and has #-lim -+ fa,(1) = 0

Proof. For 1,10 € ¢(A) we have that

1 1 _ A-Jo—-A+i _ A= Ao
A-2 A-lo A-HDA-l) A-DA-1l)
Then,

: fa,(4) —fa,(Ao) 1 B - A= Ao 3
Mo =00 y( (A=2)(A="0) ) ) y(# "Mis i (A= 2)(A— 7o) ) o
Where we use linearity of y in the first equality, and #-continiuty of y in the second.
Then, by lemma 1.3.2 we have that

_ A— Ao _ ( 1 )
TN\ EimL, L A-DA 10 ) T\ A—iZ )

Hence, fa, is #-analytic on ¢(A). By the estimate

- |71I ( H Ext Y (A

s

HA—EA H#: |71|H 1—}1—1A
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< |71|(EXt-Zne*N (A 1A)n”#>:—|}t|—]|-|A||# ..

1
A-2
Theorem 1.3.1. If A € B(H*) then o(A) # @.
Proof. Say 3A € B(H*) suth that ¢(A) = &. For this A, we have that fa, is:
(i) [fa,(2)| bounded by positive constant K € *R%,
(ii) fa,(2) is #-entire function, that is fa () is a *C¢-valued function #-holomorphic
on the whole *C#
(iii) fa,(2) has #lim .+ fa,(4) = 0.
The only map satisfying these three properties is the zero map. But since y was
arbitrary, this implies that an arbitrary functional is the zero functional, which is
clearly a contradiction. Hence, o(A) + &
In particular this means that o(A) = eigen(A) if eigen(A) is empty.
Theorem 1.3.2. (Generalized Gelfand Mazur theorem)
If Inv(B(H#*)) = B(H*) \ {0}, Then B(H*) = *C%.
Proof. Let A € B(H¥) then let A1a € o(A) we have A—/a = 0. So Za is unique. Our
isomorphism is then y:B(H*) - *CZA — Ja.
Theorem 1.3.3. (Generalized Spectral Mapping Theorem)
Let A € B(H¥),f € *C%[Z]. Then we have: o(f(A)) = f(c(A)).

Proof. Let 1 € o(A)f(2) = Ext—Z::O anz". Then

()= 10) = Ext Y an(AT =2 = (A=) (Ext 3 an(Ext 3 (A7),

So (1) € o(f(A)).Say 1 ¢ f(a(A)) Then, we can write f(z) — 1 = aN(Ext- H:lzo(z— zn)).
Then as p—f(1) # 0 V1 € o(A) (the zero operator isn't invertible) we have that

An € o(A)(n < N). Therefore, f(A) — 4 = an (Ext— H:l:o(A_ ln)),must be invertible,
and p ¢ a(f(A)).

This theorem has many forms and generalises much more than for f being a
polynomial.

Definition 1.3.3. (Spectral Radius)

Given A in B(H*) the spectral radius, denoted r(A), of A is defined by r(A) = sup.c.a |-
We note by lemma 1.3.4 the supremum exists and is attained. In fact, the following
lemma tells us what the spectral radius of a given operator is in terms of a #limit.
Lemma 1.3.6. LetA € B(H*). Then the #limit: #lim .-, | An| ;" exists, and is equal to
r(A), the spectral radius of A.

Proof. By theorem 1.3.4 and lemma 1.3.4 we have that

[r(A)]" = r(A") < [|Aall, = r(A) < [An]lF", n e *N = r(A) <#liminfo |An] 3"

For the other direction, examine again the function from lemma 1.3.5, but this time
restricted to Q = {z € *C¥||lz| > r(A)}. We know that fAy is analytic in Q < ¢(A). So

it has laurent expansion Ext—Z .. anz"and also that #lim,.- fa,(2) = 0. Soin

ne*Z-

It is clear that

—-# 0as 4 » *oo and hence by #-continuity of fa, we are done.

fact, we have laurent expansion Ext—Zne*N %. To determine the coefficients we

know that for z € Q, ” % || . < 1 and hence, by lemma 1.3.1 one obtains

1 B 1 B l . *o0 A_n B . *o0 AD B . *o0 An—l
z-A B Z(l—Z_lA) - Z (EXt Zn=O z" ) = Ext Zn=0 Zn+1 = Ext Zn=l zZn




() (B D A Sy y(A™)
Hence, fa,(2) = y( z—A) = y(Ext anl )= EXth:l I
n-1
So we have Iimn—m% = 0, for all functionals y € H**. It follows that

. Al .
#-1im oo % =0and so Vz e Q |z| > #lim supr+ ||An

1/n
#

then, Vz € #Q |z| > #lim SUpw+~ [|An ||i’”. In particular then,

r(A) > #lim sup-w [|An ||j,§’n and so we are done.
Remark 1.3.1.If Ais self adjoint, ||A2||# = ||A||§ so by induction ||A%" I, = ||A||#n
and therefore r(A) = #limy.-. [|AZ"[* = ||A].

§1.4. 14(G) and B(I4(G)).

Definition 1.4.1. Let G be a discrete, x-countable group. Then define

14(G) = {f:G > *C¢ | ExtTgec[ (@)1 < o0} (1.4.1)
This is a non-Archimedean Hilbert space with respect to the inner product
(f | h), = ExtXeecf(@h(9). (1.4.2

Lemma 1.4.1. Let g € G,f e I5(G) then define g * f € 15(G) by g * f(h) = f(g~th). This
defines a group action on I5(G).

Proof. Fix f € I5(G). We verify directly, Vh,g1,02 € G :

(91 + 92) * f(h) = f((91 - 92)7*h) = f(gz'g1'h) = g2 * f(91'h) = ga * (g2 * f(h)).
Definition 1.4.1. Let g € G, we define Ty € B(14(G)) as Tg:l4(G) - I14(G), f » g« f.
Where g x f is the group action as in lemma 1.4.1.

Lemmal.4.2. T4 has the following properties:

() T91 ° ng = Tgl-gz (i) TE = Tg’l'

Proof. (i) This follows clearly from lemma 1.4.1.

(ii) Let f,h € I5(G). Then,

(Tgf | hy, = Ext—ZaeG Tf(@h@) = Ext—ZaEe g * f(a)h(a) =

= [ Ext Y _ f(g(ga))h(a) J [ Ext ) _ f(ga)h((ga)) J =

aeG aceG

= ExtY_f(a)g? « h(a) = ExtY_ f(@)Tyah(@) = (f | Tyah),.

acG acG

§1.5.Topologies on B(H¥).

In order to study a non-Archimedean von Neumann algebras, one needs to look into
useful topologies on B(H*).Since all operators are bounded in *R¥ we have the
operator #norm and therefore the induced topology.

Definition 1.5.1. #Norm Topology.

Using this norm, we can define a metric topology, using the induced *R%-valued metric
d:B(H*) x B(H) > Rd(T1,T2) = [|T1 — T2l

This topology is useful for many reasons, but for the purposes of looking at non-
Archimedean von Neumann Algebras is somehow too “fine”. We need coarser
topologies to enable us to have nice examples.

Definition 1.5.2. Strong Operator Topology (s.o0.t.)

We define the strong operator topology as the coarsest topology such that Vv € H*
the map yv:B(H*) - *R{, T ~ | Tv|, is #-continuous.



Example 1.5.1. For H* = ‘2(N), let Tn : H* - H* v » (v, en)en We have that T, - 0 in
the s.o.t. but not in the #-norm topology.
Tn -/ 0 in #norm sense, since | Tn|| > || Tn(en)||H* = |len| =1 Vn.
However in the strong operator topology, we have that
Tn >4 0« I//V(Tn) >4 Oovv € H#
In this case, v € ‘2, so in particular the entries of v always tend to zero, i.e.
wv(Tn) —4 OVV € H¥,
This distinguishes the strong and the #-norm topologies. Making use of the adjoint, we
define a finer topology
Definition 1.5.3. Strong-+xOperator Topology (s*.0.t.)
We define the strong-* operator topology as the coarsest topology such that Vv € H*
the two maps
wv:B(H?) > *RE T~ [TV, (1.5.)
and
wy:B(H*) » *RET - || TV, (1.5.2
are both #-continuous.
And finally, making use of the inner product we define the weak operator topology:
Definition 1.5.4. Weak Operator Topology (w.o.t.)
We define the weak operator topology (w.0.t.) as the coarsest topology such that
vv,w € H* the map yw:B(H*) - *RE%, T » v, Tw),| is #-continuous.
Lemma 1.5.1. For the topologies as in Definitions 1.5.1, 1.5.2, 1.5.3 and 1.5.4 we
have that w.o.t. < s.0.t. < s-*.0.t < #-norm topology.
Lemma 1.5.2.A basis for the strong operator topology is given by
B = {N(A,{vi}}1,)IA € B(H?)vi € H* > 0}
where N(A, {vi} Y;,): = {B € BH*)|I[(A-B)vill, <i=1,2,....N}
Proof. First we need to check it is a basis for a topology.
(i) It covers B(H¥) since for example
N(A,{0},1) = {B € B(H)[[[(A-B)0ll, < 1} ={B € B(H)]||O]|, < 1} = B(H").
(ii) It is closed under intersection since for C € N(A, {vi}N;,&) N N(B, {vi}ﬁl,g).
We have that C € N(C,{vi}N, U {vi}ﬁl, min{e — [(C=A)Vi| . &} = [[(C-B)Vi|l.}).
The only thing we need to verify for this is that (w.l.0.g.)
VD € N(C,{vi} Ny U {9}y, min{e - [|(C- Aill,. 2} - II(C- B)%il,}),
D e N(A,{vi}N,, ). This is clear since for all i
(D = AVill, < [(D=Cvill, + [(C—AVill, < e = [(C=AWill, + [(C-Avill, = &
Now we need to show that for all topologies such that Vv € H# the map
wv:B(H*) > *RE, T » || TV||, is #continuous, subsets of this form are #-open.
Noting that N(A, {vi}N;,) = NNyt (|Avi |, — &, [|Avi ||, + €).This is clear.
Lemma 1.5.3. A basis for the weak operator topology is given by:
B = {NA, {Vn} nen, Wit v, €) | A € B(HF){Vn} nen, {Wn}nen © HP, & > 0.
Where N(A, {Vn} n<n, {Wn}nen, €) = {B € B(H)|K(B — A)Vn,Whn),| < VN < N}
We omit the proof of this result. It is similar to the proof of the basis of the SOT.
Lemma 1.5.4. Let f:B(H*) - *C# be a linear functional. The following are equivalent:
(i) 34V} nen, {Wn}nen © H#, such that f(A) = Ext—ZrKN (AVn,Wn), VA € B(H").



(i) f is #-continious in the weak sense

(iii) f is #-continious in the strong sense

Proof. It is clear that the first implies the second, and by lemma 1.5.1 that the second
implies the third. Hence all we must show is that for all f is #-continious in the strong
sense then we can find {Vn}nen, {Wn}nen © H?, such that VA € B(H?) :

f(A) = Ext—Zn<N(Avn,wn># VA e B(H*).Suppose f is #-continious in the strong sense,

then the inverse image of the #-open ball in*C# is #-open in the strong operator
topology. Considering our basis elements, then there is some constant « > 0 and
{Vn}nen SUch that [f(A)|? < x(EXt— Zn | TVn ||§> .Now consider the subspace of

ExtH* @& H*...@H" given by {@®nn Avh|A € B(H*)} we can define a linear functional
on this set by &nn Av ~ f(A). Then by the generalized Riesz representation theorem,
3{Wn}nen SUCh that f(A) = Ext Z,KN(AV“’W“)VA e B(H#) as required.

82.Non-Archemedean Banach algebras and C3;-Algebras.

82.1. Initial Definitions and #Continious Functional

Calculus.

von Neumann Algebras are a specific type of C; algebra, and so it is important to

understand well the theory of C} algebras before non-Archemedean von Neumann

Algebras.

Definition 2.1.1.A non-Archemedean Banach algebra Ax is a complex algebra over
field

*C# which is a non-Archemedean Banach space under a *R#-valued #-norm which

is submultiplicative:

Xyl < XMLl (2.1.7)

for all X,y € As.

Definition2.1.2.An involution on a non-Archemedean Banach algebra A4 is a

conjugate-linear #-isometric antiautomorphism of order two, usually denoted x — x*.

In other words,

LX) =% x| = [Ix]

2.(X+y)* = x*+y*,

3.(xy)* = Y*x*,

4.(x)* = Ax*, for all x,y € A1 € *C%.

Definition2.1.3.Spectrum (of an element of some a non-Archemedean algebra)

Let A be some a non-Archemedean algebra and a € A4 we define

o(a) = {1 € *C% | a-Alis not invertible }.

Definition2.1.4.A Banach #-algebra is a non-Archemedean Banach algebra A4 with
an

involution. An Cy-algebra is a Banach #-algebra Ay satisfying the C%-axiom: for all

X € Ax

13X, = 1113 (2.1.2
Example 2.1.1. B(H¥) is a C} Algebra)

We see this is an immediate consequence of lemma 1.4
Lemma 2.1.1. K < B(H¥) is a C} Algebra iff



(i) K is an algebra over *C#

(i) K = K*

(i) K is #-closed with respect to the #-norm topology.

Proof. It is clear that if K is a C} algebra it must be closed with respect to the #-norm

topology and an algebra. To see the other direction, we note that the only conditions

we must check are conditions of #-closure by lemma 1.4 all of the operations work

algebraically as they should. We have

1. K'is #-closed under taking sums, scalar multiples and products as it is an algebra.

2. K is #-closed under taking adjoints by the second bullet point

3. K'is #-closed with respect to the #-norm topology by the third bullet point.

Therefore, K is a C} algebra.

Example 2.2. K(B(H¥)) is a C} algebra. This follows clearly from lemma 2.1.1 and

theorem

1.22, as K(B(H*)) = {A € B(H*) | R(A) < *oo} = FR(B(H¥)) and

FR(BH?)) = {A e B(H*) | R(A) < *o} is a x-algebra.

Example 2.1.3. The set FR(B(H¥)) is in general a x-subalgebra of B(H*) but is not a

C; algebra if H* is hyper infinite. This can be seen by considering an orthonormal

basis {ei}icx and

considering p; to be the orthonormal projection into the line spanned by e;(pi(gj) = Jj)

then the hyper infinite sequence (qn)N € *N where gy = Ext3_ N, pi #-converges in

#-norm to the identity, which would not be hyperfinite rank.

As promised, we return to spectral theory, with a more general version of theorem
1.34.

Theorem 2.1.1. #Continious functional calculus

Let K1,K2 be C} algebras and A € K1 normal, then we have:

(i) The map y:C#(a(A)) - Kif » f(A) is a homomorphism.

(i) For all f € C#(a(A)) we have o(f(A)) = f(a(A))

If ¥:K1 - Kz is a Ci-homomorphism, then W(f(A)) = f(Y(A))

This of course raises a few questions, how for example, would one take the square
root of

an operator? For the purposes of these notes we don't look too deeply into this, but
one

way to define this we can take any sequence f, € *C%[z] which approximates f locally

uniformly well,and take f(A): = #lim .+ fr(A).

Most of these definitions we get are intuitive, for example for f(2) = |z]?, we take

f(A) = A*A

§ 2.2 *C#-valued States

Definition 2.2.1. If K is a x algebra, a state is a linear *C#-valued functional that is
positive and normalised. That is: w:K - *C# such that:

() o(A*A) > OVA € K

(i) o(1) = 1.

Notation 2.2.1. We denote the space of all states on A by S*(A).

Throughout the rest of this subsection, K will refer to a C}; algebra and we will consider
states on K.

Example 2.2.2. Let K = My(*C%),n € *N the n x n matrices with complex coefficients.



ExtTr(AB)
” TExtTr(A)
Where ExtTr(C) is the external sum of the diagonal entries of C (or equivalently the
external sum of the eigenvalues of C) . Indeed, since ExtTr(AB) = ExtTr(BA) and
ExtTr(A) > 0if Ais positive,letting A = C*C we see also
ExtTr(AB*B) = Ext-Tr(BAB*) = ExtTr(BC*CB*) = Ext-Tr((CB*)*(CB*)) > 0.
So w(A) is positive, it is also normalised clearly and therefore a state.
Definition 2.2.2. We say that a linear*C%-valued functional y is hermitian if
VA e K[ y(A*) = y(A) ].
We for some state o are interested in the bilinear form f,:K x K - *C%,
(A,B) » w(B*A).
This is because it has many properties similar to an inner product. The first we show
is that states are hermitian, which implies something similar to conjugate symmetry
for f,,.
Lemma 2.2.1.Let v € S*(A) then w is hermitian.
Proof. First suppose A = A*i.e. A is self #-adjoint. Then let
Ar = EXED o) 504Pn A = EXED o) ico(—4)Ps
Noting that both of these are positive, we have that
o(A) = oA, -A) € *RY = o(A*) = o(A) = o(A).
Then for any A € K we can write A = A; + 1A, where A1, A, are both self #-adjoint.
Then we have
w(A*) = o(A1) —i0(A2) = 0(A1) +i10(A2) = 0(A1) +i0(A2) = o(A).
Corollary 2.2.1. Let f,, be the bilinear form as defined before. Then it is conjugate
symmetric i.e. f,(A,B) = f,(B,A).
Proof. Using that states are hermitian we see clearly
fo(BA) = o(A*B) = w((A*B)*) = w(B*A) = f,(A,B).
Next, we show the cauchy schwarz for states.
Lemma 2.2.2. (Cauchy Schwarz)
Let v € S*(K), then we have,|o(AB*)[> < w(A*A)w(B*B).
Proof. If B = O this is clear. Otherwise, by positivity we have for
C = w(BB*)A— w(AB*)B :
0 < w(CC*) = w((w(BB*)A— w(AB*)B)(w(BB*)A* — w(AB*)B*)) =...... =
= w(BB*)(w(BB*)w(AA*) — w(AB*)w(BA*) — w(AB*)w(AB*) + w(AB*)w(AB*)).
Then using that states are hermitian (lemma 2.13) we can simplify
...= 0(BB*)(w(BB*)w(AA*) — |w(AB")|?).
Then by positivity, ©(BB*) > 0 and so o(BB*)w(AA*) — [w(AB*)|* > 0 as required.
Corollary 2.2.2.[fo(A,B)| < wa(A,A)fw(B, B).
We see now that f,, is very similar to an inner product, but fails on positive
definiteness, as seen in the following example.

Then for all A positive, w(A):K - *C%#,B

10
Example 2.2.3. In M,(*C%), we can set A = ( 00 ).Then as Ais positive we can
define the state wa as before: wa:M2(*C%) —» *C%,B » ExtTr(AB).

00
Then for B = ( 01 > + 0 we have wa(B*B) = wa(B) = ExtTr(AB) = ExtTr(0) = 0.



This motivates the next definition.

Definition 2.2.3. We define for each w € S$#(K)

Jo = {Ae K | o(A*A) = f,(A/A) = 0}.

The fact that our candidate is not positive definite is not an issue, so long as we can
use some devices from abstract algebra (namely quotient objects) to “forget” about
the problem areas. For this, we need to find an appropriate ideal of K.

Lemma 2.2.3. Let J,, be as before. Then J,, is a left ideal.

Proof. Say A,B € J,,. Then

(A+B)*(A+B) < (A+B)*(A+B)+ (A-B)*(A-B) = 2A*A+2B*B
so0<f,(A+B,A+B) < 2f,(A) + 2f,(B) = 0. So J,, is a #closed linear subspace.
We also see that for all A € J, and B € K(BA)*(BA) < ||B||§A*A, and soBA € J,
Lemma 2.2.4. If w is a positive linear functional on K, then the operator #-norm of w,
w(A)
el
Proof. We know that ||o||, > »(1) since [[1], = 1.Now let A € K\ {0}. We have that
[A+A*],1-(A+A*) > 0and so o(A+A*) < [|[A+A*| ,0(1). But also, we have
o AAc )| < Iw(A)I+2Iw(A*)I — o(A)] = w(A;A*) N a)(A;A*) < w(A;A*)

|l = SUpek {0} satisfies o], = w(1).

= ‘M ‘ .And so we have equality everywhere and that |o(A)| = ‘M ‘
Putting this together we have
A+ A* A+ A" o1 Al + ||A*] 40 (1

And so ||, < w(1).In fact this relationship is equivalent.
Lemma 2.2.5. Let w be a linear functional on K. The following statements are
equivalent
1. w is positive
2. |loll, = o(l).
Proof. 1.= 2. islemma 2.18+ 2. = 1.
Let A be positive, and say w(A) = a+ib,a,b € *RE. Then for all t € *R% we have:
a2+ (b+tlol,)? = [A+it]3 < [A+it|Zlel; < (AIZ+) ol
Substracting t2 ||w||2from both sides we have 2bt < ||A||§ and hence b = 0.Then,
Al loll, —a=aolAl,-A) = ol lIAl,-Al, < llol, |Al, Soa> 0.
From the theory so far, we can relate the spectrum of some element A € K to some
states on K.
Lemma 2.2.6. Let A € K then for each 1 € ¢(A) there exists a state wa;:K - *C#
such that wa;(A) = 4.
Proof. We define the linear functional on the subspace *C¥ - A+ *C% - 1 by
wo(@aA+b;) = al + b. Itis clear then that wo(aA+ b1) = al +b € s(aA+ bl) and

_ B [l + b|
hence by lemma 1.29 1 = wo(1) < ||woll, = SUDa,be*cg[m < 1}.
Then by generalized Hahn-Banach theorem, there exists an extension of wo to K,wa;
With ||, = 1 = wa (1) by lemma 2.19, o, is a state.
The next lemma shows us how even though we don’t have positive definiteness, we
can conclude an equivalence between A = 0 and w(A) = OVw.
Lemma 2.21. Let K be a C} algebra, and A € K. Then we have



A=0o oA = Vo € S¥(K).

Proof. = is clear by linearity of .

< can be seen by the string of implications

o(A) = Vo € F/(K) = o(A) = {0} > A= 0.

We see in fact there are a huge number of results in analogy to those discussed in
subsection 2.1 using that 6(A) < {w(A) | o € S¥(K)}. For example

Lemma 2.22. Let K be a C} algebra and let A € K.

()A=A* & w(A) € *RiVeo € S/(K)

(i) A>0 o wA) > Vo € S¥(K).

Proof. (i)-(ii) « follows since ¢(A) < {w(A) | @ € $*(K)} and = since w is hermitian.
(i)-(ii) < follows since ¢(A) < {w(A) | o € S*(K)} and = since w is positive.

82.3.Representations and the generalized Gelfand-

-Naimark-Segal Construction.

Definition 2.3.1. Let K be a C} algebra. A representation is a x-homomorphism

K - B(HHA » #[A]

Definition 2.3.2. Let K be a C} algebra, represented in B(H*) by z. Suppose further
that H§ < H* is a subspace such that {z[A]JH§}A € K < Hf (i.e.  is stable in H).
Then the restriction of x to this subspace, 7o:K - B(H{)A ~ z[A] is called a
subrepresentation.

Example 2.3.1. For all representations = we always have the trivial subrepresentations
where we restrict the domain of z[A] to {0} or H*

Definition 2.3.3. A representation 7:K - B(H*)A ~ z[A] is called irreducible if the only
subrepresentations are the restrictions to {0} or H* there are no nontrivial
subrepresentations.

Definition 2.3.4. (Equivalent Representations)

Say 71:K - B(HY)A » 71[Alr2:K - B(H5A » m2[A]

Are two representations of the same Cj} algebra such that there exists a unitary linear
map U:H% - H¥ such that VA € K:Uz1(A) = mU(A)

Then they are called equivalent.

Example 2.3.2. (Direct Sum over representations)

Say 7i:K - B(Hf),i < N € *N are a finite or hyperfinite family of representations.
Then we can define a representation 7:K — B (Ext®; H¥) A » z[A] where if vis
uniquely decomposed into Ext-3"ivi (where each v; € H¥) we have

#[A](v) = Xizi[A](vi). Then for each iwe have a subrepresentation equivalent to the
representation in H?, given by the restriction of r to the subspace

0®...00® Hf ® 0®...00.We can imagine representations like this in terms of
hyperfinite matrices:

m[A] O 0 \Z1
7Z'[A] (V) _ g ﬁzéA] e ((; V2
0 0 ... TN [A] AL VN i

We explore this concep_t later in greater detail.
Lemma 2.3.1. Let =:K -~ B(H¥) be a representation and say v € H* has #-norm 1.



Then the map wv:K - *CZA » (x[A]v,v)H? defines a state on K
Proof. It is clear that wv is linear and by cauchy schwarz we have

lov(A)| < JlalAVIvIL, < AV IvIG = [IalAVI, v,
So wy is bounded in *[R’g‘. Itis posmve since (z[A*Alv,V) = (z[A]v, z[A]V) = ||7r[A]v||§.
And so by lemma 2.19 we have
oy, = @1V, V), = (v,V), = V]2 = 1as required.
In fact, every state on K arises in this fashion, as shown in the GNS construction.
We break down the proof of the GNS construction into a few lemmas.
27
Lemma 2.3.2. The non-Archimedean Hilbert space completion of the space K/J,,
with respect to the *C%-valued inner product
(+ | *)y KW, x KNI, » *CE([A],[B]) ~ w(B*A) = f,(AB)
is a non-Archimedean Hilbert space.
Proof. We have seen in lemma 2.17 that J,, is a left ideal. Therefore this quotient
object makes sense, and furthermore the inner product is well defined. It is clearly
linear in the first argument, as well as positive definite by lemma 2.14 and conjugate
symmetric by cororallary 2.13.1. Therefore it is an inner product on the quotient
space, and the Hilbert space completion defines a Hilbert space clearly.
Definition 2.3.5. Given a C} algebra K and a state o, we define the Hilbert space
completion of K/J,, with respect to the inner product to be LE(K, ).
Lemma 2.3.3. Given K, as before, we can define a representation 7:K - B(L4(K,w))
Such that w(A) = (z[A]l, | 1.). Where 1, € LE(K,) is the unit cyclic vector
Proof. For A € K we consider the map zo(A):K/J, - K/J,[B] » [AB].
It is clear to see since J,, is a left ideal that this is well defined and since
|| zo[A](B) ||§ = w((AB)*(AB)) < ||A||§a)(B*B) this extends to a bounded in *R#%operator
n(A) € B(L{(K,w)) Then we have that the map =:K - B(L4(K,®)),A ~ n(A).
Is a homomorphism clearly but moreover for all C,D € K, ([Clo|z(A*)[D]w) =
= w(D*A*C) = (n(A)[Clw|[D]w).And so z is a x-homomorphism. Also, since
1, = [1], € K/J,, we have (z(A)1, | 1,) = o(15Al,) = w(A).
Theorem 2.33. (The non-Archimedean GNS construction)
Let K be a C} algebra. For every state o € S*(K) then there is a
non-Archimedean Hilbert space L4(K,») and a unique (up to equivalence)
representation 7:K - B(L5(K,®)) such that w(A) = (z[A]l, | 1.),A € K.
Where 1, € L(K,w) is the unit cyclic vector.
Proof. By lemma 2.32 it remains to show uniqueness.
Say p:A - B(H") is representation with : € H* cyclic and w(A) = (p(A)1,1), then we
can consider the map Uq:K/J,, - H# [A] = p(A)i. We then would have
(Uo(A),Uo(B)) = (p(A)1,p(B)1) = (p(B*A)1,1) = w(B*A) = ([A]l[B]).
So Up is well defined, and an isometry. Furthermore for any A,B € K we have
Uo(z(A)[Blw) = Uo([ABJw) = p(AB): = p(A)Uo([B])).
So Up extends to an isometry

L4(K,w) - H* suth that VA € K : Uz(A) = p(A)U
Since 1 is cyclic , and we have p(K): < U(L(K,w)) it follows that U must be unitary.
The following cororallary tells us that we can think of any C} algebra as a subset of
B(H*) for some H?.



Corollary 2.33.1. Let K be a C} algebra. Then there exists a faithful representation
of K.

Proof. Let z be the direct sum over all GNS representations corresponding to states.
Then by lemma 2.21 this representation is faithful.

This result is very deep, and shows that there is a one to one correspondence.
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