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Abstract. Functional analysis works with TVS (Topological Vector Spaces),
classically over archimedean fields like � and �.Canonical non-Archimedean
functional analysis, where alternative but equally valid number systems such as
p-adic numbers �p etc. are fundamental, is a fast-growing discipline.

This paper deals with TVS over non-classical non-Archimedean fields ��c
# , ��c

#

and��c
#, ��c

#.
Definitions and theorems related to non-Archimedean functional analysis on

non-Archemedean field ��c
# and on complex field ��c

# � ��c
# � i ��c

#are

considered.
Applications to constructive quantum field theory also are considered
[6] https://doi.org/10.1063/5.0162832
[12] https://iopscience.iop.org/article/10.1088/1742-6596/2701/1/012113

[notice in [6] and [12] we abbreviate ��c
# instead ��c

# for the sake of brevity].
Definitions and theorems appropriate to analysis on non-Archemedean
field ��c

# and on complex field ��c
# � ��c

# � i ��c
#are given in [1]-[2].
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Introduction
The incompleteness of set theory ZFC leads one to look for natural nonconservative
extensions of ZFC in which one can prove statements independent of ZFC which
appear to be “true”. One approach has been to add large cardinal axioms.
Or, one can investigate second-order expansions like Kelley-Morse class theory,
KM or Tarski-Grothendieck set theory TG or It is a nonconservative extension of
ZFC and is obtained from other axiomatic set theories by the inclusion of Tarski’s
axiom which implies the existence of inaccessible cardinals. See also related set
theory with a filter quantifier ZF�aa�. In this paper we look at a set theory NC�#

# [18],
based on bivalent gyper infinitary logic with restricted Modus Ponens Rule [18].
Nonconservative extension namely IST# of the canonical internal set theory IST was
presented in [18].

§1.Bivalent hyper Infinitary first-order logic 2L�#
# with

restricted rules of conclusion.Generalized Deduction
Theorem.

Hyper infinitary language L�#
# are defined according to the length of hyper infinitary

conjunctions/disjunctions as well as quantification it allows. In that way, assuming a
supply of � � �0

# � card��#� variables to be interpreted as ranging over a nonempty
domain, one includes in the inductive definition of formulas an infinitary clause for
conjunctions and disjunctions, namely, whenever the hypernaturals indexed hyper
infinite sequence �A�����# of formulas has length less than �, one can form the
hyperfinite conjunction/disjunction of them to produce a formula. Analogously, whenever
an hypernaturals indexed sequence of variables has length less than �, one can
introduce one of the quantifiers � or � together with the sequence of variables in front of
a formula to produce a new formula. One also stipulates that the length of any
well-formed formula is less than �0

# itself.
The syntax of bivalent hyper infinitary first-order logics 2L�#

# consists of a (ordered) set
of

sorts and a set of function and relation symbols, these latter together with the

corresponding type, which is a subset with less than �0
# � card��#� many sorts.

Therefore, we assume that our signature may contain relation and function symbols on
� � �0

# many variables, and we suppose there is a supply of � � �0
# many fresh

variables of each sort. Terms and atomic formulas are defined as usual, and general



formulas are defined inductively according to the following rules.
If �,�,��� : � � �� (for each � � �) are formulas of L�#

# , the following are also
formulas:

(i) ���� ��,���� ��,

(ii) ���� ��,���� ��,

(iii) � � �,� � �,� � �,��
(iv) ����x�� (also written �x�� if x� � �x� : � � ��),
(v) ����x�� (also written �x�� if x� � �x� : � � ��),
(vi) the statement ���� �� holds if and only if for any � such that � � �

the statement holds ��,
(vii) the statement ���� �� holds if and only if there exist � such that � � �

the statement holds ��.
Definition 1.1.A valuation of a syntactic system is a function that as signs � (true)
to some of its sentences, and/or � (false) to some of its sentences.Precisely, a
valuation maps a nonempty subset of the set of sentences into the set ��,��.
We call a valuation bivalent iff it maps all the sentences into ��,��.
Definition 1.2.Let L be a propositional language. L is a classical bivalent propositional
language iff its admissible valuations are the functions v such that for all sentences

A,B
of L the following properties hold
(a) v�A� � ��,��
(b) v��A� � � iff v�A� � �
(c) v�A � B� � � iff v�A� � v�B� � �.
(d) by definition of the classical implication A � B the following truth table holds

�1�

�2�

�3�

�4�

v�A� v�B� v�A � B�

� � �

� � �

� � �

� � �

Truth table 1.
(e) v��A� � ��,��
(f) v���A� � � iff v��A� � �
(g) v��A � B� � � iff v��A� � v��B� � �.
(h) by definition of the nonclassical implication A � B the following truth table holds

�1�

�2�

�3�

�4�

v��A� v��B� v��A � B�

� � �

� � �

� � �

� � �

Truth table 2.
Remark 1.1.Note that in the case (2) of the truth table 2
� � v��A � B� 	 v�A � B� � �.
In this case we call implication A � B a weak implication and abbreviate



A �w B �1.1�

We call a statement (1.1) as a weak statement and often abbreviate v�A � B� � �w

instead (1).
Definition 1.3.[7-8]. A is a valid (logically valid) sentence (in symbols, 
 A) in L iff
every admissible valuation of L satisfies A.
The axioms of hyper infinitary first-order logic 2L�#

# consist of the following schemata:
I. Logical axiom
A 1. A � 	B � A

A 2. 	A � 	B � C
 � 		A � B
 � 	A � C



A 3. 	�B � �A
 � 	A � B

A 4. 	� i��	A � Ai

 � 	A � � i�� Ai
,� � �#

A 5. 	� i�� Ai
 � Aj ,� � �#

A 6. 	�x	A � B
 � 	A � �xB


provided no variable in x occurs free in A;

A 7. �xA�x� � Sf�A�,
where Sf�A� is a substitution based on a function f from x to the terms of the
language; in particular:
A 7�. �xi	A�xi �
 � A�t� is a wff of 2L�#

# and t is a term of 2L�#
# that is free for xi

in A�xi �. Note here that t may be identical with xi ; so that all wffs �xiA � A
are axioms by virtue of axiom (7),see [8].
A 8.Gen (Generalization).
�xiB follows from B.
II.Restricted rules of conclusion.
Let �wff be a set of the all closed wffs of L�#

# .

R1.RMP (Restricted Modus Ponens).
There exist subsets 	1,	2 � �wff such that the following rules are satisfied.
From A and A � B, conclude B iff A � 	1 and �A � B� � 	2,where 	1,	2 � �wff.
In particular for any A,B � �wff : A �w B � 	2.
If A � 	1 and �A � B� � 	2 we also abbraviate by A,A �s B 
RMP B.
R2.RMT (Restricted Modus Tollens)
There exist subsets 	1

� ,	2
� � �wff such that the following rules are satisfied.

P � Q,�Q 
RMT �P iff P � 	1
� and �P � Q� � 	2

� ,where 	1
� ,	2

� � �wff.
Remark 1.2.Note that RMP and RMT easily prevent any paradoxes of naive Cantor
set theory (NC), see [1],[9].
III.Additional derived rule of conclusion.
Particularization rule (RPR)
Remind that canonical unrestricted particularization rule (UPR) reads
UPR: If t is free for x in B�x�, then �x	B�x�
 
 B�t�,see [8].
Proof.From �x	B�x�
 and the instance �x	B�x�
 � B�t� of axiom (A7), we obtain B�t�
by unrestricted modus ponens rule.Since x is free for x in B�x�, a special case of
unrestricted particularization rule is:�xB 
 B.
Definition 1.4.Any formal theory L with a hyper infinitary lenguage L�#

# is defined
when the following conditions are satisfied:
1. A hyper infinite set of symbols is given as the symbols of L. A finite or hyperfinite
sequence of symbols of L is called an expression of L.



2. There is a subset of the set of expressions of L called the set of well formed

formulas (wffs) of L. There is usually an effective procedure to determine whether a
given expression is a wff.
3. There is a set of wfs called the set of axioms of L. Most often, one can
effectively decide whether a given wff is an axiom; in such a case, L is
called an axiomatic theory.
4. There is a finite set R1, . . . ,Rn, of relations among wffs, called rules of

conclusion. For each Ri , there is a unique positive integer j such that, for
every set of j wfs and each wff B, one can effectively decide whether the
given j wffs are in the relation Ri to B, and, if so, B is said to follow from
or to be a direct consequence of the given wffs by virtue of Rj .
Definition 1.5.A proof in L is a finite or hyperfinite sequence B1, . . . ,Bk,k � �#

of wffs such that for each i,either Bi is an axiom of L or Bi is a direct
consequence of some of the preceding wffs in the sequence by virtue of one
of the rules of inference of L.
Definition 1.6. A theorem of L is a wff B of Y such that B is the last wff of some
proof in L. Such a proof is called a proof of B in L.
Definition 1.7. A wff E is said to be a consequence in L of a set of 
 of wffs if and
only if there is a finite or hyperfinite sequence B1, . . . ,Bk,k � �# of wffs such that

E is Bk and, for each i,either Bi is an axiom or Bi is in 
, or Bi is a direct
consequence by some rule of inference of some of the preceding wffs in the
sequence. Such a sequence is colled a proof (or deduction) E from 
. The
members of 
 are called the hypotheses or premisses of the proof.
We use 
 
 E as an abbreviation for E as a consequence of 
.
In order to avoid confusion when dealing with more than one theory, we write

 
L E, adding the subscript L to indicate the theory in question.
If 
 is a finite or hyperfinite set �H i�1�i�m,m � �# we write H1, . . . ,Hm 
 E instead

of �H i�1�i�m 
 E.

Lemma 1.1.[18]. 
 B � B for all wffs B.
Theorem 1.1.(Generalized Deduction Theorem1). If 
 is a set of wffs and B and E
are wffs, and 
,B 
 E, then 
 
 B �s E. In pticular, if B 
 E then 
 B � E.
Proof. Let E1, . . . ,En,n � �# be a proof of E form 
 � �B�, where En is E.
Let us prove, by hyperfinite induction on j, that 
 
 B �s Ej for 1 � j � n.

First of all, E1 must be either in 
 or an axiom of L or B itself.
By axiom schema A1, E1 �s �B �s E1� is an axiom. Hence, in the first two cases,
by MP, 
 
 B �s E1 For the third case, when E1 is B, we have 
 B �s E1 by
Lemma 1, and, therefore, 
 
 B �s E1. This takes care of the case j � 1.
Assume now that: 
 B �s Ek for all k � j, j � �#. Either Ej is an axiom, or Ej is in

, or Ej is B, or Ej follows by modus ponens from some El and Em where l � j,
m � j, and Em has the form El �s Ej . In the first three cases, 
 
 B �s Ej as in the
case j � 1 above. In the last case, we have, by inductive hypothesis, 
 
 B �s El

and 
 
 B �s �El �s Ej � But, by axiom schema (A2),

 B �s �El �s Ej � �s ��B �s El � �s �B �s Ej ��
Hence, by MP, 
 
 �B �s El � �s �B �s Ej � and, again by MP, 
 
 B �s Ej .
Thus, the proof by hyperfinite induction is complete.



The case j � n � �# is the desired result. Notice that, given a deduction of E from

 and B, the proof just given enables us to construct a deduction of B �s E
from 
. Also note that axiom schema A3 was not used in proving the
generalized deduction theorem.
Remark 1.3.For the remainder of the chapter, unless something is said to the

contrary,
we shall omit the subscript L in 
L . In addition, we shall use 
,B 
 E to stand for

 � �B� 
 E. In general, we let 
,B1, . . . ,Bn 
 E stand for 
 � �Bi�1�i�n 
 E.

Remark 1.4.We shall use the terminology proof, theorem, consequence, axiomatic,
etc. and notation 
 
 E introduced above.
Proposition 1.1. Every wff B of K that is an instance of a tautology is a theorem of
K, and it may be proved using only axioms A1-A3 and MP.
Proposition 1.2.If E does not depend upon B in a deduction showing that

,B 
 E, then 
 
 E.
Proof.Let D1, . . . ,Dn be a deduction of E from 
 and B, in which E does not
depend upon B. In this deduction, Dn is E. As an inductive hypothesis, let
us assume that the proposition is true for all deductions of length less than n � �#

If E belongs to 
 or is an axiom, then 
 
 E. If E is a direct consequence of
one or two preceding wffs by Gen or MP, then, since E does not depend
upon B, neither do these preceding wfs. By the inductive hypothesis, these
preceding wfs are deducible from 
 alone. Consequently, so is E .
Theorem 1.2.(Generalized Deduction Theorem 2).Assume that, in some deduction
showing that 
,B 
 E, no application of Gen to a wff that depends upon B has as
its quantified variable a free variable of B. Then 
 
 B �s E.
Proof.Let D1, . . . ,Dn be a deduction of E from 
 and B satisfying the assumption
of this theorem. In this deduction, Dn is E. Let us show by hyperfinite induction
that 
 
 B �s D i for each i � n � �#. If D i is an axiom or belongs to 
, then

 
 B �s D i , since D i �s �B �s D i � is an axiom. If D i is B, then

 
 B �s D i , since, by Proposition 1, 
 B �s B.· If there exist j and k less
than i such that Dk is 
 D j �s D i , then, by inductive hypothesis, 
 
 B �s D j

and 
 
 B �s �D j �s D i �. Now, by axiom A2,

 B �s �D j �s D i � �s ��B �s D j � �s �B �s D i ��.Hence, by MP twice,

 
 B �s D i . Finally, suppose that there is some j � i such that D i is �xkD j .
By the inductive hypothesis, 
 
 B �s D j , and, by the hypothesis of the theorem,
either D j does not depend upon B or xk is not a free variable of B. If D j does not
depend upon B, then, by Proposition 2, 
 
 D j and, consequently, by
Gen, 
 
 �xkD j . Thus, 
 
 D i . Now, by axiom A1, 
 D i �s �B �s D i �.
So, 
 
 B �s D i by MP. If, on the other hand, xk is not a free variable of B,
then, by axiom A5, 
 �xk�B �s D j � �s �B �s �xkD j � Since 
 
 B �s D j ,
we have, by Gen,
 
 �xk�B �s D j � , and so, by MP,
 
 B �s �xkD j

that is, 
 
 B �s D i . This completes the induction, and our proposition is
just the special case i � n. .

§2.Set theory NC�#
# .

Set theory NC�#
# is formulated as a system of axioms based on bivalent hyper

infinitary logic 2L�#
# with restricted modus ponens rule [1],[18]. The language of set



theory NC�#
# is a first-order hyper infinitary language L�#

# with equality �, which
includes a binary symbol �. We write x 	 y for � �x � y� and x � y for ��x � y�.
Individual variables x,y,z, . . . ,and x

CL
,y

CL
,z

CL
, . . . of L�#

# will be understood as ranging
over classical sets. The unique existential quantifier �! is introduced by writing, for any

formula ��x�,�!x��x� as an abbreviation of the formula �x	��x� & �y���y� �s x � y�
.
The language L�#

# will also contains the formation of terms of the form �x|��x��NCL, for
any formula ��x� containing the free variable x.
Such terms are called non-classical sets; we shall use upper case letters A,B, . . . ,
and ANCL,BNCL, . . . for such sets. For each non-classical set A � �x|��x��NCL the

formulas
�x	x � A �s,w ��x�
 and �x	x � A �s,w ��x,A�
 is called the defining axioms for the
non-classical set A.
Remark 2.1.Remind that in logic 2L�#

# with restricted modus ponens rule the statement
� � �� � 	� does not always guarantee that

�,� � 	 
RMP 	 �2.1�

since for some � and 	 possible

�,� � 	 �RMP 	 �2.2�

even if the statement � � �� � 	� holds.

Abbreviation 2.1.We shall write for the sake of brevity instead (2.1) by

� �s 	 �2.3�

and we shall write instead (2.2) by

� �w 	. �2.4�

Remark 2.2.Let A be an nonclassical set.Note that in set theory NC�#
# the following

true formula

�A�x	x � A � ��x,A�
 �2.5�

does not always guarantee that

x � A,x � A � ��x,A� 
RMP ��x,A� �2.6�

even if x � A holds and (or)

��x,A�,��x,A� � x � A 
RMP x � A; �2.7�

even ��x,A� holds, since for nonclassical set A for some y possible

y � A, y � A � ��y,A� �RMP ��y,A� �2.8�

and (or)

��y,A�, ��y,A� � y � A �RMP y � A. �2.9�

Remark 2.3.Note that in this paper the formulas

�a�x	x � a � ��x� � x � u
 �2.10�

and more general formulas

�a�x	x � a � ��x,a� � x � u
 �2.11�

is considered as the defining axioms for the classical set a.
Remark 2.4.Let a be a classical set. Note that in NC�#

# : (i) the following true formula



�a�x	x � a � ��x,a� � x � u
 �2.12�

always guarantee that

x � a,x � a � ��x,a� 
RMP ��x� �2.13�

if x � a holds and

��x�,��x� � x � a 
RMP x � a; �2.14�

if ��x� holds;

In order to emphasize this fact mentioned above in Remark 2.1-2.3,
we rewrite the defining axioms in general case for the nonclassical sets in the

following
form

�A�x�	x � A �s ��x,A�
 � 	x � A �w ��x,A�
� �2.15�

and similarly we rewrite the defining axioms in general case for the classical sets in
the

following form

�a�x	x � a �s ��x� � �x � u�
. �2.16�

Abbreviation 2.2.We write instead (2.15):

�x�	x � A �s,w ��x,A�
� �2.17�

Definition 2.1. (1) Let A be a nonclassical set defined by formula (2.17).
Assum that: (i) for some y statement ��y� and statement ��y� � y � A holds and
(ii) ��y�,��y� � y � A �RMP y � A, y � A,y � A � ��y� �RMP ��y�.
Then we say that y is a weak member of non-classical set A and abbreviate y �w A.

Abbreviation 2.3. Let A be a nonclassical set defined by formula (2.17) We
abbreviate x �s,w A if the following statement x �s A � x �w A holds, i.e.

x �s,w A �def �x �s A � x �w A�. �2.18�

Definition 2.2.(1) Two nonclassical sets A,B are defined to be equal and we write
A � B if �x	x �s,w A �s x �s,w B
. (2) A is a subset of B, and we often write A �s,v B, if
�x	x �s,w A �s x �s,w B
.(3) We also write CL.Set�a� for the formula
�u�x	x � a � x � u � ��x�
. (4) We also write NCL.Set�A� for the formulas
�x	x �s,v A �s,v ��x�
 and �x	x �s,v A �s,v ��x,A�
.
Remark 2.5.CL.Set�u� asserts that the set u is a classical set. For any classical set u,
it follows from the defining axiom for the classical set u � �x|x �s u � ��x�� that
CL.Set��x|x �s u � ��x���.
We shall identify �x|x �s u� with u, so that sets may be considered as (special sorts of)
nonclassical sets and we may introduce assertions such as u �s A,u �s A, etc.
Abbreviation 2.4.Let ��t� be a formula of NC�#

# .
(i) �x��x� and �CLx��x� abbreviates �x�CL.Set�x� � ��x��
(ii) �x��x� and �CLx��x� abbreviates �x�CL.Set�x� � ��x��
(iii) �X��X� and �NCLX��X� abbreviates �X�NCL.Set�X� � ��X��
(iv) �X��X� and �NCLX��X� abbreviates �X�NCL.Set�X� � ��X��
Remark 2.6.If A is a nonclassical set, we write �x � A ��x,A� for �x	x � A � ��x,A�

and �x � A��x,A� for �x	x � A � ��x,A�
.
We define now the following sets:



1.�u1,u2, . . . ,un� � �x|x � u1 � x � u2 �. . .�x � un�.2. �A1,A2, . . . ,An� �
� �x|x � A1 � x � A2 �. . .�x � An�.3.�A � �x|�y	y � A � x � y
�.
4.�A � �x|�y	y � A � x � y
�.5.A � B � �x|x � A � x � B�.
5.A � B � �x|x � A � x � B�.6.A � B � �x|x � A � x � B�.7.u� � u � �u�.
8.P�A� � �x|x � A�.9.�x � A|��x,A�� � �x|x � A � ��x,A��.10.V � �x|x � x�.
11.	 � �x|x 	 x�.
The system NC�#

# of set theory is based on the following axioms:
Extensionality1: �u�v	�x�x � u � x � v� � u � v

Extensionality2: �A�B	�x�x � A �s,w x � B� � A � B

Universal Set: NCL.Set�V�
Empty Set: CL.Set�	�
Pairing1: �u�v CL.Set��u,v��
Pairing2: �A�B NCL.Set��A,B��
Union1: �u CL.Set��u�
Union2: �A NCL.Set��A�
Powerset1: �u CL.Set�P�u��
Powerset2: �A NCL.Set�P�A��
Infinity �a		 � a � �x � a�x� � a�

Separation1�u1�u2, . . .�un�a�CL.Set��x �s a|��x,u1,u2, . . . ,un���
Separation 2 �u1�u2, . . .�unNCl.Set��x �s,w A|��x,A;u1,u2, . . . ,un���
Comprehension1�u1�u2, . . .�un�A�x	x �s,w A �s,w ��x;u1,u2, . . . ,un�

Comprehension 2 �u1�u2, . . .�un�A�x	x �s,w A �s,w ��x,A;u1,u2, . . . ,un�

Comprehension 3 �u1�u2, . . .�un�a�x	x �s a �s �a � u1� � ��x,a;u1,u2, . . . ,un�

In particular:
Comprehension 3� �u�a�x	x �s a �s �a � u� � ��x,a;u�

Hyperinfinity: see subsection 2.1.
Remark 2.7.Note that the axiom of hyper infinity follows from the schemata
Comprehension 3.
Definition 2.3. The ordered pair of two sets u,v is defined as usual by

�u,v
 � ��u�,�u,v��. �2.19�

Definition 2.4. We define the Cartesian product of two nonclassical sets A and B
as usual by

A 
s,w B � ��x,y
|x �s,w A � y �s,w B� �2.20�

Definition 2.5. A binary relation between two nonclassical sets A,B is a subset
R �s,w A 
s,w B. We also write aRs,wb for � a,b ��s,w R. The doman dom�R� and the
range ran�R� of R are defined by

dom�R� � �x|�y�xRs,wy��,ran�R� � �y : �x�xRs,wy��. �2.21�

Definition 2.6.A relation Fs,w is a function, or map, written Fun�Fs,w�, if for each
a �s,w dom�F� there is a unique b for which aFs,wb. This unique b is written F�a� or Fa.
We write Fs,w : A � B for the assertion that Fs,w s a function with dom�Fs,w� � A and
ran�Fs,w� � B. In this case we write a 
 Fs,w�a� for Fs,wa.
Definition 2.7.The identity map 1A on A is the map A � A given by a 
 a.
If X �s,w A, the map x 
 x : X � A is called the insertion map of X into A.
Definition 2.8.If Fs,w : A � B and X �s,w A, the restriction Fs,w|X of Fs,w to X is the



map X � A given by x 
 Fs,w�x�. If Y �s,w B, the inverse image of Y under Fs,w is the
set

Fs,w
�1 	Y
 � �x �s,w A : Fs,w�x� �s,w Y�. �2.22�

Given two functions Fs,w : A � B,Gs,w : B � C, we define the composite function

Gs,w � Fs,w : A � C to be the function a 
 Gs,w�Fs,w�a��. If Fs,w : A � A, we write Fs,w
2

for Fs,w � Fs,w,Fs,w
3 for Fs,w � Fs,w � Fs,w etc.

Definition 2.9.A function Fs,w : A � B is said to be monic if for all
x,y �s,w A,Fs,w�x� � Fs,w�y� implies x � y, epi if for any b �s,w B there is a �s,w A for

which b � Fs,w�a�, and bijective, or a bijection, if it is both monic and epi. It is easily
shown that

Fs,w is bijective if and only if Fs,w has an inverse, that is, a map Gs,w : B � A such that
Fs,w � Gs,w � 1B and Gs,w � Fs,w � 1A.
Definition 2.10.Two sets X and Y are said to be equipollent, and we write X �s,w Y,
if there is a bijection between them.
Definition 2.11.Suppose we are given two sets I,A and an epi map Fs,w : I � A.
Then A � �Fs,w�i�|i � I� and so, if, for each i �s,w I, we write ai for Fs,w�i�, then A can
be presented in the form of an indexed set �ai : i �s,w I�. If A is presented as an
indexed set of sets �Xi |i �s,w I�, then we write � i�I Xi and � i�I Xi for �A and �A,

respectively.
Definition 2.12.The projection maps �1 : A 
s,w B � A and �2 : A 
s,w B � B are
defined to be the maps � a,b �
 a and � a,b �
 b respectively.
Definition 2.13.For sets A,B, the exponential BA is defined to be the set of all
functions from A to B.

Axiom of nonregularity
Remind that a non-empty set u is called regular iff �x	x 	 	 � ��y � x��x � y � 	�
.
Let’s investigate what it says: suppose there were a non-empty x such that
��y � x��x � y 	 	�. For any z1 � x we would be able to get z2 � z1 � x. Since z2 � x
we would be able to get z3 � z2 � x. The process continues forever:
. . .� zn�1 � zn. . .� z4 � z3 � z2 � z1 � x.Thus if we don’t wish to rule out such an
infinite regress we forced accept the following statement:

�x	x 	 	 � ��y � x��x � y 	 	�
. �2.23�

Axiom of hyperinfinity.
Definition 2.14.(i) A non-empty transitive non regular set u is a well formed non
regular set iff:
(i) there is unique countable sequence �un�n�1

� such that

. . .� un�1 � un. . .� u4 � u3 � u2 � u1 � u, �2.24�

(ii) for any n � � and any un�1 � un :

un � un�1
� , �2.25�

where a� � a � �a�.
(ii) we define a function a�	k
 inductively by a�	k�1
 � �a�	k
��.
Definition 2.15. Let u and w are well formed non regular sets. We write w � u iff



for any n � �

w � un. �2.26�

Definition 2.16. We say that an well formed non regular set u is infinite
(or hyperfinite) hypernatural number iff:
(I) For any member w � u one and only one of the following conditions are
satified:
(i) w � � or
(ii) w � un for some n � � or
(iii) w � u.
(II) Let �u be a set �u � �z|z � u�, then by relation �� � �� a set �u is densely ordered
with no first element.
(III) � � u.
Definition 2.17. Assume u � �#, then u is infinite (hypernatural) number if u � �#\�.
Axiom of hyperinfinity
There exists a set �# such that:
(i) � � �#,
(ii) if u � �#\� then there exists infinite (hypernatural) number v such that v � u,
(iii) if u � �#\� then there exists infinite (hypernatural) number w such that for any
n � � : u�	n
 � w,
(iv) set �#\� is patially ordered by relation �� � �� with no first and no last element.

Axiom of existence the nonclassical truth predicate
Let A,B be a closed wff’s of NC�#

# (NC�#
# -sentences).There is truth predicate T#	A


satisfies the following T#-schemas:

1.�x�y�T#	x � y
 �s,w �x � y��

2.�x�y�T#	x � y
 �s,w �x � y��

3.T#	T#	A

 �s T#	A


4.T#	�T#	A

 �s T#	�A


5.T#	�A
 �s �T#	A


6.T#	��A
 �s T#	A


7.T#	A � B
 �s T#	A
 � T#	B


8.T#	A � B
 �s T#	A
 � T#	B


�2.27�

and

9.T#	A
 �s,w A. �2.28�

Definition 2.18.(i) We say that a NC�#
# -sentence is a s-NC�#

# -sentence (strong
NC�#

# -sentence relative to 
RMP ) if

T#	A
 �s A. �2.29�

(ii) We say that a NC�#
# -sentence is a w-NC�#

# -sentence (weak NC�#
# -sentence

relative to 
RMP ) if

T#	A
 �w A. �2.30�

Notations 2.1.(i) We write x �s y if T#	x � y
 �s �x � y�.



(ii) We write x �w y and if T#	x � y
 �w �x � y�.
Notations 2.2.(i) We write x �s y and will be say that a set if T#	x � y
 �s �x � y�.
(ii) We write x �w y and will be say that if T#	x � y
 �w �x � y�.
Definition 2.19.(i) We will be say that a set y is a s-set if

�x	x � y �s x �s y
 �2.31�

(ii) We will be say that a set y is a w-set if

�x	x � y �s x �s y
 �2.32�

(iii) We will be say that a set y is a s,w-set if

�x	x � y �s x �s,w y
 �2.33�

Remark 2.8.For any model M in a first-order language, the definition of the truth
predicate of M is the same - we define the elementary diagram of M as the set of all
sentences with parameters from M that are true in M, using Tarski’s recursive
definition of truth, using the T schema. This is the same for a model of ZFC as for
any other model in first-order logic. Symbolically

T	A
 � M � A, �2.34�

where M � A stands to A true in model M.
Remark 2.9. Remind that classical truth predicate T	A
 unrestrictedly satisfies the
following T-schema [25-27]:

T	A
 � A, �2.35�

i.e., the sentence A � T	A
 is true for every sentence A of language L, where T	A

stands for "the sentence (denoted by) A is true". Unfortunately T-schema incorrect
by well known Curry’s paradox.
Assume, too, that we have the principle called Assertion (also known as pseudo
modus ponens): �A � �A � B�� � B.By diagonalization, self-reference we can get a
sentence C such that C � �T	C
 � F� where F is anything you like. (For effect,
though, make F something obviously false, e.g. F ��� 0 � 1) By an instance of the
T-schema: T	C
 � C we immediately get:T	C
 � �T	C
 � F�.Again, using the

same
instance of the T-schema, we can substitute C	T,F
 for  

ܶ
◌T	C
 in the above to get (1).

(1) 
 C	T,F
 � �C	T,F
 � F� [by T-schema and substitution]
(2) 
 �C	T,F
 � �C	T,F
 � F�� � F [by assertion]
(3) 
 �C	T,F
 � C	T,F
� � F [by substitution, from (2)]
(4) 
 C	T,F
 � F [by equivalence of C and C � C, from (3)]
(5) 
 C	T,F
 [by unrestricted Modus Ponens, from (1) and (4)]
(6) 
 F [by unrestricted Modus Ponens, from (4) and (5)]
Letting F be anything entailing triviality Curry’s paradox quickly ’shows’ that the
world is trivial.
Remark 2.10.Curry’s paradox easily avoided by restricted MP such that:
1. C	T,F
 � F , �C	T,F
 � F� � C	T,F
 �RMP C	T,F
 and
2. C	T,F
,C	T,F
 � F �RMP F,
Remark 2.11.The set of all T-sentences T	ϕ
 � ϕ, where ϕ is any sentence of the
language LT, that is, where ϕ may contain T, is inconsistent with PA (or any theory
that proves the diagonal lemma) because of the Liar paradox [28].
In formal languages, self-reference is also very easy to come by. Any language



capable of expressing some basic syntax can generate self-referential sentences via
so-called diagonalization (or more properly, any language together with an appropriate
theory of syntax or arithmetic). A language containing a truth predicate and this basic
syntax will thus have a sentence L such that

L � �Tr	L
 �2.36�

This is a ‘fixed point’ of (the compound predicate) �Tr, and is, in effect, our
simple-untruth Liar.
Other conspicuous ingredients in common Liar paradoxes concern logical behavior
of basic connectives or features of implication. A few of the relevant principles are:
Modus ponens (MP): A,A � B 
 B
Excluded middle (LEM): 
 A � �A
Explosion (EFQ): A,�A 
 B
Disjunction principle (DP): If A 
 C and B 
 C then A � B 
 C
Adjunction: If A 
 B and A 
 C then A 
 B � C.
An argument that Liar sentence L implies a contradiction runs as follows.
1. Tr	L
 � �Tr	L
 [LEM]
2.Case One:
a Tr	L

b L [2a: release by MP from T schema (2.35)]
c �Tr	L
 [2b: definition of L]
d �Tr	L
 � Tr	L
 [2a, 2c: adjunction]
Case Two:
a �Tr	L

b L [3a: definition of L by MP]
c Tr	L
 [3b: by MP from T schema (2.35)]
d �Tr	L
 � Tr	L
 [3a, 3c: adjunction]
4. �Tr	L
 � Tr	L
 [1–3: DP]
Remark 2.12. Liar easily avoided by restricted MP such that:
1. Tr	L
 �RMP L
2. L �RMP Tr	L

3. �Tr	L
 �RMP L
4. L �RMP �Tr	L


§3.Nonconservative extension of the model theoretical
NSA based on bivalent hyper Infinitary first-order logic 2L�#

#

with restricted canonical rules of conclusion.
Extending the classical real numbers � to include infinite and infinitesimal quantities

originally enabled D. Laugwitz [1] to view the delta distribution δ�x� as a nonstandard
point function. Independently A. Robinson [2] demonstrated that distributions could be
viewed as generalized polynomials. Luxemburg [3] and Sloan [4] presented an alternate
representative of distributions as internal functions within the context of canonical
Robinson’s theory of nonstandard analysis. For further information on classical
nonstandard real analysis, we refer to [8]-[11].

Abbreviation 3.1.In this paper we adopt the following notations. For a standard set E



we often write Est. For a set Est let σEst be a set σEst � ��x|x � Est�. We identify z with
σz i.e., z �σ z for all z � �. Hence, σEst � Est if E � �, e.g., σ� � �, σ� � �, σP � P,
σL�� � L��, etc. Let ��� , ���,�, ��fin ,���, and ��� denote the sets of infinitesimal
hyper-real numbers, positive infinitesimal hyper-real numbers, finite hyper-real
numbers, infinite hyper-real numbers and infinite hyper natural numbers, respectively.
Note that

�
�fin � ��/��� , �� � �� � i ��, ��fin � ��fin � i ��fin .

Remind that Robinson nonstandard analysis (RNA) many developed using set-
theoretical objects called superstructures [8]-[11]. A superstructure V�S� over a set S
is defined in the following way

V0�S� � S,Vn�1�S� � Vn�S� � �P�Vn�S��,V�S� � �
n��

Vn�S�. �3.1�

Superstructures of the empty set consist of sets of infinite rank in the cumulative
hierarchy and therefore do not satisfy the in�nity axiom. Making S � � will suffice for
virtually any construction necessary in analysis.
Bounded formulas are formulas where all quantifiers occur in the form

�x�x � y � � � ��,�x�x � y � � � ��. �3.2�

A nonstandard embedding is a mapping
�: V�X� � V�Y�

from a superstructure V�X� called the standard universum, into another superstructure

V�Y�, called nonstandard universum, satisfying the following postulates:
1. Y � �X
2.Transfer Principle.For every bounded formula 
�x1, . . . ,xn� and elements
a1, . . . ,an � V�X�, the property 
 is true for a1, . . . ,an in the standard universum if and
only if it is true for �a1, . . . ,�an in the nonstandard universum:

�V�X�,�
 � 
�a1, . . . ,an� � �V�Y�,�
 � 
��a1, . . . ,�an �.
3.Non-triviality.For every infinite set A in the standard universum, the set
��a|a � A� is a proper subset of �A.

Definition 3.1.[10].A set x is internal if and only if x is an element of �A for some

element A of V���. Let X be a set with A � �Ai� i�I a family of subsets of X. Then
the collection A has the infinite intersection property, if any infinite subcollection
J � I has non-empty intersection. Nonstandard universum is �-saturated if whenever
�Ai� i�I is a collection of internal sets with the infinite intersection property and the

cardinality of I is less than or equal to �,�
i�I

Ai 	 	.

Remark 3.1.Remind that: (i) for each standard universum U � V�X� there exists
canonical language � � �U,(ii) for each nonstandard universum W � V�Y� there
exists corresponding canonical nonstandard language �� � �W [10].
3�.The restricted rules of conclusion.
If W � A then �A � B,where B � � � B � ��.
Thus if A holds in W we cannot obtain from �A any formula B whatsoever.
Remark 3.2. We write � � A instead W � A.
In this paper we apply the following hyper inductive definitions of a sets [18]

� S�	�	 � ��� 	 � S �s �
0���	

�� � S �s �� � S� .



Definition 3.2.[18].A set S� ��is a hyper inductive if the following statement

holds

�
����

�� � S �s �� � S�, �3.3�

where �� � � � 1.Obviously a set �� is a hyper inductive.As we see later there is
just one hyper inductive subset of ��,namely ��itself.
We extend up Robinson nonstandard analysis (RNA) by adding the following

postulate:
4.Any hyper inductive set S is internal.
Remark 3.3.The statement 4 is not provable in ZFC but provable in set theory NC�

# ,
see [2]-[3].Thus postulates 1-4 gives an nonconservative extension of RNA and we
denote such extension by NERNA.
Remark 3.4.Note that NERNA of course based on the same gyper infinitary logic with
Restricted Modus Ponens Rule as set theory NC�

# [1]-[3].
Remind that in RNA the following induction principle holds.
Theorem 3.1.[6]. Assume that S� �� is internal set, then

�1 � S� � �x	x � S � x � 1
 � S � ��. �3.4�

In NERNA Theorem 1.1also holds.
Remark 3.5.It follows from postulate 4 and Theorem 1.1 that any hyper inductive
set S is equivalent to �� : S � ��.
Remark 3.6. Note that the following statements are provable in NC�

# [2]-[3]:
5 Axiom of �-induction

�S�S�s �� �	�	 �s �� �
0���	

�� �s S �s �� �s S� �s S � � . �3.5�

6 Axiom of hyper infinite induction

�S�S� ��� �	�	 � ��� �
0���	

�� � S �s �� � S� �s S � �� . �3.6�

Thus postulate 5 of the theory NERNA is provable in NC�#
# .

Rules of conclusion
(1) Restricted Modus Ponens Rule (denoted by 
RMP ) the same as in set
theory NC�#

# .
(2) Restricted Modus Tollens Rule (denoted by 
RMT ) the same as in set
theory NC�#

# .
(3) MRR1 (1.Main Restricted rule of conclusion)
Let ��x� be a wff with one free variable x and such that �n�n � ��\�� � V�Y� � ��n�,
then for all n � n : ���n� �RMP B, i.e., if statement ��n� holds in V�Y� we cannot obtain
from ���n�,with n � n any formula B whatsoever.
(4) MRR2 (2.Main Restricted rule of conclusion)
Let ��x� be a wff with one free variable x and such that �n�n � ��� � V�Y� � ��n�,
then for all n � n : ���n� �RMP B, i.e., if statement ��n� holds in V�Y� we cannot obtain
from ���n�,with n � n any formula B whatsoever.
Remark 3.5.The MRR1,2 is necessarily in natural way, since by assumption ���n�
one obtains directly the apparent contradiction ��n� � ���n� from which by
unrestricted modus ponens rule (UMPR) one obtains ��n� � ���n� 
UMPR B.



Example 3.1. Remind the proof of the following statement:
Theorem 3.2. The structure ��,�� is a well-ordered set.
Proof.Let X be a nonempty subset of �. Suppose X does not have a � -least element.
Then consider the set �\X.
Case (1) �\X � 	. Then X � � and so 0 is a � -least element. Contradiction.
Case (2) �\X 	 	.Then 1 � �\X otherwise 1 is a � -least element. Contradiction.
Case (3) �\X 	 	. Assume now that there exists an n � �\X such that n 	 1.
Since we have supposed that X does not have a least element, thus n � 1 � X.
Thus we see that for all n : n � �\X implies that n � 1 � �\X. We can
conclude by induction that n � �\X for all n � �. Thus �\X � � implies X � 	.
This is a contradiction to X being a nonempty subset of �.
Remark 3.6.(i) The proof of the Theorem 3.2 is an example proof by a contradiction.
Remind that a mathematical proof employing proof by contradiction usually proceeds
as follows:
1.The proposition to be proved is P.
2.We assume P to be false, i.e., we assume � �P.
3.It is then shown that �P implies falsehood. This is typically accomplished by

deriving two mutually contradictory assertions, Q and �Q, and appealing to the
law of noncontradiction.

4.Since assuming P to be false leads to a contradiction, it is concluded that P is in
fact true.

(ii) The statement of the Theorem 3.2 obviously is unprovable by a contradiction under
MRR2. Note that in the Case (3) there is an n 	 1,n � X and n � �\X.Thus
induction hypothesis � n � �\X is not holds since n � �\X � n � �\X is a contradiction
and by MRR2

n � �\X �RMP n � 1 � �\X.

(iii) Note that proof of the Theorem 3.2 mentioned above completely abnormal in fact
even in point view of classical proof theory, since basic assuption n � �\X which is
employed in proof by contradiction, contradicts with induction hypothesis � n � �\X.
Example 3.2. (i) We set now X1 � ��\�, thus ��\X1 � �. In contrast with a set X
mentioned in Example 3.1, the assumption n � ��\X1 implies that n � 1 � ��\X1

if and only if n is finite, since for any infinite n � ��\� the assumption n � ��\X1

contradicts with a true statement V�Y� � n � ��\X1 � � and therefore in
accordance with MRR we cannot obtain for any infinite n from formula n � ��\X1

any formula B whatsoever.
Remark 3.7.Notice in order to prove an statement G � �n�n � ���P�n� by induction

one needs to proof that: P�n� 
RMP P�n � 1�,i.e. by assuming that P�n� is true and then
by RMP proving P�n � 1�.Thus:
(i) any proof by hyperinfinite induction bused on additional assumption that

�RMP �n�n �s
���	�P�n�
. �3.7�

(ii) any proof by �-induction bused on additional assumption that

�RMP �n�n �s ��	�P�n�
. �3.8�

Definition 3.3.к is a natural number if к �s X for every set X such that 0 �s Χ and, for
any λ, if � �s X then λ � 1 �s X, i.e. � �s X 
RMP λ � 1 �s X.



We remind now some basic theorem and definitions related to classical
naturals.
Definition 3.4. [20]. к is a natural number if к belongs to every set X such that
0 � Χ and, for any λ, if � � X then λ � 1 � X.
(As usual, j,k, . . . ,n will denote natural numbers.)
Remark 3.8.[20].If the set of all natural numbers exists, we call it �. But it is not
necessary for us to assume now that � exists. The assumption that � exists is a form

of
what is called the Axiom of Infinity.
Proposition 3.1.[20] For any κ,�λ|λ � к� exists.
Proof. Let Ά � к. The desired set is В|В �s Ρ�Α� , which exists by the Axiom of

Replacement.
Theorem 3.3.[20].
(a) 0 is a natural number, 0 � k
(b) If k is a natural number so is k � 1,if k � λ then k � 1 � λ.
(c) (Induction) Suppose that P�0� (’P holds for 0’); and that, for any natural
number n, P�n� � P�n � 1� holds. Then for every n, P�n� holds.
Proof [20] (a) and (b) are very easy. For (c), suppose that the whole
hypothesis of (c) holds, but that, for some particular n,P�n� fails,i.e. �P�n� holds.Put

X � �m � n|P�m�� �3.9�

X exists since X � �λ|λ � η and λ is a natural number
and P�λ�� , which exists by Proposition 3.1 and the Separation Axiom. Obviously,
0 � X by Theorem 3.3 (a). It will be enough to show that: λ � 1 � X whenever λ � X -
as then X is ’an X’ as in Definition 3.3, so, by Definition 3.3, the natural number n � X,
and so P�n� holds, a contradiction. Suppose then that λ � X, so that λ � n,λ
is a natural number, and P�λ�.By our hypothesis (in (c)), P�λ � 1�. By (b), λ � 1
is a natural number. Also, λ � n, as P�n� fails. Hence λ � 1 � n, by Theorem 3.3 (b).
So λ � 1 � X, as desired.
Remark 3.9.Note that proof of the Theorem 3.3 mentioned above completely
abnormal sinse definition (3.9) incorrect. Correct definition reads

X � �m � n|T	P�m�
 � P�m�� �3.10�

where T	A
 is a truth predicate such that for any well formed closed formula A of
ZFC [24]

T	A
 � A. �3.11�

However as well known such truth predicate is not exists by Curry’s paradox. Thus
a set X is not exists in general case.
Definition 3.5. An element x is said to be a first element of the linearly ordered
set A (with respect to the relation R) if xRyfor all y � A. On the other hand, if yRx
for all y, then x is said to be a last element of
A (with respect to R). Generally speaking, not every set has a first or
last element; but if such an element exists, then it is uniquely determined.
Theorem 3.4.[20]-[22]. In a finite non-empty subset X of a linearly ordered set A
there is a first element and a last element of X.
Proof. The proof is by induction on the number of elements of X. If X has only one



element, then the theorem is obvious. Suppose that the theorem holds for subsets
with n elements. Let X � Y� �a� where a � Y and Y has n elements. Let b1 be the
first and b2 the last element of Y. Since A is linearly ordered, either a precedes b1 or
b1 precedes a. That element which precedes the other is clearly the first element of Y.
Similarly we show that one of the elements a and b2 is the last element of X.
Corollary 3.1. Every finite subset A of � has a first element and also a last element.
Proof. From Theorem 3.4 by definitions.
Theorem 3.5.[20]. (a) (The least element principle). If for some n,P�n�, then there
is a minimal (which is here the same as minimum) n such that P�n�.
(b) (Course-of-values induction). If, for any n,if Q�m� holds for all m � n,
then Q�n�; then, for all n,Q�n�.
Proof of (a). Suppose P�n�. If (P�m� for no m � n, then n is minimal as desired.
Otherwise �k � W�n�|P�k�� (W�n� � �m|m � n� ) is non-empty, and so, being finite,
has a least element m, by Corollary 3.1. It is easy to see that m is the least number
with the property P, as desired.
Proof of (b). Assume the hypothesis of (b) holds and that, for some n, Q�n�. fails.
By (a) let k be the least such n. Thus Q�m� holds for all m � k, so by our hypothesis,
Q�k� holds, a contradiction.
Theorem 3.6.(s-Induction) Let P�x� be wff of NC�

# with a free variable x.Suppose that

T#	P�0�
 � T#	P�0�
 �3.12�

(’P holds for 0’);T#	P�0�
 �s P�0�,and that, for any natural number n,

P�n� �s P�n � 1� �3.13�

and for every n,

T#	P�n�
 �s P�n�, �3.14�

i.e.or every given n,P�n� is s-sentence.Then for every n � �, P�n� holds, i.e.
�n�T#	P�n�
 �s P�n��.

Proof. Suppose that the whole hypothesis mentioned above holds, but that, for some
particular n,P�n� fails,i.e. �P�n� holds.Put

X � �m � n|T#	P�m�
 � P�m�� �3.15�

X exists since X � �λ|λ � η and λ is a natural number and T#	P�m�
 � P�λ�� , which
exists by Proposition 3.1 and the Separation Axiom. Obviously, 0 � X by
Theorem 3.3 (a). It will be enough to show that: λ � 1 �s X whenever λ �s X -
as then X is ’an X’ as in Definition 3.3, so, by Definition 3.3, the natural number

n �s X,
and so P�n� holds, a contradiction. Suppose then that λ �s X, so that λ � n,λ
is a natural number, and P�λ�.By our hypothesis (in (3.13)), P�λ � 1�. By (b), λ � 1
is a natural number. Also, λ � n, as P�n� fails. Hence λ � 1 � n, by Theorem 3.3 (b).
So λ � 1 �s X, as desired.
Theorem 3.7.[23] Any finite nonempty subset X of � has minimal and maximal
members.
Proof [23].Let Xn consist of x1, . . . ,xn. Define m1 � x1 and mk as xk if xk � mk�1 and
mk�1 otherwise. Then mn will be minimal. Similarly, X has a maximal element.
Remark 3.7.This proof in fact based on assumption ( the induction hypothesis) that
the theorem holds for Xk�1 consist of x1, . . . ,xk�1,i.e. mk�1 � min�x1, . . . ,xk�1�, then it



follows mk�1 � min�x1, . . . ,xk�1� � mk � min�x1, . . . ,xk� and by induction we conclude
that for all n � �,mn � min�x1, . . . ,xn�.
Definition 3.6. An element x is said to be a first element of the linearly
s-ordered set A (with respect to the s-relation R) if xRyfor all y �s A. On
the other hand, if yRxfor all y �s A, then x is said to be a last element of
A (with respect to R). Generally speaking, not every set has a first or
last element; but if such an element exists, then it is uniquely determined.
Abbreviation 3.2 Let Xn�A�,Xn�A� � n be s-finite non-empty subset of a linearly
s-ordered set A suth that there is a first element and a last element of Xn.We shall
abbreviated: 	Xn�A�, Xn�A� � n is a s-finite non-empty subset of a linearly s-ordered

set A suth that there is a first element and a last element of Xn�A�
 � Xn�A�.
Under assumption

�RMP �m�m �s ���Xm�A� �Xm�A� . �3.16�

by axiom of �-induction we obtain

�Xn�A� �
n��

Xn�A� �s Xn�1�A� �s �n�Xn�A� Xn�A� . �3.17�

In particular for A � � under assumption

�RMP �m�m �s ���Xm��� �Xm��� . �3.18�

by axiom of �-induction we obtain

�Xn��� �
n��

Xn��� �s Xn�1��� �s �n�Xn�A� Xn��� . �3.19�

7 Axiom of existence non well-ordered s-finite subset of �.

�m�m �s ���Xm��� �Xm��� . �3.20�

§4.Internal Set Theory IST.
The axiomatics IST (Internal Set Theory) was presented in 1977 [19] and in a
sense formulates within first-order language the behaviour of standard and internal
sets of a nonstandard model of ZFC. This were done by adding the unary
standardness predicate "st" to the language of ZFC as well as adding to the axioms
of ZFC three new axiom schemes involving the predicate "st": Idealization,
Standardization and Transfer.
Remark 4.1.Formulas which do not use the predicate st are called internal formulas

(or �-formulas) and formulas that use this new predicate are called external formulas

(or st-�-formulas).A formula � is standard if only standard constants occur in �.
Abbreviaion 4.1.We denote a set of the all naturals by �#and a set of the all finite
naturals by �.
Abbreviaion 4.2.We write fin�x� meaning ’x is finite’. Let ��x� be a st- � -formula:
1.�st x��x� abbreviates �x�st�x� � ��x��.2.�st x��x� abbreviates �x�st�x� � ��x��.
3.�finx��x� abbreviates �x�fin�x�� � ��x��.4.�fin x��x� abbreviates �x�fin�x� � ��x��.
5.�stfin x��x� abbreviates �x�st�x� � fin�x�� � ��x��.
6.�stfin x��x� abbreviates �x�st�x� � fin�x� � ��x��.
The fundamental axioms of IST :



(I) Idealization

�stfinF�y�x � F	R�x,y� � �b�stxR�x,b�
 �4.1�

for any internal relation R.
Remark 4.2.The idealization axiom obviously states that saying that for any fixed
finite set F there is a y such that R�x,y� holds for all x � F is the same as saying that
there is a b such that for all fixed x the relation R�x,b� holds.
(II) Standardization

�stA�stB�stx�x � B � x � A � ��x�� �4.2�

for every st-�-formula � with arbitrary (internal) parameters.
(III) Transfer

�sty1, . . . ,yn�stx	��x,y1, . . . ,yn�
 � �x��x,y1, . . . ,yn� �4.3�

for all internal ��x,y1, . . . ,yn�.
Remark 5.3. An importent consequence of (I) is the principle of External Induction,
which states that for any (external or internal) formula �,one has

��0� � 	�stn���n� � ��n � 1��
 � �stn��n�. �4.4�

Boundedness

�x�sty�x � y� �4.5�

and since (2.5) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization
For every �-formula R :

�stY	�stfinF�y � Y��x � FR�x,y� � �b�b � Y��stxR�x,b��
. �4.6�

This gives a subsystem BST, which corresponds to the bounded sets of IST.

§5.Internal Set Theory IST#

The axiomatics IST# formulates within infinitary first-order language the behaviour
of standard and internal sets of a nonstandard model of NC�#

# . This done by adding
the unary standardness predicate "st" to the language of NC�#

# as well as adding to
the axioms of NC�#

# three new axiom schemes involving the predicate "st":
Idealization, Standardization,Transfer and Axiom of internal hyper infinite
induction.
Remark 5.1.Formulas which do not use the predicate st are called internal formulas

(or �sw -formulas) and formulas that use this new predicate are called external

formulas (or st-�sw -formulas).A formula � is standard if only standard constants
occur in �.
Abbreviaion 5.1.We write fin�x� meaning ’x is finite’. Let ��x� be a st- �sw -formula:
1.�s

st x��x� abbreviates �x�st�x� �s ��x��.
2.�s,w

st x��x� abbreviates �x�st�x� �s,w ��x��.
3.�st x��x� abbreviates �x�st�x� � ��x��.
4.�s

finx��x� abbreviates �x�fin�x�� �s ��x��.
5.�s,w

fin x��x� abbreviates �x�fin�x�� �s,w ��x��.
6.�fin x��x� abbreviates �x�fin�x� � ��x��.
7.�s

stfin x��x� abbreviates �x�st�x� � fin�x�� �s ��x��.



8.�s,w
stfin x��x� abbreviates �x�st�x� � fin�x�� �s,w ��x��.

9.�stfin x��x� abbreviates �x�st�x� � fin�x� � ��x��.
The fundamental axioms of IST# :
(I) Idealization for classical sets

�s
stfinFCL�yCL�xCL �s F	RCL�x,y� �s �bCL�s

stxRCL�x,b�
 �5.1�

for any internal classical relation RCL�x,y�.
Remark 5.2.The idealization axiom obviously states that saying that for any fixed
classical finite set F there is a classical y such that RCL�x,y� holds for all classical
x �s F is the same as saying that there is a classical b such that for all fixed classical
x the classical relation RCL�x,b� holds.
(II) Standardization for classical sets

�stACL�stBCL�stxCL�x � B �s x � A � ��x�� �5.2�

for every st-�-formula � with arbitrary (internal) parameters.
(III) Transfer for classical sets

�sty1
CL, . . . ,yn

CL�stxCL	��x,y1, . . . ,yn�
 �s �xCL��x,y1, . . . ,yn� �5.3�

for all internal ��x,y1, . . . ,yn�.
Boundedness

�xCL�styCL�x �s y� �5.4�

and since (5.4) contradicts idealization the following (bounded) form is taken instead:
(IV) Bounded Idealization for classical sets
For every �-formula R :

�stYCL	�stfinFCL�yCL � Y��xCL�x � F�R�x,y� �s �bCL�b � Y��stxR�x,b��
. �5.5�

(V) Idealization for nonclassical sets

�s,w
stfinFNCL�yNCL�xNCL �s,w F	RNCL�x,y� �s,w �bNCL�s,w

st xRNCL�x,b�
 �5.6�

for any internal nonclassical relation RNCL�x,y�.
Remark 5.3.The idealization axiom obviously states that saying that for any fixed
nonclassical finite set F there is a classical y such that RNCL�x,y� holds for all classical
x �s F is the same as saying that there is a classical b such that for all fixed classical
x the nonclassical relation RNCL�x,b� holds.
(VI) Standardization for nonclassical sets

�s,w
st ANCL�stBNCL�s,w

st xNCL�x �s,w B �s,w x �s,w A � ��x�� �5.7�

for every st-�s,w -formula � with arbitrary (internal) parameters.
(VII) Transfer for nonclassical sets

�s,w
st y1

NCL, . . . ,yn
NCL�stxNCL	��x,y1, . . . ,yn�
 �s,w �s,wxNCL��x,y1, . . . ,yn� �5.8�

for all internal ��x,y1, . . . ,yn�.
Boundedness for nonclassical sets

�s,wxNCL�styNCL�x �s,w y� �5.9�

and since (5.9) contradicts idealization the following (bounded) form is taken instead:

(VIII) Bounded Idealization for nonclassical sets
For every �s,w -formula R :



�s,w
st YNCL �s,w

stfinFNCL�yNCL �s,w Y��s,wxNCL�x � F�R�x,y� �s,w

�bNCL�b � Y��s,w
st xR�x,b��
.

�5.10�

(IX) Internal Hyper Infinite Induction

�S�S�s �#� �	�	 � �#� �
0���	

�� �s S �s �� �s S� �s S �s �# . �5.11�

The main restricted rules of conclusion.
If IST# 
 A then �A � B,where B � �#.
Thus if statement A holds in IST# we cannot obtain from �A any formula B

whatsoever.
Abbreviation 5.2 Let Xn�A�,Xn�A� � n be a s-finite non-empty subset of a linearly
s-ordered set A suth that there is a first element and a last element of Xn.We shall
abbreviated: 	Xn�A�, Xn�A� � n is a s-finite non-empty subset of a linearly s-ordered

set A suth that there is a first element and a last element of Xn�A�
 � Xn�A�.
(X) Axiom of existence non well-ordered s-finite subset of �.

�m�m �s ���Xm��� �Xm��� . �5.12�

§6.Hypernaturals �#.Axiom of hyperinfinity
Definition 6.1.(i) A non-empty transitive non regular set u is a well formed non
regular set iff:
(i) there is unique countable sequence �un�n�1

� such that

. . .� un�1 � un. . .� u4 � u3 � u2 � u1 � u, �6.1�

(ii) for any n � � and any un�1 � un :

un � un�1
� , �6.2�

where a� � a � �a�.
(ii) we define a function a�	k
 inductively by a�	k�1
 � �a�	k
��.
Definition 6.2. Let u and w are well formed non regular sets. We write w � u iff
for any n � �

w � un. �6.3�

Definition 6.3. We say that an well formed non regular set u is infinite
(or hyperfinite) hypernatural number iff:
(I) For any member w � u one and only one of the following conditions are
satified:
(i) w � � or
(ii) w � un for some n � � or
(iii) w � u.
(II) Let �u be a set �u � �z|z � u�, then by relation �� � �� a set �u is densely ordered
with no first element.
(III) � � u.
Definition 6.4. Assume u � �#, then u is infinite (hypernatural) number if u � �#\�.

Axiom of hyperinfinity



There exists a set �# such that:
(i) � � �#,
(ii) if u � �#\� then there exists infinite (hypernatural) number v such that v � u,
(iii) if u � �#\� then there exists infinite (hypernatural) number w such that for any
n � � : u�	n
 � w,
(iv) set �#\� is patially ordered by relation �� � �� with no first and no last element.

§7.Axioms of the nonstandard arithmetic A#.
Axioms of the nonstandard arithmetic A# are:
Axiom of hyperinfinity
There exists a set �# such that:
(i) � � �#

(ii) if u is infinite (hypernatural) number then there exists infinite (hypernatural)
number v such that v � u

(iii) if u is infinite hypernatural number then there exists infinite (hypernatural)
number w such that u � w

(iv) set �#\� is patially ordered by relation �� � �� with no first and no last element.
Axioms of infite �-induction

(i)

�S�S� �� �
n��

�n � S �s n� � S� �s S � � . �7.1�

(ii) Let F�x� be a wff of the set theory NC�#
# , then

�
n��

�F�n� �s F�n��� �s �n�n � ��F�n�. �7.2�

Definition 7.1.(i) Let 	 be a hypernatural such that 	 � �#\�. Let 	0,	
 � �# be a
set such that �x	x � 	0,	
 � 0 � x � 	
 and let 	0,	� be a set 	0,	� � 	0,	
\�	�.

(ii) Let 	 � �#\� and let 	� � �#be a set such that

�x�x � 	� � �k�k � 0�	0 � x � 	�	k
 
�. �7.3�

Definition 7.2.Let F�x� be a wff of NC�#
# with unique free variable x.We will say that

a wff F�x� is restricted on a classical set Ssuch that S �s �# iff the following condition
is satisfied

��	� � �#\S �s �F���
. �7.4�

Definition 7.3.Let F�x� be a wff of NC�#
# with unique free variable x.We will say that

a wff F�x� is strictly restricted on a set Ssuch that S �s �# iff there is no proper subset

S� � Ssuch that a wff F�x� is restricted on a set S�.
Example 7.1.(i)Let fin���,� � �#be a wff formula such that fin��� �s � � �.
Obviously wff fin��� is strictly restricted on a set � since ��	� � �#\� �s �fin���
.
Let hfin���,� � �#be a wff formula such that hfin��� �s � � �#\� since
��	� � � �s �hfin���
.
Definition 7.4. Let F�x� be a wff of NC�#

# with unique free variable x.We will say that a
wff F�x� is unrestricted if wff F�x� is not restricted on any set Ssuch that S � �#.



Axiom of hyperfinite induction 1

�S�S�s 	0,	
��	�	 �s �#� �

���� �s 	0,	�� �
0���	

�� �s S � �� �s S� �s S � 	0,	
 .
�7.5�

Axiom of hyperfinite induction 1�

�S�S�s 	0,	� 
��	�	 � �#� �

���� � 	0,	� 
� �
0���	�

�� � S � �� � S� � S � 	0,	� 
 .
�7.6�

Axiom of hyper infinite induction 1

�S�S�s �#� �	�	 � �#� �
0���	

�� �s S � �� �s S� �s S �s �# . �7.7�

Definition 7.5.A set S�s �# is a hyper inductive if the following statement holds

�
���#

�� �s S �s �� �s S�. �7.8�

Obviously a set �# is a hyper inductive. Thus axiom of hyper infinite induction 1
asserts that a set �# this is the smallest hyper inductive set.
Axioms of hyperfinite induction 2
Let F�x� be a wff of the set theory NC�#

# strictly restricted on a set 	0,	
 then

�	�	 � 	0,	
� �
0���	

�F��� �s F����� �s ���� � 	0,	
�F���. �7.9�

Let F�x� be a wff of the set theory NC�#
# strictly restricted on a set 	0,	� 
 then

�	�	 � 	0,	� 
� �
0���	�

�F��� �s F����� �s ���� � 	0,	� 
�F���. �7.10�

Axiom of hyper infinite induction 2
Let F�x� be anrestricted wff of the set theory NC�#

# then

�	�	 � �#� �
0���	

�F��� �s F����� �s �	�	 � �#�F�	�. �7.11�

The main restricted rules of conclusion.
If A# 
 A then �A � B,where B � �#.
Thus if statement A holds in A# we cannot obtain from �A any formula B whatsoever.

§8.The Generalized Recursion Theorem.
Theorem 1. Let Sbe a set, c � Sand G : S � S is any function with dom�G� � Sand
range�G� � S.Let W	G
 � �# 
 Sbe a binary relation such that:
(a) �1,c� � W	G
 and
(b) if �x,y� � W	G
 then �Sc�x�,G�y�� � W	G
.
Then there exists a function � : �# � Ssuch that:
(i) dom��� � �#and range��� � S;
(ii) ��1� � c;



(iii) for all x � �#,��Sc�x�� � G���x��.
1.The desired function � is a certain hyper inductive relation W � �# 
 S. It is to have
the properties:
(ii�) �1,c� � W;
(iii�) if �x,y� � W then �Sc�x�,G�y�� � W.
Remark 1. The latter is just another way of expressing (iii), that if

��x� � y �1�

then

��Sc�x�� � G�y�. �2�

Remark 2.Note that any relation W mentioned above is hyper inductive relation
since the hyper inductivity conditions (ii�)-(iii�) are satisfied.
However there are many hyper inductive relations which satisfy the conditions
(ii�)-(iii�); on such is �# 
 S.What distinguishes the desired function from all
these other relations is that we want �a,b� to be on it only as required by (ii�) and
(iii�). In other words, it is to be the smallest relation satisfying
(ii�)-(iii�). This can be expressed precisely as follows:
(1) Let M be a set of the relations W satisfying the conditions (ii�) and (iii�);
then we define

� � �
W�M

W.

Hence
(2) whenever W � M then � � W.
We shall now show that we can derived from (1) that � is also one relation in M.
(3) �1,c� � �.

This follows immediately from the definition of �
W�M

and the fact that �1,c� � W for

all W � M.
(4) If �x,y� � � then �Sc�x�,G�y�� � �.
For if �x,y� � � then �x,y� � W for all W � M;hence by (iii�)
�Sc�x�,G�y�� � W for all W � M so that �Sc�x�,G�y�� � � by (1).
We must now verify that � ís actually a function, i,e., we wish to show
that for any x,z1,z2 � �#, if �x,z1� � � and �x,z2� � �, then z1 � z2.
We shall prove this by hyper infinite induction on x. Let

(5) A � �x|x � �# and for all z1,z2 � �#, if �x,z1� � � and �x,z2� � �
then z1 � z2�.
We shalI show A � �# by applying hyper infinite induction. First we have
(6) 1 � A.
To prove (6), it suffices to show that for any z, if �1,z� � � then z � c.
We prove this by contradiction; in other words, suppose to tbe contrary that there
is some z with �1,z� � � but z 	 c. Consider the relation W � �\��1,z��. Since
�1,c� � � and �1,c� 	 �1,z�, it follows that �1,c� � W. Moreover, whenever �u,y� � W
then �u,y� � � and hence �Sc�u�,G�y�� � � but Sc�u� 	 1, so �Sc�u�,G�y�� 	 �1,z�,
and hence �Sc�u�,G�y�� � W. Thus W satisfies both conditions (ii�) and (iii�); in other
words, W � M. But then it follows from (2) that � � W however this
is elearly false sinee �1,z� � � and �1,z� � W. Tbus our hypothesis has led us to a



contradiction, and henee (6) is proved. Next we show that
(7) for any x � �# if x � A then Sc�x� � A.
Suppose that x � A, so that whenever �x,z1� � � and �x,z2� � � then
z1 � z2. We must show that whenever �Sc�x�,w1� � �and �Sc�x�,w2� � �
then w1 � w2. To prove this, it suffices to show that
(8) whenever �Sc�x�,w� � � then there exists a z with w � G�z� and �x,z� � �.
For if (8) ia true, we would have for the given w1,w2 some z1 � z2 with
w1 � G�z1�, w2 � G�z2�, �x,z1� � � and �x,z2� � �. Then, since x � A,z1 � z2

and henee G�z1� � G�z2� , that is, w1 � w2.
Now to prove (8) suppose, to the contrary, that it is not true; in other words,
suppose that we have some w with �Sc�x�,w� � � but such that for all
z which �x,z� � � we have w 	 G�z�. Consider the relation W � �\��Sc�x�,w��.
We shall show that W � M. First of all �1,c� � �and �1,c� 	 �Sc�x�,w�; hence
�1,c� � W. Suppose tbat �u,y� � W; then �u,y� � � and �Sc�u�,G�y�� � �.
Clearly if u 	 x then �Sc�u�,G�y�� 	 �Sc�x�,w�,so that in this case �Sc�u�,G�y�� � W.
On the other hand, if u � x and �Sc�u�,G�y�� � �Sc�x�,w�, then w � G�y�, where
�x,y� � �, contrary to the choice of w henee �Sc�u�,G�y�� 	 �Sc�x�,w��, so again
�Sc�u�,G�y�� � W. Thus whenever �u,y� � W, also �Sc�u�,G�y�� � W. Now that we
have shown W � M we see by (2) that � � W but this is false since �Sc�x�,w� � �
and �Sc�x�,w� � W. Thus our hypothesis that (8) is incorrect has led to a
contradiction, and now (8) is proved. Sinee (7) follows from (8), we have
by hyper infinite induction from (6) that A � �#. Hence

(9) � is a function.
We have still to prove that � satisfies,condition (i); we must show that
for each x � �# there· is a y with �x,y� � �. Since � � �# 
 S, it will
then follow that dom��� � �# and range��� � S. Let B � dom���, that is,
(10) B � �x|x � �# and for some y,�x,y� � ��.
We prove now by hyper infinite induction that B � �#. First, 1 � B, sínce �1,c� � �

by (3). Next, if x � B, pick some y with �x,y� � �; then by (4), �Sc�x�,G�y�� � �,
and henee Sc�x� � B.
Thus concludes the first part of the proof, that there is at least one function �
satisfying conditions (i)-(iii).
Part 2. We prove that there cannot be more than one such function.
Suppose that �1 and �2 both satisfy the conditions (i)-(iii) we wish to show
�1 � �2, i.e., that for all x � �#,�1�x� � �2�x�. Thus
is proved by hyper infinite induction on X. By (ii), �1�1� � c and �2�1� � c, so

�1�1� � �2�1�. Suppose that �1�x� � �2�x�; then �1�Sc�x�� � G��1�x��
and �2�Sc�x�� � G��2�x��, so �1�Sc�x�� � �2�Sc�x��.
Theorem 2. Let Sbe a set, c � Sand G : S
 �# � S is a binary function with
dom�G� � S
 �# and range�G� � S.
Then there exists a function � : �# � Ssuch that:
(i) dom��� � �#and range��� � S;
(ii) ��1� � c;
(iii) for all x � �#,��Sc�x�� � G���x�,x�.
We omit the proof of the Theorem 3.4.2 since it can be given by simple modification
of the proof to Theorem 3.4.1.



§9.General associatíve and commutative laws.
Definition C.1. Suppose that S is a set on which a binary operation � is defined and
under which S is closed. Let �xk�k��# be any hyper infinite sequence of terms of S. For

every n � �# we denote by Ext-�
k�1

n

xk the element of Suniquely determined by the

following conditions:

(i) Ext-�
k�1

1

xk � x1; (ii) Ext-�
k�1

n�1

xk � Ext-�
k�1

n

xk � xn�1 for all n � �#.

Remark 9.1.This definition is justified on the following grounds. The sequence
�xk�k��#is a given external function H with domain �#,H�xk� � xk for every k. We seek

a function F with domain �# whose value F�n� is to be Ext-�
k�1

n

xk. Then the conditions

(i), (ii) above correspond to the following conditions on F :
(i�) F�1� � H�1�; (ii�) F�n � 1� � F�n� � H�n � 1�, for all n � �#.
Let (1) c � H�1�; (2) G�n,z� � z� H�n � 1�.
Thus the conditions (i�) and (ii�) are equivalent to
(i��) F�1� � c;
(ii��) F�n � 1� � G�n,F�n�� for all n � �#.
Given the function H, the element c of Sand the function G are well-defined by (1)-(2).
Then by Theorem B.1 we see that there is a unique function F satisfying (1)-(2) with
dom�F� � �# and range�F� � S. Thus (i�)-(ii�) is just another form of recursive

definition.

(Hence it should be expected that various properties of Ext-�
k�1

n

xk will have to be

verified
by hyper infinite induction on n � �#.)
Definition 9.2. Suppose that S is a set on which a binary operation 
 is defined and
under which S is dosed. Let �xk�k��# be an hyper infinite sequence of terms of S. For

every n � �# we denote by Ext-�
k�1

n

xk the element of Suniquely determined by the

following conditions:

(i) Ext-�
k�1

n

xk � x1; (ii) Ext-�
k�1

n�1

xk � Ext-�
k�1

n

xk 
 xn�1 for all n � �#.

Theorem 1.(1) Suppose that S is a set closed under a binary operation � and that
� is associative on S, i.e.,for all x,y,z � S,x � �y � z� � �x � y� � z. Let �xk�k��# be any
hyper infinite sequence of terms in S. Then for any n,m � �#. we have

Ext-�
k�1

n�m

xk � Ext-�
k�1

n

xk � Ext-�
k�1

m

xn�k . �9.1�

(2) Suppose that S is a set closed under a binary operation 
 and that 
 is associative
on S, i.e.,for all x,y,z � S,x 
 �y 
 z� � �x 
 y� 
 z. Let �xk�k��# be any hyper infinite
sequence of terms in S. Then for any n,m � �#. we have



Ext-�
k�1

n�m

xk � Ext-�
k�1

n

xk 
 Ext-�
k�1

m

xn�k. �9.2�

Proof. We prove (3.5.1); the proof of (2) is completely similar. Let n be fixed; we
proceed by hyper infinite induction on m.For m � 1 from Eq.(3.8.1) we get

Ext-�
k�1

n�1

xk � Ext-�
k�1

n

xk � Ext-�
k�1

1

xn�k . �9.3�

By Definition 3.8.1(i) we obtain

Ext-�
k�1

1

xn�k � xn�1. �9.4�

Suppose Eq.(3.8.1) is true for m � �#.We show that is true for m� 1,i.e.,that

Ext- �
k�1

n��m�1�

xk � Ext-�
k�1

n

xk � Ext-�
k�1

m�1

xn�k . �9.4��

By associativity � on �# we get

Ext- �
k�1

n��m�1�

xk � Ext- �
k�1

�n�m��1

xk. �9.6�

From Eq.(3.8.6) by Definition 3.8.1(ii) we obtain

Ext- �
k�1

�n�m��1

xk � Ext-�
k�1

n�m

xk � x�n�m��1 � Ext-�
k�1

n�m

xk � xn��m�1�. �9.7�

From Eq.(3.8.7) by induction hypothesis we obtain

Ext-�
k�1

n�m

xk � xn��m�1� � Ext-�
k�1

n

xk � Ext-�
k�n

m

xk � xn��m�1�. �9.8�

From Eq.(3.8.8) by associativity � on Swe get

Ext-�
k�1

n

xk � Ext-�
k�n

m

xk � xn��m�1� � Ext-�
k�1

n

xk � Ext-�
k�n

m

xk � xn��m�1� . �9.9�

From Eq.(3.8.9) by Definition 3.8.1(ii) we obtain

Ext-�
k�1

n

xk � Ext-�
k�n

m

xk � xn��m�1� � Ext-�
k�1

n

xk � Ext-�
k�n

m�1

xk. �9.10�

This equality completes the inductive step and hence the proof of the theorem.
Definition 9.3. Let �x1, . . . ,xn
,n � �#\� be an hyperfinite sequence of elements of �c

#.

Then Ext-�
k�m

n

xk and Ext-�
k�m

n

xk are defined for any n,m � �# by the recursions

(i) Ext-�
k�m

n

xk � 0 and Ext-�
k�m

n

xk � 1 if n � m;

(ii) Ext-�
k�m

n

xk � Ext-�
k�m

n�1

xk � xn and

(iii) Ext-�
k�m

n

xk � xn 
 Ext-�
k�m

n�1

xk if m � n.

The condition (ii) of the above definitíon is justified by recursive definition, see
Appendix B.
Definition 9.4. Let �x1, . . . ,xj , . . .
, j � � be a countable sequence of elements of �c

#.



Then �-sum Ext-�
j�m

�

xk and �-product Ext-�
j�m

�

xk are defined for any m � � by

(iv) Ext-�
j�m

�

xj � Ext-�
j�m

n

yj ,where �y1, . . . ,yj , . . . ,yn
,n � �#\� is a hyperfinite sequence

such that xj � yj for all j � � and yj � 0 for all j � �#\�;

(v) Ext-�
j�m

�

xj � Ext-�
j�m

�

yj ,where �y1, . . . ,yj , . . . ,yn
,n � �#\� is a hyperfinite sequence

such that xj � yj for all j � � and yj � 1 for all j � �#\�.
Theorem 9.2.Let �x1, . . . ,xn
,n � �#\� be an hyperfinite sequence of elements of �c

#.
Then we have

Ext-�
k�m

n

xk � Ext- �
k�m

n�m�q

xk�m�q �9.11�

and

z
 Ext-�
k�m

n

xk � Ext-�
k�m

n

z
 xk, �9.12�

z � �c
#.

Proof.Let �x1, . . . ,xn
,n � �#\� be an hyperfinite sequence of elements of �c
#.

Consider now any hyperfinite nonnegative integers
n1,n2, . . ,ni , . . . ,nt,ni� �#\�, 1 � i � t,

and set

n � n1 � n2 �. . .�nt. �9.13�

Given x1, . . . ,xn, we can group these as:

x1, . . . ,xn1; xn1�1, . . . ,xn1�n2; xn1�n2�1, . . . ,xn1�n2�n3; . . .xn1�n2�...ni�1, . . . ,xn1�n2�...ni�1; . . �9.14�

Here, if ni � 0, the corresponding subsequence is regarded as being empty.
Theorem 9.3. Let �x1, . . . ,xk, . . .
 be an hyper infinite sequence of elements of �c

#.
Let �n1, . . . ,nt 
 be a sequence of nonnegalive integers. For each i � 1, . . . ,t � �#,

let mi � �
j�1

i�1

nj and let n � mt � nt. Then

Ext-�
k�1

n

xk � �
i�1

t

Ext-�
k�1

ni

xmi�k �9.15�

and

Ext-�
k�1

n

xk � �
i�1

t

Ext-�
k�1

ni

xmi�k . �9.16�

Proof. By hyper infinite induction.
Definition 9.5. A function F is said to be a permutation of a set S if it is one-to-one
and dom�F� � range�F� � S.
Definition 9.6. Let 	1,n
 a set �k|k � �# � �1 � k � n��
Theorem 9.4.Let �x1, . . . ,xn
,n � �#\� be an hyperfinite external sequence of elements

of �c
#. Then for any n � �# and any permutalion F of 	1,n
 following holds

Ext-�
k�1

n

xk � Ext-�
k�1

n

xF�k�. �9.17�

The same holds if we replace Ext-� by Ext-�.



Proof. The proof is by hyper infinite induction on n � �#. For n � 1 it is trivial.
Suppose that it is true for n. Let G be a permutation of 	1,n � 1
.Then G�m� � n � 1
for a unique m, such that 1 � m � n � 1. Then by Eq.(3.5.15)

Ext-�
k�1

n�1

xG�k� � Ext-�
k�1

m�1

xG�k� � xn�1 � Ext- �
k�m�1

n�1

xG�k� �9.18�

and by Eq.(3.8.18)

Ext-�
k�1

m�1

xG�k� � xn�1 � Ext- �
k�m�1

n�1

xG�k� � Ext-�
k�1

m�1

xG�k� � Ext-�
k�m

n

xG�k�1� � xn�1. �9.19�

Thus by Eq.(3.8.11) we obtain

Ext-�
k�1

n�1

xG�k� � Ext-�
k�1

m�1

xG�k� � Ext-�
k�m

n

xG�k�1� � xn�1. �9.20�

To reduce this to the inductive hypothesis, we wish to rewrite the external sum of the
first

two terms as Ext-�
k�1

n

xF�k� for suitable F. Define F by

F�k� �

G�k� if 1 � k � m

G�k � 1� if m � k � n

�9.21�

Since all valucs of G�k� for k 	 m, we have for all k � n

1 � F�k� � n �9.22�

Now we claim that

F is a permutation of 	1,n
. �9.23�

By (3.8.21) and (3.8.22) we need only check that F is one-to one. Suppose that
F�k1� � F�k2�.
If both k1,k2 are � m or both are � m, it Iollows from (3.8.21) and the fact that G is a
permutation that k1 � k2. If, say, k1 � m � k2, we have G�k1� � G�k2 � 1�, hence
k1 � k2 � 1, which contradicts our assumption. Thus neither this case· nor, by
symmetry, the case k2 � m � k1 can occur. We have from (3.8.20) and (3.8.21) that

Ext-�
k�1

m�1

xG�k� � Ext-�
k�1

m�1

xF�k� � Ext-�
k�m

n

xF�k� � xn�1 � Ext-�
k�1

n

xF�k� � xn�1 �9.24�

by (3.8.23) and inductive hypothesis

Ext-�
k�1

n

xF�k� � xn�1 � Ext-�
k�1

n

xk � xn�1 � Ext-�
k�1

n�1

xk �9.25�

This equality completes the inductive step and hence the proof of the theorem.

§10.Hyperrationals �#.
Now that we have the hypernatural numbers �#, defining hyperintegers and
hyperrational numbers is well within reach [2].
Definition 10.1. Let Z#� � �# 
 �#. We can define an equivalence relation � on Z#�

by �a,b� � �c,d� if and only if a � d � b � c. Then we denote the set of all hyperintegers
by 
# � Z#�/ � (The set of all equivalence classes of Z#� modulo �).



Definition 10.2. Let Q#� � 
# 
 �
# � �0�� � ��a,b� � 
# 
 
#|b 	 0�. We can define an
equivalence relation � on Q#� by �a,b� � �c,d� if and only if a 
 d � b 
 c.Then we

denote
the set of all hyperrational numbers by �# � Q�/ � (The set of all equivalence classes

of
Q�modulo �).
Definition 10.3. A linearly ordered set �P,�� is called dense if for any a,b � P such

that
a � b, there exists z � P such that a � z � b.
Lemma 10.1. ��#,�� is dense.
Proof. Let x � �a,b�,y � �c,d� � �# be such that x � y.Consider z � �ad� bc, 2bd� �

�#.
It is easily shown that x � z � y.

11.External Cauchy hyperreals �c
# via Cauchy

completion.
Definition 11.1. A hyper infinite sequence of hyperrational numbers (or for the sake of
brevity simply hyperrational sequence) is a function from the hypernatural numbers �#

into the hyperrational numbers �#. We usually denote such a function by n 
 an,or by
a : n � an,so the terms in the sequence are written �a1,a2,a3, . . . ,an. . .�. To refer to
the whole hyper infinite sequence, we will write �an�n�1

�#
,or �an�n��#, or for the sake of

brevity simply �an�.
Definition 11.2. Let �an� be a hyperrational sequence. Say that �an� #-tends to 0 if,
given any 
 � 0,
 � 0,there is a hypernatural number N � �#\�, N � N�
� such that,
after N (i.e.for all n � N), |an|� 
. We often denote this symbolically by an �# 0.
We can also, at this point, define what it means for a hyperrational sequence #-tends
to any given number q � �# : �an� #-tends to q if the hyperrational sequence �an � q�
#-tends to 0 i.e., an � q �# 0.
Definition 11.3. Let �an� be a hyper infinite hyperrational sequence. We call �an� a
Cauchy hyperrational sequence if the difference between its terms #-tends to 0.
To be precise: given any hyperrational number 
 � 0,
 � 0,there is a hypernatural
number N � N�
� such that for any m,n � N, |an � am|� 
.
Theorem 11.1. If �an� is a #-convergent hyperrational sequence (that is, an �# q for
some hyperrational number q � �#), then �an� is a Cauchy hyperrational sequence.
Proof.We know that an �# q.Here is a ubiquitous trick: instead of using 
 in the
definition, start with an arbitrary small 
 � 0,
 � 0 and then choose N � �#/� so that
|an � q|� 
/2 when n � N. Then if m,n � N, we have
|an � am|� |�an � q� � �am � q�|� |an � q|�|am � q|� 
/2 � 
/2 � 
.
This shows that �an� is a Cauchy hyper infinite sequence.
Theorem 11.2. If �an� is a Cauchy hyperrational sequence, then it is bounded or

hyper
bounded; that is, there is some M � �# finite or hyperfinite such that |an|� M for all
n � �#.
Proof.Since �an� is Cauchy, setting 
 � 1 we know that there is some N � �#/� such
that |am � an|� 1 whenever m,n � N. Thus, |aN�1 � an|� 1 for n � N. We can rewrite this
as aN�1 � 1 � an � aN�1 � 1.This means that |an| is less than the maximum of |aN�1 � 1|



and |aN�1 � 1|. So, set M equal to the maximum number in the following list:
�|a0|, |a1|, . . . , |aN|, |aN�1 � 1|, |aN�1 � 1|�.Then for any term an, if n � N, then |an| appears in
the list and so |an|� M; if n � N, then (as shown above) |an| is less than at least one of
the last two entries in the list, and so |an|� M.Hence, M is a bound for the sequence.
Definition 11.4. Let Sbe a set . A relation x ~ y among pairs of elements of S
is said to be an equivalence relation if the following three properties hold:
Reflexivity: for any s � S,s~s.
Symmetry: for any s, t � S, if s~t then t~s.
Transitivity: for any s, t,r � S, if s~t and t~r, then s~r.
Theorem 11.3. Let Sbe a set, with an equivalence relation ��~ �� on pairs of elements.
For s � S,denote by cl	s
 the set of all elements in S that are related to s. Then for
any s, t � S,either cl	s
 � cl	t
 or cl	s
 and cl	t
 are disjoint.
The hyperreal numbers �c

# will be constructed as equivalence classes of Cauchy
hyperrational sequences. Let ��# denote the set of all Cauchy hyperrational
sequences of hyperrational numbers. We define the equivalence relation on ��#.
Definition 11.5. Let �an� and �bn� be in ��#. Say they are #-equivalent if
an � bn �# 0 i.e., if and only if the hyperrational sequence �an � bn� tends to 0.
Theorem 11.4.Definition 11.4 yields an equivalence relation on ��#.
Proof. We need to show that this relation is reflexive, symmetric, and transitive.
Reflexive: an � an � 0, and the sequence all of whose terms are 0 clearly
#-converges to 0. So �an� is related to �an�.
Symmetric: Suppose �an� is related to �bn�, so an � bn �# 0.
But bn � an � ��an � bn�,and since only the absolute value |an � bn|� |bn � an| comes
into play in Definition 11.2, it follows that bn � an �# 0 as well. Hence, �bn� is related
to �an�.
Transitive: Here we will use the 
/2 trick we applied to prove Theorem 11.1. Suppose
�an� is related to �bn�, and �bn� is related to �cn�. This means that an � bn �# 0 and
bn � cn �# 0.To be fully precise, let us fix 
 � 0,
 � 0; then there exists an N � �#

such that for all n � N, |an � bn|� 
/2; also, there exists an M � �# such that for all
n � M, |bn � cn|� 
/2. Well, then, as long as n is bigger than both N and M, we have
that |an � cn|� |�an � bn� � �bn � cn�|� |an � bn|�|bn � cn|� 
/2 � 
/2 � 
.
So, choosing L equal to the max of N,M, we see that given 
 � 0 we can always
choose L so that for n � L, |an � cn|� 
. This means that an � cn �# 0 – i.e. �an� is
related to �cn�.
Definition 11.6. The hyperreal numbers �c

# are the equivalence classes cl	�an�
 of
Cauchy sequences of hyperrational numbers, as per Definition 11.5. That is, each
such equivalence class is a hyperreal number.
Definition 11.7. Given any hyperrational number q � �#, define a hyperreal number
q# to be the equivalence class of the sequence q# � �q,q,q,q, . . .� consisting entirely
of q. So we view �# as being inside �c

# by thinking of each hyperrational number
q � �# as its associated equivalence class q#. It is standard to abuse this notation,
and simply refer to the equivalence class as q as well.
Definition 11.8. Let s, t � �c

#, so there are Cauchy sequences �an�,�bn� of
hyperrational numbers with s � cl	�an�
 and t � cl	�bn�
.
(a) Define s� t to be the equivalence class of the sequence �an � bn�.
(b) Define s
 t to be the equivalence class of the sequence �an 
 bn�.



Theorem 11.5.The operations �,
 in Definition 8.8 (a),(b) are well-defined.
Proof. Suppose that cl	�an�
 � cl	�cn�
 and cl	�bn�
 � cl	�dn�
. Thus means that
an � cn �# 0 and bn � dn �# 0. Then �an � bn� � �cn � dn� � �an � cn� � �bn � dn�.
Now, using the familiar 
/2 trick, you can construct a proof that this tends to 0, and
so cl	�an � bn�
 � cl	�cn � dn�
.
Multiplication is a little trickier; this is where we will use Theorem 11.2. We will also
use another ubiquitous technique: adding 0 in the form of s� s. Again, suppose that
cl	�an� � cl	�cn�
 and cl	�bn�
 � cl	�dn�
; we wish to show that
cl	�an 
 bn�
 � cl	�cn 
 dn�
, or, in other words, that an 
 bn � cn · dn �# 0.Well, we
add and subtract one of the other cross terms, say

bn 
 cn : an 
 bn � cn 
 dn � an 
 bn � �bn 
 cn � bn 
 cn� � cn 
 dn �

� �an 
 bn � bn 
 cn� � �bn 
 cn � cn 
 dn� � bn 
 �an � cn� � cn 
 �bn � dn�.

Hence, we have |an 
 bn � cn 
 dn|� |bn|
|an � cn|�|cn|
|bn � dn|. Now, from
Theorem 11.2, there are numbers M and L such that |bn|� M and |cn|� L for all
n � �#. Taking some number K which is bigger than both, we have

|an 
 bn � cn 
 dn|� |bn|
 |an � cn|�|cn|
 |bn � dn|� K�|an � cn|�|bn � dn|�.

Now, noting that both an � cn and bn � dn tend to 0 and using the 
/2 trick (actually, this
time we’ll want to use 
/2K), we see that an 
 bn � cn 
 dn �# 0.
Theorem 11.6. Given any hyperreal number s 	 0, there is a hyperreal number t such
that s
 t � 1.
Proof. First we must properly understand what the theorem says. The premise is that
s is nonzero, which means that s is not in the equivalence class of �0,0,0,0, . . .�. In
other words, s � cl	�an�
 where an � 0 does not #-converge to 0. From this, we are to
deduce the existence of a hyperreal number t � cl	�bn�
 such that s
 t � cl	�an 
 bn�

is the same equivalence class as cl	�1,1,1,1, . . .�
. Doing so is actually an easy
consequence of the fact that nonzero rational numbers have multiplicative inverses,
but there is a subtle difficulty. Just because s is nonzero (i.e. �an� does not tend to 0),
there’s no reason any number of the terms in �an� can’t equal 0. However, it turns out
that eventually, an 	 0.
That is,
Lemma 11.1. If �an� is a Cauchy hyper infinite sequence which does not #-tend to 0,
then there is an N � �#/� such that, for n � N,an 	 0.
We will now use Lemma 11.1 to complete the proof of Theorem 11.7.
Let N be such that an 	 0 for n � N. Define a hyper infinite sequence bn of
hyperrational numbers as follows:
for n � N,bn � 0, and for n � N,bn � 1/an;�bn� � �0,0, . . . ,0,1/aN�1, 1/aN�2, . . .�.
This makes sense since, for n � N, an is a nonzero hyperrational number, so 1/an

exists. Then an � bn is equal to an � 0 � 0 for n � N, and equals an � bn � an � 1/an � 1
for n � N. Well, then, if we
look at the hyper infinite sequence �1,1,1,1, . . .�, we have �1,1,1,1, . . .� � �an � bn� is

the
hyper infinite sequence which is 1 � 0 � 1 for n � N and equals 1 � 1 � 0 for n � N.
Since this sequence is eventually equal to 0, it #-converges to 0, and so
cl	�an � bn�
 � cl	�1,1,1,1, . . .�
 � 1 � �c

#. This shows that t � cl	�bn�
 is a



multiplicative inverse to s � cl	�an�
.
Definition 11.9. Let s � �c

#. Say that s is positive if s 	 0, and if s � cl	�an�
 for some
Cauchy sequence of hyperrational numbers such that for some N � �#,an � 0 for all
n � N. Given two hyperreal numbers s, t, say that s � t if s� t is positive.
Theorem 11.7. Let s, t be hyperreal numbers such that s � t, and let r � �c

#. Then
s� r � t � r.

Proof. Let s � cl	�an�
, t � cl	�bn�
, and r � cl	�cn�
. Since s � t i.e., s� t � 0, we
know that there is an N � �# such that, for n � N, an � bn � 0. So an � bn for n � N.
Now, adding cn to both sides of this inequality (as we know we can do for
hyperrational numbers), we have an � cn � bn � cn for
n � N, or �an � cn� � �bn � cn� � 0 for n � N. Note also that
�an � cn� � �bn � cn� � an � bn does not #-converge to 0, by the assumption that
s� t � 0. Thus, by Definition 11.8, this means that
s� r � cl	�an � cn�
 � cl	�bn � cn�
 � t � r.
Theorem 11.8. (Generalized Archimedean property)Let s, t � 0 be hyperreal numbers.
Then there is m � �# such that m
 s � t.
Proof. Let s, t � 0 be hyperreal numbers. We need to find a hypernatural number m so
that m
 s � t. First, recall that, by m in this context, we mean cl	�m,m,m,m, . . .�
. So,
letting s � cl	�an�
 and t � cl	�bn�
,what we need to show is that there exists m � �#

with
cl	�m,m,m,m, . . .�
 
 cl	�a1,a2,a3,a4, . . .�
 � cl	�m
 a1,m
 a2,m
 a3,m
 a4, . . .�
 �
� cl	�b1,b2,b3,b4, . . .�
.
Now, to say that cl	�m
 an�
 � cl	�bn�
, or cl	�m
 an � bn�
 is positive, is, by
Definition 11.9, just to say that there is N � �# such that m
 an � bn � 0 for all n � N,
while m
 an � bn �# 0. To be precise, the first statement is:
There exist m,N � �# so that m
 an � bn for all n � N.
To produce a contradiction, we assume this is not the case; assume that
(#) for every m and N, there exists an n � N so that m
 an � bn.
Now, since �bn� is a Cauchy sequence, by Theorem 11.2 it is hyperbounded – there
is a hyperrational number M � �# such that bn � M for all n. Now, by the properties for
the hyperrational numbers �#, given any hyperrational number 
 � 0,
 � 0, there is an
m � �# such that M/m � 
/2. Fix such an m. Then if m
 an � bn, we have
an � bn/m � M/m � 
/2.
Now, �an� is a Cauchy sequence, and so there exists N so that for

n,k � N, |an � ak|� 
/2.
By Asumption (#), we also have an n � N such that m
 an � bn, which means that
an � 
/2. But then for every k � N, we have that ak � an � 
/2, so
ak � an � 
/2 � 
/2 � 
/2 � 
. Hence, ak � 
 for all k � N. This proves that ak �# 0,
which by Definition 11.9 contradicts the fact that cl	�an�
 � s � 0.
Thus, there is indeed some m � N so that m
 an � bn � 0 for all sufficiently infinite
large n � �#\�. To conclude the proof, we must also show that m
 an � bn � 0.
Actually, it is possible that m
 an � bn � 0 (for example if �an� � �1,1,1, . . .� and
�bn� � �m,m,m, . . .�). But that’s okay: then we can simply choose a larger m. That is:
let m be a hypernatural number constructed as above, so that m
 an � bn � 0
for all sufficiently large � �#\�. If it happens to be true that m
 an � bn � 0, then the
proof is complete.



If, on the other hand, it turned out that m
 an � bn � 0, then take instead the integer
m� 1.Since s � cl	�an�
 � 0, we have a n � 0 for all infinite large n, so
�m� 1� 
 an � bn � m
 an � bn � an � an � 0 for all infinite large n, so m� 1 works just

as
well as m did in this regard; and since m
 an � bn � 0, we have
�m� 1� 
 an � bn � �m
 an � bn� � an � 0 since s � cl	�an�
 � 0 (so an � 0).
It will be handy to have one more Theorem about how the hyperrationals �# and
hyperreals �c

# compare before we proceed. This theorem is known as the density of
�# in
�c

#, and it follows almost immediately from the construction of the �c
# from �#.

Theorem 11.9. Given any hyperreal number r � �c
#, and any hyperrational number


 � 0, 
 � 0, there is a hyperrational number q � �# such that |r � q|� 
.
Proof. The hyperreal number r is represented by a Cauchy hyperrational sequence

�an�.
Since this sequence is Cauchy, given 
 � 0,
 � 0, there is N � �#so that for all

m,n � N,
|an � am|� 
.Picking some fixed l � N, we can take the hyperrational number q given by
q � cl	�al ,al ,al , . . .�
. Then we have r � q � cl	�an � al�n��# 
, and

q � r � cl	�al � an�n��#
.
Now, since l � N, we see that for n � N,an � al � 
 and al � an � 
, which means by
Definition 11.9 that r � q � 
 and q � r � 
; hence, |r � q|� 
.
Definition 11.10.Let S � �c

# be a non-empty set of hyperreal numbers.
A hyperreal number x � �c

# is called an upper bound for S if x � s for all s � S.
A hyperreal number x is the least upper bound (or supremum supS) for S if x is an
upper bound for Sand x � y for every upper bound y of S.
Remark 11.1.The order � given by Definition 11.9 obviously is �-incomplete.
Definition 11.11. Let S � �c

# be a nonempty subset of �c
#.We we will say that:

(1) S is �-admissible above if the following conditions are satisfied:
(i) Sbounded above;
(ii) let A�S� be a set �x	x � A�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � A�S� such that 	 � � � 
 � 0.
(2) S is �-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L�S� be a set �x	x � L�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � L�S� such that � � 	 � 
 � 0.
Theorem 11.10. (i) Any �-admissible above subset S� �c

# has the least upper
bound property.(ii) Any �-admissible below subset S� �c

# has the greatest lower
bound property.
Proof. Let S� �c

# be a nonempty subset, and let M be an upper bound for S. We are
going to construct two sequences of hyperreal numbers, �un� and �l n�. First, since S
is nonempty, there is some element s0 � S. Now, we go through the following
hyperinductive procedure to produce numbers u0,u1,u2, . . . ,un, . . . and l 1, l 2, l 3, . . . ,l n, . . .
(i) Set u0 � M and l 0 � s.
(ii) Suppose that we have already defined un and l n. Consider the number
mn � �un � l n�/2,the average between un and l n.
(1) If mn is an upper bound for S, define un�1 � mn and l n�1 � l n.



(2) If mn is not an upper bound for S, define un�1 � un and l n�1 � mn.
Since s � M, it is easy to prove by hyper infinite induction that (i) �un� is a
non-increasing sequence: un�1 � un,n � �#(ii) �l n� is a non-decreasing sequence
l n�1 � l n,n � �# and (iii) un � l n � 2�n�M � s�.
This gives us the following lemma.
Lemma 11.2. �un� and �l n� are Cauchy sequences of hyperreal numbers.
Proof. Note that each l n � M for all n � �#. Since �l n� is non-decreasing and
un � l n � 2�n�M � s�. , it follows directly that �l n� is Cauchy.
For �un�, we have un � s0 for all n � �#, and so �un � �s0. Since �un�
is non-increasing, ��un� is non-decreasing, and so as above, ��un� is Cauchy. It is
easy to verify that, therefore, �un� is Cauchy.
The following Lemma shows that �un� does tend to a hyperreal number.
Lemma 11.3. There is a hyperreal number u such that un �# u.
Proof. Fix a term un in the sequence �un�. By Theorem 11.9, there is a hyperrational
number qn such that |un � qn|� 1/n. Consider the sequence �q1,q2,q3, . . . ,qn, . . .� of
hyperrational numbers. We will show this hypersequence is Cauchy. Fix 
 � 0,
 � 0.
By the Theorem 11.8, we can choose N � �# so that 1/N � 
/3. We know, since �un�
is Cauchy, that there is an M � �# such that for n,m � M, |un � um|� 
/3. Then, so long
as n,m � max�N,M�, we have

|qn � qm|� |�qn � un� � �un � um� � �um � qm�|�

� |qn � un|�|un � um|�|um � qm|� 
/3 � 
/3 � 
/3 � 
.

Thus, �qn� is a Cauchy sequence of hyperrational numbers, and so it represents a
hyperreal number u � cl	�qn�
.We must show that un � u �# 0, but this is practically
built into the definition of u. To be precise, letting qn

� be the hyperreal number
cl	�qn,qn,qn, . . .�
, we see immediately that qn

� � u �# 0 (this is precisely
equivalent to the statement that �qn� is Cauchy). But un � qn

� � 1/n by construction;
it is easily verify that the assertion that if a sequence qn

� �# u and un � qn
� �# 0, then

un �# u.So �un�, a non-increasing sequence of upper bounds for S, tends to a
hyperreal

number u. As you’ve guessed, u is the least upper bound of our set S. To prove this,
we

need one more lemma.
Lemma 11.4. l n �# u.
Proof. First, note in the first case above, we have that

un�1 � l n�1 � mn � l n �
un � l n

2
� l n �

un � l n

2
.

In the second case, we also have

un�1 � l n�1 � un � mn � un � un � l n

2
� un � l n

2
.

Now, this means that u1 � l 1 � 1
2 �M � s�, and so u2 � l 2 � 1

2 �u1 � l 1� � 1
22 �M � s�,

and in general by hyperinfinite induction, un � l n � 2�n�M � s�. Since M � s so
L � s � 0, and since 2�n � 1/n, by the Theorem 11.8, we have for any 
 � 0 that
2�n�L � s� � 
 for all sufficiently large n � �#/�. Thus, un � l n � 2�n�L � s� � 
 as well,
and so un � l n �# 0. Again, it is easily verify that, since un �# u, we have l n �# u
as well.
Proof of Theorem 11.10. First, we show that u is an upper bound. Well, suppose



it is not, so that u � s for some s � S. Then 
 � s� u is � 0, and since un � u and is
non-increasing, there must be an n so that un � u � 
, meaning that
un � u � 
 � u � �s� u� � s. Since un is an upper bound for S, however, this is a
contradiction. Hence, u is an upper bound for S.
Now, we also know that, for each n, l n is not an upper bound, meaning that for each n,
there is an sn � Sso that l n � sn. Lemma 11.4 tells us that l n �# u, and since the
sequence �l n� is non-decreasing, this means that for each 
 � 0, there is an N � �#/�
so that for n � N, l n � u � 
.Hence, for n � N,sn � l n � u � 
 as well. In particular, for
each 
 � 0, there is an element s � Ssuch that s � u � 
. This means that no number
smaller than u can be an upper bound for S. Hence, u is the least upper bound for S.
Remark 11.2.Note that assumption in Theorem 11.10 that S is � -admissible above
subset of �c

# is necessarily, othervice Theorem 11.10 is not holds. For example let
	 � �
|
 � 0 � 
 � 0�.Obviously a set 	 is not � -admissible above subset of �c

#.
It is clear that Theorem 11.10 is not holds for a set 	.
Theorem 11.11.(Generalized Nested Intervals Theorem)
Let �In�n��# � �	an,bn
�n��#,	an,bn
 � �c

# be a hyper infinite sequence of closed
intervals satisfying each of the following conditions:
(i) I1 � I2 � I3 �. . .� In �. . . ,
(ii) bn � an �# 0 as n � �#.
Then �n�1

�#
In consists of exactly one hyperreal number x � �c

#. Moreover both
sequences �an� and �bn� #-converge to x.
Proof.Note that: (a) the set A � �an|n � �#� is bounded or hyperbouded above by b1

and (b) the set A � �an|n � �#� is � -admissible above subset of �c
#.

By Theorem 11.10 there exists supA. Let � � supA.
Since In are nested,for any positive hyperintegers m and n we have
am � am�n � bm�n � bn,so that � � bn for each n � �#.Since we obviously have an � �
for each n � �#,we have an � � � bn for all n � �#,which implies � � �n�1

�#
In.Finally, if

�,� � �n�1
�#

In, with � � �, then we get 0 � � � � � bn � an, for all n � �#,so that
0 � � � � � infn��#|bn � an| � 0.
Theorem 11.12.(Generalized Squeeze Theorem)
Let �an�,�cn� be two hyper infinite sequences #-converging to L,and �bn� a hyper
infinite sequence. If �n � K,K � �# we have an � bn � cn , then �bn� also
#-converges to L.
Proof. Choose an ε � 0,
 � 0. By definition of the #-limit,there is an N1 � �# such
that for all n � N1 we have |an � L|� ε, in other words L � ε � an � L � ε.Similarly, there
is an N2 � �# such that for all n � N2 we have L � ε � cn � L � ε. Denote
N � max�N1,N2,K�. Then for n � N,L � ε � an � bn � cn � L � ε, in other words
|bn � L|� ε.Since ε � 0,ε � 0 was arbitrary, by definition of the #-limit this says
that #-lim n��# bn � L.
Theorem 11.13.(Corollary of the Generalized Squeeze Theorem).
If #-lim n��#|an|� 0 then #-lim n��# an � 0.
Proof.We know that �|an|� an � |an|.We want to apply the Generalized Squeeze
Theorem.We are given that #-lim n��#|an|� 0.This also implies that
#-lim n��#��|an|� � 0.So by the Generalized Squeeze Theorem, #-lim n��# an � 0.
Theorem 11.14. (Generalized Bolzano-Weierstrass Theorem)
Every hyperbounded hyperinfinite sequence has a #-convergent hyper infinite



subsequence.
Proof. Let �wn�n��# be a hyperbounded hyper infinite sequence. Then, there exists an
interval 	a1,b1
 such that a1 � wn � b1 for all n � �#.
Either a1,

a1�b1

2 or a1�b1

2 ,b1 contains hyper infinitely many terms of �wn�. That

is, there exists hyperinfinitely many n in �# such that an is in a1,
a1�b1

2 or there exists

hyper infinitely many n in �# such that an is in a1�b1

2 ,b1 . If a1,
a1�b1

2 contains

hyper infinitely many terms of �wn�, let 	a2,b2
 � a1,
a1�b1

2 . Otherwise, let

	a2,b2
 �
a1�b1

2 ,b1 .Either a2,
a2�b2

2 or a2�b2

2 ,b2 contains hyper infinitely many

terms of �wn�n��#. If a2,
a2�b2

2 contains hyper infinitely many terms of �wn�, let

	a3,b3
 � a2,
a2�b2

2 .Otherwise, let 	a3,b3
 �
a2�b2

2 ,b2 . By hyper infinite induction,

we can continue this construction and obtain hyper infinite sequence of intervals
�	an,bn
�n��# such that:
(i) for each n � �#,	an,bn
 contains hyper infinitely many terms of �wn�n��#,
(ii) for each n � �#,	an�1,bn�1
 � 	an,bn
 and
(iii) for each n � �#,bn�1 � an�1 � 1

2 �bn � an�.

Then generalized nested intervals theorem implies that the intersection of all of the
intervals 	an,bn
 is a single point w. We will now construct a hyper infinite
subsequence of �wn�n��# which will #-converge to w.
Since 	a1,b1
 contains hyper infinitely many terms of �wn�n��#, there exists k1 � �#

such that wk1 is in 	a1,b1
. Since 	a2,b2
 contains hyper infinitely many terms of
�wn�n��#, there exists k2 � �#,k2 � k1, such that wk2 is in 	a2,b2
. Since 	a3,b3

contains hyper infinitely many terms of �wn�n��#, there exists k3 � �#,k3 � k2, such
that wk3 is in 	a3,b3
. Continuing this process by hyper infinite induction, we obtain
hyper infinite sequence �wkn�n��# such that wkn � 	an,bn
 for each n � �#.The
sequence �wkn�n��# is a subsequence of �wn�n��# since kn�1 � kn for each n � �#.
Since an �# w, and an � wn � bn for each n � �#, the squeeze theorem implies that
wkn �# w.
Definition 11.12. Let �an� be a �c

#-valued hyper infinite sequence i.e.,an � �c
#,n � �#.

Say that �an� #-tends to 0 if, given any 
 � 0,
 � 0,there is a hypernatural number
N � �#\�, N � N�
� such that,for all n � N, |an|� 
. We often denote this symbolically
by an �# 0.
We can also, at this point, define what it means for a hyperreal sequence #-tends to
a given number q � �c

# : �an� #-tends to q if the hyperreal sequence �an � q�
#-tends to 0 i.e., an � q �# 0.
Definition 11.13. Let �an�,n � �# be a hyperreal sequence. We call �an� a Cauchy
hyperreal sequence if the difference between its terms #-tends to 0. To be precise:
given any hyperreal number 
 � 0,
 � 0,there is a hypernatural number N � N�
�
such that for any m,n � N, |an � am|� 
.
Theorem 11.15. If �an� is a #-convergent hyperreal sequence (that is, an �# b for
some hyperreal number b � �c

#), then �an� is a Cauchy hyperreal sequence.
Theorem 11.16. If �an� is a Cauchy hyperreal sequence, then it is bounded or hyper
bounded; that is, there is some M � �c

# such that |an|� M for all n � �#.
Theorem 11.17. Any Cauchy hyperreal sequence �an� has a #-limit in �c

# i.e.,there
exists b � �c

# such that an �# b.



Proof.By Definition 11.13 given 
 � 0,
 � 0,there is a hypernatural number N � N�
�
such that for any n,n� � N,

|an � an� |� 
. �11.1�

From (11.1) for any n,n� � N we get

an� � 
 � an � an � 
. �11.2�

The generalized Bolzano-Weierstrass theorem implies there is a #-convergent
hyper infinite subsequence �ank� � �an� such that ank �# b for some hyperreal
number b � �c

#.Let us show that the sequence �an� also #-convergent to this b � �c
#.

We can choose k � �# so large that nk � N and

|ank � b| � 
. �11.3�

We choose now in (11.1) n� � nk and therefore

|an � ank|� 
. �11.4�

From (11.3) and (11.4) for any n � N we get

|�ank � b� � �an � ank �| � |an � b| � 2
. �11.5�

Thus an �# b as well. .

12.The Extended Hyperreal Number System �� c
#

Definition 12.1.(a) A set S� �# is hyperfinite if card�S� � card��x|0 � x � n��,
where n � �#\�.(b) A set S� �# is hyper infinite if card�S� � card��#�
Notation 12.1. If F is an arbitrary collection of sets, then ��S|S � F�is the set of all
elements that are members of at least one of the sets in F , and ��S|S � F� is the set
of all elements that are members of every set in F. The union and intersection of
finitely or hyper finitely many sets Sk, 0 � k � n � �# are also written as �k�0

n Sk and
�k�0

n Sk. The union and intersection of an hyperinfinite sequence Sk,k � �# of sets are
written as �k�0

�#
Sor �n��# Sand �k�0

�#
Sor �n��# Scorrespondingly.

A nonempty set Sof hyperreal numbers �c
# is unbounded above if it has no hyperfinite

upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient
to adjoin to the hyperreal number system two points, ��# (which we also write more
simply as �#) and ��#,and to define the order relationships between them and any
hyperreal number x � �c

# by ��# � x � �#.
We call ��# and �# points at hyperinfinity. If S is a nonempty set of hyperreals, we
write supS � �# to indicate that S is hyper unbounded above, and inf S � ��# to
indicate that S is hyper unbounded below. .

12.1.#-Open and #-Closed Sets on �� c
#.

Definition 12.2.If a and b are in the extended hyperreals and a � b, then the #-open
interval �a,b� is defined by �a,b� � �x|a � x � b�. :
The #-open intervals �a,�#� and ���#,b� are semi-hyper infinite if a and b are finite
or hyperfinite, and ���#,�#� is the entire hyperreal line.
If ��# � a � b � �#, the set 	a,b
 � �x|a � x � b� is #-closed, since its complement
is the union of the #-open sets ���#,a� and �b,�#� . We say that 	a,b
 is a #-closed
interval. Semi-hyper infinite #-closed intervals are sets of the form 	a,�� � �x|a � x�
and ���#,a
 � �x|x � a�,where a is finite or hyperfinite. They are #-closed sets,



since their complements are the #-open intervals ���#,a� and �a,�#�,respectively.
Definition 12.3.If x0 � �c

# is a hyperreal number and 
 � 0,
 � 0 then the #-open
interval
�x0 � 
,x0 � 
� is an #-neighborhood of x0. If a set S� �c

# contains an #-neighborhood
of x0, then S is a #-neighborhood of x0, and x0 is an #-interior point of S. The set of
#-interior points of S is the #-interior of S, denoted by #-Int�S�.
(i) If every point of S is an #-interior point (that is, S � #-Int�S� ), then S is #-open.
(ii) A set S is #-closed if Sc � �c

#\S is #-open.
Example 12.1. An open interval �a,b� is an #-open set, because if x0 � �a,b� and

 � min �x0 � a;b � x0�, then �x0 � 
,x0 � 
� � �a,b�.
Remark 12.1.The entire hyperline �� c

# � ���#,�#� is #-open, and therefore 	 is
#-closed.However, 	 is also #-open, for to deny this is to say that 	 contains a point
that is not an #-interior point, which is absurd because 	 contains no points. Since 	
is #-open, �� c

# is #-closed. Thus, �� c
# and 	 are both #-open and #-closed.

Remark 12.2.They are not the only subsets of �� c
# with this property mentioned above.

Definition 12.4.A deleted #-neighborhood of a point x0 is a set that contains every
point of some #-neighborhood of x0 except for x0 itself. For example,
S � �x|0 � |x � x0| � 
�,where 
 � 0, is a deleted #-neighborhood of x0. We also say
that it is a deleted 
-#-neighborhood of x0.
Theorem 12.1.(a) The union of #-open sets is #-open:
(b) The #-intersection of #-closed sets is #-closed:
These statements apply to arbitrary collections, hyperfinite or hyperinfinite, of #-open
and #-closed sets.
Proof (a) Let L be a collection of #-open sets and S � � �G|G � L�.
If x0 � S, then x0 � G0 for some G0 in L, and since G0 is #-open, it contains some

-#-neighborhood of x0. Since G0 � S, this 
-#–neighborhood is in S, which is
consequently a #-neighborhood of x0.Thus, S is a #-neighborhood of each of its points,
and therefore #-open, by definition.
(b) Let F be a collection of #-closed sets and T � ��H|H � F�. Then Tc � ��Hc|H � F�
and, since each Hc is #-open, Tc is #-open, from (a). Therefore, T is #-closed, by
definition.
Example 12.2. If ��# � a � b � �#, the set 	a,b
 � �x|a � x � b� is #-closed, since
its complement is the union of the #-open sets ���#a� and �b,�#�. We say that 	a,b

is a #-closed interval. The set 	a,b� � �x|a � x � b� is a half-#-closed or half-#-open
interval if ��# � a � b � �#, as is �a,b
 � �x|a � x � b� however, neither of these sets
is #-open or #-closed. Semi-infinite #-closed intervals are sets of the form
	a,�#� � �x|a � x� and ���#,a
 � �x|x � a�,where a is hyperfinite. They are #-closed
sets, since their complements are the #-open intervals ���#,a� and

�a,�#�,respectively.
Definition 12.5. Let Sbe a subset of �� c

# � ���#,�#�. Then
(a) x0 is a #-limit point of S if every deleted #-neighborhood of x0 contains a point of S.
(b) x0 is a boundary point of S if every #-neighborhood of x0 contains at least one point
in Sand one not in S. The set of #-boundary points of S is the #-boundary of S,

denoted
by #-�S. The #-closure of S, denoted by #-S, is S� #-�S.
(c) x0 is an #-isolated point of S if x0 � Sand there is a #-neighborhood of x0 that



contains no other point of S.
(d) x0 is #-exterior to S if x0 is in the #-interior of Sc. The collection of such points is the
#-exterior of S.
Theorem 12.2. A set S is #-closed if and only if no point of Sc is a #-limit point of S.
Proof. Suppose that S is #-closed and x0 � Sc. Since Sc is #-open, there is a
#-neighborhood of x0 that is contained in Sc and therefore contains no points of S.
Hence, x0 cannot be a #-limit point of S. For the converse, if no point of Sc

is a #-limit point of S then every point in Sc must have a #-neighborhood contained
in Sc. Therefore, Sc is #-open and S is #-closed.
Corollary 12.1.A set S is #-closed if and only if it contains all its #-limit points.
If S is #-closed and hyper bounded, then inf�S� and sup�S� are both in S.
Proposition 12.1. If S is #-closed and hyper bounded, then inf�S� and sup�S� are both
in S. .

12.2. #-Open Coverings
Definition 12.6.A collection H of #-open sets of �c

# is an #-open covering of a set S if
every point in S is contained in a set H belonging to H; that is, if S� ��F|F � H�.
Definition 12.7.A set S� �c

# is called #-compact (or hyper compact) if each of its
#-open covers has a finite or hyperfinite subcover. .
Theorem 12.3.(Generalized Heine–Borel Theorem) If H is an #-open covering of a
#-closed and hyper bounded subset Sof the hyperreal line �c

# (or of the �c
#n,n � �#)

then Shas an #-open covering H consisting of hyper finite many #-open sets belonging
to H.
Proof. If a set S in �c

#n is hyper bounded, then it can be enclosed within an n-box
T0 � 	�a,a
n where a � 0. By the property above, it is enough to show that T0 is
#-compact.
Assume, by way of contradiction, that T0 is not #-compact. Then there exists an hyper
infinite open cover C�# of T0 that does not admit any hyperfinite subcover. Through
bisection of each of the sides of T0, the box T0 can be broken up into 2n sub n-boxes,
each of which has diameter equal to half the diameter of T0. Then at least one of the
2n sections of T0 must require an hyper infinite subcover of C�#, otherwise C�# itself
would have a hyperfinite subcover, by uniting together the hyperfinite covers of the
sections. Call this section T1.Likewise, the sides of T1 can be bisected, yielding 2n

sections of T1, at least one of which must require an hyper infinite subcover of C�#.
Continuing in like manner yields a decreasing hyper infinite sequence of nested
n-boxes:
T0  T1  T2  . . . Tk  . . . ,k � �#, where the side length of Tk is �2a� / 2k, which
#-converges to 0 as k tends to hyper infinity, k � �#. Let us define a hyper infinite
sequence �xk�k��# such that each xk : xk � Tk. This hyper infinite sequence is
Cauchy, so it must #-converge to some #-limit L. Since each Tkis #-closed, and for
each k the sequence �xk�k��# is eventually always inside Tk, we see that L � Tk for
each k � �#. Since C�# covers T0, then it has some member U � C�# such that

L � U.
Since U is open, there is an n-ball B�L� � U. For large enough k, one has
Tk � B�L� � U, but then the infinite number of members of C�# needed to cover Tk

can be replaced by just one: U, a contradiction.Thus, T0 is #-compact. Since S is



#-closed and a subset of the #-compact set T0, then S is also #-compact.
As an application of the Generalized Heine–Borel theorem, we give a short proof of
the Generalized Bolzano–Weierstrass Theorem.
Theorem 12.4.(Generalized Bolzano–Weierstrass Theorem) Every hyper bounded
hyper infinite set S� �c

# has at least one #-limit point.
Proof. We will show that a hyper bounded nonempty set without a #-limit point can
contain only finite or a hyper finite number of points. If Shas no #-limit points, then S is
#-closed and every point x � Shas an w-#-open neighborhood Nx that
contains no point of Sother than x.The collection H � �Nx|x � S� is an w-#-open
covering for S. Since S is also hyper bounded, Theorem 12.3 implies that Scan be
covered by finite or a hyper finite collection of sets from H, say Nx1, . . . ,Nxn,n � �#.
Since these sets contain only x1, . . . ,xn from S, it follows that S � �xk�1�k�n,n � �#.

13.External non-Archimedean field ��c
#.

via Cauchy completion of internal non-Archimedean field
��.

Definition 13.1. A hyper infinite sequence of hyperreal numbers from �� is a function
a : �# � ��from hypernatural numbers �# into the hyperreal numbers ��.
We usually denote such a function by n 
 an,or by a : n � an,so the terms in the
sequence are written �a1,a2,a3, . . . ,an. . .�. To refer to the whole hyper infinite
sequence, we will write �an�n�1

�#
,or �an�n��#, or for the sake of brevity simply �an�.

Definition 13.2. Let �an� be a hyper infinite ��-valued sequence mentioned above.
Say that �an� #-tends to 0 if, given any 
 � 0,
 � 0,there is a hypernatural number
N � �#\�, N � N�
� such that, after N (i.e.for all n � N), |an|� 
. We denote this
symbolically by an �# 0.
We can also, at this point, define what it means for a hyper infinite ��-valued
sequence #-tends to any given number q � �� : �an� #-tends to q if the hyper
infinite sequence �an � q� #-tends to 0 i.e., an � q �# 0.
Definition 13.3. Let �an� be a hyper infinite ��-valued sequence. We call �an� a
Cauchy hyper infinite ��-valued sequence if the difference between its terms #-tends
to 0. To be precise: given any hyperreal number such that 
 � 0,
 � 0,there is a
hypernatural number N � N�
� such that for any m,n � N, |an � am|� 
.
Theorem 13.1.If �an� is a #-convergent hyper infinite ��-valued sequence (that is,
an �# q for some hyperreal number q � ��), then �an� is a Cauchy hyper infinite
��-valued sequence.
Proof. We know that an �# q. Here is a ubiquitous trick: instead of using 
 in the
definition Definition 13.3, start with an arbitrary infinite small 
 � 0,
 � 0 and then
choose N � �#\� so that |an � q|� 
/2 when n � N. Then if m,n � N, we have
|an � am|� |�an � q� � �am � q�|� |an � q|�|am � q|� 
/2 � 
/2 � 
.This shows that
�an�n��# is a Cauchy sequence.
Theorem 13.2. If �an� is a Cauchy hyper infinite ��-valued sequence, then it is
bounded or hyper bounded; that is, there is some finite or hyperfinite M � �� such
that |an|� M for all n � �#.
Proof.Since �an� is Cauchy, setting 
 � 1 we know that there is some N � �# such
that |am � an|� 1whenever m,n � N. Thus, |aN�1 � an|� 1 for n � N. We can rewrite



this as aN�1 � 1 � an � aN�1 � 1.This means that |an| is less than the maximum of
|aN�1 � 1| and |aN�1 � 1|. So, set M equal to the maximum number in the following list:
�|a0|, |a1|, . . . , |aN|, |aN�1 � 1|, |aN�1 � 1|�.Then for any term an, if n � N, then |an| appears
in the list and so |an|� M; if n � N, then
(as shown above) |an| is less than at least one of the last two entries in the list, and so
|an|� M.Hence, M � �� is a bound for the sequence �an�.
Definition 13.4. Let Sbe a set. A relation x ~ y among pairs of elements of S
is said to be an equivalence relation if the following three properties hold:
Reflexivity: for any s � S,s~s.
Symmetry: for any s, t � S, if s~t then t~s.
Transitivity: for any s, t,r � S, if s~t and t~r, then s~r.
Theorem 13.3. Let Sbe a set, with an equivalence relation ��~ �� on pairs of elements.
For s � S,denote by cl	s
 the set of all elements in S that are related to s. Then for
any s, t � S,either cl	s
 � cl	t
 or cl	s
 and cl	t
 are disjoint.
The hyperreal numbers ��c

# will be constructed as equivalence classes of Cauchy
hyper infinite ��-valued sequences. Let � �� denote the set of all Cauchy hyper infinite
��-valued sequences of hyperreal numbers. We define the equivalence relation on
� ��.
Definition 13.5. Let �an� and �bn� be in � ��. Say they are #-equivalent if
an � bn �# 0 i.e., if and only if the hyper infinite ��-valued sequence an � bn #-tends
to 0.
Theorem 13.4.Definition 13.5 yields an equivalence relation on � ��.
Proof. We need to show that this relation is reflexive, symmetric, and transitive.
Reflexive: an � an � 0, and the hyper infinite sequence all of whose terms are 0

clearly #-converges to 0. So �an� is related to �an�.
Symmetric: Suppose �an� is related to �bn�, so an � bn �# 0.

But bn � an � ��an � bn�,and since only the absolute value |an � bn|� |bn � an| comes
into play in Definition 13.2, it follows that bn � an �# 0 as well. Hence, �bn� is related
to �an�.
Transitive: Here we will use the 
/2 trick we applied to prove Theorem 10.1. Suppose

�an� is related to �bn�, and �bn� is related to �cn�. This means that an � bn �# 0 and
bn � cn �# 0.To be fully precise, let us fix 
 � 0,
 � 0; then there exists an N � �#

such that for all n � N, |an � bn|� 
/2; also, there exists an M such that for all n � M,
|bn � cn|� 
/2. Well, then, as long as n is bigger than both N and M, we have that
|an � cn|� |�an � bn� � �bn � cn�|� |an � bn|�|bn � cn|� 
/2 � 
/2 � 
.
So, choosing L equal to the max of N,M, we see that given 
 � 0 we can always
choose L so that for n � L, |an � cn|� 
. This means that an � cn �# 0 – i.e. �an� is
related to �cn�.
Definition 13.6. The external hyperreal numbers ��c

# are the equivalence classes
cl	�an�
 of Cauchy hyper infinite ��-valued sequences of hyperreal numbers, as per
Definition 13.5. That is, each such equivalence class is an external hyperreal number.
Definition 13.7. Given any hyperreal number q � ��, define a hyperreal number q#

to be the equivalence class of the hyper infinite ��-valued sequence q# � �q,q,q,q, . . .�
consisting entirely of q.So we view �� as being inside ��c

# by thinking of each
hyperreal number q as its associated equivalence class q#. It is standard to abuse this
notation, and simply refer to the equivalence class as q as well.



Definition 13.8. Let s, t � ��c
#, so there are Cauchy hyper infinite ��-valued

sequences �an�,�bn� of hyperreal numbers with s � cl	�an�
 and t � cl	�bn�
.
(a) Define s� t to be the equivalence class of the sequence �an � bn�.
(b) Define s
 t to be the equivalence class of the sequence �an 
 bn�.
Theorem 13.5.The operations �,
 in Definition 13.8 (a),(b) are well-defined.
Proof. Suppose that cl	�an�
 � cl	�cn�
 and cl	�bn�
 � cl	�dn�
. Thus means that
an � cn �# 0 and bn � dn �# 0. Then �an � bn� � �cn � dn� � �an � cn� � �bn � dn�.
Now, using the familiar 
/2 trick, you can construct a proof that this tends to 0, and
so cl	�an � bn�
 � cl	�cn � dn�
.
Multiplication is a little trickier; this is where we will use Theorem 13.3. We will also
use another ubiquitous technique: adding 0 in the form of s� s. Again, suppose that
cl	�an�
 � cl	�cn�
 and cl	�bn�
 � cl	�dn�
; we wish to show that

cl	�an 
 bn�
 � cl	�cn 
 dn�
, or, in other words, that an 
 bn � cn · dn �# 0.Well, we
add and subtract one of the other cross terms, say
bn 
 cn : an 
 bn � cn 
 dn � an 
 bn � �bn 
 cn � bn 
 cn� � cn 
 dn �
� �an 
 bn � bn 
 cn� � �bn 
 cn � cn 
 dn� � bn 
 �an � cn� � cn 
 �bn � dn�.
Hence, we have |an 
 bn � cn 
 dn|� |bn|
|an � cn|�|cn|
|bn � dn|. Now, from
Theorem 13.2, there are numbers M and L such that |bn|� M and |cn|� L for all n � �#.
Taking some number K which is bigger than both, we have
|an 
 bn � cn 
 dn|� |bn|
 |an � cn|�|cn|
 |bn � dn|� K�|an � cn|�|bn � dn|�.
Now, noting that both an � cn and bn � dn tend to 0 and using the 
/2 trick (actually,
this time we’ll want to use 
/2K), we see that an 
 bn � cn 
 dn �# 0.
Theorem 13.6. Given any hyperreal number s � ��c

#, s 	 0, there is a hyperreal
number t � ��c

# such that s
 t � 1.
Proof. First we must properly understand what the theorem says. The premise is that

s
is nonzero, which means that s is not in the equivalence class of �0,0,0,0, . . .�. In

other
words, s � cl	�an�
 where an � 0 does not #-converge to 0. From this, we are to

deduce
the existence of a hyperreal number t � cl	�bn�
 such that s
 t � cl	�an 
 bn�
 is the
same equivalence class as cl	�1,1,1,1, . . .�
. Doing so is actually an easy

consequence
of the fact that nonzero hyperreal numbers have multiplicative inverses, but there is a
subtle difficulty. Just because s is nonzero (i.e. �an� does not tend to 0), there’s no
reason any number of the terms in �an� can’t equal 0. However, it turns out that
eventually, an 	 0.
That is:
Lemma 13.1. If �an� is a Cauchy sequence which does not #-tend to 0, then there is
an N � �# such that, for n � N,an 	 0.
Definition 13.9. Let s � ��c

#. Say that s is positive if s 	 0, and if s � cl	�an�
 for
some Cauchy sequence of hyperreal numbers such that for some N � �#,an � 0 for
all n � N. Given two hyperreal numbers s, t, say that s � t if s� t is positive.
Theorem 13.7. Let s, t � ��c

# be hyperreal numbers such that s � t, and let
r � ��c

#. Then s� r � t � r.
Proof. Let s � cl	�an�
, t � cl	�bn�
, and r � cl	�cn�
. Since s � t i.e., s� t � 0, we



know that there is an N � �# such that, for n � N, an � bn � 0. So an � bn for n � N.
Now, adding cn to both sides of this inequality (as we know we can do for
hyperreal numbers ��), we have an � cn � bn � cn for n � N, or
�an � cn� � �bn � cn� � 0 for n � N. Note also that �an � cn� � �bn � cn� � an � bn does
not #-converge to 0, by the assumption that s� t � 0. Thus, by Definition 13.8, this
means that s� r � cl	�an � cn�
 � cl	�bn � cn�
 � t � r.
Theorem 13.8. Let s, t � ��c

# s, t � 0 be hyperreal numbers.Then there is m � �#

such that m
 s � t.
Proof. Let s, t � 0 be hyperreal numbers. We need to find a natural number m so that
m
 s � t. First, recall that, by m in this context, we mean cl	�m,m,m,m, . . .�
. So,
letting s � cl	�an�
 and t � cl	�bn�
,what we need to show is that there exists m with

cl	�m,m,m,m, . . .�
 
 cl	�a1,a2,a3,a4, . . .�
 �

cl	�m
 a1,m
 a2,m
 a3,m
 a4, . . .�
 �

� cl	�b1,b2,b3,b4, . . .�
.

Now, to say that cl	�m
 an�
 � cl	�bn�
, or cl	�m
 an � bn�
 is positive, is, by
Definition 13.9, just to say that there is N � �# such that m
 an � bn � 0 for all n � N,
while m
 an � bn �# 0. To be precise, the first statement is:
There exist m,N � �# so that m
 an � bn for all n � N.
To produce a contradiction, we assume this is not the case; assume that
(#) for every m and N, there exists an n � N so that m
 an � bn.
Now, since �bn� is a Cauchy sequence, by Theorem 13.2 it is hyperbounded - there
is a hyperreal number M � �� such that bn � M for all n � �#. Now, by the
properties for the hyperreal numbers ��, given any hyperreal number such that

 � 0,
 � 0, there is an m � �# such that M/m � 
/2. Fix such an m. Then if
m
 an � bn, we have an � bn/m � M/m � 
/2.
Now, �an� is a Cauchy sequence, and so there exists N so that for

n,k � N, |an � ak|� 
/2.
By Asumption (#), we also have an n � N such that m
 an � bn, which means that
an � 
/2. But then for every k � N, we have that ak � an � 
/2, so
ak � an � 
/2 � 
/2 � 
/2 � 
. Hence, ak � 
 for all k � N. This proves that ak �# 0,
which by Definition 13.9 contradicts the fact that cl	�an�
 � s � 0.
Thus, there is indeed some m � N so that m
 an � bn � 0 for all sufficiently infinite
large n � �#\�. To conclude the proof, we must also show that m
 an � bn �# 0.
Actually, it is possible that m
 an � bn �# 0 (for example if �an� � �1,1,1, . . .� and
�bn� � �m,m,m, . . .�). But that’s okay: then we can simply choose a larger m. That is:
let m be a hypernatural number constructed as above, so that m
 an � bn � 0
for all sufficiently large � �#\�. If it happens to be true that m
 an � bn �# 0, then the
proof is complete.
If, on the other hand, it turned out that m
 an � bn �# 0, then take instead the integer
m� 1.Since s � cl	�an�
 � 0, we have a n � 0 for all infinite large n, so
�m� 1� 
 an � bn � m
 an � bn � an � an � 0 for all infinite large n, so m� 1 works just
as well as m did in this regard; and since m
 an � bn � 0, we have
�m� 1� 
 an � bn � �m
 an � bn� � an �# 0 since s � cl	�an�
 � 0 (so an �# 0).
It will be handy to have one more Theorem about how the hyperreals �� and
hyperreals ��c

# compare before we proceed. This theorem is known as the density



of �� in ��c
#, and it follows almost immediately from the construction of the ��c

#

from ��.
Theorem 13.9. Given any hyperreal number r � ��c

#, and any hyperreal number


 � 0, 
 � 0, there is a hyperreal number q � �� such that |r � q|� 
.
Proof. The hyperreal number r is represented by a Cauchy ��-valued sequence �an�.
Since this sequence is Cauchy, given 
 � 0,
 � 0, there is N � �# so that for all

m,n � N,
|an � am|� 
.Picking some fixed l � N, we can take the hyperreal number q given by
q � cl	�al ,al ,al , . . .�
. Then we have r � q � cl	�an � al�n��# 
, and
q � r � cl	�al � an�n��#
.
Now, since l � N, we see that for n � N,an � al � 
 and al � an � 
, which means by
Definition 13.9 that r � q � 
 and q � r � 
; hence, |r � q|� 
.
Definition 13.10.Let S � ��c

# be a non-empty set of hyperreal numbers.

A hyperreal number x � ��c
# is called an upper bound for S if x � s for all s � S.

A hyperreal number x is the least upper bound (or supremum supS) for S if x is an
upper

bound for Sand x � y for every upper bound y of S.
Remark 13.1.The order � given by Definition 10.9 obviously is � -incomplete.
Definition 13.11. Let S � ��c

# be a nonempty subset of ��c
#.We we will say that:

(1) S is � -admissible above if the following conditions are satisfied:
(i) Sbounded or hyperbounded above;
(ii) let A�S� be a set �x	x � A�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � A�S� such that 	 � � � 
 � 0.
(2) S is �-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L�S� be a set �x	x � L�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � L�S� such that � � 	 � 
 � 0.
Theorem 13.10. (i) Any �-admissible above subset S� ��c

# has the least upper
bound property.(ii) Any �-admissible below subset S� ��c

# has the greatest lower
bound property.
Proof. Let S� ��c

# be a nonempty subset, and let M be an upper bound for S. We are
going to construct two sequences of hyperreal numbers, �un� and �l n�. First, since S
is nonempty, there is some element s0 � S. Now, we go through the following
hyperinductive procedure to produce numbers u0,u1,u2, . . . ,un, . . . and l 1, l 2, l 3, . . . ,l n, . . .
(i) Set u0 � M and l 0 � s.
(ii) Suppose that we have already defined un and l n. Consider the number
mn � �un � l n�/2,the average between un and l n.
(1) If mn is an upper bound for S, define un�1 � mn and l n�1 � l n.
(2) If mn is not an upper bound for S, define un�1 � un and l n�1 � l n.
Remark 13.1.Since s � M, it is easy to prove by hyper infinite induction that
(i) �un� is a non-increasing sequence: un�1 � un,n � �#and �l n� is a non-decreasing
sequence l n�1 � l n,n � �#, (ii) un is an upper bound for S for all n � �#

and l n is never an upper bound for S for any n � �#,(iii) un � l n � 2�n�M � s�.
This gives us the following lemma.
Lemma 13.2. �un� and �l n� are Cauchy ��-valued sequences of hyperreal numbers.



Proof. Note that each l n � M for all n � �#. Since �l n� is non-decreasing and
un � l n � 2�n�M � s�, it follows directly that �l n� is Cauchy.
For �un�, we have un � s0 for all n � �#, and so �un � �s0.
Since �un� is non-increasing, ��un� is non-decreasing, and so as above, ��un� is
Cauchy. It is easy to verify that, therefore, �un� is Cauchy.
The following Lemma shows that �un� does #-tend to a hyperreal number u � ��c

#.
Lemma 13.3. There is a hyperreal number u � ��c

# such that un �# u.
Proof. Fix a term un in the sequence �un�. By Theorem 13.9, there is a hyperreal
number qn � ��,n � �# such that |un � qn|� 1/n. Consider the sequence
�q1,q2,q3, . . . ,qn, . . .� of hyperreal numbers. We will show this sequence is Cauchy.
Fix 
 � 0,
 � 0. By the Theorem 13.8, we can choose N � �# so that 1/N � 
/3. We
know, since �un� is Cauchy, that there is an M � �# such that for n,m � M,
|un � um|� 
/3. Then, so long as n,m � max�N,M�, we have

|qn � qm|� |�qn � un� � �un � um� � �um � qm�|�

� |qn � un|�|un � um|�|um � qm|� 
/3 � 
/3 � 
/3 � 
.

Thus, �qn� is a Cauchy sequence of internal hyperreal numbers, and so it represents
the external hyperreal number u � cl	�qn�
.We must show that un � u �# 0, but this is
practically built into the definition of u. To be precise, letting qn

� be the hyperreal
number

cl	�qn,qn,qn, . . .�
, we see immediately that qn
� � u �# 0 (this is precisely

equivalent to the statement that �qn� is Cauchy). But un � qn
� � 1/n by construction;

it is easily verify that the assertion that if a sequence qn
� �# u and un � qn

� �# 0, then
un �# u.So �un�, a non-increasing sequence of upper bounds for S, tends to a

hyperreal
number u. As you’ve guessed, u is the least upper bound of our set S. To prove this,

we
need one more lemma.
Lemma 13.4. l n �# u.
Proof. First, note in the first case above, we have that

un�1 � l n�1 � mn � l n �
un � l n

2
� l n �

un � l n

2
.

In the second case, we also have

un�1 � l n�1 � un � mn � un � un � l n

2
� un � l n

2
.

Now, this means that u1 � l 1 � 1
2 �M � s�, and so u2 � l 2 � 1

2 �u1 � l 1� � 1
22 �L � s�,

and in general by hyperinfinite induction, un � l n � 2�n�M � s�. Since M � s so
M � s � 0, and since 2�n � 1/n, by the Theorem 13.8, we have for any 
 � 0 that
2�n�M � s� � 
 for all sufficiently large n � �#. Thus, un � l n � 2�n�M � s� � 
 as well,
and so un � l n �# 0. Again, it is easily verify that, since un �# u, we have l n �# u
as well.
Remark 13.2.Note that assumption in Theorem 13.10 that S is �-admissible above
subset of �c

# is necessarily, othervice Theorem 13.10 is not holds.
Theorem 13.11.(Generalized Nested Intervals Theorem)
Let �In�n��# � �	an,bn
�n��#,	an,bn
 � �c

# be a hyper infinite sequence of closed
intervals satisfying each of the following conditions:



(i) I1 � I2 � I3 �. . .� In �. . . ,
(ii) bn � an �# 0 as n � �#.
Then �n�1

�#
In consists of exactly one hyperreal number x � �c

#. Moreover both
sequences �an� and �bn� #-converge to x.
Proof.Note that: (a) the set A � �an|n � �#� is hyperbouded above by b1and
(b) the set A � �an|n � �#� is �-admissible above subset of �c

#.
By Theorem 13.10 there exists supA. Let � � supA.
Since In are nested,for any positive hyperintegers m and n we have
am � am�n � bm�n � bn,so that � � bn for each n � �#.Since we obviously have an � �
for each n � �#,we have an � � � bn for all n � �#,which implies � � �n�1

�#
In.Finally, if

�,� � �n�1
�#

In, with � � �, then we get 0 � � � � � bn � an, for all n � �#,so that
0 � � � � � infn��#|bn � an| � 0.
Theorem 13.12.(Generalized Squeeze Theorem)
Let �an�,�cn� be two hyper infinite sequences #-converging to L,and �bn� a hyper
infinite sequence. If �n � K,K � �# we have an � bn � cn , then �bn� also
#-converges to L.
Proof. Choose an ε � 0,
 � 0. By definition of the #-limit,there is an N1 � �# such
that for all n � N1 we have |an � L|� ε, in other words L � ε � an � L � ε.Similarly, there
is an N2 � �# such that for all n � N2 we have L � ε � cn � L � ε. Denote
N � max�N1,N2,K�. Then for n � N,L � ε � an � bn � cn � L � ε, in other words
|bn � L|� ε.Since ε � 0,ε � 0 was arbitrary, by definition of the #-limit this says
that #-lim n��# bn � L.
Theorem 13.13.(Corollary of the Generalized Squeeze Theorem).
If #-lim n��#|an|� 0 then #-lim n��# an � 0.
Proof.We know that �|an|� an � |an|.We want to apply the Generalized Squeeze
Theorem.We are given that #-lim n��#|an|� 0.This also implies that
#-lim n��#��|an|� � 0.So by the Generalized Squeeze Theorem, #-lim n��# an � 0.
Theorem 13.14. (Generalized Bolzano-Weierstrass Theorem)
Every hyperbounded hyper infinite ��c

#-valued sequence has a #-convergent hyper
infinite subsequence.
Proof. Let �wn�n��# be a hyperbounded hyper infinite sequence. Then, there exists an
interval 	a1,b1
 such that a1 � wn � b1 for all n � �#.
Either a1,

a1�b1

2 or a1�b1

2 ,b1 contains hyper infinitely many terms of �wn�. That

is, there exists hyper infinitely many n in �# such that an is in a1,
a1�b1

2 or there

exists hyper infinitely many n in �# such that an is in a1�b1

2 ,b1 . If a1,
a1�b1

2

contains hyper infinitely many terms of �wn�, let 	a2,b2
 � a1,
a1�b1

2 . Otherwise, let

	a2,b2
 �
a1�b1

2 ,b1 .

Either a2,
a2�b2

2 or a2�b2

2 ,b2 contains hyper infinitely many terms of �wn�n��#. If

a2,
a2�b2

2 contains hyper infinitely many terms of �wn�, let 	a3,b3
 � a2,
a2�b2

2 .

Otherwise, let 	a3,b3
 �
a2�b2

2 ,b2 . By hyper infinite induction, we can continue this

construction and obtain hyper infinite sequence of intervals �	an,bn
�n��# such that:
(i) for each n � �#,	an,bn
 contains hyper infinitely many terms of �wn�n��#,
(ii) for each n � �#,	an�1,bn�1
 � 	an,bn
 and
(iii) for each n � �#,bn�1 � an�1 � 1

2 �bn � an�.



Then generalized nested intervals theorem implies that the intersection of all of the
intervals 	an,bn
 is a single point w. We will now construct a hyper infinite
subsequence of �wn�n��# which will #-converge to w.
Since 	a1,b1
 contains hyper infinitely many terms of �wn�n��#, there exists k1 � �#

such that wk1 is in 	a1,b1
. Since 	a2,b2
 contains hyper infinitely many terms of
�wn�n��#, there exists k2 � �#,k2 � k1, such that wk2 is in 	a2,b2
. Since 	a3,b3
 contains
hyper infinitely many terms of �wn�n��#, there exists k3 � �#,k3 � k2, such that wk3 is in
	a3,b3
. Continuing this process by hyper infinite induction, we obtain hyper infinite
sequence �wkn�n��# such that wkn � 	an,bn
 for each n � �#.The sequence �wkn�n��# is
a subsequence of �wn�n��# since kn�1 � kn for each n � �#. Since an �# w, and
an � wn � bn for each n � �#, the squeeze theorem implies that wkn �# w.
Definition 13.12. Let �an� be a hyperreal sequence i.e.,an � ��c

#,n � �#. Say that
�an� #-tends to 0 if, given any 
 � 0,
 � 0,there is a hypernatural number N � �#\�,
N � N�
� such that,for all n � N, |an|� 
. We often denote this symbolically by an �# 0.
We can also, at this point, define what it means for a hyperreal sequence #-tends to
a given number q � ��c

# : �an� #-tends to q if the hyperreal sequence �an � q�
#-tends to 0 i.e., an � q �# 0.
Definition 13.13. Let �an�,n � �# be a hyperreal sequence. We call �an� a Cauchy
hyperreal sequence if the difference between its terms #-tends to 0. To be precise:
given any hyperreal number 
 � 0,
 � 0,there is a hypernatural number N � N�
�
such that for any m,n � N, |an � am|� 
.
Theorem 13.15. If �an� is a #-convergent hyperreal sequence (that is, an �# b for
some hyperreal number b � �c

#), then �an� is a Cauchy hyperreal sequence.
Theorem 13.16. If �an� is a Cauchy hyperreal sequence, then it is hyper bounded;
that is, there is some M � �c

# such that |an|� M for all n � �#.
Theorem 13.17. Any Cauchy hyperreal sequence �an� has a #-limit in ��c

# i.e.,
there exists b � ��c

# such that an �# b.
Proof.By Definition 13.13 given 
 � 0,
 � 0,there is a hypernatural number N � N�
�
such that for any n,n� � N,

|an � an� |� 
. �13.1�

From (13.1) for any n,n� � N we get

an� � 
 � an � an � 
. �13.2�

The generalized Bolzano-Weierstrass theorem implies there is a #-convergent
hyper infinite subsequence �ank� � �an� such that ank �# b for some hyperreal
number b � ��c

#.Let us show that the sequence �an� also #-convergent to this
b � ��c

#.
We can choose k � �# so large that nk � N and

|ank � b| � 
. �13.3�

We choose now in (13.1) n� � nk and therefore

|an � ank|� 
. �13.4�

From (13.3) and (13.4) for any n � N we get

|�ank � b� � �an � ank �| � |an � b| � 2
. �13.5�

Thus an �# b as well.



Remark 13.3.Note that there exist canonical natural embedings

� � �� � ��c
#. �13.6�

13.1.The Extended Hyperreal Number System ��� c
#

Definition 13.14.(a) A set S� �# is hyperfinite if card�S� � card��x|0 � x � n��,
n � �#\�.(b) A set S� �# is hyper infinite if card�S� � card��#�.
Notation 13.2. If F is an arbitrary collection of subsets of ��c

#, then ��S|S � F�is the
set of all elements that are members of at least one of the sets in F , and ��S|S � F�
is the set of all elements that are members of every set in F. The union and
intersection of finitely or hyperfinitely many sets Sk, 0 � k � n � �# are also written as
�k�0

n Sk and �k�0
n Sk. The union and intersection of an hyperinfinite sequence Sk,k � �#

of sets are written as �k�0
�#

Sor �n��# Sand �k�0
�#

Sor �n��# Scorrespondingly.
A nonempty set Sof hyperreal numbers ��c

# is unbounded above if it has no
hyperfinite

upper bound, or unbounded below if it has no hyperfinite lower bound. It is convenient
to adjoin to the hyperreal number system two points, ��# (which we also write more
simply as �#) and ��#,and to define the order relationships between them and any
hyperreal number x � ��c

# by ��# � x � �#.
We call ��# and �# points at hyperinfinity. If S is a nonempty set of hyperreals, we
write supS � �# to indicate that S is unbounded above, and inf S � ��# to indicate that
S is unbounded below.

13.2. #-Open and #-Closed Sets on ��� c
#.

Definition 13.15.If a and b are in the extended hyperreals and a � b, then the open
interval �a,b� is defined by �a,b� � �x|a � x � b�. :
The open intervals �a,��#� and ���#,b� are semi-hyperinfinite if a and b are
finite or hyperfinite, and ���#,�#� is the entire hyperreal line.
If ��# � a � b � �#, the set 	a,b
 � �x|a � x � b� is #-closed, since its complement
is the union of the #-open sets ���#,a� and �b,�#� . We say that 	a,b
 is a #-closed
interval. Semi-hyper infinite #-closed intervals are sets of the form 	a,�� � �x|a � x�
and ���#,a
 � �x|x � a�,where a is finite or hyperfinite. They are #-closed sets,
since their complements are the #-open intervals ���#,a� and �a,�#�,respectively.
Definition 13.16.If x0 � �c

# is a hyperreal number and 
 � 0,
 � 0 then the open
interval
�x0 � 
,x0 � 
� is an #-neighborhood of x0. If a set S� ��c

# contains an
#-neighborhood of x0, then S is a #-neighborhood of x0, and x0 is an #-interior point of

S.
The set of #-interior points of S is the #-interior of S, denoted by #-Int�S�.
(i) If every point of S is an #-interior point (that is, S � #-Int�S� ), then S is #-open.
(ii) A set S is #-closed if Sc � ��c

#\S is #-open.
Example 13.1. An open interval �a,b� is an #-open set, because if x0 � �a,b� and

 � min �x0 � a;b � x0�, then �x0 � 
,x0 � 
� � �a,b�
Remark 13.4.The entire hyperline ��� c

# � ���#,�#� is #-open, and therefore 	 is
#-closed.

However, 	 is also #-open, for to deny this is to say that 	 contains a point that is not



an #-interior point, which is absurd because 	 contains no points. Since 	 is #-open,
��� c

# is #-closed. Thus, ��� c
# and 	 are both #-open and #-closed.

Remark 13.5.They are not the only subsets of ��� c
# with this property.

Definition 13.17.A deleted #-neighborhood of a point x0 is a set that contains every
point

of some #-neighborhood of x0 except for x0 itself. For example, S � �x|0 � |x � x0| � 
�,
where 
 � 0, is a deleted #-neighborhood of x0. We also say that it is a deleted

-#-neighborhood of x0.
Theorem 13.18.(a) The union of #-open sets is #-open:
(b) The #-intersection of #-closed sets is #-closed:
These statements apply to arbitrary collections, hyperfinite or hyperinfinite, of #-open
and #-closed sets.
Proof (a) Let L be a collection of #-open sets and S � � �G|G � L�.
If x0 � S, then x0 � G0 for some G0 in L, and since G0 is #-open, it contains some

-#-neighborhood of x0. Since G0 � S, this 
-#–neighborhood is in S, which is
consequently a #-neighborhood of x0.Thus, S is a #-neighborhood of each of its points,
and therefore #-open, by definition.
(b) Let F be a collection of #-closed sets and T � ��H|H � F�. Then Tc � ��Hc|H � F�
and, since each Hc is #-open, Tc is #-open, from (a). Therefore, T is #-closed, by
definition.
Example 13.2. If ��# � a � b � �#, the set 	a,b
 � �x|a � x � b� is #-closed, since
its complement is the union of the #-open sets ���#a� and �b,�#�. We say that 	a,b

is a #-closed interval. The set 	a,b� � �x|a � x � b� is a half-#-closed or half-#-open
interval if ��# � a � b � �#, as is �a,b
 � �x|a � x � b� however, neither of these sets
is #-open or #-closed. Semi-infinite #-closed intervals are sets of the form
	a,�#� � �x|a � x� and ���#,a
 � �x|x � a�,where a is hyperfinite. They are #-closed
sets, since their complements are the #-open intervals ���#,a� and

�a,�#�,respectively.
Definition 13.18. Let Sbe a subset of �� c

# � ���#,�#�. Then
(a) x0 is a #-limit point of S if every deleted #-neighborhood of x0 contains a point of S.
(b) x0 is a boundary point of S if every #-neighborhood of x0 contains at least one point
in Sand one not in S. The set of #-boundary points of S is the #-boundary of S,

denoted
by #-�S. The #-closure of S, denoted by #-S, is S� #-�S.
(c) x0 is an #-isolated point of S if x0 � Sand there is a #-neighborhood of x0 that

contains
no other point of S.
(d) x0 is #-exterior to S if x0 is in the #-interior of Sc. The collection of such points is the
#-exterior of S.
Theorem 13.19. A set S is #-closed if and only if no point of Sc is a #-limit point of S.
Proof. Suppose that S is #-closed and x0 � Sc. Since Sc is #-open, there is a
#-neighborhood of x0 that is contained in Sc and therefore contains no points of S.
Hence, x0 cannot be a #-limit point of S. For the converse, if no point of Sc

is a #-limit point of S then every point in Sc must have a #-neighborhood contained
in Sc. Therefore, Sc is #-open and S is #-closed.
Corollary 13.1.A set S is #-closed if and only if it contains all its #-limit points.



If S is #-closed and hyper bounded, then inf�S� and sup�S� are both in S.
Proposition 13.1. If S is #-closed and hyper bounded, then inf�S� and sup�S� are both
in S. .

13.3. #-Open Coverings
Definition 13.19.A collection H of #-open sets of �c

# is an #-open covering of a set S if
every point in S is contained in a set H belonging to H; that is, if S� ��F|F � H�.
Definition 13.20.A set S� �c

# is called #-compact (or hyper compact) if each of its
#-open covers has a hyperfinite subcover. .
Theorem 13.20.(Generalized Heine–Borel Theorem) If H is an #-open covering of a
#-closed and hyper bounded subset Sof the hyperreal line ��c

# (or of the ��c
#n,n � �#)

then Shas an #-open covering H consisting of hyper finite many #-open sets belonging
to H.
Proof. If a set S in ��c

#n is hyper bounded, then it can be enclosed within an n-box
T0 � 	�a,a
n where a � 0. By the property above, it is enough to show that T0 is
#-compact.
Assume, by way of contradiction, that T0 is not #-compact. Then there exists an hyper
infinite open cover C�# of T0 that does not admit any hyperfinite subcover. Through
bisection of each of the sides of T0, the box T0 can be broken up into 2n sub n-boxes,
each of which has diameter equal to half the diameter of T0. Then at least one of the
2n sections of T0 must require an hyper infinite subcover of C�#, otherwise C�# itself
would have a hyperfinite subcover, by uniting together the hyperfinite covers of the
sections. Call this section T1.Likewise, the sides of T1 can be bisected, yielding 2n

sections of T1, at least one of which must require an hyper infinite subcover of C�#.
Continuing in like manner yields a decreasing hyper infinite sequence of nested
n-boxes: T0  T1  T2  . . . Tk  . . . ,k � �#, where the side length of Tk is �2a� / 2k,
which #-converges to 0 as k tends to hyper infinity, k � �#. Let us define a hyper
infinite sequence �xk�k��# such that each xk : xk � Tk. This hyper infinite sequence
is Cauchy, so it must #-converge to some #-limit L. Since each Tkis #-closed, and
for each k the sequence �xk�k��# is eventually always inside Tk, we see that L � Tk

for each k � �#. Since C�# covers T0, then it has some member U � C�# such that
L � U. Since U is open, there is an n-ball B�L� � U. For large enough k, one has
Tk � B�L� � U, but then the hyper infinite number of members of C�# needed to
cover Tk can be replaced by just one: U, a contradiction.Thus, T0 is #-compact. Since
S is #-closed and a subset of the #-compact set T0, then S is also #-compact.
As an application of the Generalized Heine–Borel theorem, we give a short proof of
the Generalized Bolzano–Weierstrass Theorem.
Theorem 13.21.(Generalized Bolzano–Weierstrass Theorem) Every hyper bounded
hyper infinite set S� ��c

# has at least one #-limit point.
Proof. We will show that a hyper bounded nonempty set without a #-limit point can
contain only finite or a hyper finite number of points. If Shas no #-limit points, then S
is #-closed and every point x � Shas an #-open neighborhood Nx that
contains no point of Sother than x.The collection H � �Nx|x � S� is an #-open
covering for S. Since S is also hyper bounded, Theorem 13.20 implies that Scan be
covered by finite or a hyper finite collection of sets from H, say Nx1, . . . ,Nxn,n � �#.
Since these sets contain only x1, . . . ,xn from S, it follows that S � �xk�1�k�n,n � �#.



13.External Cauchy hyperreals �c
# and ��c

# axiomatically.
A model for the Cauchy hyperreal number system consists of a set �c

#, two distinct
elements 0 and 1 of �c

#, two binary operations � and 
 on �# (called addition and
multiplication, respectively), and a binary relation � on �#, satisfying the following
properties.
Axioms:
I.��c

#,�,
� forms a field i.e.,
(i) For all x,y, and z in �#, x � �y � z� � �x � y� � z and x 
 �y 
 z� � �x 
 y� 
 z.
(associativity of addition and multiplication)
(ii) For all x and y in �#, x � y � y � x and x 
 y � y 
 x.
(commutativity of addition and multiplication)
(iii)For all x,y, and z in �#,x 
 �y � z� � �x 
 y� � �x 
 z�.
(distributivity of multiplication over addition)
(iv)For all x in �#, x � 0 � x.
(existence of additive identity)
0 is not equal to 1, and for all x in �#, x 
 1 � x.
(existence of multiplicative identity)
(v) For every x in �#, there exists an element �x in �#, such that x � ��x� � 0.
(existence of additive inverses)
(vi)For every x 	 0 in �#, there exists an element x � 1 in �#, such that x 
 x � 1 � 1.
(existence of multiplicative inverses)
II.(�#,�� forms a totally ordered set. In other words,
(i) For all x in �#, x � x. (reflexivity)
(ii) For all x and y in �#, if x � y and y � x, then x � y. (antisymmetry)
(iii)For all x,y, and z in �#, if x � y and y � z, then x � z. (transitivity)
(iv)For all x and y in �#, x � y or y � x. (totality)
The field operations � and 
 on �# are compatible with the order �. In other words,
(v)For all x,y and z in �#, if x � y, then x � z � y � z. (preservation of order under

addition)
(vi) For all x and y in �#, if 0 � x and 0 � y, then 0 � x 
 y (preservation of order under
multiplication)
III.Non-Archimedean property
�# � �# i.e.,�# is non-Archimedean ordered field.
Remark 13.1.Here a hyperrational is by definition a ratio of two hyperintegers.

Consider
the ring �fin

# of all limited (i.e. finite) elements in �#. Then �fin
# has a unique maximal

ideal I�#, the infinitesimals or infinitesimal numbers are quantities that are closer to
zero

than any real number from the field �, but are not zero.The quotient ring �fin
# /I�# gives

the
field � of real numbers.
Definition 13.1. An element x � �# is called finite if |x| � r for some r � �, r � 0.
As we shall see in a moment in bivalent case,

Theorem 13.1.Every finite x � �# is infinitely close to some (unique) r � � in the sense
that |x � r | is either 0 or positively infinitesimal in �#. This unique r is called the



standard
part of x and is denoted by st�x�.
Proof. Let x � �# be finite. Let D1, be the set of r � � such that r � x and D2 the set

of
r � � � such that x � r �. The pair �D1,D2� forms a Dedekind cut in �, hence determines

a
unique r0 � �. A simple argument shows that |x � r0| is infinitesimal, i.e., st�x� � r0.
Notation 13.1.We usually write x � 0 iff x � I�#.
Definition 13.2. A hypersequence of hyperreal numbers is any function a : �# � �#.
Often hypersequences such as these are called hyperreal hypersequences,
hypersequences of hyperreal numbers or hypersequences in �# to make it clear that

the
elements of the sequence are hyperreal numbers. Analogous definitions can be given

for
sequences of hypernatural numbers, hyperintegers, etc.
Notation 13.2.However, we usually write an for the image of n � �# under a, rather

than
a�n�.The values an are often called the elements of the hypersequence �xn�n��#.
Definition 13.3. We call x � �# the limit of the hypersequence �xn�n��# if the following
condition holds: for each hyperreal number 
 � �# such that 
 � 0,
 � 0, there exists a
hypernatural number N � �# such that, for every hypernatural number n � N, we have
|xn � x|� 
.
Definition 13.4.The hypersequence �xn�n��# is said to #-converge to the #-limit x,
written xn � x,n � �# or lim n��#�xn� � x. Symbolically, this reads:

�
	�
 � 0� � �ε � 0�
	�N � �#��n � �#�n � N � |xn � x|� ε��
. �13.1�

If a hypersequence �xn�n��# converges to some limit, then it is convergent; otherwise it
is #-divergent. A hypersequence that has zero as a #-limit is sometimes called a null
hypersequence.
Limits of hypersequences behave well with respect to the usual arithmetic operations.
If an � a,n � �# and bn � b,n � �# , then an � bn � a � b,n � �# and
an 
 bn � a 
 b,n � �# if neither bn or any bn is zero, an 
 bn � a 
 b,n � �#.
The following properties of limits of real hypersequences provided, in each equation
below, that the limits on the right exist.
The limit of a hypersequence is unique.
1.#-lim n��#�an � bn� � #-lim n��# an � #-lim n��# bn

2.#-lim n��#�c 
 an� � c 
 #-lim n��# an

3.#-lim n��#�an 
 bn� � �#-lim n��#� 
 �#-lim n��# bn�
4.#-lim n��#�an/bn� � #-lim n��# an/#-lim n��# bn provided #-lim n��# bn 	 0
5.#-lim n��# an

p � 	#-lim n��# an
p

6. If an � bn where n greater than some N, then #-lim n��# an � #-lim n��# bn

7. (Squeeze theorem) If an � cn � bn, and #-lim n��# an � #-lim n��# bn � L, then
#-lim n��# cn � L.
Definition 13.5.A hyper infinite sequence �xn� is said to tend to hyperinfinity, written
xn � �# or #-lim n��# xn � �#, if for every K � �#, there is an N � �# such that for every
n � N; that is, the hypersequence terms are eventually larger than any fixed K.



Similarly, xn � ��# if for every K � �#, there is an N � �# such that for every n � N,
xn � K. If a hypersequence tends to infinity or minus infinity, then it is divergent.
However, a divergent hypersequence need not tend to plus or minus hyperinfinity
Definition 13.6.A hypersequence �xn�n��#of hyperreal numbers is called a Cauchy

hypersequence if for every positive hyperreal number ε, there is a positive

hyperinteger
N � �# such that for all hypernatural numbers m,n � N : |xm � xn|� ε,where the vertical
bars denote the absolute value. In a similar way one can define

Cauchy hypersequences

of hyperrational numbers,etc. Cauchy formulated such a condition by requiring
|xm � xn| � 0 i.e., to be infinite small for every pair of infinite large m,n � �#.
Definition 13.7.Let �c

# be the set of Cauchy hypersequences of hyperrational
numbers.

That is, hypersequences �xn�n��# of hyperrational numbers such that for every
hyperrational ε � 0, there exists an hyperinteger N � �#\� such that for all hypernatural
numbers m,n � N, |xm � xn|� ε. Here the vertical bars as usial denote the absolute

value.
Definition 13.8. A standard procedure to force all Cauchy hypersequences in a metric
space to converge is adding new points to the metric space in a process called
completion. �c

# is defined as the completion of �# with respect to the metric |x � y|, as
will be detailed below.
Definition 13.9. Cauchy hypersequences �xn�n��# and �yn�n��# can be added and
multiplied as follows:

�xn�n��# � �yn�n��# � �xn � yn�n��#, �13.2�

and

�xn�n��# 
 �yn�n��# � �xn 
 yn�n��#. �13.3�

Definition 13.10. Two Cauchy hypersequences are called equivalent if and only if the
difference between them tends to zero. This defines an equivalence relation that is
compatible with the operations (16.2)-(16.3) defined above, and the set �c

# of all
equivalence classes cl	�xn�n��# 
 can be shown to satisfy all axioms of the hyperreal
numbers.
We can embed �# into �c

# by identifying the rational number r � �# with the
equivalence

class of the hypersequence �rn�n��# with rn � r for all n � �#.
Remark 13.2.Comparison between hyperreal numbers is obtained by defining the
following comparison between Cauchy hypersequences:

�xn�n��# � �yn�n��# �13.4�

if and only if x is equivalent to y or there exists an hyperinteger N � �# such that
xn � yn

for all n � N.
Remark 13.3.By construction, every hyperreal number x � �c

# is represented by a
Cauchy hyper infinite sequence of hyperrational numbers. This representation is far
from unique; every hyperrational hypersequence that converges to x is a
representation of x. This reflects the observation that one can often use different



hypersequences to approximate the same hyperreal number.The equation
0.999. . .� 1 states that the hyper infinite sequences
�0,0.9,0.99,0.999, . . .� and �1,1,1,1, . . .� are equivalent, i.e., their difference
#-converges to 0.
IV.The field �# is complete in the following sense:
Definition 13.11.Let S � �c

# be a non-empty set of hyperreal numbers.
A hyperreal number x � �c

# is called an upper bound for S if x � s for all s � S.
A hyperreal number x is the least upper bound (or supremum supS) for S if x is an

upper
bound for Sand x � y for every upper bound y of S.
Remark 13.4.The order � given by Eq.(14.4) obviously is �-incomplete.
Definition 13.12. Let S � �c

# be a nonempty subset of �c
#.We we will say that:

(1) S is �-admissible above if the following conditions are satisfied:
(i) Sbounded above;
(ii) let A�S� be a set �x	x � A�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � A�S� such that 	 � � � 
 � 0.
(2) S is �-admissible belov if the following condition are satisfied:
(i) Sbounded belov;
(ii) let L�S� be a set �x	x � L�S� � x � S
 then for any 
 � 0,
 � 0 there exst � � S
and 	 � L�S� such that � � 	 � 
 � 0.
Theorem 13.2.(i) Every �-admissible above subset S � �c

# has a supremum supS.
(ii) Every �-admissible belov subset S � �c

# has infinum inf S.
Proof.Let S � �c

# be a nonempty subset of �c
#, and let M � �# be an hyperrational

upper bound for S. We are going to construct two hypersequences of hyperrational
numbers, �un�n��#and �l n�n��#. First, since S is nonempty, there is some element

s0 � S.
We can choose a hyperrational number L � �# such that L � s0.Now, we go through
the following hyperinductive procedure to produce hyperrational numbers u0,u1,u2, . . .
and l 0, l 1, l 2, l 3, . . . .
(i) Set u0 � M and l 0 � L.
(ii) Suppose that we have already defined un and l n,n � �#.
Consider the number mn � �un � l n�/2,i.e.,the average between un and l n.
(1) If mn is an upper bound for S, define un�1 � mn and l n�1 � l n.
(2) If mn is not an upper bound for S, define un�1 � un and l n�1 � mn.
Since l 0 � M, it is easy to prove by hyperinfinite induction that �un�n��# is a
non-increasing hypersequence, i.e.un�1 � un and �l n�n��# is a non-decreasing
hypersequence, i.e. l n�1 � l n.
Remark 13.5. Note that in the first case above, we have that

un�1 � l n�1 � mn � l n �
un � l n

2
� l n �

un � l n

2
. �13.5�

In the second case, we also have that

un�1 � l n�1 � un � mn � un � un � l n

2
� un � l n

2
. �13.6�

Now, this means that u1 � l 1 � 1
2 �M � L� and so u2 � l 2 � 1

2 �u1 � l 1� � 1
22 �M � L�,

and in general by hyperinfinite induction one obtains



un � l n � 2�n�M � L�. �13.7�

Since M � L so M � L � 0, and since 2�n � n�1 we have for any 
 � 0,
 � 0 that
2�n�M � L� � 
 for all sufficiently large n � �#\�.Thus, un � l n � 
 as well, and so

# - lim n��#�un � l n� � 0. �13.8�

This defines two hypersequences of hyperrationals, and so we have hyperreal
numbers

l � �l n�n��# and u � �un�n��#. It is easy to prove, by induction on n � �# that:
(i) un is an upper bound for S for all n � �#and
(ii) l n is never an upper bound for S for any n � �#.
Thus u is an upper bound for S. To see that it is a least upper bound, notice that the
#-limit of �un � l n�n��# is 0, and so l � u. Now suppose b � u � l is a smaller upper

bound
for S.Since �l n�n��# is monotonic increasing it is easy to see that b � l n for some

n � �#.
But l n is not an upper bound for Sand so neither is b. Hence u is a least upper bound
for S.

14.§14.1.External non-Archimedean field �c
# via special

extension of external non-Archimedean field �c
#.

Notation 14.1.3. Let 	 � �c
# and 	 	 �0�.Then we write 	 � 0 iff a � 	 � a � 0.

Definition 14.1.13. Let 	 � �c
# and 	 � 0.Assume that: a,b � 	 � a � b � 	. Then

we say that 	 is a positive idempotent in �c
#.

Notation 14.1.4. We will denote by �c�,fin
# a set of the all positive finite number in �c

#

except infinitesimals in �c
#.

Remark 14.1.6.Note that a set �c�,fin
# \�0�c

#� � �c
# is a positive idempotent in �c

#.

Proposition 14.1.1. Let 	 � �c
# is a positive idempotent in �c

#.Then the following are
equivalent.[In what follows assume a,b � 0�c

#].
(i) a � 	 � 2a � 	,
(ii) a � 	 � na � 	 for all standard integers n � �,
(iii) a � 	 � ra � 	 for all finite r � �c

#.
Proof. All parts are immediate from the Definition 14.1.13.
Notation 14.1.4. 	�#! � �� � �c

#|� � 0,� � 0�, i.e. 	�#! is a set of the all positive
infinitesimals in �c!

# ;	�#� � �� � �c
#|� � 0,� � 0�c

#�, i.e. 	�#! is a set of the all
negative infinitesimals in �c

#.Note that 	�#� � �	�#!.
Remark 14.1.7.Note that a set 	�#! � �c

# is a positive idempotent in �c
# and 	�#�

is a negative idempotent in �c
#.

Definition 14.1.14. Let �an�n�0
� be �c�,fin

# - valued countable sequence
a : � � �c!,fin

# such that:
(i) there is M � � such that �an�n�M

� is monotonically decreasing �c�,fin
# - valued

countable sequence a : � � �c!,fin
# \�0�c

#�

(ii) there is M � � such that for all n � M,an 	 0�c
# [it follows from (ii)]

(iii) for all n � �,an �� 0�c
# and for any � � 0,� �� 0�c

#,� � �c!,fin
# there is N � � such



that for all n � N : an � � and we denote a set of the all these sequences by 	�
��0.

We define a set 	�
��0 by cn � 	�

��0 � ��cn�n�0
� � 	�

��0.Note that 	�
��0 � �	�

��0.

Remark 14.1.8.Note that a set 	�
��0 is a positive idempotent in �c

# and a set 	�
��0 is a

negative idempotent in �c
#.

Proposition 14.1.2.(1) Let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then:
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��0 � 	�
��0 � 	�#! � 	�#� � �0�c

#�
n�0

�

where �0�c
#�

n�0

� is a countable 0�c
#- valued sequence.

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

��0.

(2) Let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��0 � 	�
��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

��0

(3) Let �an�n�0
� � 	�

��0 � 	�
��0 and x,y � �c

# then we define
(iv) x � y�an�n�0

� � �x � yan�n�0
�

Proof. Immediately by definitions and by Definition 14.1.14.
Definition 14.1.15. We define the relation �� � �� on a set 	�

��0 by:
let �an�n�0

� � 	�
��0 and �bn�n�0

� � 	�
��0 then �an�n�0

� � �bn�n�0
� iff there is N � � such

that for all n � N : an � bn and similarly we define the relation �� � �� on a set 	�
��0 by:

let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then �an�n�0
� � �bn�n�0

� iff there is N � � such
that for all n � N : an � bn

Definition 14.1.16. (1) We define the relation �� � �� on a set 	�
�� 
 �c�,fin

# by:

let �an�n�0
� � 	�

��0 and x � �c�,fin
# then �an�n�0

� � x iff there is N � � such that for all
n � N : an � x.
(2) We define the relation �� � �� on a set 	�#! 
 	�

�� by: let �an�n�0
� � 	�

��0 and x � 	�#!

then x � �an�n�0
� iff there is N � � such that for all n � N : x � an.

(3) Let �an�n�0
� be 	�#!- valued countable sequence a : � � 	�#!, and we denote a set

of the all these sequences by 	�,�
#! .

We define the relation �� � �� on a set 	�,�
#! 
 	�

�� by: let �an�n�0
� � 	�,�

#! and x � 	�#!

then �an�n�0
� � x iff there is N � � such that for all n � N : an � x.

Proposition 14.1.2.Let �an�n�0
� � 	�

��0 �an�n�0
� 	 0�c

# then there is N � � such that
0�c

# � 	�#! � �an�n�0
� � �c!,fin

# \�0�c
#�.

Proof. Immediately by definitions and by Definition 14.1.15.
Remark 14.1.9.Note that it follows from Proposition 14.1.2 that

0�c
# � 	�#! � 	�

��0 � �c!,fin
# \�0�c

#�. �14.1.9�

Definition 14.1.17. Let �an�n�0
� be monotonically increasing �c�,fin

# - valued countable
sequence a : � � �c!,fin

# \	�! such that:
(i) there is M � � such that for all n � M,an 	 0�c

#

(ii) there is N � � such that for all n � N and for any � � 0�c
#,� � �c!,fin

# an � � and we

denote a set of the all these sequences by 	�
���.We define a set 	�

��� by
cn � 	�

��� � ��cn�n�0
� � 	�

���.Note that 	�
��� � �	�

���.

Proposition 14.1.3.(1) Let �an�n�0
� � 	�

��� and �bn�n�0
� � 	�

��� then:



(i) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

���

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��� � 	�
��� � 	�#! � 	�#� � 	�

��0 � 	�
��0�0�c

#�
n�0

�

where �0�c
#�

n�0

� is a countable 0�c
#- valued sequence.

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

���.

(2) Let �an�n�0
� � 	�

��� and �bn�n�0
� � 	�

��� then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
���

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��� � 	�
���

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

���

(3) Let �an�n�0
� � 	�

��� and x,y � �c
# then we define

(iv) xn � yn�an�n�0
� � �xn � ynan�n�0

� and we denote a set of the all these sequences
by 	�

!��,�xn�n�0
� ,�yn�n�0

� .

Proof. Immediately by definitions and by Definition 14.1.16.
Remark 14.1.10.Note that �an�n�0

� � 	�
��� � �an

�1�n�N
� � 	�

��0.

Definition 14.1.18.(1) Let �an�n�0
� � 	�

��0 and let �An�n�0
�#
� �an�n�0

� be a hyper infinite
sequence

�An�n�0
�#
� �an�n�0

� � �a0,a1, . . . ,ak, . . . ,�an�n�0
� , . . .�, �14.1.10�

i.e. for any infinite m � �#\�,Am � �an�n�0
� . We will denote a set of the all these hyper

infinite sequences by 	�
��0 and a set of the all hyper infinite sequences ��an�n�0

�

by 	�
��0.(2) Let �xn � ynan�n�0

� � 	�
��0,�xn�n�0

� ,�yn�n�0
� and let

�xn � ynAn�n�0
�#
� �xn � ynan�n�0

�

�x0 � y0a0,x1 � y1a1, . . . ,�xk � ykak�, . . . ,�xn �n yan�n�0
� , . . .�,

�14.1.11�

i.e. for any infinite m � �#\�,Am � �xn � ynan�n�0
� . We will denote a set of the all these

hyper infinite sequences by 	�
��0,�xn�n�0

� ,�yn�n�0
� .

Definition 14.1.19.Let �An�n�0
�#
� �an�n�0

� and �Bn�n�0
�#
� �bn�n�0

� be in 	�
��0.

Then we define:

(i) �An�n�0
�#
� �Bn�n�0

�#
� �an�n�0

� ��bn�n�0
� � �an � bn�n�0

� � �An � Bn�n�0
�#

� 	�
��0

(ii) �An�n�0
�#
� �Bn�n�0

�#
� �an�n�0

� ��bn�n�0
� � �an � bn�n�0

� �

� �An � Bn�n�0
�#

� 	�
��0 �	�

��0 � �0�c
#�

n�0

�#

(iii) �An�n�0
�#


 �Bn�n�0
�#
� �an�n�0

� 
�bn�n�0
� � �an 
 bn�n�0

� � �An 
 Bn�n�0
�#

� 	�
��0

Let �An�n�0
�#
� �an�n�0

� and �Bn�n�0
�#
� �bn�n�0

� be in 	�
��0,�x1,n�n�0

� ,�y1n�n�0
� , and

�Bn�n�0
�#
� �bn�n�0

� be in 	�
��0,�x2,n�n�0

� ,�y2,n�n�0
� , .Then we define:

(iv) �An�n�0
�#
! �Bn�n�0

�#
� �x1,n � y1,nan�n�0

� ��x2,n � y2,nbn�n�0
� �

� �x1,n � x2,n ! y1,nan ! y2,nbn�n�0
� � �x1,n � �x2,n ! y1,nAn � y2,nBn�n�0

�#

Definition 14.1.20.Let ��n�n�0
�#

be in 	�
��0, i.e. for all n � �#, �n � 	�

��0. Say

��n�n�0
�#

#-tends to 0�c
#as n � �# iff for any given 
 � 0�c

#,
 � 0�c
# there is a

hypernatural number N � �#\�,N � N�
� such that for any n � N, |�n|� 
.
Definition 14.1.21. Let ��n�n�0

�#
be a hyper infinite sequence such that for all



n � �#,�n � 	�
��0.We call ��n�n�0

�#
a Cauchy hyper infinite sequence if the

difference between its terms #-tends to 0�c
#. To be precise: given any 
 � 0�c

#,
 � 0�c
#

there is a hypernatural number N � �#\,N � N�
� such that for any
m,n � N, |�n � �m|� 
.

Theorem 14.1.3.Let ��n�n�0
�#

be in 	�
��0. If ��n�n�0

�#
is a #-convergent hyper infinite

sequence (that is, �n �# 
 as n � �# for some 
 � 	�
��0), then ��n�n�0

�#
is a Cauchy

hyper infinite sequence.
Proof.We know that �n �# 
. Here is a ubiquitous trick: instead of using 
 in the
definition, start with an arbitrary infinitesimall 
 � 0,
 � 0�c

# and then choose N so that
|�n � 
| � 
/2 when n � N. Then if m,n � N, we have
|�n � �m| � |��n � 
� � ��m � 
�|� |�n � 
| �|�m � 
| � 
/2 � 
/2 � 
.
This shows that ��n�n�0

�#
is a Cauchy hyper infinite sequence.

Theorem 14.1.4.If ��n�n�0
�#

is a Cauchy hyper infinite sequence, then it is bounded

in �c
#; that is, there is some number M � �c

# such that |��n�n�0
�#

|� M for all n � �#.

Proof. Since ��n�n�0
�#

is Cauchy, setting 
 � 1 we know that there is some N such
that |�m � �n|� 1 whenever m,n � N. Thus, |�N�1 � �n|� 1 for n � N . We can rewrite
this as �N�1 � 1 � �n � �N�1 � 1.This means that |�n| is less than the maximum of
|�N�1 � 1| and |�N�1 � 1|. So, set M � �c

# larger than any number in the following list:
�|�0|, |�1|, . . . , |�N|, |�N�1 � 1|, |�N�1 � 1|�.
Then for any term �n, if n � N, then |�n| appears in the list and so |�n|� M; if n � N,
then (as shown above) |�n| is less than at least one of the last two entries in the list,
and so |�n|� M. Hence, M is a bound for the sequence.
Let � denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on �.
Definition 14.1.22. Let S be a set of objects. A relation among pairs of
elements of S is said to be an equivalence relation if the following three properties
hold:
Reflexivity: for any s � S, s is related to s.
Symmetry: for any s, t � S, if s is related to t then t is related to s.
Transitivity: for any s, t,r � S, if s is related to t and t is related to r, then s is
related to r.
The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.
Theorem 14.1.5. Let S be a set, with an equivalence relation on pairs of elements.
For s � S, denote by 	s
 the set of all elements in S that are related to s. Then for
any s, t � S, either 	s
 � 	t
 or 	s
 and 	t
 are disjoint.
The sets 	s
 for s � S are called the equivalence classes, and they are the bins.
Corollary 14.1.1. If S is a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.1.23.Let ��1,n�n�0
�#

and ��2,n�n�0
�#

be in 	�
��0. Say they are equivalent

(i.e. related) if |�1,n � �2,n| �# 0�c
# as n � �#, i.e. if the sequence �|�1,n � �2,n|�n�0

�#

#-tends to 0�c
#.

Proposition 14.1.4.Definition 4.1.23 yields an equivalence relation on �.



Proof. we need to show that this relation is reflexive, symmetric, and transitive.
� Reflexive: �n ��n � 0�c

#, and the sequence all of whose terms are 0�c
# clearly

converges to 0�c
#.So ��n�n�0

�#
is related to ��n�n�0

�#
.

� Symmetric: Suppose ��1,n�n�0
�#

is related to ��2,n�n�0
�#

, so �1,n � �2,n �# 0�c
#.

But �2,n � �1,n � ���1,n � �2,n�,and since only the absolute value |�1,n � �2,n|�
� |�2,n � �1,n| comes into play in Definition 14.1.23,it follows that �2,n � �1,n �# 0�c

#

as well. Hence, ��2,n�n�0
�#

is related to ��1,n�n�0
�#

.
� Transitive: Here we will use the 
/2 trick we applied to prove Theorem 14.1.4.
Suppose ��1,n�n�0

�#
is related to ��2,n�n�0

�#
, and ��2,n�n�0

�#
is related to ��3,n�n�0

�#
. This

means that �1,n � �2,n �# 0�c
# and �2,n � �3,n �# 0�c

#.

To be fully precise, let us fix infinite small 
 � 0�c
#; then there exists an N � �#\�

such that for all n � N, |�1,n � �2,n|� 
/2; also, there exists an M such that for all
n � M, |�2,n � �3,n|� 
/2. Well, then, as long as n � max�N,M� , we have that
|�2,n � �3,n|� |��1,n � �2,n� � ��2,n � �3,n�|� |�1,n � �2,n|�|�2,n � �3,n|� 
2 � 
2 � 
.
So, choosing L equal to the max of N,M , we see that given 
 � 0 we can always
choose L so that for n � L, |�1,n � �3,n|� 
. This means that �1,n � �3,n �# 0�c

# – i.e.

��1,n�n�0
�#

is related to ��3,n�n�0
�#

.
So, we really have equivalence relation, and so by Corollary 14.1.1, the set � is
partitioned into disjoint subsets (equivalence classes).

Definition 14.1.24. The hyperreal numbers �c
# are the equivalence classes

��1,n�n�0
�#

of Cauchy hyper infinite sequences of, as per Definition 14.1.23.

That is, each such equivalence class is a hyperreal number in �c
#.

Definition 14.1.25.Let s, t � �c
#, so there are Cauchy hyper infinite sequences

��n�n�0
�#

and �
n�n�0
�#

with s � ��n�n�0
�#

and t � �
n�n�0
�#

.

(a) Define s� t to be the equivalence class of the hyper infinite sequence
��n ! 
n�n�0

�#
.

(b) Define s
 t to be the equivalence class of the hyper infinite sequence
��n 
 
n�n�0

�#
.

Proposition 14.1.5.The operations �, · in Definition 14.1.25 (a),(b) are well-defined.
Proof. Suppose that ��n�n�0

�#
� ��1,n�n�0

�#
and �
n�n�0

�#
� �
1,n�n�0

�#
.

Thus means that �n � �1,n �# 0�c
# and 
n � 
1,n �# 0�c

#. Then
��n � 
n� � ��1,n � 
1,n� � ��n � �1,n� � �
n � 
1,n�.Now, using the familiar 
/2
trick, you can construct a proof that this tends to 0�c

#, and so
	��n � 
n�
 � 	��1,n � 
1,n�
.
Multiplication is a little trickier; this is where we will use Theorem 14.1.4. We will
also use another ubiquitous technique: adding 0�c

# in the form of s� s. Again,
suppose that
��n�n�0

�#
� ��1,n�n�0

�#
and �
n�n�0

�#
� �
1,n�n�0

�#
; we wish to show that

��n 
 
n�n�0
�#

� ��1,n 
 
1,n�n�0
�#

, or, in other words, that

�n 
 
n � �1,n 
 
1,n �# 0�c
#. Well, we add and subtract one of the other cross

terms, say 
n 
 �1,n :
�n 
 
n � �1,n 
 
1,n � �n 
 
n � �
n 
 �1,n � 
n 
 �1,n� � �1,n 
 
1,n �



� ��n 
 
n � 
n 
 �1,n� � �
n 
 �1,n � �1,n 
 
1,n� �
� 
n 
 ��n � �1,n� � �1,n 
 �
n � 
1,n�.
Hence, we have |�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|· |
n � 
1,n|.
Now, from Theorem 14.1.4, there are numbers M and L such that |
n|� M and
|�1,n|� L for all n � �#. Taking some number R (for example R � M � L) which is
bigger than both, we have
|�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|
 |
n � 
1,n|�
� R�|�n � �1,n|�|
n � 
1,n|�.
Now, noting that both an - cn and 
n � 
1,n #-tend to 0�c

# and using the 
/2 trick
(actually, this time we’ll want to use 
/2R, we see that
�n 
 
n � �1,n 
 
1,n �# 0�c

#

Theorem 14.1.6. Given any hyperreal number

s � �c
#, s 	 0

�c
# � 0�c

# � 	�0�c
#, 0�c

#, 0�c
#, 0�c

#, . . .�
,

there is a hyperreal number t � �c
# such that

s
 t � 1
�c

# � 1�c
# � 	�1�c

#, 1�c
#, 1�c

#, 1�c
#, . . .�
.

Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that s is not in the equivalence class of
0
�c

# � �0�c
#, 0�c

#, 0�c
#, 0�c

#, . . .�. In other words, s � ��n�n�0
�#

where �n � 0�c
# does not

#-converge to 0�c
#as n � �#. From this, we are to deduce the existence of a hyperreal

number
t � �
n�n�0

�#
such that s
 t � ��n 
 
n�n�0

�#
is the same equivalence class as

1
�c

# � 	�1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�
. Doing so is actually an easy consequence of the fact

that
nonzero hyperreal numbers from �c

# have multiplicative inverses, but there is a subtle
difficulty. Just because s is nonzero (i.e. ��n�n�0

�#
does not #-tend to 0�c

#), there’s no

reason any number of the terms in ��n�n�0
�#

can’t equal 0�c
#. However, it turns out that

eventually, �n 	 0�c
#.

That is,
Lemma 14.1.1. If ��n�n�0

�#
is a Cauchy hyper infinite sequence which does not #-tend

to 0�c
#, then there is an N � �# such that, for n � N, �n 	 0�c

#.

We will now use it to complete the proof of Theorem 14.1.6.
Let N � �# be such that �n 	 0�c

# for n � N. Define hyper infinite sequence 
n of

hyperreal numbers from �c
# as follows:

for n � N,
n � 0�c
#, and for n � N, 
n � 1/�n :

�
n�n�0
�#
� �0�c

#, 0�c
#, . . . , 0�c

#, 1�c
#/�N�1, 1/�N�2, . . .�.

This makes sense since, for n � N, an is a nonzero hyperreal number, so
1�c

#/�n exists.
Then �n 
 
n is equal to �n 
0�c

# � 0�c
# for n � N, and equals

�n 
 
n � �n 
 1�c
#/�n � 1�c

# for n � N

Well, then, if we look at the hyper infinite sequence 1
�c

# � �1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�, we

have �1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .� � ��n 
 
n� is the sequence which is 1
�c

# � 0
�c

# � 1
�c

#



for n � N and equals 1
�c

# �1
�c

# � 0�c
# for n � N. Since this hyper infinite sequence is

eventually equal to 0�c
#, it #-converges to 0�c

# as n � �#, and so

��n 
 
n�n�0
�#

� 	�1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�
 � 1
�c

# � �c
#.This shows that t � �
n�n�0

�#

is a multiplicative inverse to s � ��n�n�0
�#

.

Definition 14.1.26. Let s � �c
# . Say that s is positive if s 	 0

�c
#, and if s � ��n�n�0

�#

for some Cauchy hyper infinite sequence such that for some N,�n � 0�c
# for all n � N.

Given two hyperreal numbers s, t, say that s � t if s� t is positive.

Theorem 14.1.7. Let s, t � �c
# be hyperreal numbers such that s � t, and let r � �c

#.
Then s� r � t � r.

Proof. Let s � ��n�n�0
�#

, t � �
n�n�0
�#

, and r � ��n�n�0
�#

. Since s � t, i.e.

s� t � 0, we know that there is an N such that, for n � N,�n � 
n � 0.So �n � 
n

for n � N. Now, adding �n to both sides of this inequality , we have
�n ��n � 
n � �n for n � N, or ��n � �n� � �
n � �n� � 0�c

# for n � N. Note also that
��n � �n� � �
n � �n� � �n � 
n does not #-converge to 0�c

# as n � �#, by the
assumption that s� t � 0

�c
#. Thus, by Definition 14.1.26, this means that:

s� r � ��n � �n�n�0
�#

� �
n � �n�n�0
�#

� t � r.

Definition 14.1.27. There is canonical imbeding

�c
# � �c

# �14.1.14�

defined by

a � 	�a
 �14.1.15�

where �a is hyper infinite sequence �a � �a,a, . . . .�,a � �c
#.

Notation 14.1.5. �a � �a,a, . . . .� � �c
#,a � �c

#.

Remark 14.1.11.If a � �c
# we will identify hyperreal a with hyper infinite sequence

�an�n�0
�#
� a0,a1, . . . ,aN�1,

�aN,N � �#since a � #-lim n��# an.

Definition 14.1.28. (i) Let �an�n�0
k ,k � � be finite sequence in �c

#,�an�n�0
k � �c

#.

We define external hyper infinite sequence �an�n�0
k � �c

# by

�An;k�n�0

�� � �an�n�0
k �

� �a0,a1, . . . ,am, . . . ,ak�1,ak,
�ak�.

�14.1.16�

(ii) Let �an�n�0
� be countable sequence in �c

# : �an�n�0
� � �c

#.

We define hyper infinite sequence �An�n�0
�#
� �an�n�0

� � �c
# by

�An
� ;��n�0

�#

� �an�n�0
� �

� a0,a1, , . . . ,ak, . . .�an�n�0
� ,�an�n�0

� � 		�an�n�0
� 

.

�14.1.17�

(iii) Let �an�n�0
N ,N � �#\� be external hyperfinite sequence in �c

# : �an�n�0
N � �c

#.

We define hyper infinite sequence �an�n�0
N � �c

# by



�An;N�n�0

�� � �an�n�0
N �

� �a0,a1, . . . ,am, . . . ,aN�1,aN,�aN�.
�14.1.18�

Definition 14.1.29.(i) Let �an�n�0
k ,k � � be finite sequence in �c

#,�an�n�0
k � �c

#.

We define external finite sum Ext-�n�0

n�k

an by

Ext-�n�0

n�k

an � �cn�n�0
k � c0,c1, . . . , �cj�n�0

n�j , . . . ,ck�1, . . . ,ck,
�ck � 		ck

 �14.1.19�

where c0 � a0,cj � Ext-�n�0
n�j an, 0 � n � k.

(ii) Let �an�n�0
� be countable sequence in �c

# : �an�n�0
� � �c

#.We define external

countable sum Ext-�n�0

n��
an by

Ext-�n�0

n��
an � �cn�n�0

� �

� c0,c1, . . . ,ck, . . . ,�cn�n�0
� ,�cn�n�0

� � 		�cn�n�0
� 



�14.1.20�

where c0 � a0,ck � Ext-�n�0
n�k an,k � �.

(iii) Let �an�n�0
n�N,N � �#\� be external hyperfinite sequence in �c

# : �an�n�0
N � �c

#.

We define external hyperfinite sum Ext-�n�0

n�N

an by

Ext-�n�0

n�N

an � �cn�n�0
n�N � �c0,c1, . . . ,ck, . . . ,cN�1,cN,�cN� �14.1.21�

where c0 � a0,ck � Ext-�n�0
n�k an, 0 � k � N,cN � Ext-�n�0

n�N an.

(iv) Let �an�n�0
n�N,N � �#\� be external hyperfinite sequence in �c

# : �an�n�0
N � �c

# such
that an � 0 for all n � �#\�.We assume that

Ext-�n�0

n�N

an � Ext-�n�0

n��
an. �14.1.22�

Example 14.1.1.Consider the G.P: �,�r,�r2,� .�rN�1,N � �#,� � �c
#,

r � �c
# be the first term and the ratio of the G.P respectively. Then for any

N � �# by Proposition 14.1.6 and Definition 14.1.29 one obtains that

Ext-�
n�1

n�N�1

�rn�1 � �
1��c

# � rN

1
�c

# � r
�.�

1
�c

#

1
�c

# � r
� � rN

1
�c

# � r
. �14.1.23�

and

Ext-�
n�1

�

�rn�1 �.�
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

. �14.1.24�

Example 14.1.2.Consider the G.P: �,�r,�r2,� .�rN�1,N � ��,� � �c
#,r � �c

#,

r � 0,r 	 1.Note that



�
1
�c

# � rN

1�c
# � r

� Ext-�
n�1

n�N�1

�rn�1 �

� Ext-�
n�1

�

�rn�1 � Ext-�
n��#\� ��n�N�1�

�rn�1 �

� �
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

� Ext-�
n��#\� ��n�N�1�

�rn�1.

�14.1.25�

From (14.1.25) we obtain

Ext-�
�n���\����n�N�1�

�rn�1 � �
1��c

# � rN

1��c
# � r

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

�

� rn

1��c
# � r

n�1

�

� � rN

1��c
# � r

.

�14.1.26�

Assume that: (i) r � 1
�c

#, then from (14.1.26) we obtain

Ext-�
n��#\� ��n�N�1�

�rn�1 � 0
�c

#. �14.1.27�

(ii) r � 1
�c

#, then from (14.1.26) we obtain

Ext-�
n��#\� ��n�N�1�

�rn�1 � � rn

1
�c

# � r
n�1

�

! � rN

r � 1
�c

#

� 0
�c

#. �14.1.28�

Proposition 14.1.6.(i) Consider the G.P: �,�r,�r2,� .�rN�1,N � �#.Let SN,
� � �c

#,r � �c
# be the sum of N terms, first term and the ratio of the G.P

respectively. Then for any N � �#the statement 
N holds


N �s Ext-�n�1
n�N�1�rn�1 � �

1�c
# � rN

1�c
# � r

. �14.1.29�

Proof.(i) Directly by hyperinfinite induction. Note that 
N �s 
N�1 :

SN�1 � Ext-�n�1
n�N�rn�1 � Ext-�n�1

n�N�1�rn�1 � �rN � �
1�c

# � rN

1�c
# � r

� �rN �

� �
1 �c

# � rN

1�c
# � r

� �
1 �c

# � r rN

1�c
# � r

� �
1 �c

# � rN � rN � rN�1

1�c
# � r

�

� �
1�c

# � rN�1

1�c
# � r

.

�14.1.30�

Thus SN�1 � �
1�c

# � rN�1

1�c
# � r

and therefore 
N�1holds.

(ii) Consider the G.P: �,�r,�r2,� .�rN�1,N � �#.Let SN,

� � �c
#,r � �c

# be the sum of N terms, first term and the ratio of the G.P

respectively. Then for any N � ��the statement 
N holds




N �s Ext-�
n�1

n�N�1

�rn�1 � �
1
�c

# � rN

1
�c

# � r
. �14.1.31�

Notice that (i)�(ii) by definitions.

Definition 14.1.30. Let �an�n�0
�#

,n � �# be external hyperinfinite sequence in �c
# :

�an�n�0
�#

� �c
#.We define external hyperinfinite sum Ext-�n�0

�#

an by

Ext-�n�0

�#

an � #- limN��# Ext-�n�0

n�N

an �14.1.32�

if #-limit in (14.1.31) exists.

Example 14.1.3.Consider the G.P: �,�r,�r2,� .�rn�1,n � �#,� � �c
#,r � �c

#.
From (14.1.27) we obtain

Ext-�n�0

�#

�rn�1 � #- limN��# Ext-�n�0

n�N

�rn�1 � #- limN��# �
1
�c

# � rN

1
�c

# � r
�

� �
1
�c

#

1
�c

# � r

�14.1.33�

since #-limN��# rN � 0
�c

# if |r | � 1.From (14.1.33) and (14.1.25) we obtain

�
1
�c

#

1
�c

# � r
� Ext-�n�0

��
�rn�1 � Ext-�n�0

�
�rn�1 � Ext-�n��#�rn�1 �

�
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

� Ext-�n��#\��rn�1.

�14.1.34�

From (14.1.34) we obtain

Ext-�n��#\��rn�1 � �
1
�c

#

1
�c

# � r
� �

1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

�

� � rn

1
�c

# � r
n�1

�

� 0
�c

#.

�14.1.35�

Definition 14.1.31. Let �an�n�0
� be �c

#- valued countable sequence
a : � � ��c

# such that:
(i) there is M � � such that for all n � M,an 	 0��c

#,

we denote a set of the all these sequences by ��
�,	0.

We define a set ���
�,	0 by �cn�n�0

� � ���
�,	0 � ��cn�n�0

� � ��
�,	0.Note that

��
�,	0 � ���

�,	0.
(ii) there is countable subsequence �ank�k�m

� � �an�n�0
� such that ank � 0�c

#,k � m

and an 	 0�c
# iff an � �ank�k�m

� ,

we denote a set of the all these countable sequences by ��
�,	0��0.

We define a set ���
�,	0��0 by �cn�n�0

� � ���
�,	0��0 � ��cn�n�0

� � ��
�,	0��0.Note that

��
�,	0��0 � ���

�,	0��0.



Definition 14.1.31.
(1) Let �an�n�0

� � ��
�,	0 and �bn�n�0

� � ��
�,	0 then we define

(i) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � ��

�,	0

(iv) ��an�n�0
� ��1 � �an

�1�n�0
� � ��

�,	0

(2) Let �an�n�0
� � ��

�,	0��0 and �bn�n�0
� � ��

�,	0��0 then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � ��
�,	0��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � ��

�,	0��0

(iv) ��an�n�0
� ��1� � �an

1��n�0
� where

an
1� �

an
�1 if an 	 0��c

#

0��c
# if an � 0��c

#

�14.1.36�

Note that

(i) ��an�n�0
� ��1� �1�

� �an�n�0
�

(ii) �an�n�0
� 
 ��an�n�0

� ��1� � 1� ��c
# where 1� ��c

# � ��n�n�0
� is countable sequence

such that

�n �
1�c

# if an 	 0�c
#

0�c
# if �n � 0�c

#

�14.1.37�

Definition 14.1.32. We say that
��an�n�0

� ��1� � ��
�,	0��0 is a quasi inverse of �an�n�0

� .

Definition 14.1.33.(1) Let �an�n�0
� � ��

�,	0��0 and let �An�n�0

�� � �an�n�0
� be a hyper

infinite sequence

�An�n�0
�#
� �an�n�0

� � �a0,a1, . . . ,ak, . . . ,�an�n�0
� , . . .� �14.1.38�

i.e. for any infinite m � �#\�,Am � �an�n�0
� . We will denote a set of the all these

hyper infinite sequences by ��

�,	0��0

(2) Let �xn � ynan�n�0
� � ��

�,	0��0 and let

�xn � ynAn�n�0
�#

� �xn � ynan�n�0
� �

�x0 � y0a0,x1 � y1a1, . . . ,xk � ykak, . . . ,�xn �n yan�n�0
� , . . .�,

�14.1.39�

i.e. for any infinite m � �#\�,Am � �xn � ynan�n�0
� . We will denote a set of the all

these hyper infinite sequences by ���
�,	0��0,�xn�n�0

� ,�yn�n�0
� �.

Definition 14.1.34.Let �An�n�0
�#
� �an�n�0

� and �Bn�n�0

�� � �bn�n�0
� be in ��

�,	0��0
.

Then we define:

(i) �An�n�0
�#

� �Bn�n�0
�#
� �an�n�0

� ��bn�n�0
� � �an � bn�n�0

� � �An � Bn�n�0
�#

� ��

�,	0��0

(ii) �An�n�0
�#
� �Bn�n�0

�#
� �an�n�0

� ��bn�n�0
� � �an � bn�n�0

� �

� �An � Bn�n�0
�#

� ��

�,	0��0

(iii) �An�n�0
�#


 �Bn�n�0
�#
� �an�n�0

� 
�bn�n�0
� � �an 
 bn�n�0

� � �An 
 Bn�n�0
�#

� ��

�,	0��0



Definition 14.1.35.Let ��n�n�0
�#

be in ��

�,	0��0
, i.e. for all n � �#, �n � ��

�,	0��0.

Say ��n�n�0
�#

#-tends to 0�c
# as n � �# iff for any given 
 � 0�c

#,
 � 0�c
# there is

a hypernatural number N � �#\�,N � N�
� such that for any n � N, |�n|� 
.
Definition 14.1.36. Let ��n�n�0

�#
be a hyper infinite sequence such that for all

n � �#,�n � ��

�,	0��0
.We call ��n�n�0

�#
a Cauchy hyper infinite sequence if the

difference between its terms #-tends to 0�c
# . To be precise: given any 
 � 0�c

# ,


 � 0�c
# there is a hypernatural number N � �#\�,N � N�
� such that for any

m,n � N, |�n � �m|� 
.

Theorem 14.1.8.Let ��n�n�0
�#

be in ��

�,	0��0
. If ��n�n�0

�#
is a #-convergent hyper

infinite sequence (that is, �n �# 
 as n � �# for some 
 � ��

�,	0��0
), then

��n�n�0
�#

is a Cauchy hyper infinite sequence.
Proof.We know that �n �# 
. Here is a ubiquitous trick: instead of using 
 in the
definition, start with an arbitrary infinitesimall 
 � 0�c

# ,
 � 0�c
# and then choose

N so that |�n � 
| � 
/2 when n � N. Then if m,n � N, we have
|�n � �m| � |��n � 
� � ��m � 
�| � |�n � 
| �|�m � 
| � 
/2 � 
/2 � 
.
This shows that ��n�n�0

�#
is a Cauchy hyper infinite sequence.

Theorem 14.1.9.If ��n�n�0
�#

is a Cauchy hyper infinite sequence, then it is
bounded in �c

#; that is, there is some number M � �c
# such that

|��n�n�0
�#

|� M for all n � �#.

Proof. Since ��n�n�0

�� is Cauchy, setting 
 � 1 we know that there is some N such
that |�m � �n|� 1 whenever m,n � N. Thus, |�N�1 � �n|� 1 for n � N . We can rewrite
this as �N�1 � 1 � �n � �N�1 � 1.This means that |�n| is less than the maximum of
|�N�1 � 1| and |�N�1 � 1|. So, set M � �c

# larger than any number in the following
list: �|�0|, |�1|, . . . , |�N|, |�N�1 � 1|, |�N�1 � 1|�.
Then for any term �n, if n � N, then |�n| appears in the list and so |�n|� M; if n � N,
then (as shown above) |�n| is less than at least one of the last two entries in the list,
and so |�n|� M. Hence, M is a bound for the sequence.

Let � denote the set of all Cauchy hyper infinite sequences. We must define an

equivalence relation on �.
Definition 14.1.37. Let S be a set of objects. A relation among pairs of
elements of S is said to be an equivalence relation if the following three properties
hold:
Reflexivity: for any s � S, s is related to s.
Symmetry: for any s, t � S, if s is related to t then t is related to s.
Transitivity: for any s, t,r � S, if s is related to t and t is related to r, then s is
related to r.
The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.
Theorem 14.1.5.10. Let S be a set, with an equivalence relation on pairs of elements.
For s � S, denote by 	s
 the set of all elements in S that are related to s. Then for
any s, t � S, either 	s
 � 	t
 or 	s
 and 	t
 are disjoint.
The sets 	s
 for s � S are called the equivalence classes, and they are the bins.
Corollary 14.1.2. If S is a set with an equivalence relation on pairs of elements, then



the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.1.38.Let ��1,n�n�0
�#

and ��2,n�n�0
�#

be in ��

�,	0��0
. Say they are

equivalent (i.e. related) if |�1,n � �2,n| �# 0�c
# as n � �#, i.e. if the hyper infinite

sequence �|�1,n � �2,n|�n�0
�#

#-tends to 0�c
#.

Proposition 14.1.4. Definition 4.1.38 yields an equivalence relation on ��

�,	0��0
.

Proof. We need to show that this relation is reflexive, symmetric, and transitive.
� Reflexive: �n ��n � 0�c

# , and the sequence all of whose terms are 0�c
# clearly

#-converges to 0�c
#.So ��n�n�0

�#
is related to ��n�n�0

�#
.

� Symmetric: Suppose ��1,n�n�0
�#

is related to ��2,n�n�0
�#

, so �1,n � �2,n �# 0�c
#.

But �2,n � �1,n � ���1,n � �2,n�,and since only the absolute value |�1,n � �2,n|�
� |�2,n � �1,n| comes into play in Definition 14.1.35,it follows that �2,n � �1,n �# 0�c

#

as well. Hence, ��2,n�n�0
�#

is related to ��1,n�n�0
�#

.
� Transitive: Here we will use the 
/2 trick we applied to prove Theorem 14.1.4.
Suppose ��1,n�n�0

�#
is related to ��2,n�n�0

�#
, and ��2,n�n�0

�#
is related to ��3,n�n�0

�#
.

This means that �1,n � �2,n �# 0�c
# and �2,n � �3,n �# 0�c

#.

To be fully precise, let us fix infinite small 
 � 0�c
#; then there exists an N � �#\�

such that for all n � N, |�1,n � �2,n| � 
/2; also, there exists an M such that for all
n � M, |�2,n � �3,n|� 
/2. Well, then, as long as n � max�N,M� , we have that
|�2,n � �3,n|� |��1,n � �2,n� � ��2,n � �3,n�|� |�1,n � �2,n|�|�2,n � �3,n|� 
/2 � 
/2 � 
.
So, choosing L equal to the max of N,M , we see that given 
 � 0 we can always
choose L so that for n � L, |�1,n � �3,n|� 
. This means that �1,n � �3,n �# 0��c

# ,

i.e. ��1,n�n�0
�#

is related to ��3,n�n�0
�#

.

So, we really have equivalence relation, and so by Corollary 14.1.2, the set ��

�,	0��0

is partitioned into disjoint subsets (equivalence classes).

Definition 14.1.39. The hyperreal numbers �c
# contain: (1) all the equivalence

classes ��1,n�n�0
�#

of Cauchy hyper infinite sequences of, as per

Definition 14.1.38 and (2) the all gyperreals �c
# � �c

# by canonical imbedding

�c
# � �c

# (14.1.42)-(14.1.43).

That is, each such equivalence class is a hyperreal number in �c
# .

Definition 14.1.40. Let s, t � �c
#, so there are Cauchy hyper infinite

sequences ��n�n�0
�#

and �
n�n�0
�#

with s � ��n�n�0
�#

and t � �
n�n�0
�#

.

(a) Define s� t to be the equivalence class of the hyper infinite sequence
��n ! 
n�n�0

�#
.

(b) Define s
 t to be the equivalence class of the hyper infinite sequence
��n 
 
n�n�0

�#
.

Proposition 14.1.5.The operations �,
 in Definition 14.1.25 (a),(b) are well-defined.
Proof. Suppose that ��n�n�0

�#
� ��1,n�n�0

�#
and �
n�n�0

�#
� �
1,n�n�0

�#
.

Thus means that �n � �1,n �# 0�c
# and 
n � 
1,n �# 0�c

#. Then
��n � 
n� � ��1,n � 
1,n� � ��n � �1,n� � �
n � 
1,n�.Now, using the familiar 
/2
trick, you can construct a proof that this tends to 0�c

#, and so
	��n � 
n�
 � 	��1,n � 
1,n�
.



Multiplication is a little trickier; this is where we will use Theorem 14.1.10. We will
also use another ubiquitous technique: adding 0�c

# in the form of s� s. Again,
suppose that
��n�n�0

�#
� ��1,n�n�0

�#
and �
n�n�0

�#
� �
1,n�n�0

�#
; we wish to show that

��n 
 
n�n�0
�#

� ��1,n 
 
1,n�n�0
�#

, or, in other words, that

�n 
 
n � �1,n 
 
1,n �# 0�c
#. Well, we add and subtract one of the other cross

terms, say 
n 
 �1,n :
�n 
 
n � �1,n 
 
1,n � �n 
 
n � �
n 
 �1,n � 
n 
 �1,n� � �1,n 
 
1,n �
� ��n 
 
n � 
n 
 �1,n� � �
n 
 �1,n � �1,n 
 
1,n� �
� 
n 
 ��n � �1,n� � �1,n 
 �
n � 
1,n�.
Hence, we have |�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|· |
n � 
1,n|.
Now, from Theorem 14.1.9, there are numbers M and L such that |
n|� M and
|�1,n|� L for all n � �#. Taking some number R (for example R � M � L) which is
bigger than both, we have
|�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|
 |
n � 
1,n|�
� R�|�n � �1,n|�|
n � 
1,n|�.
Now, noting that both �n ��1,n and 
n � 
1,n #-tend to 0�c

# and using the 
/2 trick
(actually, this time we’ll want to use 
/2R, we see that
�n 
 
n � �1,n 
 
1,n �# 0�c

#

Theorem 14.2.11. Given any hyperreal number s � �c
#, s 	 0

�c
#, there is a

hyperreal number t � �c
# such that s
 t � 1

�c
# or s
 t � 1�

�c
#.

Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that s is not in the equivalence class of

0
�c

# � �0�c
#, 0�c

#, 0�c
#, 0�c

#, . . .�. �14.1.40�

In other words, s � ��n�n�0
�#

where �n � 0
�c

# does not #-converge to 0�c
#.

From this, we are to deduce the existence of a hyperreal number t � �
n�n�0
�#

such that s
 t � ��n 
 
n�n�0
�#

is the same equivalence

class as 1
�c

# � 	�1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�
 or as some 1�
�c

#. Doing so is actually an

easy consequence of the fact that nonzero hyperreal numbers from �c
# have

multiplicative inverses, but there is a subtle difficulty. Just because s is nonzero
(i.e. ��n�n�0

�#
does not #-tend to 0�c

# as n � �#), there’s no reason any number

of the terms in ��n�n�0
�#

can’t equal 0
�c

#. However, it turns out that eventually,

�n 	 0�c
#.

That is,
Lemma 14.1.2. If ��n�n�0

�#
is a Cauchy hyper infinite sequence which does

not #-tends to 0�c
#, then there is an N � �# such that, for n � N, �n 	 0�c

#.

We will now use it to complete the proof of Theorem 14.2.11.
Let N � �# be such that �n 	 0�c

# for n � N. Define hyper infinite sequence 
n of

hyperreal numbers from �c
# as follows:

for n � N,
n � 0�c
#, and for n � N, 
n � 1�c

#/�n :

�
n�n�0
�#
� �0�c

#, 0�c
#, . . . , 0�c

#, 1�c
#/�N�1, 1�c

#/�N�2, . . .�.



This makes sense since, for n � N, an is a nonzero hyperreal number, so
1�c

#/�n exists.
Then �n 
 
n is equal to �n 
0�c

# � 0�c
# for n � N, and equals

�n 
 
n � �n 
 1�c
#/�n � 1�c

# for n � N

Well, then, if we look at the hyper infinite sequence

1
�c

# � �1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�, �14.1.41�

we have �1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .� � ��n 
 
n� is the hyper infinite sequence which
is 1

�c
# � 0

�c
# � 1

�c
# for n � N and equals 1

�c
# �1

�c
# � 0

�c
# for n � N. Since this

hyper infinite sequence is eventually equal to 0�c
#, it #-converges to 0�c

# as n � �#,

and so ��n 
 
n�n�0
�#

� 	�1�c
#, 1�c

#, 1�c
#, 1�c

#, . . .�
 � 1
�c

# � �c
# and similarly

��n 
 
n�n�0
�#

� 1�
�c

# � �c
#.This shows that t � �
n�n�0

�#
is a multiplicative

inverse (and similarly quasi inverse) to s � ��n�n�0
�#

.

Definition 14.2.41. Let s � �c
# . Say that s is positive if s 	 0

�c
#, and if

s � ��n�n�0
�#

for some Cauchy hyper infinite sequence such that for some N,

�n � 0�c
# for all n � N.Given two hyperreal numbers s, t � �c

#, say that s � t if
s� t is positive.

Theorem 14.1.7. Let s, t � �c
# be hyperreal numbers such that s � t, and let

r � ��c
#.Then s� r � t � r.

Proof. Let s � ��n�n�0
�#

, t � �
n�n�0
�#

, and r � ��n�n�0
�#

. Since s � t, i.e.

s� t � 0, we know that there is an N such that, for n � N,�n � 
n � 0.So �n � 
n

for n � N. Now, adding �n to both sides of this inequality , we have
�n ��n � 
n � �n for n � N, or ��n � �n� � �
n � �n� � 0�c

# for n � N. Note also that
��n � �n� � �
n � �n� � �n � 
n does not #-converge to 0��c

# as n � ��, by the
assumption that s� t � 0

�c
#. Thus, by Definition 14.2.41, this means that:

s� r � ��n � �n�n�0
�#

� �
n � �n�n�0
�#

� t � r.

Definition 14.1.42. There is canonical imbeding

�c
# � �c

# �14.1.42�

defined by

a � �a �14.1.43�

where �a is hyper infinite sequence �a � �a,a, . . . .� � �c
#,a � �c

#.

Notation 14.1.5. �a � �a,a, . . . .� � �c
#,a � �c

#.

Definition 14.1.43. (i) Let �an�n�0
k ,k � � be finite sequence in �c

#,�an�n�0
k � �c

#.

We define external hyper infinite sequence �an�n�0
k � �c

#by

�An;k�n�0
�#
� �an�n�0

k �

� a0,a1, . . . ,am, . . . ,ak�1,ak,ak .
�14.1.44�

(ii) Let �an�n�0
� be countable sequence in �c

# : �an�n�0
� � �c

#.



We define hyper infinite sequence �An�n�0
�#
� �an�n�0

� � �c
# by

�An
� ;��n�0

�� � �an�n�0
� �

� �a0,a1, . . . ,ak, . . .�an�n�0
� ,�an�n�0

� .
�14.1.45�

(iii) Let �an�n�0
N ,N � �#\� be external hyperfinite sequence in �c

# : �an�n�0
N � �c

#.

We define hyper infinite sequence �an�n�0
N � �c

# by

�An;N�n�0

�� � �an�n�0
N �

� a0,a1, , . . . ,am, . . . ,aN�1aN,aN .
�14.1.46�

Definition 14.1.44.(i) Let �an�n�0
k ,k � � be finite sequence in �c

#,�an�n�0
N � �c

#.

We define external finite sum Ext-�n�0

n�k

an by

Ext-�n�0

n�k

an � �cn�n�0
k � �c0,c1, . . . ,ck,

�ck� �14.1.47�

where c0 � a0,cj � Ext-�n�0
n�j an, 0 � j � k.

(ii) Let �an�n�0
� be countable sequence in �c

# : �an�n�0
� � �c

#.We define external

countable sum Ext-�n�0

n��
an by

Ext-�n�0

n��
an � �cn�n�0

� �

� c0,c1, . . . ,ck, . . .�cn�n�0
� ,�cn�n�0

� � �cn�n�0
�

�14.1.48�

where c0 � a0,ck � Ext-�n�0
n�k an,k � �.

(iii) Let �an�n�0
n�N,N � ��\� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#.

We define external hyperfinite sum Ext-�n�0

n�N

an by

Ext-�n�0

n�N

an � �cn�n�0
n�N � �c0,c1, . . . ,ck, . . . ,cN,�cN� �14.1.49�

where c0 � a0,ck � Ext-�n�0
n�k an, 0 � k � N,cN � Ext-�n�0

n�N an.

(iv) Let �an�n�0
n�N,N � �# be external hyperfinite sequence in �c

# : �an�n�0
N � �c

#

such that an � 0 for all n � �#\�.We assume that

Ext-�n�0

n�N

an � Ext-�n�0

n��
an. �14.1.50�

Example 14.1.3.Consider the G.P: �,�r,�r2,� .�rN�1,N � �#,� � �c
#,

r � �c
# be the first term and the ratio of the G.P respectively. Then for any

N � �# by Proposition 14.1.6 and Definition 14.1.44 one obtains that

Ext-�
n�1

n�N�1

�rn�1 � �
1
�c

# � rN

1
�c

# � r
�.�

1
�c

#

1
�c

# � r
� � rN

1
�c

# � r
. �14.1.51�

and



Ext-�
n�1

�

�rn�1 �.�
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

. �14.1.52�

Example 14.1.4.Consider the G.P: �,�r,�r2,� .�rN�1,N � �#,� � �c
#,r � �c

#,
r � 0

�c
#, |r | � 1.Note that

�
1
�c

# � rN

1�c
# � r

� Ext-�
n�1

n�N�1

�rn�1 �

� Ext-�
n�1

�

�rn�1 � Ext-�
n��#\� ��n�N�1�

�rn�1 �

� �
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

� Ext-�
n��#\\� ��n�N�1�

�rn�1.

�14.1.53�

From (14.1.53) we obtain

Ext-�
n��#\� ��n�N�1�

�rn�1 � �
1 �

�c
# rN

1�c
# � r

� �
1
�c

#

1
�c

# � r
� � rn

1
�c

# � r
n�1

�

�

�
�1��c

#

n
|r |n

1
�c

# � r
n�1

�

� � rN

1
�c

# � r
.

�14.1.54�

Assume that: (i) r � 0
�c

#, |r | � 1 then from (14.1.54) we obtain

Ext-�
n��#\� ��n�N�1�

� �1
�c

#

n�1
|r |n�1 	 0

�c
#. �14.1.55�

§14.2.External non-Archimedean field ��c
# via special

extension of non-Archimedean field ��c
#

Notation 14.2.3. Let 	 � ��c
# and 	 	 �0�.Then we write 	 � 0 iff a � 	 � a � 0.

Definition 14.2.13. Let 	 � ��c
# and 	 � 0.Assume that: a,b � 	 � a � b � 	.

Then we say that 	 is a positive idempotent in ��c
#.

Notation 14.2.4. We will denote by ��c�,fin
# a set of the all positive finite number in �c

#

except infinitesimals in ��c
#.

Remark 14.2.6.Note that a set ��c�,fin
# \�0� � ��c

# is a positive idempotent in ��c
#.

Proposition 14.2.1.Let 	 � ��c
# is a positive idempotent in ��c

#.Then the following
are equivalent.[In what follows assume a,b � 0].
(i) a � 	 � 2a � 	,
(ii) a � 	 � na � 	 for all standard integers n � �,
(iii) a � 	 � ra � 	 for all finite r � ��c�

# .
Proof. All parts are immediate from the Definition 14.2.13.
Notation 14.2.4. 	�#! � �� � ��c�

# |� � 0,� � 0�, i.e. 	�#! is a set of the all positive
infinitesimals in ��c�

# ;	�#� � �� � ��c�
# |� � 0,� � 0�c

#�, i.e. 	�#� � 	�#! is a set of
the all negative infinitesimals in ��c

#.Note that 	�#� � �	�#!.



Remark 14.2.7.Note that a set 	�#! � ��c
# is a positive idempotent in ��c

# and 	�#�

is a negative idempotent in ��c
#.

Definition 14.2.14. Let �an�n�0
� be ��c�,fin

# - valued countable sequence
a : � � ��c!,fin

# such that:
(i) there is M � � such that �an�n�M

� is monotonically decreasing ��c�,fin
# - valued

countable sequence a : � � ��c!,fin
# \�0�c

#�

(ii) there is M � � such that for all n � M,an 	 0��c
# [it follows from (ii)]

(iii) for all n � �,an �� 0��c
# and for any � � 0,� �� 0�c

#,� � ��c!,fin
# there is N � �

such that for all n � N : an � � and we denote a set of the all these sequences by
	�
��0.

We define a set 	�
��0 by cn � 	�

��0 � ��cn�n�0
� � 	�

��0.Note that 	�
��0 � �	�

��0.

Remark 14.2.8.Note that a set 	�
��0 is a positive idempotent in ��c

# and a set 	�
��0 is a

negative idempotent in ��c
#.

Proposition 14.2.2.(1) Let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then:
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��0 � 	�
��0 � 	�#! � 	�#� � �0��c

#�
n�0

�

where �0��c
#�

n�0

� is a countable 0��c
#- valued sequence.

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

��0.

(2) Let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��0 � 	�
��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

��0

(3) Let �an�n�0
� � 	�

��0 � 	�
��0 and x,y � �c

# then we define
(iv) x � y�an�n�0

� � �x � yan�n�0
�

Proof. Immediately by definitions and by Definition 14.2.14.
Definition 14.2.15. We define the relation �� � �� on a set 	�

��0 by:
let �an�n�0

� � 	�
��0 and �bn�n�0

� � 	�
��0 then �an�n�0

� � �bn�n�0
� iff there is N � � such

that for all n � N : an � bn and similarly we define the relation �� � �� on a set 	�
��0

by: let �an�n�0
� � 	�

��0 and �bn�n�0
� � 	�

��0 then �an�n�0
� � �bn�n�0

� iff there is N � �
such that for all n � N : an � bn

Definition 14.2.16. (1) We define the relation �� � �� on a set 	�
�� 
 ��c�,fin

# by:

let �an�n�0
� � 	�

��0 and x � ��c�,fin
# then �an�n�0

� � x iff there is N � � such that for
all n � N : an � x.
(2) We define the relation �� � �� on a set 	�#! 
 	�

�� by: let �an�n�0
� � 	�

��0 and x � 	�#!

then x � �an�n�0
� iff there is N � � such that for all n � N : x � an.

(3) Let �an�n�0
� be 	�#!- valued countable sequence a : � � 	�#!, and we denote a set

of the all these sequences by 	�,�
#! .

We define the relation �� � �� on a set 	�,�
#! 
 	�

�� by: let �an�n�0
� � 	�,�

#! and x � 	�#!

then �an�n�0
� � x iff there is N � � such that for all n � N : an � x.

Proposition 14.2.2.Let �an�n�0
� � 	�

��0 �an�n�0
� 	 0��c

# then there is N � � such that
0��c

# � 	�#! � �an�n�0
� � ��c�,fin

# \�0��c
#�.

Proof. Immediately by definitions and by Definition 14.2.16.
Remark 14.2.9.Note that it follows from Proposition 14.2.2 that



0��c
# � 	�#! � 	�

��0 � ��c�,fin
# \�0��c

#�. �14.2.9�

Definition 14.2.17. Let �an�n�0
� be monotonically increasing ��c�,fin

# - valued
countable sequence a : � � ��c�,fin

# \	�! such that:
(i) there is M � � such that for all n � M,an 	 0��c

#

(ii) there is N � � such that for all n � N and for any � � 0��c
#,� � ��c�,fin

# ,an � �

and we denote a set of the all these sequences by 	�
���.We define a set 	�

��� by
cn � 	�

��� � ��cn�n�0
� � 	�

���.Note that 	�
��� � �	�

���.

Proposition 14.2.3.(1) Let �an�n�0
� � 	�

��� and �bn�n�0
� � 	�

��� then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
���

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��� � 	�
��� � 	�#! � 	�#� � 	�

��0 �
�	�

��0 � �0��c
#�

n�0

� where �0�c
#�

n�0

� is a countable 0�c
#- valued sequence.

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

���.

(2) Let �an�n�0
� � 	�

��� and �bn�n�0
� � 	�

��� then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � 	�
���

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � 	�

��� � 	�
���

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � 	�

���

(3) Let �an�n�0
� � 	�

��� and x,y � �c
# then we define

(iv) xn � yn�an�n�0
� � �xn � ynan�n�0

� and we denote a set of the all these sequences
by 	�

!��,�xn�n�0
� ,�yn�n�0

� .

Proof. Immediately by definitions and by Definition 14.2.16.
Remark 14.2.10.Note that �an�n�0

� � 	�
��� � �an

�1�n�N
� � 	�

��0.

Definition 14.2.18.(1) Let �an�n�0
� � 	�

��0 and let �An�n�0

�� � �an�n�0
� be a hyper infinite

sequence

�An�n�0

�� � �an�n�0
� � �a0,a1, . . . ,ak, . . . ,�an�n�0

� , . . .� �14.2.10�

i.e. for any infinite m � ��\�,Am � �an�n�0
� . We will denote a set of the all these

hyper infinite sequences by 	�
��0 and a set of the all hyper infinite sequences

��an�n�0
� by 	�

��0.(2) Let �xn � ynan�n�0
� � 	�

��0,�xn�n�0
� ,�yn�n�0

� and let

�xn � ynAn�n�0

�� � �xn � ynan�n�0
�

�x0 � y0a0,x1 � y1a1, . . . ,xk � ykak, . . . ,�xn � ynan�n�0
� , . . .�,

�14.2.11�

i.e. for any infinite m � ��\�,Am � �xn � ynan�n�0
� . We will denote a set of the all

these hyper infinite sequences by 	�
��0,�xn�n�0

� ,�yn�n�0
� .

Definition 14.2.19.Let �An�n�0

�� � �an�n�0
� and �Bn�n�0

�� � �bn�n�0
� be in 	�

��0.
Then we define:

(i) �An�n�0

�� � �Bn�n�0

�� � �an�n�0
� ��bn�n�0

� � �an � bn�n�0
� � �An � Bn�n�0

�� � 	�
��0

(ii) �An�n�0

�� � �Bn�n�0

�� � �an�n�0
� ��bn�n�0

� � �an � bn�n�0
� �

� �An � Bn�n�0

�� � 	�
��0 �	�

��0 � �0�c
#�

n�0

��

(iii) �An�n�0

�� 
 �Bn�n�0

�� � �an�n�0
� 
�bn�n�0

� � �an 
 bn�n�0
� � �An 
 Bn�n�0

�#
� 	�

��0



Let �An�n�0

�� � �an�n�0
� and �Bn�n�0

�� � �bn�n�0
� be in 	�

��0,�x1,n�n�0
� ,�y1n�n�0

� , and

�Bn�n�0

�� � �bn�n�0
� be in 	�

��0,�x2,n�n�0
� ,�y2,n�n�0

� , .Then we define:

(iv) �An�n�0
�#
! �Bn�n�0

�� � �x1,n � y1,nan�n�0
� ��x2,n � y2,nbn�n�0

� �

� �x1,n � x2,n ! y1,nan ! y2,nbn�n�0
� � �x1,n � �x2,n ! y1,nAn � y2,nBn�n�0

��

Definition 14.2.20.Let ��n�n�0

�� be in 	�
��0, i.e. for all n � ��, �n � 	�

��0. Say
��n�n�0

�� #-tends to 0��c
# as n � �� iff for any given 
 � 0�c

#,
 � 0��c
# there is a

hypernatural number N � ��\�,N � N�
� such that for any n � N, |�n|� 
.
Definition 14.2.21. Let ��n�n�0

�� be a hyper infinite sequence such that for all

n � ��,�n � 	�
��0.We call ��n�n�0

�� a Cauchy hyper infinite sequence if the
difference between its terms #-tends to 0��c

# . To be precise: given any 
 � 0��c
# ,


 � 0��c
# there is a hypernatural number N � ��\�,N � N�
� such that for any

m,n � N, |�n � �m|� 
.

Theorem 14.2.3.Let ��n�n�0

�� be in 	�
��0. If ��n�n�0

�� is a #-convergent hyper infinite

sequence (that is, �n �# 
 as n � �� for some 
 � 	�
��0), then ��n�n�0

�� is a
Cauchy hyper infinite sequence.
Proof.cWe know that �n �# 
. Here is a ubiquitous trick: instead of using 
 in the
definition, start with an arbitrary infinitesimall 
 � 0��c

# ,
 � 0��c
# and then choose

N so that |�n � 
| � 
/2 when n � N. Then if m,n � N, we have
|�n � �m| � |��n � 
� � ��m � 
�| � |�n � 
| �|�m � 
| � 
/2 � 
/2 � 
.
This shows that ��n�n�0

�� is a Cauchy hyper infinite sequence.
Theorem 14.2.4.If ��n�n�0

�� is a Cauchy hyper infinite sequence, then it is bounded
in ��c

#; that is, there is some number M � ��c
# such that |��n�n�0

�� |� M for all
n � ��.
Proof. Since ��n�n�0

�� is Cauchy, setting 
 � 1 we know that there is some N such
that |�m � �n|� 1 whenever m,n � N. Thus, |�N�1 � �n|� 1 for n � N . We can rewrite
this as �N�1 � 1 � �n � �N�1 � 1.This means that |�n| is less than the maximum of
|�N�1 � 1| and |�N�1 � 1|. So, set M � ��c

# larger than any number in the following
list: �|�0|, |�1|, . . . , |�N|, |�N�1 � 1|, |�N�1 � 1|�.
Then for any term �n, if n � N, then |�n| appears in the list and so |�n|� M; if n � N,
then (as shown above) |�n| is less than at least one of the last two entries in the list,
and so |�n|� M. Hence, M is a bound for the sequence.
Let � denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on �.
Definition 14.2.22. Let S be a set of objects. A relation among pairs of
elements of S is said to be an equivalence relation if the following three properties
hold:
Reflexivity: for any s � S, s is related to s.
Symmetry: for any s, t � S, if s is related to t then t is related to s.
Transitivity: for any s, t,r � S, if s is related to t and t is related to r, then s is
related to r.
The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.



Theorem 14.2.5. Let S be a set, with an equivalence relation on pairs of elements.
For s � S, denote by 	s
 the set of all elements in S that are related to s. Then for
any s, t � S, either 	s
 � 	t
 or 	s
 and 	t
 are disjoint.
The sets 	s
 for s � S are called the equivalence classes, and they are the bins.
Corollary 14.2.1. If S is a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.2.23.Let ��1,n�n�0

�� and ��2,n�n�0

�� be in 	�
��0. Say they are equivalent

(i.e. related) if |�1,n � �2,n| �# 0��c
# as n � ��, i.e. if the hyper infinite sequence

�|�1,n � �2,n|�n�0

�� #-tends to 0��c
# .

Proposition 14.2.4.Definition 4.2.23 yields an equivalence relation on

� � 	�
��0,�xn�n�0

� ,�yn�n�0
� .

Proof. we need to show that this relation is reflexive, symmetric, and transitive.
� Reflexive: �n ��n � 0��c

# , and the sequence all of whose terms are 0��c
# clearly

converges to 0�c
#.So ��n�n�0

�� is related to ��n�n�0

�� .
� Symmetric: Suppose ��1,n�n�0

�� is related to ��2,n�n�0

�� , so �1,n � �2,n �# 0��c
# .

But �2,n � �1,n � ���1,n � �2,n�,and since only the absolute value |�1,n � �2,n|�
� |�2,n � �1,n| comes into play in Definition 14.2.20,it follows that �2,n � �1,n �# 0��c

#

as well. Hence, ��2,n�n�0

�� is related to ��1,n�n�0

�� .
� Transitive: Here we will use the 
/2 trick we applied to prove Theorem 14.1.4.
Suppose ��1,n�n�0

�� is related to ��2,n�n�0

�� , and ��2,n�n�0

�� is related to ��3,n�n�0

�� .
This means that �1,n � �2,n �# 0�c

# and �2,n � �3,n �# 0�c
#.

To be fully precise, let us fix infinite small 
 � 0��c
# ; then there exists an N � ��\�

such that for all n � N, |�1,n � �2,n|� 
/2; also, there exists an M such that for all
n � M, |�2,n � �3,n|� 
/2. Well, then, as long as n � max�N,M� , we have that
|�2,n � �3,n|� |��1,n � �2,n� � ��2,n � �3,n�|� |�1,n � �2,n|�|�2,n � �3,n|� 
/2 � 
/2 � 
.
So, choosing L equal to the max of N,M , we see that given 
 � 0 we can always
choose L so that for n � L, |�1,n � �3,n|� 
. This means that �1,n � �3,n �# 0��c

# ,

i.e. ��1,n�n�0

�� is related to ��3,n�n�0

�� .
So, we really have equivalence relation, and so by Corollary 14.2.1, the set � is
partitioned into disjoint subsets (equivalence classes).

Definition 14.2.24. The hyperreal numbers ��c
# are the equivalence classes

��1,n�n�0

�� of Cauchy hyper infinite sequences of, as per Definition 14.2.23.

That is, each such equivalence class is a hyperreal number in ��c
# .

Definition 14.2.25.Let s, t � ��c
#, so there are Cauchy hyper infinite sequences

��n�n�0

�� and �
n�n�0

�� with s � ��n�n�0

�� and t � �
n�n�0

�� .

(a) Define s� t to be the equivalence class of the hyper infinite sequence
��n ! 
n�n�0

�� .
(b) Define s
 t to be the equivalence class of the hyper infinite sequence
��n 
 
n�n�0

�� .

Proposition 14.2.5.The operations �,
 in Definition 14.2.25 (a),(b) are well-defined.
Proof. Suppose that ��n�n�0

�� � ��1,n�n�0

�� and �
n�n�0

�� � �
1,n�n�0

�� .

Thus means that �n � �1,n �# 0��c
# and 
n � 
1,n �# 0��c

#. Then



��n � 
n� � ��1,n � 
1,n� � ��n � �1,n� � �
n � 
1,n�.Now, using the familiar 
/2
trick, you can construct a proof that this tends to 0��c

#, and so
	��n � 
n�
 � 	��1,n � 
1,n�
.
Multiplication is a little trickier; this is where we will use Theorem 14.2.4. We will
also use another ubiquitous technique: adding 0��c

# in the form of s� s. Again,
suppose that
��n�n�0

�� � ��1,n�n�0

�� and �
n�n�0

�� � �
1,n�n�0

�� ; we wish to show that

��n 
 
n�n�0

�� � ��1,n 
 
1,n�n�0

�� , or, in other words, that

�n 
 
n � �1,n 
 
1,n �# 0��c
#. Well, we add and subtract one of the other cross

terms, say 
n 
 �1,n :
�n 
 
n � �1,n 
 
1,n � �n 
 
n � �
n 
 �1,n � 
n 
 �1,n� � �1,n 
 
1,n �
� ��n 
 
n � 
n 
 �1,n� � �
n 
 �1,n � �1,n 
 
1,n� �
� 
n 
 ��n � �1,n� � �1,n 
 �
n � 
1,n�.
Hence, we have |�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|· |
n � 
1,n|.
Now, from Theorem 14.2.4, there are numbers M and L such that |
n|� M and
|�1,n|� L for all n � ��. Taking some number R (for example R � M � L) which is
bigger than both, we have
|�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|
 |
n � 
1,n|�
� R�|�n � �1,n|�|
n � 
1,n|�.
Now, noting that both �n ��1,n and 
n � 
1,n #-tend to 0��c

# and using the 
/2 trick
(actually, this time we’ll want to use 
/2R, we see that
�n 
 
n � �1,n 
 
1,n �# 0��c

#

Theorem 14.2.6. Given any hyperreal number s � ��c
#, s 	 0��c

#, there is a

hyperreal number t � ��c
# such that s
 t � 1��c

#.

Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that s is not in the equivalence class of

0��c
# � �0��c

#, 0��c
#, 0��c

#, 0��c
#, . . .�. �14.2.12�

In other words, s � ��n�n�0

�� where �n � 0��c
# does not #-converge to 0��c

#.

From this, we are to deduce the existence of a hyperreal number t � �
n�n�0

��

such that s
 t � ��n 
 
n�n�0

�� is the same equivalence

class as 1��c
# � 	�1��c

#, 1��c
#, 1��c

#, 1��c
#, . . .�
. Doing so is actually an easy

consequence of the fact that nonzero hyperreal numbers from ��c
# have

multiplicative inverses, but there is a subtle difficulty. Just because s is nonzero
(i.e. ��n�n�0

�#
does not #-tend to 0��c

# as n � ��), there’s no reason any number
of the terms in ��n�n�0

�� can’t equal 0��c
#. However, it turns out that eventually,

�n 	 0��c
#.

That is,
Lemma 14.2.1. If ��n�n�0

�� is a Cauchy hyper infinite sequence which does not #-tends
to 0�c

#, then there is an N � �� such that, for n � N, �n 	 0�c
#.

We will now use it to complete the proof of Theorem 14.2.6.
Let N � �# be such that �n 	 0�c

# for n � N. Define hyper infinite sequence 
n of

hyperreal numbers from �c
# as follows:



for n � N,
n � 0��c
#, and for n � N, 
n � 1/�n :

�
n�n�0

�� � �0��c
#, 0��c

#, . . . , 0��c
#, 1��c

#/�N�1, 1/�N�2, . . .�.
This makes sense since, for n � N, an is a nonzero hyperreal number, so
1�c

#/�n exists.
Then �n 
 
n is equal to �n 
0��c

# � 0��c
# for n � N, and equals

�n 
 
n � �n 
 1��c
#/�n � 1��c

# for n � N

Well, then, if we look at the hyper infinite sequence

1��c
# � �1��c

#, 1��c
#, 1��c

#, 1��c
#, . . .�, �14.2.13�

we have �1��c
#, 1��c

#, 1��c
#, 1��c

#, . . .� � ��n 
 
n� is the sequence which is
1��c

# � 0��c
# � 1��c

# for n � N and equals 1��c
# �1��c

# � 0��c
# for n � N. Since this

hyper infinite sequence is eventually equal to 0�c
#, it #-converges to 0�c

# as n � ��,

and so ��n 
 
n�n�0

�� � 	�1��c
#, 1��c

#, 1��c
#, 1��c

#, . . .�
 � 1��c
# � ��c

#.This shows that

t � �
n�n�0

�� is a multiplicative inverse to s � ��n�n�0

�� .

Definition 14.2.26. Let s � ��c
# . Say that s is positive if s 	 0��c

#, and if

s � ��n�n�0

�� for some Cauchy hyper infinite sequence such that for some N,

�n � 0��c
# for all n � N.Given two hyperreal numbers s, t � ��c

#, say that s � t if
s� t is positive.

Theorem 14.2.7. Let s, t � ��c
# be hyperreal numbers such that s � t, and let

r � ��c
#.Then s� r � t � r.

Proof. Let s � ��n�n�0

�� , t � �
n�n�0

�� , and r � ��n�n�0

�� . Since s � t, i.e.

s� t � 0, we know that there is an N such that, for n � N,�n � 
n � 0.So �n � 
n

for n � N. Now, adding �n to both sides of this inequality , we have
�n ��n � 
n � �n for n � N, or ��n � �n� � �
n � �n� � 0�c

# for n � N. Note also that
��n � �n� � �
n � �n� � �n � 
n does not #-converge to 0��c

# as n � ��, by the
assumption that s� t � 0

�c
#. Thus, by Definition 14.2.26, this means that:

s� r � ��n � �n�n�0

�� � �
n � �n�n�0

�� � t � r.

Definition 14.2.27. There is canonical imbeding

��c
# � ��c

# �14.2.14�

defined by

a � �a �14.2.15�

where �a is hyper infinite sequence �a � �a,a, . . . .� � ��c
#,a � ��c

# � 	�
��0.

Notation 14.2.5. �a � �a,a, . . . .� � ��c
#,a � ��c

#.

Remark14.2.11.Let a � ��c
#.We will be identity a � ��c

# with any �an�n�0

�� � ��c
#

such that #-lim n��� an � a and we denote by 		a

 the equivalence class

corresponding to a � ��c
#.

Definition 14.2.28. (i) Let �an�n�0
k ,k � � be finite sequence in ��c

#,�an�n�0
k � ��c

#.

We define external hyper infinite sequence �an�n�0
k � ��c

#by



�An;k�n�0

�� � �an�n�0
k �

� a0,a1, . . . ,am, . . . ,ak�1,ak � 		ak

.
�14.2.16�

(ii) Let �an�n�0
� be countable sequence in ��c

# : �an�n�0
� � ��c

#.

We define hyper infinite sequence �An�n�0

�� � �an�n�0
� � ��c

# by

�An
� ;��n�0

�� � �an�n�0
� �

� a0,a1, . . . ,ak, . . ,�an�n�0
� � 		�an�n�0

� 

.
�14.2.17�

(iii) Let �an�n�0
N ,N � ��\� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#.

We define hyper infinite sequence �an�n�0
N � ��c

# by

�An;N�n�0

�� � �an�n�0
N �

� a0,a1, , . . . ,an, . . . ,aN�1,aN � 		aN

.
�14.2.18�

Definition 14.2.29.(i) Let �an�n�0
k ,k � � be finite sequence in ��c

#,�an�n�0
N � ��c

#.

We define external finite sum Ext-�n�0

n�k

an by

Ext-�n�0

n�k

an � �cn�n�0
k � �c0,c1, . . . ,ck, . . . ,

�ck� � 		ck

 �14.2.19�

where c0 � a0,cj � Ext-�n�0
n�j an, 0 � j � k.

(ii) Let �an�n�0
� be countable sequence in ��c

# : �an�n�0
� � ��c

#.We define external

countable sum Ext-�n�0

n��
an by

Ext-�n�0

n��
an � �cn�n�0

� �

� c0,c1, . . . ,ck, . . .�cn�n�0
� ,�cn�n�0

� � 		�cn�n�0
� 



�14.2.20�

where c0 � a0,ck � Ext-�n�0
n�k an,k � �.

(iii) Let �an�n�0
n�N,N � ��\� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#.

We define external hyperfinite sum Ext-�n�0

n�N

an by

Ext-�n�0

n�N

an � �cn�n�0
n�N � �c0,c1, . . . ,ck, . . . ,cN,�cN� �14.2.21�

where c0 � a0,ck � Ext-�n�0
n�k an, 0 � k � N,cN � Ext-�n�0

n�N an.

(iv) Let �an�n�0
n�N,N � �� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#

such that an � 0 for all n � ��\�.We assume that

Ext-�n�0

n�N

an � Ext-�n�0

n��
an, �14.2.22�

Example 14.2.1.Consider the G.P: �,�r,�r2,� .�rN�1,N � ��,� � ��c
#,

r � ��c
# be the first term and the ratio of the G.P respectively. Then for any



N � �� by Proposition 14.2.6 and Definition 14.2.29 one obtains that

Ext-�
n�1

n�N�1

�rn�1 � �
1��c

# � rN

1��c
# � r

�.�
1��c

#

1��c
# � r

� � rN

1��c
# � r

. �14.2.23�

and

Ext-�
n�1

�

�rn�1 �.�
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

. �14.2.24�

Example 14.2.2.Consider the G.P: �,�r,�r2,� .�rN�1,N � ��,� � ��c
#,r � ��c

#,

r � 0,r 	 1.Note that

�
1��c

# � rN

1��c
# � r

� Ext-�
n�1

n�N�1

�rn�1 �

� Ext-�
n�1

�

�rn�1 � Ext-�
�n���\����n�N�1�

�rn�1 �

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

� Ext-�
�n���\����n�N�1�

�rn�1.

�14.2.25�

From (14.2.25) we obtain

Ext-�
�n���\����n�N�1�

�rn�1 � �
1��c

# � rN

1��c
# � r

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

�

� rn

1��c
# � r

n�1

�

� � rN

1��c
# � r

.

�14.2.26�

Assume that: (i) r � 1��c
#, then from (14.2.26) we obtain

Ext-�
�n���\����n�N�1�

�rn�1 � 0��c
#. �14.2.27�

(ii) r � 1��c
#, then from (14.2.26) we obtain

Ext-�
�n���\����n�N�1�

�rn�1 � � rn

1��c
# � r

n�1

�

! � rN

r � 1��c
#

� 0��c
#. �14.2.28�

Proposition 14.2.6.(i) Consider the G.P: �,�r,�r2,� .�rN�1,N � ��.Let SN,

� � ��c
#,r � ��c

# be the sum of N terms, first term and the ratio of the G.P
respectively. Then for any N � ��the statement 
N holds


N �s Ext-�n�1
n�N�1�rn�1 � �

1��c
# � rN

1��c
# � r

. �14.2.29�

Proof.(i) Directly by hyperinfinite induction. Note that 
N �s 
N�1 :



SN�1 � Ext-�n�1
n�N�rn�1 � Ext-�n�1

n�N�1�rn�1 � �rN � �
1��c

# � rN

1��c
# � r

� �rN �

� �
1��c

# � rN

1��c
# � r

� �
�1��c

# � r�rN

1��c
# � r

� �
1��c

# � rN � rN � rN�1

1��c
# � r

�

� �
1��c

# � rN�1

1��c
# � r

.

�14.2.30�

Thus SN�1 � �
1��c

# � rN�1

1��c
# � r

and therefore 
N�1holds.

(ii) Consider the G.P: �,�r,�r2,� .�rN�1,N � ��.Let SN,

� � ��c
#,r � ��c

# be the sum of N terms, first term and the ratio of the G.P

respectively. Then for any N � ��the statement 
N holds


N �s Ext-�
n�1

n�N�1

�rn�1 � �
1��c

# � rN

1��c
# � r

. �14.2.31�

Notice that (i)�(ii) by definitions.

Definition 14.2.30. Let �an�n�0

�� ,n � �� be external hyperinfinite sequence in ��c
# :

�an�n�0

�� � ��c
#.We define external hyperinfinite sum Ext-�n�0

��
an by

Ext-�n�0

��
an � #- limN��� Ext-�n�0

n�N

an �14.2.32�

if #-limit in (14.2.31) exists.

Example 14.2.3.Consider the G.P: �,�r,�r2,� .�rn�1,n � ��#,� � ��c
#,r � ��c

#.
From (14.2.27) we obtain

Ext-�n�0

��
�rn�1 � #- limN��� Ext-�n�0

n�N

�rn�1 � #- limN��# �
1��c

# � rN

1��c
# � r

�

� �
1��c

#

1��c
# � r

�14.2.33�

since #-limN��� rN � 0��c
# if |r | � 1.From (14.2.33) and (14.2.25) we obtain

�
1��c

#

1��c
# � r

� Ext-�n�0

��
�rn�1 � Ext-�n�0

�
�rn�1 � Ext-�n���\��rn�1 �

�
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

� Ext-�n���\��rn�1.

�14.2.34�

From (14.2.34) we obtain



Ext-�n���\��rn�1 � �
1��c

#

1��c
# � r

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

�

� � rn

1��c
# � r

n�1

�

� 0.

�14.2.35�

Definition 14.2.31. Let �an�n�0
� be ��c

#- valued countable sequence
a : � � ��c

# such that:
(i) there is M � � such that for all n � M,an 	 0��c

#,

we denote a set of the all these sequences by ��
�,	0.

We define a set ���
�,	0 by �cn�n�0

� � ���
�,	0 � ��cn�n�0

� � ��
�,	0.Note that

��
�,	0 � ���

�,	0.
(ii) there is countable subsequence �ank�k�m

� � �an�n�0
� such that ank � 0��c

#,k � m

and an 	 0��c
# iff an � �ank�k�m

� ,

we denote a set of the all these countable sequences by ��
�,	0��0.

We define a set ���
�,	0��0 by �cn�n�0

� � ���
�,	0��0 � ��cn�n�0

� � ��
�,	0��0.Note that

��
�,	0��0 � ���

�,	0��0.
Definition 14.2.31.
(1) Let �an�n�0

� � ��
�,	0 and �bn�n�0

� � ��
�,	0 then we define

(i) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � ��

�,	0

(iv) ��an�n�0
� ��1 � �an

�1�n�0
� � ��

�,	0

(2) Let �an�n�0
� � ��

�,	0��0 and �bn�n�0
� � ��

�,	0��0 then we define
(i) �an�n�0

� � �bn�n�0
� � �an � bn�n�0

� � ��
�,	0��0

(ii) �an�n�0
� � �bn�n�0

� � �an � bn�n�0
� � ��

�,	0��0

(iii) �an�n�0
� 
 �bn�n�0

� � �an 
 bn�n�0
� � ��

�,	0��0

(iv) ��an�n�0
� ��1� � �an

1��n�0
� where

an
1� �

an
�1 if an 	 0��c

#

0��c
# if an � 0��c

#

�14.2.36�

Note that

(i) ��an�n�0
� ��1� �1�

� �an�n�0
�

(ii) �an�n�0
� 
 ��an�n�0

� ��1� � 1� ��c
# where 1� ��c

# � ��n�n�0
� is countable sequence

such that

�n �
1��c

# if an 	 0��c
#

0��c
# if �n � 0��c

#

�14.2.37�

Definition 14.2.32. We say that
��an�n�0

� ��1� � ��
�,	0��0 is a quasi inverse of �an�n�0

� .

Definition 14.2.33.(1) Let �an�n�0
� � ��

�,	0��0 and let �An�n�0

�� � �an�n�0
� be a hyper

infinite sequence



�An�n�0

�� � �an�n�0
� � �a0,a1, . . . ,ak, . . . ,�an�n�0

� , . . . ,�an�n�0
� , . . .� �14.2.38�

i.e. for any infinite m � ��\�,Am � �an�n�0
� . We will denote a set of the all these

hyper infinite sequences by ��

�,	0��0

(2) Let �xn � ynan�n�0
� � ��

�,	0��0 and let

�xn � ynAn�n�0

�� � �xn � ynan�n�0
� �

�x0 � y0a0,x1 � y1a1, . . . ,xk � ykak, . . . ,�xn �n yan�n�0
� , . . .�,

�14.2.39�

i.e. for any infinite m � ��\�,Am � �xn � ynan�n�0
� . We will denote a set of the all

these hyper infinite sequences by ���
�,	0��0,�xn�n�0

� ,�yn�n�0
� �.

Definition 14.2.34.Let �An�n�0

�� � �an�n�0
� and �Bn�n�0

�� � �bn�n�0
� be in ��

�,	0��0
.

Then we define:

(i) �An�n�0

�� � �Bn�n�0

�� � �an�n�0
� ��bn�n�0

� � �an � bn�n�0
� � �An � Bn�n�0

�� � ��

�,	0��0

(ii) �An�n�0

�� � �Bn�n�0

�� � �an�n�0
� ��bn�n�0

� � �an � bn�n�0
� �

� �An � Bn�n�0

�� � ��

�,	0��0

(iii) �An�n�0

�� 
 �Bn�n�0

�� � �an�n�0
� 
�bn�n�0

� � �an 
 bn�n�0
� � �An 
 Bn�n�0

�#
� ��

�,	0��0

Definition 14.2.35.Let ��n�n�0

�� be in ��

�,	0��0
, i.e. for all n � ��, �n � ��

�,	0��0.
Say ��n�n�0

�� #-tends to 0��c
# as n � �� iff for any given 
 � 0�c

#,
 � 0��c
# there is

a hypernatural number N � ��\�,N � N�
� such that for any n � N, |�n|� 
.
Definition 14.2.36. Let ��n�n�0

�� be a hyper infinite sequence such that for all

n � ��,�n � ��

�,	0��0
.We call ��n�n�0

�� a Cauchy hyper infinite sequence if the
difference between its terms #-tends to 0��c

# . To be precise: given any 
 � 0��c
# ,


 � 0��c
# there is a hypernatural number N � ��\�,N � N�
� such that for any

m,n � N, |�n � �m|� 
.

Theorem 14.2.8.Let ��n�n�0

�� be in ��

�,	0��0
. If ��n�n�0

�� is a #-convergent hyper

infinite sequence (that is, �n �# 
 as n � �� for some 
 � ��

�,	0��0
), then

��n�n�0

�� is a Cauchy hyper infinite sequence.
Proof.We know that �n �# 
. Here is a ubiquitous trick: instead of using 
 in the
definition, start with an arbitrary infinitesimall 
 � 0��c

# ,
 � 0��c
# and then choose

N so that |�n � 
| � 
/2 when n � N. Then if m,n � N, we have
|�n � �m| � |��n � 
� � ��m � 
�| � |�n � 
| �|�m � 
| � 
/2 � 
/2 � 
.
This shows that ��n�n�0

�� is a Cauchy hyper infinite sequence.
Theorem 14.2.9.If ��n�n�0

�� is a Cauchy hyper infinite sequence, then it is
bounded in ��c

#; that is, there is some number M � ��c
# such that

|��n�n�0

�� |� M for all n � ��.

Proof. Since ��n�n�0

�� is Cauchy, setting 
 � 1 we know that there is some N such
that |�m � �n|� 1 whenever m,n � N. Thus, |�N�1 � �n|� 1 for n � N . We can rewrite
this as �N�1 � 1 � �n � �N�1 � 1.This means that |�n| is less than the maximum of
|�N�1 � 1| and |�N�1 � 1|. So, set M � ��c

# larger than any number in the following
list: �|�0|, |�1|, . . . , |�N|, |�N�1 � 1|, |�N�1 � 1|�.
Then for any term �n, if n � N, then |�n| appears in the list and so |�n|� M; if n � N,



then (as shown above) |�n| is less than at least one of the last two entries in the list,
and so |�n|� M. Hence, M is a bound for the sequence.
Let � denote the set of all Cauchy hyper infinite sequences We must define an
equivalence relation on �.
Definition 14.2.37. Let S be a set of objects. A relation among pairs of
elements of S is said to be an equivalence relation if the following three properties
hold:
Reflexivity: for any s � S, s is related to s.
Symmetry: for any s, t � S, if s is related to t then t is related to s.
Transitivity: for any s, t,r � S, if s is related to t and t is related to r, then s is
related to r.
The following well known proposition goes most of the way to showing that an
equivalence relation divides a set into bins.
Theorem 14.2.10. Let S be a set, with an equivalence relation on pairs of elements.
For s � S, denote by 	s
 the set of all elements in S that are related to s. Then for
any s, t � S, either 	s
 � 	t
 or 	s
 and 	t
 are disjoint.
The sets 	s
 for s � S are called the equivalence classes, and they are the bins.
Corollary 14.2.2. If S is a set with an equivalence relation on pairs of elements, then
the equivalence classes are non-empty disjoint sets whose union is all of S.

Definition 14.2.38.Let ��1,n�n�0

�� and ��2,n�n�0

�� be in ��

�,	0��0
. Say they are

equivalent (i.e. related) if |�1,n � �2,n| �# 0��c
# as n � ��, i.e. if the hyper infinite

sequence �|�1,n � �2,n|�n�0

�� #-tends to 0��c
# .

Proposition 14.2.4. Definition 4.2.38 yields an equivalence relation on ��

�,	0��0
.

Proof. we need to show that this relation is reflexive, symmetric, and transitive.
� Reflexive: �n ��n � 0��c

# , and the sequence all of whose terms are 0��c
# clearly

converges to 0�c
#.So ��n�n�0

�� is related to ��n�n�0

�� .
� Symmetric: Suppose ��1,n�n�0

�� is related to ��2,n�n�0

�� , so �1,n � �2,n �# 0��c
# .

But �2,n � �1,n � ���1,n � �2,n�,and since only the absolute value |�1,n � �2,n|�
� |�2,n � �1,n| comes into play in Definition 14.2.35,it follows that �2,n � �1,n �# 0��c

#

as well. Hence, ��2,n�n�0

�� is related to ��1,n�n�0

�� .
� Transitive: Here we will use the 
/2 trick we applied to prove Theorem 14.2.4.
Suppose ��1,n�n�0

�� is related to ��2,n�n�0

�� , and ��2,n�n�0

�� is related to ��3,n�n�0

�� .
This means that �1,n � �2,n �# 0�c

# and �2,n � �3,n �# 0�c
#.

To be fully precise, let us fix infinite small 
 � 0��c
# ; then there exists an N � ��\�

such that for all n � N, |�1,n � �2,n|� 
/2; also, there exists an M such that for all
n � M, |�2,n � �3,n|� 
/2. Well, then, as long as n � max�N,M� , we have that
|�2,n � �3,n|� |��1,n � �2,n� � ��2,n � �3,n�|� |�1,n � �2,n|�|�2,n � �3,n|� 
/2 � 
/2 � 
.
So, choosing L equal to the max of N,M , we see that given 
 � 0 we can always
choose L so that for n � L, |�1,n � �3,n|� 
. This means that �1,n � �3,n �# 0��c

# ,

i.e. ��1,n�n�0

�� is related to ��3,n�n�0

�� .

So, we really have equivalence relation, and so by Corollary 14.2.2, the set ��

�,	0��0

is partitioned into disjoint subsets (equivalence classes).

Definition 14.2.39. (1) The hyperreal numbers ��c
# are the equivalence classes



��1,n�n�0

�� of Cauchy hyper infinite sequences of, as per Definition 14.2.38 and

(2) the all gyperreals ��c
# � ��c

# by the canonical imbedding ��c
# � ��c

#

(14.1.42)-(14.1.43).

That is, each such equivalence class is a hyperreal number in ��c
# .

Definition 14.2.40. Let s, t � ��c
#, so there are Cauchy hyper infinite

sequences ��n�n�0

�� and �
n�n�0

�� with s � ��n�n�0

�� and t � �
n�n�0

�� .

(a) Define s� t to be the equivalence class of the hyper infinite sequence
��n ! 
n�n�0

�� .
(b) Define s
 t to be the equivalence class of the hyper infinite sequence
��n 
 
n�n�0

�� .

Proposition 14.2.5.The operations �,
 in Definition 14.2.25 (a),(b) are well-defined.
Proof. Suppose that ��n�n�0

�� � ��1,n�n�0

�� and �
n�n�0

�� � �
1,n�n�0

�� .

Thus means that �n � �1,n �# 0��c
# and 
n � 
1,n �# 0��c

#. Then
��n � 
n� � ��1,n � 
1,n� � ��n � �1,n� � �
n � 
1,n�.Now, using the familiar 
/2
trick, you can construct a proof that this tends to 0��c

#, and so
	��n � 
n�
 � 	��1,n � 
1,n�
.
Multiplication is a little trickier; this is where we will use Theorem 14.2.10. We will
also use another ubiquitous technique: adding 0��c

# in the form of s� s. Again,
suppose that
��n�n�0

�� � ��1,n�n�0

�� and �
n�n�0

�� � �
1,n�n�0

�� ; we wish to show that

��n 
 
n�n�0

�� � ��1,n 
 
1,n�n�0

�� , or, in other words, that

�n 
 
n � �1,n 
 
1,n �# 0��c
#. Well, we add and subtract one of the other cross

terms, say 
n 
 �1,n :
�n 
 
n � �1,n 
 
1,n � �n 
 
n � �
n 
 �1,n � 
n 
 �1,n� � �1,n 
 
1,n �
� ��n 
 
n � 
n 
 �1,n� � �
n 
 �1,n � �1,n 
 
1,n� �
� 
n 
 ��n � �1,n� � �1,n 
 �
n � 
1,n�.
Hence, we have |�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|· |
n � 
1,n|.
Now, from Theorem 14.2.9, there are numbers M and L such that |
n|� M and
|�1,n|� L for all n � ��. Taking some number R (for example R � M � L) which is
bigger than both, we have
|�n 
 
n � �1,n 
 
1,n|� |
n|
 |�n � �1,n|�|�1,n|
 |
n � 
1,n|�
� R�|�n � �1,n|�|
n � 
1,n|�.
Now, noting that both �n ��1,n and 
n � 
1,n #-tend to 0��c

# and using the 
/2 trick
(actually, this time we’ll want to use 
/2R, we see that
�n 
 
n � �1,n 
 
1,n �# 0��c

#

Theorem 14.2.11. Given any hyperreal number s � ��c
#, s 	 0��c

#, there is a

hyperreal number t � ��c
# such that s
 t � 1��c

# or s
 t � 1� ��c
#.

Proof. First we must properly understand what the theorem says. The premise is
that s is nonzero, which means that s is not in the equivalence class of

0��c
# � �0��c

#, 0��c
#, 0��c

#, 0��c
#, . . .�. �14.2.40�

In other words, s � ��n�n�0

�� where �n � 0��c
# does not #-converge to 0��c

#.

From this, we are to deduce the existence of a hyperreal number t � �
n�n�0

��



such that s
 t � ��n 
 
n�n�0

�� is the same equivalence

class as 1��c
# � 	�1��c

#, 1��c
#, 1��c

#, 1��c
#, . . .�
 or as some 1� ��c

#. Doing so is actually an

easy consequence of the fact that nonzero hyperreal numbers from ��c
# have

multiplicative inverses, but there is a subtle difficulty. Just because s is nonzero
(i.e. ��n�n�0

�#
does not #-tend to 0��c

# as n � ��), there’s no reason any number
of the terms in ��n�n�0

�� can’t equal 0��c
#. However, it turns out that eventually,

�n 	 0��c
#.

That is,
Lemma 14.2.2. If ��n�n�0

�� is a Cauchy hyper infinite sequence which does
not #-tends to 0�c

#, then there is an N � �� such that, for n � N, �n 	 0�c
#.

We will now use it to complete the proof of Theorem 14.2.11.
Let N � �# be such that �n 	 0�c

# for n � N. Define hyper infinite sequence 
n of

hyperreal numbers from �c
# as follows:

for n � N,
n � 0��c
#, and for n � N, 
n � 1��c

#/�n :

�
n�n�0

�� � �0��c
#, 0��c

#, . . . , 0��c
#, 1��c

#/�N�1, 1��c
#/�N�2, . . .�.

This makes sense since, for n � N, an is a nonzero hyperreal number, so
1��c

#/�n exists.
Then �n 
 
n is equal to �n 
0��c

# � 0��c
# for n � N, and equals

�n 
 
n � �n 
 1��c
#/�n � 1��c

# for n � N

Well, then, if we look at the hyper infinite sequence

1��c
# � �1��c

#, 1��c
#, 1��c

#, 1��c
#, . . .�, �14.2.41�

we have �1��c
#, 1��c

#, 1��c
#, 1��c

#, . . .� � ��n 
 
n� is the sequence which is
1��c

# � 0��c
# � 1��c

# for n � N and equals 1��c
# �1��c

# � 0��c
# for n � N. Since this

hyper infinite sequence is eventually equal to 0�c
#, it #-converges to 0�c

# as n � ��,

and so ��n 
 
n�n�0

�� � 	�1��c
#, 1��c

#, 1��c
#, 1��c

#, . . .�
 � 1��c
# � ��c

# or similarly

��n 
 
n�n�0

�� � 1� ��c
# � ��c

#.This shows that t � �
n�n�0

�� is a multiplicative

inverse (or similarly quasi inverse) to s � ��n�n�0

�� .

Definition 14.2.41. Let s � ��c
# . Say that s is positive if s 	 0��c

#, and if

s � ��n�n�0

�� for some Cauchy hyper infinite sequence such that for some N,

�n � 0��c
# for all n � N.Given two hyperreal numbers s, t � ��c

#, say that s � t if
s� t is positive.

Theorem 14.2.7. Let s, t � ��c
# be hyperreal numbers such that s � t, and let

r � ��c
#.Then s� r � t � r.

Proof. Let s � ��n�n�0

�� , t � �
n�n�0

�� , and r � ��n�n�0

�� . Since s � t, i.e.

s� t � 0, we know that there is an N such that, for n � N,�n � 
n � 0.So �n � 
n

for n � N. Now, adding �n to both sides of this inequality , we have
�n ��n � 
n � �n for n � N, or ��n � �n� � �
n � �n� � 0�c

# for n � N. Note also that
��n � �n� � �
n � �n� � �n � 
n does not #-converge to 0��c

# as n � ��, by the
assumption that s� t � 0

�c
#. Thus, by Definition 14.2.41, this means that:

s� r � ��n � �n�n�0

�� � �
n � �n�n�0

�� � t � r.



Definition 14.2.42. There is canonical imbeding

��c
# � ��c

# �14.2.42�

defined by

a � �a �14.2.43�

where �a is hyper infinite sequence �a � �a,a, . . . .� � ��c
#,a � ��c

#.

Notation 14.2.5. �a � �a,a, . . . .� � ��c
#,a � ��c

#.

Definition 14.2.43. (i) Let �an�n�0
k ,k � � be finite sequence in ��c

#,�an�n�0
k � ��c

#.

We define external hyper infinite sequence �an�n�0
k � ��c

#by

�An;k�n�0

�� � �an�n�0
k �

� a0,a1, . . . ,am, . . . ,ak�1,k,ak .
�14.2.44�

(ii) Let �an�n�0
� be countable sequence in ��c

# : �an�n�0
� � ��c

#.

We define hyper infinite sequence �An�n�0

�� � �an�n�0
� � ��c

# by

�An
� ;��n�0

�� � �an�n�0
� �

� a0,a1, . . . ,ak, . . .�an�n�0
� ,�an�n�0

� .
�14.2.45�

(iii) Let �an�n�0
N ,N � ��\� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#.

We define hyper infinite sequence �an�n�0
N � ��c

# by

�An;N�n�0

�� � �an�n�0
N �

� a0,a1, , . . . ,am, . . . ,aN�1,aN,aN � 		aN

.
�14.2.46�

Definition 14.2.44.(i) Let �an�n�0
k ,k � � be finite sequence in ��c

#,�an�n�0
N � ��c

#.

We define external finite sum Ext-�n�0

n�k

an by

Ext-�n�0

n�k

an � �cn�n�0
k � �c0,c1, . . . ,cm, . . . ,ck,

�ck� � 		ck

 �14.2.47�

where c0 � a0,cj � Ext-�n�0
n�j an, 0 � j � k.

(ii) Let �an�n�0
� be countable sequence in ��c

# : �an�n�0
� � ��c

#.We define external

countable sum Ext-�n�0

n��
an by

Ext-�n�0

n��
an � �cn�n�0

� �

� c0,c1, . . . ,ck, . . .�cn�n�0
� ,�cn�n�0

� � �cn�n�0
�

�14.2.48�

where c0 � a0,ck � Ext-�n�0
n�k an,k � �.

(iii) Let �an�n�0
n�N,N � ��\� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#.

We define external hyperfinite sum Ext-�n�0

n�N

an by



Ext-�n�0

n�N

an � �cn�n�0
n�N � �c0,c1, . . . ,ck, . . . ,cN,�cN� � 		cN

 �14.2.49�

where c0 � a0,ck � Ext-�n�0
n�k an, 0 � k � N,cN � Ext-�n�0

n�N an.

(iv) Let �an�n�0
n�N,N � �� be external hyperfinite sequence in ��c

# : �an�n�0
N � ��c

#

such that an � 0 for all n � ��\�.We assume that

Ext-�n�0

n�N

an � Ext-�n�0

n��
an. �14.2.50�

Example 14.2.3.Consider the G.P: �,�r,�r2,� .�rN�1,N � ��,� � ��c
#,

r � ��c
# be the first term and the ratio of the G.P respectively. Then for any

N � �� by Proposition 14.2.6 and Definition 14.2.44 one obtains that

Ext-�
n�1

n�N�1

�rn�1 � �
1��c

# � rN

1��c
# � r

�.�
1��c

#

1��c
# � r

� � rN

1��c
# � r

. �14.2.51�

and

Ext-�
n�1

�

�rn�1 �.�
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

. �14.2.52�

Example 14.2.4.Consider the G.P: �,�r,�r2,� .�rN�1,N � ��,� � ��c
#,r � ��c

#,

r � 0��c
#, |r | � 1.Note that

�
1��c

# � rN

1��c
# � r

� Ext-�
n�1

n�N�1

�rn�1 �

� Ext-�
n�1

�

�rn�1 � Ext-�
�n���\����n�N�1�

�rn�1 �

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

� Ext-�
�n���\����n�N�1�

�rn�1.

�14.2.53�

From (14.2.53) we obtain

Ext-�
�n���\����n�N�1�

�rn�1 � �
1��c

# � rN

1��c
# � r

� �
1��c

#

1��c
# � r

� � rn

1��c
# � r

n�1

�

�

�
�1��c

#

n
|r |n

1��c
# � r

n�1

�

� � rN

1��c
# � r

.

�14.2.54�

Assume that: (i) r � 0��c
#, |r | � 1 then from (14.2.54) we obtain

Ext-�
�n���\����n�N�1�

� �1��c
#

n�1
|r |n�1 	 0��c

#. �14.2.55�

15.1.Basic analisys on external non-Archimedean field �c
#.



15.1.The #-limit of a function f : �c
# � �c

#

Definition 15.1.The �ε,δ� definition of the #-limit of a function f : D � �c
# is as follows:

Let f be a �c
#-valued function defined on a subset D � �c

# of the Cauchy hyperreal
numbers. Let c be a limit point of D and let L be a hyperreal number. We say that

#- lim x�# c f�x� � L �15.1�

if for every 
 � 0,ε � 0 there exists a � � 0,δ � 0 such that, for all x � D, if
0 � |x � c|� δ, then |f�x� � L|� ε, symbolically:

lim x�# c f�x� � L � ��
�
 � 0 � ε � 0����� � 0 � δ � 0��x � D, 0 � |x � c|� δ �

|f�x� � L| � 
.
�15.2�

Definition 15.2.The function f : �c
# � �c

# is #-continuous (or micro continuous) at
some

point c of its domain if the #-limit of f�x�, as x #-approaches c through the domain of f,
exists and is equal to f�c� :

#- lim x�# c f�x� � f�c�. �15.3�

Theorem 15.1.If #-lim x�# x0 f�x� exists; then it is unique that is; if
#-lim x�# x0 f�x� � L1 and #-lim x�# x0 f�x� � L2, then L1 � L2.
Theorem 15.2. If #-lim x�# x0 f1�x� � L1 and #-lim x�# x0 f2�x� � L2 then

#- lim x�# x0	f1�x� � f2�x�
 � L1 � L2,

#- lim x�# x0	f1�x� 
 f2�x�
 � L1 
 L2,

#- lim x�# x0

f1�x�
f2�x�

� L1

L2
,L2 	 0.

�15.4�

Definition 15.3.(a) We say that f�x� #-approaches the left-hand #-limit L as x
#-approaches x0 from the left,and write #-lim x�x0� f�x� � L, if f�x� is defined on some
#-open interval �a,x0� and, for each 
 � 0,
 � 0 there is a � � 0,� � 0 such that
|f�x� � L| � 
 if x0 � � � x � x0.
(b) We say that f�x� #-approaches the right-hand #-limit L as x #-approaches x0 from

the
right, and write #-lim x�# x0� f�x� � L, if f�x� is defined on some open interval �x0,b� and,

for
each 
 � 0, there is a � � 0,� � 0 such that |f�x� � L| � 
,
 � 0,
 � 0 if x0 � x � x0 � �.
Left- and right-hand #-limits are also called one-sided #-limits. We will often simplify

the
notation by writing #-lim x�# x0� f�x� � f�x0 �� and #-lim x�# x0� f�x� � f�x0 ��.
Theorem 15.3. A function f has a #-limit at x0 if and only if it has left- and right-hand
#-limits at x0; and they are equal. More specifically; #-lim x�# x0 f�x� � L if and only if
f�x0 �� � f�x0 �� � L.
Definition 15.4. We say that f�x� approaches the #-limit L as x approaches �# , and
write #-lim x�# �# f�x� � L, if f is defined on an interval �a,�#� and, for each 
 � 0,
 � 0,

there is a number 	 such that |f�x� � L| � 
 if x � 	.
Definition 15.5. We say that f�x� approaches �# as x approaches x0 from the left,
and write



#- lim x�# x0� f�x� � �# or f�x0 �� � �# �15.5�

if f is defined on an interval �a,x0� and, for each hyperreal number M, there is a
� � 0,δ � 0 such that f�x� � M if x0 � � � x � x0.
Similarly we define: #-lim x�x0� f�x� � ��#, #-lim x�# x0� f�x� � ��#, #-lim x�# x0� f�x� � �#.
Example 15.1. (i) #-lim x�# x0� x�1 � ��#,(ii) #-lim x�# x0� x�1 � ��#,
(iii) #-lim x�# ��# x2 � #-lim x�# �# x2 � �#.

Remark 15.1. Throughout this paper, #-lim x�# x0 f�x� exists” will mean that
#-lim x�# x0 f�x� � L, where L is finite or hyperfinite.
To leave open the possibility that L � ��#, we will say that
#-lim x�x0 f�x� exists in the extended hyperreals.
This convention also applies to one-sided limits and limits as x approaches ��# .

15.2.Monotonic Functions f : �c
# � �c

#.
Definition 17.6.A function f : �c

# � �c
# is nondecreasing on an interval I � �c

# if

f�x1� � f�x2� �15.6�

whenever x1 and x2 are in I and x1 � x2, or nonincreasing on I if

f�x1� � f�x2� �15.7�

whenever x1 and x2 are in I and x1 � x2.
In either case, f is on I. If � can be replaced by � in (15.6), f is increasing on I. If �
can be replaced by � in (15.7), f is decreasing on I. In either of these two cases, f is
strictly monotonic on I.
Theorem 15.4. Suppose that f�x� is monotonic on �a,b� and define
� � infa�x�b f�x� and 	 � sup�x�b f�x�.Suppose that �� and �	, then:
(a) If f is nondecreasing, then f�a �� � � and f�b �� � 	.
(b) If f is nonincreasing; then f�a �� � 	 and f�b �� � �.
Here a �� ��# if a � ��# and b �� �# if b � �#.
(c) If a � x0 � b, then f�x0 �� and f�x0 �� exist and are finite or hyperfinite;
moreover, f�x0 �� � f�x0� � f�x0 �� if f is nondecreasing, and f�x0 �� � f�x0� � f�x0 ��
if f is nonincreasing:
Proof (a) We first show that f�a �� � �. If M � �, there is an x0 in �a,b� such that
f�x0� � M. Since f is nondecreasing, f�x� � M if a � x � x0. Therefore, if ˛ � � ��#,
then f�a �� � ��#. If ˛� � ��#, let M � � � 
, where 
 � 0,
 � 0.
Then � � f�x� � � � 
˛, so (i) |f�x� � �| � 
 if a � x � x0.
If a � ��#, this implies that f���#� � �˛. If a � ��#, let � � x0 � a. Then (i) is
equivalent to |f�x� � �| �
 if a � x � a � �,which implies that f�a �� � �.
We now show that f�b �� � 	. If M � 	, there is an x0 in �a,b� such that f�x0� � M.
Since f�x� is nondecreasing, f�x� � M if x0 � x � b. Therefore, if 	 � �#, then
f�b �� � �#. If 	 � �#, let M � 	 � 
, where 
 � 
 � 0. Then 	 � 
 � f�x� � 	,
so (ii) |f�x� � 	| � 
 if x0 � x � b.
If b � �#, this implies that f��#� � 	. If b � �# , let � � b � x0. Then (ii) is
equivalent to f�x� � if b � � � x � b,which implies that f�b �� � 	.
(b) The proof is similar to the proof of (a).
(c) Suppose that f�x� is nondecreasing. Applying (a) to f�x� on �a,x0� and �x0,b�
separately shows that f�x0 �� � supa�x�x0 f�x� and f�x0 �� �infx0�x�b f�x�.



However, if x1 � x0 � x2, then f�x1� � f�x0� � f�x2� and hence, f�x0 �� � f�x0� � f�x0 ��.

15.3. #-Limits Inferior and Superior
Definition 15.7.We say that: (i) f is bounded on a set S� �c

# if there is a constant
M � �,M � � such that f�x� � M for all x � S,(ii) f is hyperbounded on a set S� �c

#

if f is not bounded on a set Sand there is a constant M � �c
#/�,M � �# such that

f�x� � M for all x � S.
Definition 15.8. Suppose that f is bounded or hyperbounded on 	a,x0�, where x0

may be finite or hyperfinite or �#.For a � x � x0, define (i) Sf�x;x0� � supx�t�x0 f�t�
and
(ii) I f�x;x0� � infx�t�x0 f�t�.
Then the left #-limit superior of f�x� at x0 is defined to be

#-lim x�# x0�f�x� � #- lim x�# x0�Sf�x;x0� �15.8�

and the left limit inferior of f�x� at x0 is defined to be

#-lim x�# x0�f�x� � #- lim x�# x0� I f�x;x0�. �15.9�

If x0 � �#, we define x0 � � �#.
Theorem 15.5. If f�x� is bounded or hyperbounded on 	a,x0�, then 	 � #-lim x�# x0�f�x�
exists and is the unique hyperreal number with the following properties:
(a) If 
 � 0,
 � 0, there is an a1 in 	a,x0� such that
(i) f�x� � 	 � 
 if a1 � x � x0

(b) If 
 � 0,
 � 0 and a1 is in 	a,x0�, then
f�x� � 	 � 
 for some x � 	a,x0�.
Proof. Since f�x� is bounded or hyperbounded on 	a,x0�,Sf�x;x0� is nonincreasing
and bounded or hyperbounded on 	a,x0�. By applying Theorem 17.4(b) to Sf�x;x0�,
we conclude that 	 exists finite or hyperfinite.
Therefore, if 
 � 0,
 � 0, there is an a in 	a,x0� such that
(ii) 	 � 
/2 � Sf�x;x0� � 	 � 
/2 if a � x � x0.
Since Sf�x;x0� is an upper bound of �f�t�|x � t � x0�, f�x� � Sf�x;x0�. Therefore,
the second inequality in (ii) implies the inequality (i) with a1 � a. This proves (a).
To prove (b),let a1 be given and define x1 � max�a1,a�. Then the first inequality in
(ii) implies that (iii) Sf�x;x0� � 	 � 
/2. Since Sf�x;x0� is the supremum of
�f�t�|x1 � t � x0�, there is an x in 	x1,x0� such that
f�x� � Sf�x;x0� � 
/2.This and (iii) imply that f�x� � 	 � 
/2. Since x is in 	a1,x0�, this
proves (b).
Now we show that there cannot be more than one hyperreal number with properties
(a) and (b). Suppose that 	1 � 	2 and 	2 has property (b); thus, if 
 � 0,
 � 0 and a1

is in 	a,x0� there is an x in 	a1,x0� such that f�x� � 	2 � 
 . Letting 
 � 	2 � 	1, we see
that there is an x in 	a1,b� such that f�x� � 	2 � �	2 � 	1� � 	1so 	1 cannot have
property (a).Therefore, there cannot be more than one hyperreal number that satisfies
both (a) and (b).
Theorem 15.6. If f�x� is bounded or hyperbounded on 	a,x0�, then � � lim x�x0�f�x�
exists and there is the unique hyperreal number with the following properties:
(a) If 
 � 0,
 � 0 there is an a1 in 	a,x0� such that
f�x� � � � 
 if a1 � x � x0.
(b) If 
 � 0,
 � 0 and a1 is in 	a,x0�, then



f�x� � � � 
 for some x � 	a,x0�.
Theorem 15.7. If f�x� is bounded or hyperbounded on 	a,x0�, then
(i) #-lim x�# x0�f�x� � #-lim x�# x0�f�x�;
(ii) #-lim x�# x0�f��x� � #- lim x�# x0�f�x�;
(iii) #-lim x�# x0�f��x� � #- lim x�# x0�f�x�;
(iv) #-lim x�# x0�f�x� � #-lim x�# x0�f�x� if and only if #-lim x�# x0� f�x� exists, in which case
#-lim x�# x0� f�x� � #-lim x�# x0�f�x� � #-lim x�# x0�f�x�

Theorem 15.8.Suppose that f�x� and g�x� are bounded or hyperbounded on 	a,x0� .
Then: (i) #-lim x�# x0��f � g��x� � #-lim x�# x0�f�x� � #-lim x�x0�g�x�;
(ii) #-lim x�# x0��f � g��x� � #-lim x�# x0�f�x� � #-lim x�# x0�g�x�.

Theorem 15.9.The � � lim x�x0� f�x� exists i.e.,� is finite or hyperfinite
if and only if for each 
 � 0,
 � 0 there is a � � 0,� � 0
such that |f�x1� � f�x2�| � 
 if x0 � � � x1,x2 � x0.
Theorem 15.10.(i) Suppose that f�x� is bounded or hyperbounded on an interval
�x0,b
, then #-lim x�# x0�f�x� � #-lim x�# x0�f�x� if and only if #-lim x�x0� f�x� exists, in
which case #-lim x�# x0� f�x� � #-lim x�# x0�f�x� � #-lim x�# x0�f�x�.
(ii) Suppose that f�x� is bounded or hyperbounded on an open interval containing x0,
then #-lim x�# x0 f�x� exists if and only if
#-lim x�# x0�f�x� � #-lim x�# x0�f�x� � #-lim x�# x0�f�x� � #-lim x�# x0�f�x�.

15.4.The #-continuity of a function f : �c
# � �c

#.
Definition 15.9. (i) We say that a function f : �c

# � �c
#. is #-continuous at x0 if f is

defined on an open interval �a,b� containing x0 and lim x�# x0� f�x0� � x0.
(ii) We say that f is #-continuous from the left at x0 if f is defined on an open interval
�a,x0� and f�x0 �� � f�x0�.
(iii) We say that f is #-continuous from the right at x0 if f is defined on an open interval
�x0,b� and f�x0 �� � f�x0�.
Theorem 15.11. (i) A function f is #-continuous at x0 if and only if f is defined on an

open
interval �a,b� containing x0 and for each 
 � 0,
 � 0 there is a � � 0,� � 0 such that

|f�x� � f�x0�| � 
 �15.10�

whenever |x � x0| � �.
(ii) A function f is #-continuous from the right at x0 if and only if f is defined on an
interval 	x0,b� and for each 
 � 0,
 � 0 there is a � � 0,� � 0 such that (17.10) holds
whenever x0 � x � x0 � �.
(iii) A function f is #-continuous from the left at x0 if and only if f is defined on an
interval �a,x0
 and for each 
 � 0,
 � 0 there is a � � 0,� � 0 such that (15.10) holds
whenever x0 � � � x � x0.
Note that from Definition 15.9 and Theorem 15.8, f is #-continuous at x0 if and only if
f�x0 �� � f�x0 �� � f�x0� or, equivalently, if and only if it is #-continuous from the right
and left at x0.
Definition 15.10. A function f : �c

# � �c
# is #-continuous on an open interval �a,b� if it

is
#-continuous at every point in �a,b�. If, in addition,



f�b �� � f�b� �15.11�

or

f�a �� � f�a� �15.12�

then f is #-continuous on �a,b
 or 	a,b�, respectively. If f is #-continuous on �a,b� and
(15.11) and (15.12) both hold, then f is #-continuous on 	a,b
. More generally, if S is a
subset of dom�f� consisting of finitely or countably or hyper finitely or hyper infinitely
many disjoint intervals, then f is #-continuous on S if f is #-continuous on every interval
in S.
Definition 15.11. A function f : �c

# � �c
# is piecewise #-continuous on 	a,b
 if

(i) f�x0 �� exists for all x0 in 	a,b�;
(ii) f�x0 �� exists for all x0 in �a,b
;
(iii) f �x0 �� � f�x0 �� � f�x0� for all but except finitely or hyper finitely many points x0

in �a,b�.
If (iii) fails to hold at some x0 in �a,b�, f has a jump #-discontinuity at x0. Also, f has a
jump #-discontinuity at a if f�a �� 	 f�a� or at b if f�b �� 	 f�b�.
Theorem 15.12. If f and g are #-continuous on a set S, then so are f � g, and
fg. In addition, f/g is #-continuous at each x0 in Ssuch that g�x0� 	 0.
By hyper infinite induction, it can be shown that if �n � �# fn�x� are #-continuous on a

set S, then so are�
i�n

fn�x�.Therefore, �n,m � �# any rational function

r�x� ��
i�n

aixi /�
i�m

bixi ,bi 	 0 is #-continuous for all values of x except those for which

its denominator vanishes.

15.5.Removable #-discontinuities.
Definition 15.12.Let f�x� be defined on a deleted #-neighborhood of x0 and
#-discontinuous (perhaps even undefined) at x0. Then we say that f�x� has a
removable #-discontinuity at x0 if #-lim x�x0 f�x0� exists. In this case, the function

g�x� �

f�x� if x � dom�f� and x 	 x0

lim x�x0 f�x0� if x � x0

�15.13�

is #-continuous at x0.

15.6.Composite Functions f : �c
# � �c

#.
Definition 15.13. Suppose that f : �c

# � �c
# and g : �c

# � �c
# are functions with

domains dom�f� and dom�g� correspondingly. If dom�g� has a nonempty subset T
such that g�x� � dom�g� whenever x � T, then the composite function f � g : �c

# � �c
#

is defined
on T by �f � g��x� � f�g�x��
Theorem 15.10. Suppose that g is #-continuous at x0,g�x0� is an #-interior point of
dom�f� and f is #-continuous at g�x0�. Then f � g is #-continuous at x0.
Proof. Suppose that 
 � 0,
 � 0. Since g�x0� is an #-interior point of dom�f� and f�x� is
#-continuous at g�x0�, there is a �1 � 0,�1 � 0 such that f�t� is defined and



(i) |f�t� � f�gx0�| � 
 if |t � g�x0�| � �1.
Since g�x� is #-continuous at x0, there is a � � 0,� � 0 such that g�x� is defined and
(ii) |g�x� � g�x0�| � �1 if |x � x0| � �.
Now (i) and (ii) imply that |f�g�x�� � f�g�x0��| � � if |x � x0| � 
.Therefore, f � g is
#-continuous at x0.

15.7.Bounded and Hyperbounded Functions f : �c
# � �c

#.
Definition 15.14. (i) A function f : �c

# � �c
# is bounded below on a set S� �c

# if
there is a finite or hyperfinite hyperreal number m � �c.fin

# such that f�x� � m for all
x � S. If in this case the set V � �f�x�|x � S� has infimum �, we write � � infx�Sf�x�.
If there is a point x1 � Ssuch that f�x1� � �˛, we say that � is the minimum of f�x�
on S,and write � � minx�Sf�x�
(ii) A function f : �c

# � �c
# is bounded above on S� �c

# if there is a finite or hyperfinite
hyperreal number M � �c.fin

# such that f�x� � M for all x � S. If in this case, V has a
supremum 	, we write 	 � supx�Sf�x�. If there is a point x1 � Ssuch that f�x2� � 	˛,
we say that 	 is the maximum of f�x� on S,and write � � maxx�Sf�x�.
(iii) If f is bounded above and below on a set S, we say that f is bounded on S.

Theorem 15.11. If f is #-continuous on a finite or hyperfinite #-closed interval 	a,b
,
then f is bounded or hyperbounded on 	a,b
.
Proof. Suppose that t � 	a,b
. Since f is #-continuous at t, there is an open interval
I t containing t such that

|f�x� � f�t�| � 1ifx � I t � 	a,b
 �15.14�

To see this, set 
 � 1 in (15.10), Theorem 15.11. The collection H � �I t|a � t � b�
is an open covering of 	a,b
. Since 	a,b
 is #-compact, the generalized Heine–Borel
theorem implies that there are hyper finitely many points t1, t2, . . . ,tn,n � �# such that
the intervals I t1, I t2, . . . ,I tn cover 	a,b
. According to (11.14) with t � t i ,
|f�x� � f�t i �| � 1 if x � I t i � 	a,b
.Therefore,

f�x� � |�f�x� � f�t i �� � f�t i �| � |f�x� � f�t i �| � |f�t i �| � 1 � |f�t i �| �15.15�

if x � I t i � 	a,b
. Let M � 1 � max1�i�n|f�t i �|.Since 	a,b
 ��
i�1

n

�I t i � 	a,b
�,

(15.15) implies that |f�x�| � M if x � 	a,b
.
Theorem 15.12. Suppose that f is #-continuous on a finite or hyperfinite closed
interval 	a,b
.Let Va,b � �f�x�|x � 	a,b
�. Assume that the set Va,b is admissible above
and below. Let

� � inf Va,b � infa�x�b f�x� and 	 � supVa,b � supa�x�b f�x�. �15.16�

Then � and 	 are respectively the minimum and maximum of f on 	a,b
; that is
there are points x1 and x2 in 	a,b
 such that � � f�x1� and 	 � f�x2�.
Proof. We show that x1 exists. Note that � � inf Va,b and 	 � supVa,b exist since the
set Va,b is admissible below and above. Suppose that there is no x1 in 	a,b
 such that
f�x1� � �˛. Then f�x� � � ˛ for all x � 	a,b
. We will show that this leads to a
contradiction. Suppose that t � 	a,b
. Then f�t� � � , so f�t� � 	f�t� � �
/2 � �.
Since f is #-continuous at t, there is an open interval I t about t such that



f�x� �
f�t� � �

2
�15.17�

if x � I t � 	a,b
. The collection H � �I t|a � t � b� is an open covering of 	a,b
.
Since 	a,b
 is #-compact, the generalized Heine–Borel theorem implies that there are
hyper finitely many points t1, t2, . . . ,tn such that the intervals I t1, I t2, . . . ,I tn cover 	a,b
.

Define �1 � min1�i�n	f�t i � � �
/2.Then, since 	a,b
 ��
i�1

n

�I t i � 	a,b
�, (15.17) implies that

f�t� � �1,a � t � b.But �1 � �, so this contradicts the definition of �. Therefore,
f�x1� � � ˛ for some x1 � 	a,b
.

15.8. Generalized Intermediate Value Theorem.
Theorem 15.13.(Generalized Intermediate Value Theorem) Suppose that:
(i) f is #-continuous on 	a,b
, (ii) f�a� 	 f�b� and f�a� � � � f�b�,
(iii) the set S � �x|�a � x � b� � �f�x� � ���is admissible above.Then f�c� � � for
some c � �a,b�.
Proof. Suppose that f�a� � � � f�b�. Note that supSexists, since the set S is
admissible above. Let c � supS. We will show that f�c� � � . If f�c� � �,
then c � a and, since f is #-continuous at c, there is an 
 � 0,
 � 0 such that
f�x� � � if c � 
 � x � c. Therefore, c is an upper bound for S, which contradicts
the definition of c as the supremum of S. If f�c� � �, then c � b and there is
an 
 � 0,
 � 0 such that f�x� � � for c � x � c � 
, so c is not an upper bound for S.
This is also a contradiction. Therefore, f�c� � �.The proof for the case where
f�b� � � � f�a� can be obtained by applying this result to �f�x�.
Lemma.15.1.If f is #-continuous at x0 and f�x0� � �, then f�x� � � for all x in some
#-neighborhood of x0.

15.9.Uniform #-Continuity.
Definition 15.15. A function f is uniformly #-continuous on a subset Sof its domain
if, for every 
� 0,
 � 0 there is a � � 0,� � 0 such that |f�x� � f�x��| � 
 whenever
|x � x� | � � and x,x� � S.
We emphasize that in this definition � depends only on and Sand not on the
particular choice of x and x�, provided that they are both in S.
Theorem 15.14. If f is #-continuous on a #-closed and bounded or hyperbounded
interval 	a,b
, then f is uniformly #-continuous on 	a,b
.
Proof. Suppose that 
 � 0,
 � 0. Since f is #-continuous on 	a,b
, for each t � 	a,b

there is a positive number � t such that

|f�x� � f�t�| � 
/2 �15.18�

if |x � t| � �t and x � 	a,b
. If I t � �t � �t, t � �t�, the collection H � �I t|t � 	a,b
�
is an open covering of 	a,b
.Since 	a,b
 is #-compact, the generalized Heine–Borel
theorem implies that there are hyper finitely many points t1, t2, . . . ,tn in 	a,b
 such that
I t1, I t2, . . . ,I tn cover 	a,b
.Now define

� � min �t1,� t2
, . . . ,�tn . �15.19�

We will show that if

|x � x� | � � and x,x� � 	a,b
 �15.20�



then |f�x� � f�x��| � 
.From the triangle inequality one obtains:

|f�x� � f�x��| � |�f�x� � f�tr �� � �f�tr � � f�x���| � |f�x� � f�tr �| � |f�tr � � f�x��| �15.21�

Since I t1, I t2, . . . ,I tn cover 	a,b
, x must be in one of these intervals. Suppose that
x � I tr that is,

|x � tr | � �tr . �15.22�

From (11.18) with t � tr ,

|f�x� � f�tr �| � 

2

. �15.23�

From (11.20), (11.22), and the triangle inequality,

|x� � tr | � |�x� � x� � �x � tr �| � |x� � x| � |x � tr | � � � �tr � 2�tr . �15.24�

Therefore, (11.18) with t � tr and x replaced by x� implies that

|f�x�� � f�tr �| � 

2

. �15.25�

Thus (11.25),(11.21) and (11.23) imply that |f�x�� � f�tr �| � 
/2.

15.10. Monotonic External Functions f : �c
# � �c

#.
Theorem 15.15. If f is monotonic and nonconstant on 	a,b
, then f is #-continuous
on 	a,b
 if and only if its range range �f� � �f�x�|x � 	a,b
� is the #-closed interval with
endpoints f�a� and f�b�.
Theorem 15.16. Suppose that f is increasing and #-continuous on 	a,b
 and let
f�a� � c and f�b� � d. Then there is a unique function g defined on 	c,d
 such that

g�f�x�� � x,a � x � b, �15.26�

and

f�g�y�� � y,c � y � d. �15.27�

Moreover, g is #-continuous and increasing on 	c,d
:
The function g of Theorem 15.16 is the inverse of f, denoted by f �1. Since (15.26)
and (15.27) are symmetric in f and g, we can also regard f as the inverse of g, and
denote it by g�1.

15.11. The #-derivative of a �c
#-valued function f : D � �c

#.
A function f : D � �c

#,D � �c
# is differentiable at an #-interior point x0 � D of its

domain
D � �c

# if the difference quotient

f�x� � f�x0�
x � x0

,x 	 x0 �15.28�

approaches a #-limit as x approaches x0, in which case the #-limit is called the
#-derivative

of f at x0, and is denoted by f #��x0� or by f �#�x0� or by d#f�x0�/d#x i.e.,

d#f�x0�/d#x � f �#�x0� � #- lim x�# x0

f�x� � f�x0�
x � x0

�15.29�

If f is defined on an #-open set S� �c
#, we say that f is #-differentiable on S if f is

#-differentiable at every point of S. If f is #-differentiable on S, then f �# is a function on
S.

We say that f is #-continuously #-differentiable on S if f �#�x� is #-continuous on S. If f is



#-differentiable on a #-neighbourhood of x0, it is reasonable to ask if f �#�x� is
#-differentiable at x0. If so, we denote the #-derivative of f �# at x0 by f ��#�x0�. This is

the
second #-derivative of f at x0, and it is also denoted by f�2�#�x0�. Continuing inductively,
if f�n�1�# is defined on a #-neighborhood of x0, then the n-th #-derivative of f at x0,
denoted by f�n�#�x0�, where n � �# or by dn#f�x0�/d#xn is the #-derivative of f�n�1�#�x� at
x0.For convenience we define the zeroth #-derivative of f to be f itself; thus f�0�# � f.
Example15.1 If n � �#\� is a positive hyperinteger and f�x�,� xn then

f�x� � f�x0�
x � x0

�
xn � x0

n

x � x0
� x � x0

x � x0
Ext-�

k�0

n�1

xn�k�1 . �15.30�

Thus f �#�x0� � #-lim x�# x0 Ext-�
k�0

n�1

xn�k�1 � nxn�1.

Lemma 15.2. If f is #-differentiable at x0; then

f�x� � f�x0� � f �#�x0� � E�x� �x � x0�, �15.31�

where E�x� is defined on a #-neighborhood of x0 and #-lim x�# x0 E�x� � E�x0� � 0.
Proof. Define

E�x� �
f�x� � f�x0�

x � x0
� f �#�x0� x � Dom�f� and x 	 x0

0 x � x0

�15.32�

Solving (15.32) for f�x� yields (15.31) if x 	 x0, and (15.31) is obvious if x � x0.
Definition 15.29 implies that #-lim x�x0 E�x� � 0. We defined E�x0� � 0 to make E�x�
#-continuous at x0.Since the right side of (15.32) is #-continuous at x0, so is the left.
This yields the following theorem.
Theorem 15.17. If f is #-differentiable at x0; then f is #-continuous at x0.
Theorem 15.18. If f and g are #-differentiable at x0, then so are f � g and fg with

(a) �f � g� �#�x0� � f �#�x0� � g �#�x0�;

(b) �f � g� �#�x0� � f �#�x0� � g �#�x0�;
(c) �fg� �#�x0� � f �#�x0�g�x0� � f�x0�g �#�x0�;
(d)The quotient f/g is #-differentiable at x0 if g�x0� 	 0 with

f
g

�#

�x0� �
f �#�x0�g�x0� � g �#�x0�f�x0�

	g�x0�
2 .

(e) If n � �# and f i , 1 � i � n are #-differentiable at x0, then so are Ext-�
i�1

n

f i and

Ext-�
i�1

n

f i�x0�
�#

� Ext-�
i�1

n

f i
�#�x0�.

(f) If n � �# and f �n�#�x0�,g �n�#�x0� exist, then so does �f 
 g��n�#�x0� and

�fg��n�#�x0� � Ext-�
i�0

n
n
i

f �i �#�x0�g �n�i �#�x0�.

Proof. For the statements (a)-(d) the proof is straightforward. For the statements
(e) and (f) immediately by hyper infinite induction.
Theorem 15.19. (The Chain Rule) Suppose that g is #-differentiable at x0 and f
is #-differentiable at g�x0�. Then the composite function h � f � g defined by
h�x� � f�g�x�� is #-differentiable at x0 with h �#�x0� � f �#�g�x0��g �#�x0�.



Definition 15.16.If f�x� is defined on 	x0,b�, the right-hand derivative of f�x� at x0 is
defined to be

f�
�#�x0� � #- lim x�# x0�

f�x� � f�x0�
x � x0

, �15.33�

if the #-limit exists, while if f is defined on �a,x0
, the left-hand derivative of f�x� at x0 is
defined to be

f��#�x0� � #- lim x�# x0�
f�x� � f�x0�

x � x0
, �15.34�

if the #-limit exists.

Remark 15.2. Note that f�x� is #-differentiable at x0 if and only if f�
�#�x0� and f��#�x0�

exist and are equal, in which case f �#�x0� � f��#�x0� � f�
�#�x0�.

Definition 15.16�(1) We say that f is #-differentiable on the #-closed interval 	a,b
 if

f is #-differentiable on the #-open interval �a,b� and f�
�#�a� and f��#�b� both exist.

(2) We say that f is #-continuously #-differentiable on 	a,b
 if f is #-differentiable on

	a,b
, f �# is #-continuous on �a,b�, f�
�#�a� � f �#�a ��, and f��#�b� � f �#�b ��.

Definition 15.17.We say that f�x0� is a local extreme value of f�x� if there is a � � 0,
� � 0 such that f�x� � f�x0� does not change sign on

�x0 � �x0 � �� � dom�f�. �15.35�

More specifically, f�x0� is a local maximum value of f�x� if

f�x� � f�x0� �15.36�

or a local minimum value of f�x� if

f�x� � f�x0� �15.37�

for all x � �x0 � �x0 � �� � dom�f�. The point x0 is called a local extreme point of f�x�,
or, more specifically, a local maximum or local minimum point of f�x�.
Theorem 15.20. If f�x� is #-differentiable at a local extreme point x0 � dom�f� then

f �#�x0� � 0.

Proof. We will show that x0 is not a local extreme point of f if f �#�x0� 	 0. From
Lemma 15.2 we get

f�x� � f�x0�
x � x0

� f �#�x0� � E�x�, �15.37��

where #-lim x�# x0 E�x� � 0.Therefore, if f �#�x0� 	 0, there is a � � 0,� � 0, such that
|E�x�| � f �#�x0� ,and the right side of (15.37�) must have the same sign as f �#�x0�

for |x � x0| � �. Since the same is true of the left side, f�x� � f�x0� must change sign in
every neighborhood of x0 (since x � x0 does). Therefore, neither (15.36) nor (15.37)
can hold for all x in any interval about x0.
Theorem 15.21. (Generalized Rolle’s Theorem) Suppose that:
(i) f is #-continuous on the #-closed interval 	a,b
,
(ii) f is #-differentiable on the #-open interval �a,b�,
(iii) the set Va,b � �f�x�|x � 	a,b
� is admissible above and below and
(iv) f�a� � f�b�.
Then f �#�c� � 0 for some c � �a,b�.
Proof.Since f is #-continuous on 	a,b
 and the set Va,b � �f�x�|x � 	a,b
� is



admissible above and below, f attains a maximum and a minimum value on 	a,b

(Theorem 15.12 ). If these two extreme values are the same, then f is constant on
�a,b�, so f �#�x� � 0 for all x � 	a,b
. If the extreme values differ, then at least one
must be attained at some point c in the #-open interval �a,b�, and f �#�c� � 0, by
Theorem 15.20.
Theorem 15.22. (Intermediate Value Theorem for #-Derivatives) Suppose that:
(i) f�x� is #-differentiable on 	a,b
,
(ii) the set Va,b	f
 � �f�x�|x � 	a,b
� is admissible above and below,
(iii) f �#�a� 	 f �#�b� and f �#�a� � � � f �#�b�. Then
f �#�c� � � for some c � �a,b�.
Proof.Suppose first that: (1) f �#�a� � � � f �#�b� and define g�x� � f�x� � �x.
Then (2) g �#�x� � f �#�x� � �,a � x � b, and (1) implies that: (3) g �#�a� � 0 and
g �#�b� � 0.Notice (ii) implies that Va,b	g
 � �x�x�|x � 	a,b
� is admissible above and
below. Since g is #-continuous on 	a,b
, g attains a minimum at some point
c � 	a,b
.Lemma 15.2 and (3) implies that there is a � � 0,� � 0, such that
g�x� � g�a�,a � x � a � � and g�x� � g�b�,b � � � x � b,and therefore c 	 a and c 	 b.
Hence, a � c � b, and therefore g �#�c� � 0 by Theorem 11.20.From (2) f �#�c� � �.
The proof for the case where f �#�b� � � � f �#�a� can be obtained by applying this
result to �f�x�.
Theorem 15.23. (Generalized Mean Value Theorem) Assume that:
(i) f and g are #-continuous on the #-closed interval 	a,b
 and #-differentiable on the
open interval �a,b�,(ii) the set Va,b	f
 and Va,b	g
 are admissible above and below,
(iii) let h�x� � 	g�b� � g�a�
f�x� � 	f�b� � f�a�
g�x�, the set Va,b	h
 admissible above and
below, then

	g�b� � g�a�
f �#�c� � 	f�b� � f�a�
g �#�c� �15.38�

for some c � �a,b�.
Proof.The function h�x� � 	g�b� � g�a�
f�x� � 	f�b� � f�a�
g�x� is #-continuous on 	a,b

and #-differentiable on �a,b�, and h�a� � h�b� � g�b�f�a� � f�b�g�a�.Note that the set
Va,b	h
 is admissible above and below. Therefore, Rolle’s theorem (Theorem 11.21)
implies that h �#�c� � 0 for some c � �a,b�.Since
h �#�c� � 	g�b� � g�a�
f �#�c� � 	f�b� � f�a�
g �#�c�, this implies Eq.(15.38).
The following special case of Theorem 15.23 is important enough to be stated
separately.
Theorem 15.24.(Mean Value Theorem) Assume that: (i) f is #-continuous on the
#-closed interval 	a,b
, (ii) #-differentiable on the #-open interval �a,b�,(iii) the set
Va,b	f
 is admissible above and below, then

f �#�c� �
f�b� � f�a�

b � a
�15.39�

for some c � �a,b�.
Proof.Apply Theorem 15.24 with g�x� � x.
h�x� � 	b � a
f�x� � 	f�b� � f�a�
x
h�a� � h�b� � bf�a� � f�b�g�a�
Remark 15.3. Assume that the set Va,b	f
 is admissible above and below. If f is
#-differentiable on �a,b� and x1,x2 � �a,b� then f is #-continuous on the #-closed
interval with endpoints x1 and x2 and #-differentiable on its interior. Hence, the mean



value theorem (Theorem 15.24) implies that

f�x2� � f�x1� � f �#�c��x2 � x1�. �15.39��

for some c between x1 and x2. (This is true whether x1 � x2 or x2 � x1.) The next
three theorems follow from (11.39�).
Theorem 15.25. Assume that the set Va,b	f
 is admissible above and below.
If f �#�x� � 0 for all x � �a,b�, then f is constant on �a,b�.
Remark 15.4.
Theorem 15.26. If f �#�x� exists for all x � �a,b� and does not change sign on �a,b�,
then f�x� is monotonic on �a,b� increasing, nondecreasing, decreasing, or
nonincreasing as: (i) f �#�x� � 0,(ii) f �#�x� � 0,(iii) f �#�x� � 0,(iv) f �#�x� � 0,
respectively, for all x � �a,b�.
Theorem 15.27. If f �#�x� � M,a � x � b then

|f�x� � f�x��| � M|x � x� |, �15.40�

where x,x� � �a,b�.
Definition 15.18.A function that satisfies an inequality like (15.40) for all x and x� in
an interval is said to satisfy a Lipschitz condition on the interval.
Theorem 15.28. (Generalized L’Hospital’s Rule) Suppose that f and g are
#-differentiable and g �# has no zeros on �a,b�. Let #-lim x�# b� f�x� � #-lim x�# b� g�x�
or #-lim x�# b� f�x� � ��#and #-lim x�# b� g�x� � ��#and suppose that

# � lim x�# b�
f �#�x�

g �#�x�
� L, �15.41�

where L � �c
# or L � ��#.Then

# � lim x�# b�
f�x�
g�x�

� L, �15.42�

As we saw above in Lemma 15.2 if f is #-differentiable at x0; then

f�x� � f�x0� � f �#�x0��x � x0� � E�x��x � x0�, �15.43�

where #-lim x�# x0 E�x� � 0.To generalize this result, we first restate it: the polynomial
P1�x� � f�x0� � f �#�x0��x � x0� which is of degree � 1 and satisfies P1�x0� � f�x0�,

P1
�#�x� � f �#�x0�,approximates f�x� so well near x0 such that

#- lim x�# x0

f�x� � P1�x�
x � x0

� 0. �15.44�

Now suppose that f has n #-derivatives at x0 and Pn�x� is the polynomial of degree
n � �#\� such that

Pn
�r �#�x0� � f �r �#�x0�, 0 � r � n. �15.45�

Since Pn�x� is a polynomial of hyperfinite degree n, it can be written as

Pn�x� � Ext-�
i�0

n

ai�x � x0� i �15.46�

where a0, . . . ,an � �c
# are constants. Differentiating (11.46) gives Pn

�r �#�x0� � r!ar ,
0 � r � n,so (15.45) determines ar uniquely as ar � f �r �#�x0�/r!, 0 � r � n.Therefore,



Pn�x� � Ext-�
r�0

n �x � x0�r f �r �#�x0�
r!

. �15.47�

We call Pn�x� the n-th Taylor hyper polynomial of f�x� about x0

Theorem 15.29.If f �n�#�x0� exists for some hyper integer n � �#\� and Pn�x� is
the n-th Taylor hyper polynomial of f about x0, then

#- lim x�# x0

f�x� � Pn�x�
�x � x0�n � 0. �15.48�

Theorem 15.30. (Generalized Taylor’s Theorem) Suppose that f �n�1�#�x�
exists on an #-open interval I about x0, and let x � I. Then the remainder
Rn�x� � f�x� � Pn�x� can be written as

Rn�x� �
f �n�1�#�c�
�n � 1�!

�x � x0�n, �15.49�

where c depends upon x and is between x and x0.

15.12.The Riemann integral of a �c
#-valued external

function f�x�.
The Riemann integral is defined as #-limit of Riemann hyperfinite sums of functions
with respect to tagged partitions of an interval 	a,b
 � �c

# A tagged hyperfinite partition
P of a closed interval 	a,b
 on the real line is a hyperfinite sequence

a � x0 � t1 � x1 � t2 � x2 �. . .� xn�1 � tn � xn � b, �15.50�

where n � �#\�.This partitions the interval 	a,b
 into n sub-intervals 	xi�1,xi
 indexed by
i � �#, each of which is "tagged" with a distinguished point t i � 	xi�1,xi
.Thus, any set of
n � 1 � �#\� points satisfying (15.50) defines a partition P of 	a,b
, which we denote by
P � �x0,x1, . . . ,xn�.A Riemann hyperfinite sum of a function f with respect to such a
tagged hyperfinite partition is defined as

In � �
i�1

n

f�t i �	 i , �15.51�

where n � �#\�. thus each term of the sum (15.51) is the area of a rectangle with height
equal to the function value at the distinguished point of the given sub-interval, and width
the same as the width of sub-interval, Δ i � xi � xi�1. The mesh�P� of such a tagged
partition is the width of the largest sub-interval formed by the partition, maxi�1...nΔ i .

Definition 15.19. The Riemann integral of a function f over the interval 	a,b
 is equal
to I if for every 
 � 0,
 � 0 there exists � � 0,� � 0 such that for any partition with
distinguished points on 	a,b
 whose mesh is less than �.
Upper and Lower Integrals.
Definition 15.20. f is bounded (hyperbounded) on 	a,b
 and P � �x0,x1, . . . ,xn� is a
hyperfinite partition of 	a,b
, let

M j � supxj�1�x�xj f�x� �15.52�

and

mj � infxj�1�x�xj f�x� �15.53�

The upper external hyperfinite sum of f over P is



S�P� � Ext-�
j�1

n

M j�xj � xj�1� �15.54�

and the upper external integral of f over 	a,b
, denoted by

Ext-"
a

b
f�x�d#x �15.55�

is the infimum of all hyperfinite upper sums.
The lower external hyperfinite sum of f over P is

s�P� � Ext-�
j�1

n

mj�xj � xj�1� �15.56�

and the lower external integral of f over 	a,b
, denoted by

Ext-"
a

b
f�x�d#x. �15.57�

is the supremum of all lower hyperfinite sums. If m � f�x� � M for all x � 	a,b
, then

m�b � a� � s�P� � S�P� � M�b � a� �15.58�

for every hyperfinite partition P; thus, the set of upper hyperfinite sums of f over all
partitions P of 	a,b
 is bounded, as is the set of lower hyperfinite sums. Therefore,
Theorems 15.3 and 15.8 imply that: if the quantity (15.55) and (15.57) exist then
both are unique, and satisfy the inequalities

m�b � a� � Ext-"
a

b
f�x�d#x � M�b � a� �15.59�

and

m�b � a� � Ext-"
a

b
f�x�d#x � M�b � a�. �15.60�

Theorem 15.31. Let f be bounded on 	a,b
, and let P be a hyperfinite partition of 	a,b
.
Then (i) The upper hyperfinite sum S�P� of f over P is the supremum of the set of all
hyperfinite Riemann sums of f over P.
(ii) The lower hyperfinite sum s�P� of f over P is the infimum of the set of all hyperfinite
Riemann sums of f over P.

Proof (a) If P � �x0,x1, . . . ,xn�, then S�P� � Ext-�
j�1

n

M j�xj � xj�1� where

M j � supxj�1�x�xj f�x�.

An arbitrary hyperfinite Riemann sum of f over P is of the following form

� � Ext-� j�1
n f�cj ��xj � xj�1�, �15.61�

where xj�1 � cj � xj .Since f�cj � � M j , it follows that � � S�P�.Now let 
 � 0,
 � 0
and choose cj � 	xj�1,xj 
 so that

f�cj � � M j � 

n�xj � xj�1�

, �15.62�

where 1 � j � n � �#\�.The hyperfinite Riemann sum � produced in this way is

� � Ext-� j�1
n f�cj ��xj � xj�1� � Ext-� j�1

n M j � 

n�xj � xj�1�

�xj � xj�1� �

S�P� � 
.
�15.63�

Now Theorem 15.3 implies that S�P� is the supremum of the set of hyperfinite



Riemann sums of f over P.

15.12.The Riemann–Stieltjes Integral of a �c
#-valued

external function f�x�.
Definition 15.21. Let f and g be defined on 	a,b
. We say that f is Riemann–Stieltjes
integrable with respect to g on 	a,b
, if there is a number L � �c

# with the following
property: For every 
 � 0,
 � 0, there is a � � 0,� � 0 such that

Ext-�
j�1

n

f�cj �	g�xj � � g�xj�1�
 � L � 
 �15.64�

provided only that P � �x0,x1, . . . ,xn�,n � �#\� is a hyperfinite partition of 	a,b

such that �P� � � and xj�1 � cj � xj , j � n. In this case, we say that L is the external
Riemann–Stieltjes integral of f with respect to g over 	a,b
, and write

Ext- "
a

b

f�x�d#g�x� � L. �15.65�

15.13 Existence of the integral of a �c
#-valued external

function f�x�.
Lemma 15.3 Suppose that

f�x� � M,a � x � b �15.66�

and let P� be a hyperfinite partition of 	a,b
 obtained by adding r � �#\� points to a
partition P � �x0,x1, . . . ,xn�,n � �#\� of 	a,b
. Then

S�P� � S�P�� � S�P� � 2Mr�P� �15.67�

and

s�P� � s�P�� � s�P� � 2Mr�P�. �15.68�

Theorem 15.32. If f�x� is bounded on 	a,b
, then

Ext-"
a

b
f�x�d#x � Ext-"

a

b
f�x�d#x. �15.69�

Theorem 15.33. If f is integrable on 	a,b
, then

Ext-"
a

b
f�x�d#x � Ext-"

a

b
f�x�d#x � Ext- "

a

b
f�x�d#x. �15.70�

Theorem 15.34.If f is bounded (or hyperbounded) on 	a,b
 and

Ext-"
a

b
f�x�d#x � Ext-"

a

b
f�x�d#x � L, �15.71�

then f�x� is integrable on 	a,b
 and

Ext- "
a

b

f�x�d#x � L. �15.72�

Theorem 15.35.A bounded (hyperbounded) function f is integrable on 	a,b
 if and
only if



Ext-"
a

b
f�x�d#x � Ext-"

a

b
f�x�d#x. �15.73�

Theorem 15.36.If f is bounded (hyperbounded) on 	a,b
, then f is integrable on 	a,b

if and only if for each 
 � 0,
 � 0 there is a partition P of 	a,b
 for which

S�P� � s�P� � 
. �15.74�

Theorem 15.37.If f is #-continuous on 	a,b
, then f is integrable on 	a,b
.
Proof.
Theorem 15.38. If f is monotonic on 	a,b
, then f is integrable on 	a,b
.
Proof.
Theorem 15.39.(a) If f and g are integrable on 	a,b
, then so is f � g, and

Ext- "
a

b

	f�x� � g�x�
d#x � Ext- "
a

b

f�x�d#x � Ext- "
a

b

g�x�d#x �15.75�

(b) If f i , 1 � i � n � �# are integrable on 	a,b
, then so is Ext-�
j�1

n

f i�x�, and

Ext- "
a

b

Ext-�
j�1

n

f i�x� d#x.� Ext-�
j�1

n

Ext- "
a

b

f i�x�d#x �15.76�

Proof.
Theorem 15.40.(a) If f is integrable on 	a,b
 and c � �c

# is a constant, then cf
is integrable on 	a,b
 and

Ext- "
a

b

c f�x�d#x � c Ext- "
a

b

f�x�d#x . �15.77�

(b) If f i , 1 � i � n � �# are integrable on 	a,b
 and ci � �c
# are constants, then

Ext- "
a

b

Ext-�
j�1

n

ci f i�x� d#x.� Ext-�
j�1

n

ci Ext- "
a

b

f i�x�d#x . �15.78�

Proof.
Theorem 15.41. If f is and g integrable on 	a,b
 and f�x� � g�x� for x � 	a,b
, then

Ext- "
a

b

f�x�d#x � Ext- "
a

b

g�x�d#x. �15.79�

Proof.
Theorem 15.42. If f�x� is integrable on 	a,b
, then so is |f�x�| , and

Ext- "
a

b

f�x�d#x � Ext- "
a

b

|f�x�|d#x. �15.80�

Theorem 15.43. If f�x� and g�x� are integrable on 	a,b
, then so is the product
f�x�g�x�.
Proof.



Theorem 15.44.(First Mean Value Theorem for Integrals) Suppose that
u�x� is #-continuous and v�x� is integrable and nonnegative on 	a,b
. Then

Ext- "
a

b

f�x�v�x�d#x � v�c� Ext- "
a

b

f�x�d#x �15.81�

for some c � 	a,b
.
Proof.
Theorem 15.45.If f�x� is integrable on 	a,b
 and a � a1 � b1 � b, then f�x� is
integrable on 	a1,b1
.
Proof.
Theorem 15.46.If f�x� is integrable on 	a,b
 and 	b,c
 then f�x� is integrable on 	a,b

and

Ext- "
a

c

f�x�d#x � Ext- "
a

b

f�x�d#x � Ext- "
b

c

f�x�d#x. �15.82�

Proof.
Theorem 15.47.If f�x� is integrable on 	a,b
 and a � c � b, then the function F�x�
defined by

F�x� � Ext- "
c

x

f�t�d#t 1 5.83

satisfies a Lipschitz condition on 	a,b
, and is therefore #-continuous on 	a,b
.
Proof.

Theorem 15.48.If f�x� is integrable on 	a,b
 and a � c � b, then F�x� � Ext-"
c

x

f�t�d#t

is #-differentiable at any point x0 � 	a,b
, where f�x� is #-continuous, with

F �#�x0� � f�x0�. �15.84�

If f�x� is #-continuous from the right at a, then F��#�a� � f�a�. If f�x� is #-continuous
from the left at b, then F��#�b� � f�b�.
Proof.We consider the case where a � x0 � b.From the equality

1
x � x0

"
x0

x
f�x0�dt�# � f�x0�

one obtains

F�x� � F�x0�
x � x0

� f�x0� � 1
x � x0

"
x0

x

	f�t� � f�x0�
dt�#.

From this one obtains

F�x� � F�x0�
x � x0

� f�x0� � 1
|x � x0|

"
x0

x

|f�t� � f�x0�|dt�# . �15.84��



Since f is #-continuous at x0, there is for each 
 � 0,
 � 0 a � � 0,� � 0 such that
|f�t� � f�x0�| � 
 if |x � x0| � � and x � t � x0.From (11.84�) we get

F�x� � F�x0�
x � x0

� f�x0� � 
 |x � x0|
|x � x0|

� 
,

where 0 � |x � x0| � �.Therefore F �#�x0� � f�x0�.
Theorem 15.49.Suppose that F�x� is #-continuous on the #-closed interval 	a,b

and #-differentiable on the #-open interval �a,b�,and f Int�x� is integrable on 	a,b
.
Suppose also that F �#�x� � f�x�,a � x � b.Then

Ext- "
a

b

f�x�d#x � F�b� � F�a�. �15.85�

Proof. Let P by an partition P � �xi� i�0
n , n � �#\� of 	a,b
, then we get

F�b� � F�a� � Ext-�
i�1

n

	F�xi � � F�xi�1�
. �15.85��

From Theorem 2.3.11, there is in each #-open interval .�xj�1,xj � a point

cj � �xj�1,xj � such that F�xi � � F�xi�1� � f�cj ��xj � xj�1�.Hence, Eq.(11.85�) can be
written as

F�b� � F�a� � Ext-�
i�1

n

f�cj ��xj � xj�1� � �, �15.85���

where � is a Riemann sum for f over P. Since f is integrable on 	a,b
, there is for
each 
 � 0,
 � 0 a � � 0,� � 0 such that

� � "
a

b

f�x�d#x � 


if �P� � �.Therefore,

F�b� � F�a� � "
a

b

f�x�d#x � 


for every 
 � 0,
 � 0, which implies 15.85
Theorem 15.50.If f �#�x� is integrable on 	a,b
, then

Ext- "
a

b

f �#�x�d#x � f�b� � f�a�. �15.86�

Definition 15.22. A function F�x� is an #-antiderivative of f�x� on 	a,b
 if F�x� is
#-continuous on 	a,b
 and #-differentiable on 	a,b
, with F �#�x� � f�x�,a � x � b.
Theorem 15.50.If F�x� is an #-antiderivative of f�x� on 	a,b
, then so is F�x� � c for
any constant c. Conversely,if F1�x� and F2�x� are #-antiderivatives of f on 	a,b
, then
F1�x� � F2�x� is constant on 	a,b
.
Theorem 15.51.(Fundamental Theorem of Calculus) If f�x� is #-continuous on 	a,b
,
then f�x� has an #-antiderivative on 	a,b
.Moreover, if F�x� is any #-antiderivative
of f on 	a,b
, then



Ext- "
a

b

f�x�d#x � F�b� � F�a�. �15.87�

Theorem 15.52. (Integration by Parts) If u�#�x� and v�#�x� are integrable on 	a,b
,
then

Ext- "
a

b

u�x�v�#�x�d#x � u�x�v�x�|a
b � Ext- "

a

b

u�x� �#v�x�d#x. �15.88�

Theorem 15.53.Suppose that the transformation x � ��t� maps the interval c � t � d
into the interval a � x � b, with ��c� � � and ��c� � 	, and let f�x� be #-continuous
on 	a,b
. Let � �#�t� be integrable on 	c,d
.Then

Ext- "
�

	

f�x�d#x � Ext- "
c

d

f���t��� �#�t�d#t. �15.89�

Theorem 15.54. Suppose that � �#�t� is integrable and ��t� is monotonic on 	c,d
,
and the transformation x � ��t� maps 	c,d
 onto 	a,b
. Let f�x� be bounded
(hyperbounded) on 	a,b
. Then g�t� � f���t��� �#�t� is integrable on 	c,d
 if and only
if f�x� is integrable over 	a,b
,and in this case

Ext- "
a

b

f�x�d#x � Ext- "
c

d

f���t��� �#�t�d#t. �15.90�

15.14.Improper integrals.
Definition 15.22. We say f�x� is locally integrable on an interval I if f�x� is integrable
on every finite or hyperfinite #-closed subinterval of I.
Definition 15.23.If f is locally integrable on 	a,b
, we define

Ext- "
a

b

f�x�d#x � #- lim c�# b� Ext- "
a

c

f�x�d#x . �15.91�

Remark 11.3.The #-limit in (15.91) always exists if 	a,b
 is finite or hyperfinite
and f is locally integrable and bounded (hyperbounded) on 	a,b
. In this case,

Definitions 15.70 and 15.91 assign the same value to Ext-"
a

b
f�x�d#x no matter how f

is defined. However, the #-limit may also exist in cases where b � �# or b � �# and
f is hyper unbounded as x approaches b from the left.
Definition 15.24.In the cases mentioned above, Definition 15.91 assigns a value to

an integral that does not exist in the sense of Definition 15.70, and Ext-"
a

b
f�x�d#x

is said to be an improper integral that #-converges to the #-limit in (15.91). We also

say in this case that f is integrable on 	a,b
 and that Ext-"
a

b
f�x�d#x exists.

If the #-limit in (15.91) does not exist (finite or hyperfinite), we say that the improper

integral Ext-"
a

b
f�x�d#x #-diverges, and f is nonintegrable on 	a,b�. In particular, if

#-lim c�# b� Ext- "
a

c
f�x�d#x � ��# we say that #-diverges to �#, and we write



Ext- "
a

b

f�x�d#x � �# �15.92�

or

Ext- "
a

b

f�x�d#x � ��#, �15.93�

whichever the case may be.Similar comments apply to the next two definitions.
Definition 15.25.If f�x� is locally integrable on �a,b
, we define

Ext- "
a

b

f�x�d#x � #- lim c�# a� Ext- "
c

b

f�x�d#x . �15.94�

provided that the #-limit exists (finite or hyperfinite). To include the case where
a � ��#, we adopt the convention that ��# �� ��#.
Definition 15.26.If f�x� is locally integrable on �a,b�, we define

Ext- "
a

b

f�x�d#x � Ext- "
a

�

f�x�d#x � Ext- "
�

b

f�x�d#x, �15.95�

where a � � � b, provided that both improper integrals on the right exist i.e.,finite or
hyperfinite.

Remark 15.4.Note that the existence and value of Ext-"
a

b
f�x�d#x according to

Definition 15.26 do not depend on the particular choice of � � �a,b�.
Remark 15.5.When we wish to distinguish between improper integrals and integrals in
the sense of Definition 11.70, we will call the latter proper integrals.
Theorem 15.55.Suppose that f1, f2, . . . ,fn are locally integrable on 	a,b� and that

Ext-"
a

b
f1�x�d#x, . . . ,Ext-"

a

b
fn�x�d#x #-converge. Let c1,c2, . . . ,cn be constants.Then

Ext-"
a

b
Ext-�

i�1

n
ci f i�x� d#x #-converges and

Ext- "
a

b
Ext-�

i�1

n
ci f i�x� d#x � Ext-�

i�1

n
ci Ext- "

a

b
f i�x�d#x . �15.96�

15.15.Improper integrals of nonnegative functions
f : D � �c

#.Absolute Integrability.
Theorem 15.56. If f�x� is nonnegative and locally integrable on 	a,b�, then

Ext-"
a

b
f�x�d#x converges if the function

F�x� � Ext- "
a

x

f�x�d#x �15.97�

is bounded (hyperbounded) on 	a,b�, and Ext-"
a

b
f�x�d#x � �# if it is not.

Theorem 15.57.(Comparison Test) If f and g are locally integrable on 	a,b� and

0 � f�x� � g�x�, 0 � x � b, then (a) Ext-"
a

b
f�x�d#x � �# if Ext-"

a

b
g�x�d#x � �# and

(b) Ext-"
a

b
f�x�d#x � �# if Ext-"

a

b
g�x�d#x � �#.

Theorem 15.58. Suppose that f and g are locally integrable on 	a,b�, g�x� � 0 and



f�x� � 0 on some subinterval 	a1,b� � 	a,b�, and

#- lim c�# b�
f�x�
g�x�

� M. �15.98�

(a) If 0 � M � �#, then Ext-"
a

b
f�x�d#x and Ext-"

a

b
g�x�d#x converge or diverge together.

(b) If M � �# and Ext-"
a

b
g�x�d#x � �#, then Ext-"

a

b
f�x�d#x � �#.

(c) If M � 0 and Ext-"
a

b
g�x�d#x � �#, then Ext-"

a

b
f�x�d#x � �#.

Definition 15.27. We say that f is absolutely integrable on 	a,b� if f is locally inte

grable on 	a,b� and Ext-"
a

b
|f�x�|d#x � �#. In this case we also say that Ext-"

a

b
f�x�d#x

#-converges absolutely or is absolutely #-convergent.

Theorem 11.59.If f is locally integrable on 	a,b� and Ext-"
a

b
|f�x�|d#x � �#, then

Ext-"
a

b
f�x�d#x #-converges: that is, an absolutely #-convergent integral is #-convergent.

Theorem 15.60. (Dirichlet’s Test) Suppose that f is #-continuous and its
#-antiderivative F�x� � Ext-"

a

x
f�x�d#x is bounded (hyperbounded) on 	a,b�.

Let g�# be absolutely integrable on 	a,b�,and suppose that

#- lim c�# b� g�x� � 0. �15.99�

Then Ext-"
a

x
f�x�g�x�d#x #-converges.

Theorem 15.61. Suppose that u�x� is #-continuous on 	a,b� and Ext-"
a

x
u�x�d#x

#-diverges. Let v�x� be positive and #-differentiable on 	a,b�, and suppose that
#-lim c�# b� v�x� � �# and v�#/v2 is absolutely integrable on 	a,b�. Then
Ext-"

a

x
u�x�v�x�d#x #-diverges.

Theorem 15.62.Suppose that g�x� is monotonic on 	a,b� and Ext-"
a

b
f�x�d#x � �#.

Let f�x� be locally integrable on 	a,b� and

Ext- "
xj

xj�1

|f�x�|d#x � �, j � 0 �15.100�

for some positive � where �xj� j��# is an increasing hyper infinite sequence of

points in 	a,b� such that #-lim j�# �# xj � b and xj�1xj � M, j � 0, for some M. Then

Ext- "
a

b
|f�x�g�x�|d#x � �#. �15.101�

15.16.Change of Variable in an Improper Integral
Theorem 11.63.Suppose that ��t� is monotonic and � �#�t� is locally integrable on
either of the half-open intervals I � 	c,d� or �c,d
, and let x � ��t� map I onto either
of the half-open intervals J � 	a,b� or J � �a,b
. Let f be locally integrable on J.
Then the improper integrals

Ext- "
a

b
f�x�d#x and Ext- "

a

b
f���|� �#�t�|d#t �15.102�

#-diverge or #-converge together, in the latter case to the same value. The same
conclusion holds if ��t� and � �#�t� have the stated properties only on the #-open
interval �a,b�, the transformation x � ��t� maps �c,d� onto �a,b�,and f is locally



integrable on �a,b�.

15.17.Generalized integrability criterion due to Lebesgue.
The main result of this section is an integrability criterion due to Lebesgue that does
not require computation, but has to do with how badly #-discontinuous a function may
be and still be integrable.
Definition 15.28. If f�x� is bounded (hyperbounded) on 	a,b
, the oscillation Wf	a,b
 of
f�x� on 	a,b
 is defined by

Wf	a,b
 �
a�x,x��b

sup |f�x� � f�x��| �15.103�

which can also be written as

Wf	a,b
 �
a�x�b

sup f�x� �
a�x�b

inf f�x�. �15.104�

Definition 15.29. If a � x � b, the oscillation wf�x� of f�x� at x is defined by

wf�x� � #- lim h�# 0�Wf�x � h,x � h� �15.105�

The corresponding definitions for x � a and x � b are

wf�a� � #- lim h�# 0�Wf�a,a � h� and wf�b� � #- lim h�# 0�Wf�b � h,b�. �15.106�

Note that for a fixed x � �a,b�, Wf�x � h,x � h� is a nonnegative and nondecreasing
function of h for 0 � h � min�x � a,b � x�,therefore, wf�x� exists and is nonnegative.
Theorem 15.64.Let f be defined on 	a,b
. Then f is #-continuous at x0 � 	a,b
 if
and only if wf�x� � 0; #-continuity at a or b means #-continuity from the right or left,
respectively.
Definition 15.30. A subset Sof the �c

# is of Lebesgue measure zero if for every

 � 0,
 � 0, there is a hyperfinite or hyper infinite sequence of open intervals
I1, I2, . . . such that

S� �
j

I j �15.107�

and

Ext-�
j�1

n

L�I j � � 
,n � 1. �15.108�

Note that any subset of a set of Lebesgue measure zero is also of Lebesgue measure
zero.
Example 15.1. Any hyperfinite set S � �xi� i�n,n � �#\� is of Lebesgue measure zero,
since we can choose #-open intervals I1, I2, . . . ,In such that xj � I j and L�I j � � 
/n,
1 � j � n.
Definition 15.31.An infinite set S� �c

# is hyper denumerable if its members can be
listed in a hyper infinite sequence (that is, in a one-to-one correspondence with the
positive hyper integers); thus, S � �xi� i��#.An infinite set that does not have this
property is hyper non hyper denumerable.
Example 15.2. Any denumerable set S � �xi� i��#is of Lebesgue measure zero, since
if 
 � 0,
 � 0, it is possible to choose open intervals
I1, I2, . . . , so that xj � I j and L�I j � � 2�j
, j � 1. Then (15.108) holds since



Ext-�
j�1

n

2�j � 1 � 2�n � 1.

Theorem 15.64. If wf�x� � 
,
 � 0, for a � x � b, then there is a � � 0,� � 0 such
that Wf	a,b
 � 
, provided that a1,b1 � 	a,b
 and b1 � a1 � �.
Theorem 15.65.Let f be bounded (hyperbounded) on 	a,b
 and define
E� � �x � 	a,b
|wf�x� � ��.Then E� is #-closed; and f is integrable on 	a,b
 if and
only if for every pair of positive numbers � and �, E� can be covered by hyper finitely
many open intervals I1, I2, . . . ,Ip,p � �#\� such that

Ext-�
j�1

p

L�I j � � �. �15.109�

Theorem 15.66. A bounded (hyperbounded) function f is integrable on a finite or
hyperfinite interval 	a,b
 if and only if the set Sof #-discontinuities of f in 	a,b
 is of
Lebesgue measure zero.

16.Hyper infinite external sequences and series

16.1.Hyper infinite external sequences
An hyper infinite sequence (or hypersequence) of �c

#-real numbers is a �c
#-valued

function defined on a set of hyperintegers �n|n � �# � n � k � ��. We call the values
of the function the terms of the hypersequence. We denote a hypersequence by listing
its terms in order; thus, �sn�k

�#
� �sk,sk�1, . . .�.We often write �sn�n��#or simple �sn� for

a shot.
Definition 16.1. A hyper infinite sequence �sn�k

�#
converges to a limit s � �c

# if for
every 
 � 0,
 � 0 there is an hyperinteger N � �#\� such that

sn � s � 
 if n � N �16.1�

In this case we say that �sn� is #-convergent and write

#- lim n�# �# sn � s. �16.2�

A hyper infinite sequence that does not #-converge diverges, or is #-divergent.
Theorem 16.1. The #-limit of a #-convergent hypersequence is unique:
Proof. Suppose that #-lim n�# �# sn � s1 and #-lim n�# �# sn � s2.We must show that

s � s�.Let 
 � 0,
 � 0. From Definition 10.1, there are hyperintegers N1 and N2 such
that sn � s1 � 
 if n � N1,and sn � s2 � 
 if n � N2.These inequalities both hold if

n � N � max�N1,N2�,which implies that: |s1 � s2| � 2
.Since this inequality holds for
every 
 � 0,
 � 0 and |s1 � s2| is independent of 
, we conclude that |s1 � s2| � 0; that
is, s1 � s2.

Definition 16.2.A hypersequence �sn� is bounded above if there is a hyperreal
number

b � �c
# such that sn � b for all n � �#;bounded below if there is a real number a � �c

#

such that sn � a for all n � �#;or bounded if there is a real number r � �c
# such that

|sn| � r for all n � �#.
Theorem 16.2. Any #-convergent hypersequence �sn� is bounded or hyperbounded.
Proof. By taking 
 � 1 in Eq.(16.1), we see that if #-lim n�# �# sn � s, then there is an

hyperinteger N � �#\� such that sn � s � 1 if n � N.Therefore,



sn � |�sn � s� � s| � |sn � s| � |s| � 1 � |s| if n � N;and
sn � max��max1�i�N�1�|s0|, |s1|, . . . ,|sN�1|��, 1 � |s|� for all n � �#, so �sn� is bounded.
Definition 16.3.(Sequences Diverging to ��#�.We say that

#-lim n�# �# sn � ��#

if for any hyperreal number a,sn � a for any n � N � �#\�. Similarly,
#-lim n�# �# sn � ��#

if for any hyperreal number a,sn � a for any n � N � �#\�. However, we do not regard
�sn� as #-convergent unless #-lim n�# �# sn

is finite or hyperfinite, as required by Definition 16.1. To emphasize this distinction,
we say that �sn� diverges to �#���#� if #-lim n�# �# sn � �#���#�.

Theorem 16.3. Assume that a nonempty set S � �c
# of real �c

#-numbers has a
supremum sup�S�, then supS is the unique hyperreal number 	 � �c

# such that
(a) x � 	 for all x � S
(b) if 
 � 0,
 � 0 (no matter how infinite small) there is an x0 � Ssuch that
x0 � 	 � 
.
Proof. We first show that 	 � sup Shas properties (a) and (b). Since 	 is an upper
bound of S, it must satisfy (a). Since any hyperreal number � less than 	 can be
written as � � 	 � 
 with 
 � 	 � � � 0, (b) is just another way of saying that no
number less than 	 is an upper bound of S. Hence, 	 � sup Ssatisfies (a) and (b).
Now we show that there cannot be more than one hyperreal number with properties
(a) and (b).
Suppose that 	1 � 	2 and 	2 has property (b); thus, if 
 � 0, there is an x0 � S
such that x0 � 	2 � 
. Then, by taking 
 � 	2 � 	1, we see that there is an x0 � S
such that x0 � 	2 � �	2 � 	1� � 	1,so 	1 cannot have property (a). Therefore, there
cannot be more than one hyperreal number that satisfies both (a) and (b).
Definition 16.4. A hypersequence �sn�n��# is nondecreasing if sn � sn�1 for all n � �#,
or nonincreasing if sn � sn�1 for all n � �#. A monotonic hyper infinite sequence is a
hyper infinite sequence that is either nonincreasing or nondecreasing. If sn � sn�1

for all n � �#, then �sn�n��# is increasing, while if sn � sn�1 for all n � �#, �sn�n��# is
decreasing.
Theorem 16.4.(a) If �sn�n��# is nondecreasing and there exists sup�sn|n � �#� then

#-lim n�# �# sn � sup�sn|n � �#�.

(b) If �sn�n��# is nonincreasing and there exists inf�sn|n � �#� then
#-lim n�# �# sn � inf�sn|n � �#�.

Proof. (a) Let 	 � sup�sn|n � �#�. . If 	 � ��#, Theorem 16.3 implies that if 
 � 0 then
	 � 
 � sN � 	 for some hyperinteger N � �#\� . Since sN � sn � 	 if n � N, it follows
that 	 � 
 � sn � 	 if n � N.This implies that |sn � 	| � 
 if n � N, so #-lim n�# �# sn � 	,

by definition of the #-limit. If 	 � ��#

and b is any hyperreal number, then sN � b for some hyperinteger N. Then sn � b for
n � N, so #-lim n�# �# sn � ��#.

Theorem 16.5.(Generalized Nested Intervals Theorem)
Let �In�n��# � �	an,bn
�n��#,	an,bn
 � �c

# be a hyper infinite sequence of #-closed
intervals satisfying each of the following conditions:
(i) I1 � I2 � I3 �. . .� In �. . . ,
(ii) bn � an �# 0 as n � �#.



Then �n�1
�#

In consists of exactly one hyperreal number x � �c
#. Moreover both

hyper infinite sequences �an� and �bn� #-converge to x.
Proof. See proof to Theorem 8.11.
Theorem 16.6.(Generalized Bolzano-Weierstrass Theorem) Every bounded
(hyperbounded) hyper infinite sequence �sn�n��# has a #-convergent sub hyper
infinite sequence.
Proof.Let �sn�n��# be a bounded hyper infinite sequence. Then, there exists an
interval 	a1,b1
 such that: (i) a1,b1 � �# and (ii) a1 � sn � b1 for all n � �#.
Either a1,

a1�b1

2 or a1�b1

2 ,b1 contains hyperinfinitely many terms of �sn�n��#.

That is, there exists hyper infinitely many n � �# such that an is in a1,
a1�b1

2 ,

or there exists hyper infinitely many n � �# such that an is in a1�b1

2 ,b1 .

If a1,
a1�b1

2 contains hyper infinitely many terms of �sn�n��#, let 	a2,b2
 �

a1,
a1�b1

2 .Otherwise, let 	a2,b2
 �
a1�b1

2 ,b1 .

Either a2,
a2�b2

2 or a2�b2

2 ,b2 contains hyper infinitely many terms of �sn�n��#.

If a2,
a2�b2

2 contains hyper infinitely many terms of �sn�n��#, let 	a3,b3
 �

a2,
a2�b2

2 .Otherwise, let 	a3,b3
 �
a2�b2

2 ,b2 .

By hyper infinite induction, we can continue this construction and obtain a
hyper infinite sequence of intervals �	an,bn
�n��# such that:
(i) for each n � �#, interval 	an,bn
 contains hyper infinitely many terms of �sn�n��#,
(ii) for each n � �#,	an�1,bn�1
 � 	an,bn
 and
(iii) for each n � �#,bn�1 � an�1 � 1

2 �bn � an�.

The nested intervals theorem implies that the intersection �
n��#

	an,bn
 of all of the

intervals 	an,bn
 is a single point s. We will now construct a sub hyper infinite
sequence of
�sn�n��# which will #-converge to s.
Since 	a1,b1
 contains hyper infinitely many terms of �sn�n��#, there exists k1 � �#

such that sk1 is in 	a1,b1
.Since 	a2,b2
 contains hyper infinitely many terms of
�sn�n��#, there exists k2 � �#,k2 � k1 such that sk2 is in 	a2,b2
.Since 	a3,b3

contains hyper infinitely many terms of �sn�n��#, there exists k3 � �#,k3 � k2 such
that sk3 is in 	a3,b3
. Continuing this process by hyper infinite induction, we obtain a
hyper infinite sequencev�skn�n��# such that skn � 	an,bn
 for each n � �#.The
hypersequence �skn�n��# is a sub hyper infinite sequence of �sn�n��# since kn�1 � kn

for each n � �#.Since #-lim n��# an � s and #-lim n��# bn � s and an � sn � bn for each
n � �#, the squeeze theorem implies that that #-lim n��# sn � s.

16.2.Hyper infinite external series of constant.
Definition 16.5. If �an�k

�#
is an hyper infinite external sequence of Cauchy hyperreal

numbers, the symbol

Ext- �
n�k

�#

an �16.3�

is an hyper infinite series, and an is the n-th term of the hyper infinite series.



We say that Ext-�
n�k

�#

an #-converges to the sum A � �c
#, and write

Ext-�
n�k

�#

an � A �16.4�

if the hyper infinite sequence �An�k
�#

defined by

An � Ext-�
i�k

i�n

an �16.5�

n � �#, #-converges to A. The hyperf inite sum An is the n-th partial sum of Ext- �
n�k

�#

an

If �An�k
�#

diverges, we say that Ext-�
n�k

�#

an diverges; in particular, if limn�# �#An � �#

or ��#, we say that Ext- �
n�k

�#

an #-diverges to �# or ��#, and write

Ext-�
n�k

�#

an � �# or Ext-�
n�k

�#

an � ��#. �16.6�

A divergent hyperinfinite series that does not diverge to ��# is said to oscillate, or be
oscillatory.
Example 16.1 Consider the hyper infinite series

Ext-�
n�0

�#

rn,�1 � r � 1. �16.7�

Here an � rn,n � 0,n � �# and

An � 1 � r � r2 �. . .�rn � 1 � rn�1

1 � r
�16.8�

which #-converges to 1 � 1/�1 � r� as n � �# ; thus, we write

Ext-�
n�0

�#

rn � 1/�1 � r�,�1 � r � 1.

An hyperinfinite series can be viewed as a generalization of a gyperfinite sum

AN � Ext-�
n�k

N

an Therefore, #-limN��#AN � A.

Theorem 16.7. The sum of a #-convergent hyper infinite series is unique.

Theorem 16.8. Let �
n�k

�#

an � A and �
n�k

�#

bn � B where A and B are finite or hyperfinite.

Then

Ext-�
n�k

�#

�an � bn� � A � B �16.9�

and



Ext-�
n�k

�#

�c 
 an� � c 
 A �16.10�

if c � �c
# is a constant.

Theorem 16.9. (Cauchy’s #-convergence criterion for hyper infinite series) A hyper

infinite series Ext-�n�k
�#

an #-converges if and only if for every 
 � 0,
 � 0 there is an

gyperinteger N � �#\� such that

Ext-�n
man � 
 �16.11�

if m � n � N.

Corollary 16.1. If Ext-�n�k
�#

an #-converges; then #-limN��#an � 0.

Corollary 16.2. If Ext-�n
�#

an #-converges; then for each 
 � 0,
 � 0 there is an

gyperinteger K � �#\� such that Ext-�n�k
�#

an � 
 if k � K, that is

#- lim k��# Ext-�n�k
�#

an � 0. �16.12�

16.3.Hyper Infinite Series of Nonnegative Terms.

The theory of series Ext-�
n�k

�#

an with terms that are nonnegative for sufficiently large

n � �#\� is simpler than the general theory, since such a series either #-converges to
a

finite or hyperfinite #-limit or diverges to �# , as the next theorem shows.

Theorem 16.10.If an � 0 for n � k, then Ext-�
n�1

�#

an #-converges if its partial sums are

bounded or hyper bounded, or #-diverges to �# if they are not. These are the only

possibilities and, in either case, Ext-�
n�k

�#

an � �An|n � k�,where An � Ext-�
i�k

n

ai .

Theorem 16.11.(The Comparison Test) Suppose that

0 � an � bn,n � k. �16.13�

Then

(a) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �#.(b) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �#.

Theorem 16.12.(The Integral Test) Let

cn � f�n�,n � k, �16.14�

where f is positive; nonincreasing; and locally #-integrable on 	k,�#�. Then

Ext-�
n�k

�#

an � �# �16.15�

if and only if

Ext- "
k

�#

f�x�d#x � �#. �16.16�



Example 16.2. The integral test implies that the hyper infinnite series Ext-�
n�k

�#

n�p

converge if p � 1 and diverge if 0 � p � 1, because the same is true of the

integral Ext-"
a

�#

x�pd#x,a � 1.

The next theorem is often applicable where the integral test is not.
Theorem 16.13.Suppose that an � 0 and bn � 0 for n � k. Then

(a) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �# and #- lim n��#
an

bn
� �#.

(b) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �# and #- lim n��#
an

bn
� 0.

Corollary 16.3. Suppose that an � 0 and bn � 0 for n � k, and #-lim n��#
an

bn
� L.

where 0 � L � �#.Then Ext-�
n�k

�#

an and Ext-�
n�k

�#

bn #-converge or #-diverge together.

Theorem 16.14.Suppose that an � 0,bn � 0, and
an�1
an

� bn�1

bn
. �16.17�

Then (a) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �#.(b) Ext-�
n�k

�#

an � �# if Ext-�
n�k

�#

bn � �#.

Theorem 16.15.(The Ratio Test) Suppose that an � 0 for n � k. Then

(a) Ext-�
n�k

�#

an � �# if #- lim n��#
an�1
an

� 1.(b) Ext-�
n�k

�#

an � �# if #- lim n��#
an�1
an

� 1.If

#- lim n��#
an�1
an

� 1 � #- lim n��#
an�1
an

�16.18�

then the test is inconclusive; that is, Ext-�
n�k

�#

an may #-converge or #-diverge.

Proof.(a) If #- lim n��#
an�1
an

� 1, there is a number r such that 0 � r � 1 and
an�1
an

� r for n � �# sufficiently large. This can be rewritten as an�1
an

� rn�1

rn

Since Ext-�
n�k

�#

rn � �#Theorem 16.14 (a) with bn � rn implies that Ext-�
n�k

�#

an � �#.

(b) If #- lim n��#
an�1
an

� 1,there is a number r such that r � 1 and an�1
an

� r for

n � �# sufficiently large. This can be rewritten as an�1
an

� rn�1

rn .Since

Ext-�
n�k

�#

rn � �#Theorem 16.14 (b) with bn � rn implies that Ext-�
n�k

�#

an � �#.

To see that no conclusion can be drawn if (12.18) holds,consider hyper infinite
series

Ext-�
n�k

�#

an � Ext-�
n�k

�#

n�p. �16.19�



This series #-converges if p � 1 or #-diverges if p � 1,however,

#- lim n��#
an�1
an

� #- lim n��#
an�1
an

� 1. �16.20�

Corollary 16.4.Suppose that an � 0 for n � k and #-lim n��#
an�1
an

� L.Then

(a) Ext-�
n�k

�#

an � �# if L � 1.(b) Ext-�
n�k

�#

an � �# if L � 1.

The test is inconclusive if L � 1.
Theorem 16.16.(Generalized Raabe’s Test) Suppose that an � 0 for large n � �#\�.

Let M � #- lim n��#
an�1
an

� 1 and m � #- lim n��#
an�1
an

� 1 .Then

(a) Ext-�
n�k

�#

an � �# if M � �1.(b) Ext-�
n�k

�#

an � �# if m � �1.

The test is inconclusive if m � �1 � M.
Theorem 16.17.(Generalized Cauchy’s Root Test)bSuppose that an � 0 for
n � k � �#\�, then

(a) Ext-�
n�k

�#

an � �# if #- lim n��# n an � 1.(b) Ext-�
n�k

�#

an � �# if #- lim n��# n an � 1.

The test is inconclusive if #- lim n��# n an � 1.

16.4.Absolute and Conditional #-Convergence.

Definition 16.6.A series Ext-�
n�k

�#

an #-converges absolutely, or is absolutely

#-convergent if Ext-�
n�k

�#

|an| � �#.

Theorem 12.18. If Ext-�
n�k

�#

an #-converges absolutely; then Ext-�
n�k

�#

an #-converges.

Theorem 12.19. (Dirichlet’s Test for Hyper Infinite Series) The hyper infinite series

Ext-�
n�k

�#

anbn is #-converges if the following conditions are satisfied

(i) #-lim n��# an � 0,
(ii)

Ext-�
n�k

�#

|an�1 � an| � �# �16.21�

and
(iii) for all n � k

Ext-�
i�k

n

bn � M �16.22�

for some constant M.
Proof. Let Bn,n � k be the partial sum



Bn � Ext-�
i�k

n

bn �16.23�

Let us consider the partial sums Sn,n � k of Ext-�
n�k

�#

anbn,where

Sn � Ext-�
i�k

n

anbn �16.24�

By substituting bk � Bk and bn � Bn � Bn�1,n � k � 1,into (16.24), we obtain

Sn � akbk � Ext-�
i�k�1

n

ai�Bi � Bi�1�, �16.25�

which we rewrite as

Sn � anBn � Ext-�
i�k

n�1

�ai � ai�1�Bi . �16.26�

Now (16.26) can be viewed as

Sn � Tn�1 � anBn, �16.27�

where Tn�1 � Ext-�
i�k

n�1

�ai � ai�1�Bi ; that is, �Tn� is the hyper infinite sequence of partial

sums of the hyper infinite series

Ext-�
i�k

�#

�ai � ai�1�Bi . �16.28�

Since |�ai � ai�1�Bi | � M|ai � ai�1| from (16.22), the comparison test and (16.21)
imply that the series (16.28) #-converges absolutely. Theorem 12.18 now implies
that �Tn�n��# #-converges. Let T � #-lim n��# Tn. Since Bn is bounded (hyperbounded)
and #-lim n��# an � 0, we infer from (16.27) that

#- lim n��# Sn � #- lim n��# Tn�1 � #- lim n��# anBn � T. �16.29�

Therefore, Ext-�
n�k

�#

anbn is #-converges.

Corollary 16.4.(Abel’s Test for Hyper Infinite Series) The series Ext-�
n�k

�#

anbn

#-converges if an�1 � an for n � k, #-lim n��# an � 0 and Ext-�
i�k

n

bn � M, for some

constant M.

Corollary 16.5.(Alternating Hyper Infinite Series Test) The series Ext-�
n�0

�#

��1�nan

#-converges if 0 � an�1 � an and #-lim n��# an � 0.
Proof.Let bn � ��1�n, then �|Bn|�n��# is a hyper infinite sequence of zeros and ones
and therefore bounded. The conclusion now follows from Abel’s test.



16.5.Grouping Terms in a Hyper Infinite Series.
The terms of a hyper finite sum can be grouped arbitrarily by it hyper finite
(but not by countable set of it finite subsets) subsets by inserting corresponding
parentheses, see Appendix C. According to the next theorem, the same is true of an
hyper infinite series that #-converges or #-diverges to ��#.

Theorem 16.20.Suppose that Ext-�
n�k

�#

an � A, where ��# � A � �#. Let �nj�n��# be

an increasing hyper infite sequence of integers, with n1 � k. Define

b1 � Ext-�
n�k

n1

an,

b2 � Ext- �
n�n1�1

n2

an,

� � � � � � � � � � � � �

br � Ext- �
n�nr�1�1

nr

an

�16.30�

Then

Ext-�
j�1

�#

bnj � A. �12.31�

16.6.Rearrangement of hyper infite series.
A hyperfinite sum is not changed by rearranging its terms ,see Appendix C.
According to the next theorem, we see that every rearrangement of an absolutely
#-convergent hyper infite series has the same sum, but that conditionally #-convergent
series fail, spectacularly, to have this property.

Theorem 16.21.If Ext-�
n�1

�#

bn is a rearrangement of an absolutely #-convergent series

Ext-�
n�1

�#

an then Ext-�
n�1

�#

bn also #-converges absolutely, and to the same sum.

Theorem 16.22.If �ani � i��# and �amj � j��# are respectively the subsequences

of all positive and negative terms in a conditionally #-convergent series Ext-�
n�1

�#

an

then

Ext-�
i�1

�#

ani � �# and Ext-�
j�1

�#

amj � ��#. �16.32�

Theorem 16.23.Suppose that Ext-�
n�1

�#

an is conditionally #-convergent and � and �

are arbitrarily given in the extended hyperreals; with � � �. Then the terms of



Ext-�
n�1

�#

an can be rearranged to form a series Ext-�
n�1

�#

bn with partial sums

Bn � Ext-�
i�1

n

bi such that

n�# �#
lim Bn � � and

n�# �#

lim Bn � �. �16.33�

16.7.Multiplication of hyper infite Series.

Given two hyper infite series Ext-�
n�0

�#

an and Ext-�
n�0

�#

bn we can arrange all possible

products aibj , i, j � 0 in a two-dimensional array:

a0b0 a0b1 a0b2 a0b3 � � �

a1b0 a1b1 a1b2 a1b3 � � �

a2b0 a2b1 a2b2 a2b3 � � �

a3b0 a3b1 a3b2 a3b3 � � �

� � � �

�16.34�

where the subscript on a is constant in each row and the subscript on b is constant in
each column. Any sensible definition of the product

Ext-�
n�0

�#

an Ext-�
n�0

�#

bn �12.35�

clearly must involve every product in this array exactly once; thus, we might define

the product of the two series to be the series Ext-�
n�0

�#

pn, where �pn� i��# is a hyper

infite sequence obtained by ordering the products in (12.34) according to some
method that chooses every product exactly once.

Theorem 16.24.Let Ext-�
n�0

�#

an � A and Ext-�
n�0

�#

bn � B,where A and B are finite or

hyperfinite, and at least one term of each series is nonzero. Then Ext-�
n�0

�#

pn � A 
 B

for every hyper infinite sequence �pn� i��# obtained by ordering the products in

(16.34) if and only if Ext-�
n�0

�#

an and Ext-�
n�0

�#

bn #-converge absolutely:

Moreover, in this case, Ext-�
n�0

�#

pn #-converges absolutely.

Definition 16.7.The Cauchy product of Ext-�
n�0

�#

an and Ext-�
n�0

�#

bn is Ext-�
n�0

�#

cn,

where



cn � Ext-�
j�0

n

ajbn�j . �16.36�

Thus, cn is the external sum of all products albk, where i � 0,j � 0, and i � j � n;
thus,

cn � Ext-�
j�0

n

ajbn�j � Ext-�
j�0

n

bjan�j . �16.37�

Theorem 16.25. If Ext-�
n�0

�#

an and Ext-�
n�0

�#

bn #-converge absolutely to sums A and

B, then the Cauchy product Ext-�
j�0

n

ajbn�j #-converges absolutely to AB.

Theorem 16.26. Let f��� � Ext-�
n�0

�#

�n

n!
and f�	� � Ext-�

n�0

�#

	n

n!
, then

f���f�	� � f�� � 	�. �16.38�

Proof. From Eq.(16.37) we obtain

cn � Ext-�
n�0

m
�n�m	m

�n � m�!m!
� 1

n!
Ext-�

n�0

m
n
m �n�m	m � Ext-�

n�0

�#

�� � 	�n

n!
�16.39�

Thus

f���f�	� � Ext-�
n�0

�#

�� � 	�n

n!
� f�� � 	�. �16.40�

16.8.Double Hyper Infinite Sequences.
Definition 16.8. A double hyper infinite sequence of hyperreal numbers �c

# (complex
numbers �c

# � �c
# � i�c

#) is a �c
#-valued (�c

#-valued) function s : �# 
 �# � �c
# or

s : �# 
 �# � �c
#. We shall use the notation �sn,m�n,m��# or simply snm.

Definition 16.9. We say that a double hyper infinite sequence sn,m #-converges to
a � �c

# and we write #-lim n,m�# �# sn,m � a, if the following condition is satisfied:

for every 
 � 0,
 � 0,there exists N � �# such that |sn,m � a| � 
 if n,m � N.
Theorem 16.27. (Uniqueness of Double #-Limits). A double hyper infinite �c

#-valued
sequence has at most one #-limit.
Definition 16.10. A double hyper infinite sequence sn,m is called bounded
(hyper bounded) if there exists finite (hyperfinite) number M � �c

#, M � 0 such that
|sn,m|� M,�n,m � �#.
Theorem16.28. A #-convergent double �c

#-valued hyper infinite sequence is
bounded or hyper bounded.
Definition 16.11.A double �c

#-valued hyper infinite sequence sn,m is called
a Cauchy sequence if and only if for every 
 � 0,
 � 0, there exists a hypernatural
number N � �#\� such that |sp,q � sn,m|� 
, �p�p � n � N� and �q�q � m � N�.
Theorem 16.29.(Cauchy Convergence Criterion for Double hyper infinite Sequences).
A double �c

#-valued hyper infinite sequence sn,m,n,m � �# #-converges if and only if it
is a Cauchy sequence.



Definition 16.12.Let sn,m be a double �c
#-valued hyper infinite sequence.

(i) If sn,m � sj,k, �n�j�m�k�n � j � m � k�, n,m, j,k � �#, we say the sequence sn,m

is increasing.
(ii) sn,m � sj,k, �n�j�m�k�n � j � m � k�, n,m, j,k � �#, we say the sequence sn,m

is decreasing.
(ii) If sn,m is either increasing or decreasing, then we say it is monotone.
Definition 16.13.For a double sequence sn,m, the #-limits
#-lim n�# �# #- limm�# �# sn,m

and #-limm�# �# #- lim n�# �# sn,m are called repeated #-limits.

Theorem 16.30.Let #-lim n,m�# �# sn,m � a.Then #-limm�# �# #- lim n�# �# sn,m � a

if and only if #-lim n�# �# sn,m exists for each m � �#.

Theorem 16.31. Let #-lim n,m�# �# sn,m � a.Then the repeated #-limits

#-lim n�# �# #- limm�# �# sn,m and #-limm�# �# #- lim n�# �# sn,m exist and both are equal

to a if and only if (i) #-lim n�# �# sn,m exists for each m � �#,and (ii) #-limm�# �# sn,m exists

for each n � �#.
Theorem 16.32.If sn,m is a double sequence such that the repeated #-limit
#-limm�# �# #- lim n�# �# sn,m � a and the #-limit #-lim n�# �# sn,m exists uniformly in

m � �#, then the double #-limit #-lim n,m�# �# sn,m � a.

Theorem 16.33.(Monotone Convergence Theorem). A monotone double �c
#-valued

hyper infinite sequence is #-convergent if and only if it is bounded (hyper bounded).
Further: (i) If sn,m is increasing and bounded (hyper bounded) above, then
#-limm�# �# #- lim n�# �# sn,m � #-lim n�# �# #- limm�# �# sn,m � #-lim n,m�# �# sn,m.

(ii) If sn,m is decreasing and bounded (hyper bounded) below, then
#-limm�# �# #- lim n�# �# sn,m � #-lim n�# �# #- limm�# �# sn,m � #-lim n,m�# �# sn,m.

Theorem16.34.(The Sandwich Theorem). Suppose that xn,m,sn,m,
and yn,m are double �c

#-valued hyper infinite sequences such that
xn,m � sn,m � yn,m,�n,m � �#,and #-lim n,m�# �# xn,m � #-lim n,m�# �# yn,m.

Then sn,m is #-convergent and #-lim n,m�# �# xn,m � #-lim n,m�# �# yn,m � #-lim n,m�# �# sn,m.

Definition 16.14. Let sn,m be a double �c
#-valued hyper infinite sequence and

let �k1,r1� � �k2,r2� �. . .� �kn,rn� �. . . be a strictly increasing sequences of
pairs of hypernatural numbers. Then the sequence skn,rm is called a subsequence of
sn,m.
Theorem16.35.If a double �c

#-valued hyper infinite sequence sn,m #-converges
to number a � �c

#, then any hyper infinite subsequence of sn,m also #-converges to a.
Theorem16.36.If the repeated #-limits of a double sequence sn,m exist and
satisfy #-limm�# �# #- lim n�# �# sn,m � #-lim n�# �# #- limm�# �# sn,m � a, then the

repeted #-limits for any subsequence spn,qm exist and satisfy
#-limm�# �# #- lim n�# �# spn,qm � #-lim n�# �# #- limm�# �# spn,qm � a.

Theorem16.37. Every double �c
#-valued hyper infinite sequence has a monotone

hyper infinite subsequence.
Theorem16.38.(Bolzano-Weierstrass Theorem). A bounded (hyper bounded) double
�c

#-valued hyper infinite sequence sequence has a #-convergent monotone
subsequence.



16.9.External Double Hyper Infinite Series.
Definition 16.15. Let z : �# 
 �# � �c

# be external hyper infinite double sequence
of complex numbers �c

# and let sn,m be the double hyper infinite sequence defined by
the equation

sn,m � Ext-�
i�1

n

Ext-�
j�1

m

zi,j . �16.41�

The pair �z,s� is called a double hyper infinite series and is denoted by the symbol

Ext- �
n�1,m�1

�#

zn,m �16.42�

or, more briefly by Ext-�n,m�1
�#

zn,m. Each number zn,m is called a term of the double

series and each sn,m is called a partial sum.

Definition 16.16.We say that the double series Ext-�n,m�1
�#

zn,m is #-convergent to the

sum s if #-lim n,m�# �# sn,m � s. If no such #-limit exists, we say that the double series

Ext-�n,m�1
�#

zn,m is #-divergent.

Definition 16.17. The hyper infinite series

Ext-�
n�1

�#

Ext-�
m�1

�#

zn,m �16.43�

and

Ext-�
m�1

�#

Ext-�
n�1

�#

zn,m �16.44�

are called repeated hyper infinite series.

Theorem 16.38.If the double hyper infinite series Ext- �
n�1,m�1

�#

zn,m is #-convergent, then

#-
n,m�# �#

lim zn,m � 0. �12.45�

Theorem 16.39.(Cauchy #-Convergence Criterion for Double hyper infinite Series.)

A double hyper infinite series Ext- �
n�1,m�1

�#

zn,m #-converges if and only if its sequence of

partial sums sn,m is Cauchy.

Theorem16.40.If the double series Ext- �
n�1,m�1

�#

zn,m #-converges to s1 and Ext- �
n�1,m�1

�#

un,m

#-converges to s2, then: (i) Ext- �
n�1,m�1

�#

zn,m � Ext- �
n�1,m�1

�#

un,m � s1 � s2.

(ii) Ext- �
n�1,m�1

�#

c 
 zn,m � c 
 Ext- �
n�1,m�1

�#

zn,m .



Theorem16.41.Suppose that the double series Ext- �
n�1,m�1

�#

zn,m is #-convergent, with

sum s. Then the repeated series Ext-�
n�1

�#

Ext-�
m�1

�#

zn,m and

Ext-�
m�1

�#

Ext-�
n�1

�#

zn,m are both #-convergent with sum s if and only if for every

m � �#, the series Ext-�
n�1

�#

zn,m is #-convergent, and for every n � �#, the

series Ext-�
m�1

�#

zn,m is #-convergent.

16.10.Interchanging the order of summation of hyper
infinite sum.

Theorem 12..Assum that

Ext-�
i�1

�#

Ext-�
k�1

�#

|ajk | � �#. �16.46�

Then

Ext-�
i�1

�#

Ext-�
k�1

�#

|ajk | � Ext-�
k�1

�#

Ext-�
j�1

�#

|ajk | �16.47�

17.Hyper infinite sequences and series of �c
#-valued

functions.

17.1.Uniform #-Convergence
If f1, . . . ,fk, fk�1, . . . ,fn, . . . ,n � �# are �c

#-valued functions defined on a subset D � �c
# of

the hyperreals, we say that �fn�x��n��# is an hyper infinite sequence of functions on D.
If the sequence of values �fn�x��n��# #-converges for each x in some subset Sof D,
then �fn�n��# defines a #-limit function on S. The formal definition is as follows.
Definition 17.1. Suppose that �fn�x��n��# is a hyper infinite sequence of functions on
D � �c

# and the hyper infinite sequence of values �fn�x��n��# #-converges for each x
in some subset Sof D. Then we say that �fn�n��# #-converges pointwise on S to the
#-limit function f, defined by

f�x� � #- lim n��# fn�x�,x � S. �17.1�

Definition 17.2.Let f be a function defined on S� �c
# and there exist supx�S|f�x�|, then

we set

�f�S � supx�S|f�x�|. �17.2�



Lemma 17.1. If g and h are defined on S, then �g � h�S � �g�S � �h�S

and �g 
 h�S � �g�S 
 �h�S. Moroever if either g or h is bounded on S, then
�g � h�S � �g�S � �h�S.

Definition 17.2. A hyper infinite sequence �fn�n��# of functions defined on a set S
#-converges uniformly to the #-limit function f on S if #-lim n��#�fn � f�S � 0.
Thus, fn #-converges uniformly to f on S if for each 
 � 0,
 � 0, there is an integer
N � �#\� such that

�fn � f� � 
 if n � N. �17.3�

Theorem 17.1. Let fn,n � �# be hyper infinite sequence defined on S. Then
(a) fn #-converges pointwise to f on S if and only if there is, for each 
 � 0,
 � 0,
and x � S,an integer N � �#\� which may depend on x as well as 
 such that
|fn�x� � f�x�| � 
 if n � N;
(b) fn #-converges uniformly to f on S if and only if there is for each 
 � 0,
 � 0, an
integer N � �#\� which depends only on and not on any particular x in Ssuch that
|fn�x� � f�x�| � 
 for all x � S if n � N.
Theorem 17.2. If fn #-converges uniformly to f on S, then fn #-converges
pointwise to f on S. The converse is false; that is pointwise #-convergence does
not imply uniform #-convergence.
Theorem 17.3. (Cauchy’s Uniform #-Convergence Criterion) A sequence
of functions fn #-converges uniformly on a set S if and only if for each 
 � 0,
 � 0,
there is an integer N � �#\� such that

�fn � fm�S � 
 if n,m � N. �17.4�

Theorem 17.4. If fn #-converges uniformly to f on Sand each fn is #-continuous
at a point x0 � S; then so is f. Similar statements hold for #-continuity from the right
and left.
Theorem 17.5. Suppose that fn #-converges uniformly to f on S � 	a,b
. Assume
that f and all fn are #-integrable on 	a,b
. Then

Ext- "
a

b

f�x�d#x � #- lim n��# Ext- "
a

b

fn�x�d#x . �17.5�

Proof. Since

Ext- "
a

b

f�x�d#x � Ext- "
a

b

fn�x�d#x � Ext- "
a

b

|f�x� � fn�x�|d#x � �b � a��f � fn�S �17.6�

and #-lim n��#�f � fn�S � 0,the Eq.(17.5) follows.
Theorem 17.6. Suppose that fn�x� #-converges pointwise to f and each fn�x� is
#-integrable on 	a,b
.Then
(a) If the #-convergence is uniform, then f�x� is #-integrable on 	a,b
 and (13.5) holds.
(b) If the sequence �fn�	a,b
 is bounded and f�x� is #-integrable on 	a,b
, then

(13.5) holds.

Theorem 17.7. Suppose that fn
�#�x� is #-continuous on 	a,b
 for all n � �# and

fn
�#

n��#
#-converges uniformly on 	a,b
 Suppose also that fn�x0�

n��#

#-converges for some x0 � 	a,b
.Then fn�x�
n��#

#-converges uniformly on 	a,b
 to



a #-differentiable #-limit function f�x� and

f �#�x� � #- lim n��# fn
�#�x�,x � �a,b�, �17.7�

while

f�
�#�a� � #- lim n��# fn

�#�a ��, f��#�b� � #- lim n��# fn
�#�b ��. �17.8�

17.2.Hyper Infinite Series of Functions.
Definition 17.3. If �f j�x�� j�k

�#

is a hyper infinite sequence of �c
#-valued functions defined

on a set D � �c
# of hyperreals, then

Ext-�
j�k

�#

f j�x� �17.9�

is an hyper infinite series of functions on D. The partial sums of , Ext-�
j�k

�#

f j�x� are

defined by

Fn�x� � Ext-�
j�k

n

f j�x�,n � �#. �17.10�

If Fn�x� #-converges pointwise to a function F on a subset S� D, we say that

Ext-�
j�k

n

f j�x� #-converges pointwise to the sum F�x� on S, and write

F�x� � Ext-�
j�k

�#

f j�x�. �17.11�

If Fn�x� #-converges uniformly to F�x� on S, we say that Ext-�
j�k

n

f j�x� #-converges

uniformly to F�x� on S.
Example 17.1. The functions f j�x� � xj , j � �# define the hyper infinite series

Ext-�
j�0

�#

xj on D � ���#,�#�. The n-th partial sum of the series is Fn�x� � Ext-�
j�0

n

xj ,

or, in closed form,

Fn�x� �
1 � xn

1 � x
x 	 1

n � 1 x � 1
�17.12�

Therefore �Fn� #-converges pointwise toif |x| � 1 and #-diverges if |x| � 1, hence,

we get F�x� � Ext-�
j�0

�#

xj � �1 � x��1,�1 � x � 1.Since the difference F�x� � Fn�x� �

� xn

1 � x
can be made arbitrarily infinite large by taking x infinite close to 1,

�F � Fn���1,1� � �
# so the #-convergence is not uniform on ��1,1�. Neither is it

uniform on any interval ��1,r 
 with 1 � r � 1, since �F � Fn�	�r,r 
 � rn/�1 � r� and

#-lim n��# rn � �#. Put another way, the series #-converges uniformly on #-closed
subsets of ��1,1�.
Theorem 17.8.(Cauchy’s Uniform #-Convergence Criterion) A hyper infinite series



Ext-�
i�0

�#

f i�x� #-converges uniformly on a set S� �c
# if and only if for each 
 � 0,
 � 0

there is an hyperinteger N � �# such that

Ext-�
n

m

f i�x�
S

� 
 �17.13�

if m � n � N.

Corollary 17.1. If Ext-�
i�0

�#

f i�x� #-converges uniformly on S, then #-lim n��#�fn�S � 0.

Theorem 17.9.(Weierstrass’s Test) The hyper infinite series Ext-�
i�0

�#

f i�x� #-converges

uniformly on S if

�fn�S � Mn,n � k, �17.14�

where Ext-�
n�k

�#

Mn � �#.

Theorem 17.10.(Dirichlet’s Test for Uniform #-Convergence) The hyper infinite series

Ext-�
n�k

�#

fn�x�gn�x� #-converges uniformly on S if fn #-converges uniformly to zero on S,

Ext-�
n�k

�#

�fn�1�x� � fn�x�� #-converges absolutely uniformly on S, and

Ext-�
i�k

n

gi�x�
S

� M, �17.14�

where n � k, for some constant M.

Corollary 17.2.The hyper infinite series Ext-�
n�k

�#

fn�x�gn�x� #-converges uniformly on

S if fn�1�x� � fn�x�,x � S,n � k,�fn� #-converges uniformly to zero on S, and

Ext-�
i�k

n

gi�x�
S

� M, �17.15�

for some constant M.

17.3.#-Continuity, #-Differentiability, and Integrability of
hyper infinite Series.

Theorem 17.11.If Ext-�
n�k

�#

fn�x� #-converges uniformly to F�x� on Sand each fn is

#-continuous at a point x0 in S, then so is F�x�. Similar statements hold for #-continuity
from the right and left.

Theorem 17.12.Suppose that Ext-�
n�k

�#

fn�x� #-converges uniformly to F�x� on S � 	a,b


Assume that F�x� and fn�x�,n � k, are integrable on 	a,b
. Then

Ext- "
a

b

F�x�d#x � Ext-�
n�k

�#

Ext- "
a

b

fn�x�d#x . �17.16�



Theorem 17.13.Suppose that fn is #-continuously #-differentiable on 	a,b
 for each

n � k, Ext-�
n�k

�#

fn�x0� #-converges for some x0 � 	a,b
 and Ext-�
n�k

�#

fn
�#�x� #-converges

uniformly on 	a,b
. Ext-�
n�k

�#

fn�x� #-converges uniformly on 	a,b
 to a #-differentiable

function F�x�, and F �#�x� � Ext-�
n�k

�#

fn
�#�x�,a � x � b,while F �#�a �� � Ext-�

n�k

�#

fn
�#�a ��

and F �#�b �� � Ext-�
n�k

�#

fn
�#�b ��.

18.Hyper Infinite Power Series.

18.1.The convergence properties of hyper infinite power
series.

Definition 18.1. A hyper infinite series of the form

Ext-�
n�0

�#

an�x � x0�n �18.1�

where x0 � �c
# and an � �c

#,n � �# is called a hyper infinite power series in �x � x0�.
The following theorem summarizes the #-convergence properties of hyper infinite
power series.
Theorem 18.1.In connection with the hyper infinite power series (14.1) define R in
the extended hyperreals by

1
R
� #- lim n��# n |an| �18.2�

In particular, R � 0 if #- lim n��# n |an| � �# , and R � �# if #- lim n��# n |an| � 0.Then

the hyper infinite power series #-converges:
(a) only for x � x0 if R � 0
(b) for all x � �c

# if R � �#, and absolutely uniformly in every bounded set;
(c) for x � �x0 � R,x0 � R� if 0 � R � 1, and absolutely uniformly in every closed
subset of this interval.
The series #-diverges if |x � x0| � R. No general statement can be made concerning
#-convergence at the endpoints x � x0 � R and x � x0 � R : the series may #-converge
absolutely or conditionally at both; #-converge conditionally at one and #-diverge at the
other; or #-diverge at both.

Theorem 18.2. The radius of #-convergence of Ext-�
n�0

�#

an�x � x0�n is given by

1
R
� #- lim n��#

an�1
an

�18.3�

if the #-limit exists in the extended hyperreals.
Example 18.1. For the hyper infinite power series

Ext-�
n�0

�#

xn

n!
�18.4�

one obtains that



#- lim n��#
an�1
an

� #- lim n��#
n!

�n � 1�!
� #- lim n��#

1
n � 1

� 0. �18.4��

Therefore, R � �# ; that is, the series #-converges for all x � �c
#, and absolutely

uniformly
in every bounded set.
Theorem 18.3. A hyper infinite power series

f�x� � Ext-�
n�0

�#

an�x � x0�n �18.5�

with positive radius of #-convergence R is #-continuous and #-differentiable in its
interval of #-convergence; and its #-derivative can be obtained by #-differentiating term
by term; that is;

f �#�x� � Ext-�
n�0

�#

nan�x � x0�n�1 �18.6�

which can also be written as

f �#�x� � Ext-�
n�0

�#

�n � 1�an�1�x � x0�n �18.7�

This hyper infinite series also has radius of #-convergence R.
Theorem 18.4. A hyper infinite power series

f�x� � Ext-�
n�0

�#

an�x � x0�n �18.8�

with positive radius of #-convergence R has #-derivatives of all orders in its interval of
#-convergence, which can be obtained by repeated term by term #-differentiation thus,

f �n�#�x� � Ext-�
n�k

�#

n�n � 1� � � ��n � k � 1�an�x � x0�n �

� Ext-�
n�k

�#

Ext- �
j�n�k�1

n

j an�x � x0�n .

�18.9�

The radius of #-convergence of each of these hyper infinite series is R.
Corollary 18.1. (Uniqueness of hyper infinite Power Series) If

Ext-�
n�0

�#

an�x � x0�n � Ext-�
n�0

�#

bn�x � x0�n �18.10�

for all x in some interval �x0 � r,x0 � r� then

an � bn,n � 0. �18.11�

Corollary 18.2. If

f�x� � Ext-�
n�0

�#

an�x � x0�n, |x � x0| � R �18.12�

then

an �
f �n�#�x�

n!
. �18.13�

Theorem 18.5. If x1 and x2 are in the interval of #-convergence of



f�x� � Ext-�
n�0

�#

an�x � x0�n �18.14�

Then

Ext- "
x1

x2

f�x�d#x � Ext-�
n�0

�#

an

n � 1
�x2 � x0�n�1 � �x1 � x0�n�1 �18.15�

that is, a hyper infinite power series may be integrated term by term between any
two points in its interval of #-convergence.
Theorem 18.6.Suppose that f�x� is hyper infinitely #-differentiable on an interval I
and

#- lim n��#
rn

n!
f �n�#�x�

I
� 0. �18.16�

Then, if x0 � I0, the hyper infinite Taylor series

Ext-�
n�0

�#
f �n�#�x�

n!
�x � x0�n �18.17�

#-converges uniformly to f�x� on I r � I � 	x0 � r,x0 � r 
.
Theorem 18.7.If

f�x� � Ext-�
n�0

�#

an�x � x0�n, |x � x0| � R1 �18.18�

and

g�x� � Ext-�
n�0

�#

bn�x � x0�n, |x � x0| � R2 �18.19�

and � and 	 are constants, then

�f�x� � 	g�x� � Ext-�
n�0

�#

��an � 	bn��x � x0�n, |x � x0| � R, �18.20�

where R � min�R1,R2�.
Theorem 18.8.If f�x� and g�x� are given by Eq.(18.19) and Eq.(18.20) correspondingly,
then

f�x�g�x� � Ext-�
n�0

�#

cn�x � x0�n, |x � x0| � R, �18.21�

where

cn � Ext-�
j�0

n

ajbn�j � �
j�0

n

an�jbj , �18.22�

n � �# and R � min�R1,R2�.
Theorem 18.9.(Generalized Abel’s Theorem) Let f�x� be defined by a hyper infinite
power series

f�x� � Ext-�
n�0

�#

an�x � x0�n, |x � x0| � R �18.23�

with finite or hyperfinite radius of #-convergence R � �c
#.

(a) If Ext-�
n�0

�#

anRn #-converges, then



#- lim x�# �x0�R�� f�x� � Ext-�
n�0

�#

anRn. �18.24�

(b) If Ext-�
n�0

�#

��1�nanRn #-converges, then

#- lim x�# �x0�R�� f�x� � Ext-�
n�0

�#

��1�nanRn. �18.25�

18.2.The �c
#-valued #-exponential Ext-exp�x�

We define the #-exponential Ext-exp�x� function as the solution of the differential
equation

f �#�x� � f�x�, f�0� � 1. �18.26�

We solve it by setting

f�x� � Ext-�
n�0

�#

anxn, f �#�x� � Ext-�
n�0

�#

nanxn. �18.27�

Therefore

Ext-exp�x� � Ext-�
n�0

�#

xn

n!
�18.28�

From Eq.(18.40) and Eq.(18.28) we get

�Ext-exp�x���Ext-exp�y�� � Ext-exp�x � y�, �18.29�

for any x,y � �c
#. We often denote #-exponential Ext-exp�x� by Ext-ex

Ext-ex . �18.30�

18.3.The �c
#-valued Trigonometric Functions Ext-sin�x� and

Ext-cos�x�.
We define the �c

#-valued Trigonometric Functions Ext-sin�x� and Ext-cos�x� by

Ext-sin�x� � Ext-�
n�0

�#

��1�n x2n�1

�2n � 1�!
�18.31�

and

Ext-cos�x� � Ext-�
n�0

�#

��1�n x2n

�2n�!
. �18.32�

It can be shown that the series (18.30) and (18.31) #-converge for all x � �c
# and

#-differentiating yields

	Ext-sin�x�
 �# � Ext-�
n�0

�#

��1�n x2n

�2n�!
� Ext-cos�x� �18.33�

and

	Ext-cos�x�
 �# � Ext-�
n�1

�#

��1�n x2n�1

�2n � 1�!
� �Ext-�

n�0

�#

��1�n x2n�1

�2n � 1�!
�

� �	Ext-sin�x�
.

�18.34�



18.4.�c
#-valued functions of several variables.

In this subsection we study �c
#-valued functions defined on subsets of the

n-dimensional external linear space �c
#n,n � �# which consists of all external and

internal hyperfinite (or finite) sequences (called a vector) X � �xi� i�1
i�n � �xi� i�n of

hyperreal numbers, called the coordinates or components of vector X.
Definition 18.2. The vector sum of X � �xi� i�1

i�n and Y � �yi� i�1
i�n is

X � Y � �xi � yi� i�1
i�n. �18.35�

If a � �c
# is a hyperreal number, the scalar multiple of X by a is

a � X � �axi� i�1
i�n. �18.36�

Theorem 18.10.If X,Y, and Z are in �c
#n and a,b � �c

# are hyperreal numbers, then
(i) X � Y � Y � X - vector addition is commutative
(ii) X � Y � Z � X � Y � Z - vector addition is associative

(iii) There is a unique vector 0, called the zero vector, such that X �0 � X for all
X � �c

#n

(iv) For each X � �c
#n there is a unique vector �X such that X ���X�� 0

(v) a � �b � X� � �ab� � X
(vi) �a � b� � X � a � X � b � X
(vii) a � �X � Y� � a � X � a � Y
(viii) 1 � X � X.
Clearly, 0 � �0� i�1

i�n and, if X � �xi� i�1
i�n, then �X � ��xi� i�1

i�n.
We write X � ��Y� as X � Y. The point 0 is called the origin.
Definition 18.3. The length of the vector X � �xi� i�1

i�n is

�X� � Ext-� i�1
n xi

2 1/2
. �18.37�

The distance between points X and Y is �X � Y�; in particular, �X� is the distance
between X and the origin. If �X� � 1, then X is a unit vector.
Definition 18.4.The inner product X � Y of X � �xi� i�1

i�n and Y � �yi� i�1
i�n is

X � Y � Ext-� i�1
n xiyi . �18.38�

Theorem 18.11. (Schwarz’s Inequality) If X,Y � �c
#n then

�X � Y� � �X��Y�, �18.39�

with equality if and only if one of the vectors is a scalar multiple of the other:
Theorem 18.12. (Triangle Inequality) If X,Y � �c

#n then

�X � Y� � �X� � �Y�, �18.40�

with equality if and only if one of the vectors is a nonnegative multiple of the other.
Corollary 18.3. If X,Y,Z � �c

#n, then

�X � Z� � �X � Y� � �Y � Z�. �18.41�

Corollary 18.4. If X,Y � �c
#n, then

�X � Y� � |�X� � �Y�|. �18.42�

Theorem 18.13.If X,Y,Z � �c
#n and a � �c

# is a scalar, then
(i) �aX� � |a|�X�
(ii) �X� � 0, with equality if and only if X � 0



(iii) �X � Y� � 0, with equality if and only if X � Y
(iv) X � Y � Y � X
(v) X � �Y� Z�� X � Y � X � Z
(vi) �cX� � Y � X � �cY� � c�X � Y�
Definition 18.5.Non-Archimedian metric space �X,d� is a set X together with a
�c

#-valued function d : X 
 X � �c
# (called a metric or non-Archimedian distance

function) which assigns a hyperreal number d�x,y� to every pair x,y belongs X
satisfying the properties:
1.d�x,y� � 0 and d�x,y� � 0 iff x � y,
2.d�x,y� � d�y,x�,
3.d�x,y� � d�y,z� � d�x,z�.
Remark 18.1. Note that external linear space �c

#n endroved with distance function
d�X,Y� � �X � Y� satisfying the properties 1-3 mentioned above in Definition 14.5.

18.5.Line Segments in �c
#n,n � �#.

Definition 18.6. Suppose that X0,U � �c
#n and U 	 0. Then the line through

X0 in the direction of U is the set of all points in �c
#nof the form

X�X0,U�� X0 � tU,��# � t � �#. �18.43�

A set of points of the form

X � X0 � tU, t1 � t � t2 �18.44�

is called a line segment. In particular, the line segment from X0 to X1 is the set of
points of the form

X � X0 � t�X1 � X0� � tX1 � �1 � t�X0, 0 � t � 1. �18.45�

Definition 18.7. A hyper infinite sequence of points Xn,n � �# in �c
#n #-converges to

the #-limit X if

#- lim n�# �#�Xn � X� � 0. �18.46�

In this case we write #-lim n�# �# Xn � X.

Theorem 18.14. Let X � �xi� i�1
i�n and Xm � �xi m� i�1

i�n,m � 1.Then #-lim n�# �# Xm � X

if and only if #-limm�# �# xi m � xi , 1 � i � n; that is a hyper infinite sequence �Xm� of

points in �c
#n #-converges to a #-limit X if and only if the hyper infinite sequences

of components of �Xm� #-converge to the respective components of X .
Theorem 18.15.(Cauchy’s #-Convergence Criterion) A hyper infinite sequence �Xm�
in �c

#n #-converges if and only if for each 
 � 0,
 � 0, there is an hyperinteger
N � �#\� such that

�Xn � Xm� � 
 �18.47�

if n,m � N.
Definition 18.8.If A is a subset of a metric space �c

#n then x is a #-limit point of A
if it is the #-limit of an eventually non-constant hyper infinite sequence �ai� i��# of
points of A.
Definition 18.9.A subset A is said to be a #-closed subset of �c

#n if it contains all
its #-limit points.
Example 18.1.(i) �c

# with the canonical metric d�x,y� � |x � y|,since in �c
# every

hyperreal number is a #-limit point of the hyper infinite sequence �qi� i��# of



hyperrationals qi � �#, i � �#.
(ii) The empty set is #-closed.
(iii) Any finite set is #-closed.
(iv) Any hyperfinite set is #-closed.
(v) The closed interval 	a,b
,where a,b � �c

#, is #-closed subset of �c
# with its

canonical metric.
(vi) Let 	 be a set 	 � �
||
| � 0�.A set 	 is #-closed subset of �c

#,since in 	
every hyperreal number � � 	 is a #-limit point of the hyper infinite sequence
�qi� i��# of hyperrationals qi � 	 � �#, i � �#.

Definition 18.10.An #-neighbourhood of a point p in a metric space �X,d� is
the set N
�p� � �x � X|d�x,p� � 
,
 � 0�
Definition 18.11.A subset A of a metric space �X,d� is called #-open in X if every
point of A has an #-neighbourhood which lies completely in A.
Example 18.2. (i) Any open interval �a,b� is an #-open set in �c

# with its canonical
metric d�x,y� � |x � y|.
(ii) A set 	 � �
||
| � 0� is #-open subset of �c

#,since every point of 	 obviously has a
#-neighbourhood which lies completely in 	.

Remark 18.2.Note that a set 	 � �
||
| � 0� are #-open and #-closed simultaneously.
Definition 18.12.A subset A of a non-Archimedian metric space X is admissible if

A is exactly #-closed or exactly #-open but not #-open and #-closed simultaneously.
Theorem 18.16.(i) The union (of an arbitrary number) of #-open admissible sets is
#-open.(ii) The intersection of finitely or hyper finitely many #-open admissible sets
is #-open.
Proof. (i) Let x � �Ai � A. Then x � Ai for some i. Since this is #-open, x has an
#-neighbourhood lying completely inside Ai and this is also inside A.
(ii) It is enough to show this for just two #-open sets A and B.So suppose x � A � B.
Then x � A and so has an #-neighbourhood N
1�p�,
1 � 0 lying in A.Similarly x has an
#-neighbourhood N
2�p�,
2 � 0 lying in B. So if 
 � min�
1,
2� the #-neighbourhood

N
�p� lies in both A and B and hence in A � B.By hyper infinite induction statement (ii)
holds in general.
Theorem 18.17. Any admissible subset A of a metric space X is #-closed if and only
if its complement X\A is admissible and is #-open subset of a metric space X.
Proof. 1.Suppose A is admissible and A is #-closed. We need to show that X\A is

#-open.
So suppose that x belongs X\A. Then some #-neighbourhood of x does not meet A
(otherwise x would be a #-limit point of A and hence in A). Thus this #-neighbourhood
of x lies completely in X\A which is what we needed to prove.
2.Conversely, suppose that X\A is #-open. We need to show that A contains all its
#-limit points. So suppose x is a #-limit point of A and that x � A. Then x � X\A and

hence
has an #-neighbourhood subset X\A. But this is an #-neighbourhood that does not

meet A
and we have a contradiction.
Definition 18.13.If S is a nonempty subset of �c

#n, then

d�S� � sup��X � Y�|X,Y � S� �18.48�



is the diameter of S. If d�S� � �#,S is bounded or hyperbounded.If d�S� � �#,S is
hyperunbounded.
Theorem 18.18. (Principle of Nested Sets) If S1,S2, . . . , are #-closed nonempty
subsets of �c

#n such that

�r�r � �#�	Sr�1 � Sr 
 �18.49�

and

#- lim r�# �# d�Sr � � 0, �18.50�

then the intersection

� � �
r�1

�#

Sr �18.51�

contains exactly one point:
Proof.Let �Xr� be a hyper infinite sequence such that Xr � Sr ,r � 1. Because of
(18.49), Xr � Sk if r � k, so �Xr � Xs� � d�Sk� if r,s � k.
From (18.50) and Theorem 14.15., Xr #-converges to a #-limit X. Since X is a #-limit
point of every Sk and every Sk is #-closed, X is in every Sk. Therefore, X � �, so �

	 	.
Moreover, X is the only point in �, since if Y � �, then �X � Y� � d�Sk�,k � 1,and
(18.50) implies that Y � X.
Definition 18.14. If S is a nonempty admissible subset of �c

#n we say that S is a
#-compact set in �c

#n if is a #-closed and bounded or hyperbounded set.
Definition 18.15. Collection H of admissible #-open sets is an #-open covering of
a set S if S� ��H|H � H�.
Theorem 18.19.(Heine-Borel Theorem) If H is an #-open covering of a #-compact
subset S, then Scan be covered by hyper finitely many sets from H.
Proof.The proof is by contradiction. We first consider the case where n � 2.Suppose
that there is a #-open covering H for S from which it is impossible to select a

hyperfinite
subcovering. Since S is bounded or hyperbounded, S is contained in a #-closed square
T � ��x,y�|a1 � x � a1 � L,a2 � xa2 � L� with sides of length L (Pic. 14.5.1).

Pic.18.5.1.

Bisecting the sides of T as shown by the dashed lines in Figure 14.5.1 leads to four
#-closed squares, T�1�,T�2�,T�3�, , and T�4�, with sides of length L/2. Let
S�i � � S � T, 1 � i � 4.Each S�i �, being the intersection of admissible #-closed sets,is



#-closed, and S � � i�1
4 S�i �.Moreover, H covers each S�i �, but at least one S�i �cannot be

covered by any finite or hyperfinite subcollection of H, since if all the S�i �could be, then
so could S. Let S1 be a set with this property, chosen from S�1�,S�2�,S�3�,and S�4�.
We are now back to the situation we started from: a #-compact set S1 covered by H,
but not by any hyperfinite subcollection of H.However, S1 is contained in a square T1

with sides of length L/2 instead of L. Bisecting the sides of T1 and repeating the
argument, we obtain a subset S2 of S1 that has the same properties as S, except that it
is contained in a square with sides of length L/4. Continuing in this way produces a
hyper infinite sequence of nonempty #-closed sets S0 � S,S1,S2, . . . , such that
Sk  Sk�1 and d�Sk� � L/2k�1/2,k � 0. From Theorem 14.18, there is a point X in
�k�1
�#

Sk. Since X � S, there is an open set H in H that contains X, and this H must also
contain some #-neighborhood of X. Since every X in Sk satisfies the inequality
�X � X� � 2�k�1/2L, it follows that Sk � H for k � �#/� sufficiently large. This contradicts
our assumption on H,which led us to believe that no Sk could be covered by a

hyperfinite
number of sets from H.Consequently, this assumption must be false: H must have a
finite or hyperfinite subcollection that covers S. This completes the proof for n � 2.
The idea of the proof is the same for n � 2. The counterpart of the square T is the
hypercube with sides of length L :

T � ��x1,x2, . . . ,xn�|ai � xi � ai � L, 1 � i � n�.
Halving the intervals of variation of the n coordinates x1,x2, . . . ,xn divides T into 2n

closed hypercubes with sides of length L/2 :
T�i � � ��x1,x2, . . . ,xn�|bi � xi � bi � L/2,1 � i � n�,

where bi � ai or bi � ai � L/2. If no hyperfinite subcollection of H covers S, then at
least one of these smaller hypercubes must contain a subset of S that is not covered
by any hyperfinite subcollection of S. Now the proof proceeds as for n � 2.

18.6.#-Neighborhoods and #-open sets in �c
#n,n � �#.

Connected Sets and Regions in �c
#n.

Definition 18.16. Assum that A is admissible subset of �c
#n.

(i) The #-interior #-int�A� of a set A is the largest open subset A,
(ii) The #-closure #-cl�A� of a set A is the smallest #-closed set containing A.
Theorem 18.20. 1. #-cl�	� � 	
2. A � #-cl�A� for any set A.
3. #-cl�A � B� � #-cl�A� � #-cl�B� for any sets A and B.
4. cl�#-cl�A�� � #-cl�A� for any set A.
Proof.1. and 2. follow from the definition.
To prove 3 note that #-cl�A� � #-cl�B� is a #-closed set which contains A � B and so
#-cl�A� � #-cl�A � B�.Similarly, #-cl�B� � #-cl�A � B� and so
#-cl�A� � #-cl�B� � #-cl�A � B� and the result follows.
To prove 4 we have #-cl�A� � #-cl�#-cl�A�� from 2. Also #-cl�A� is a #-closed set
which contains #-cl�A� and hence it contains #-cl�#-cl�A��.
Example 18.3.For �c

# with its usual topology induced by its canonical metric
d�x,y� � |x � y|, #-cl��a,b�� � 	a,b
 and #-int�	a,b
� � �a,b�.
Definition 18.17. If 
 � 0,
 � 0, the 
-neighborhood of a point X0 in �c

#n is the set



N
�X0� � �X|�X � X0� � 
�. �18.52�

Definition 18.18.If X0 is a point in in �c
#n and r � 0, the sphere of radius r about X0

is the set Sr�X0� � �X|�X � X0� � r�
Definition 18.19.If X0 is a point in in �c

#n and r � 0, the #-open n-ball of radius r about
X0 is the set Br�X0� � �X|�X � X0� � r� . Thus, 
-neighborhoods are #-open n-balls.
If X1 is in Br�X0� and �X � X1� � 
 � r � �X � X0�, then X is in Br�X0�.
Thus, Br�X0� contains an 
-neighborhood of each of its points, and is therefore

#-open.
The #-closure of Br�X0� is the #-closed n-ball of radius r about X0, defined by
#-cl�Br�X0�� � �X|�X � X0� � r�,r � �X1�X0�.
Proposition18.1. If X1 and X2 are in Sr�X0� for some r � 0, then so is every point on
the line segment from X1 to X2.
Definition 18.20.A subset S� �c

#n is #-connected if it is impossible to represent Sas
the union of two disjoint nonempty sets such that neither contains a #-limit point of the
other; that is, if Scannot be expressed as S � A � B, where

A 	 	,B 	 	, #-cl�A� � B � 	, #-cl�B� � A � 	. �18.53�

If Scan be expressed in this way, then S is #-disconnected.
Definition 18.21. A region S in �c

#n is the union of an #-open #-connected set with
some, all, or none of its #-boundary; thus, #-int�S� is #-connected, and every point of
S is a #-limit point of #-int�S�.

18.7.The #-limits and #-continuity �c
#-valued functions of

n � �# variables.
We denote the domain of a function f by Df and the value of f at a point X � �xi� i�1

i�n

by f�X� or f �xi� i�1
i�n .

Definition 18.22. We say that f�X� #-approaches the #-limit L as X #-approaches X0

and write

#- lim X�# X0 f�X� � L �18.54�

if X0 is a #-limit point of Df and, for every 
 � 0,
 � 0, there is a � � 0,� � 0, such
that |f�X� � L � 
| for all X � Df such that 0 � �X � X0� � �.
Theorem 18.21.If #-lim X�# X0 f�X� exists, then it is unique.
Theorem 18.22. Suppose that f and g are defined on a set D � �c

#n, X0 is a #-limit
point

of D, and #-lim X�# X0 f�X� � L1, #-lim X�# X0 g�X� � L2.Then

#- lim X�# X0�f � g��X� � L1 � L2,

#- lim X�# X0�f 
 g��X� � L1L2,

and

#- lim X�# X0�f/g��X� � L1L2,

�18.55�

if L2 	 0.
Definition 18.23. We say that f�X� #-approaches �# as X #-approaches X0 and write

#- lim X�# X0 f�X� � �# �14.56�

if X0 is a #-limit point of Df and, for every hyperreal number M, there is a � � 0,



� � 0, such that f�X� � M whenever 0 � �X � X0� � � and X � Df.We say that

#- lim X�# X0 f�X� � ��# �18.57�

if #-lim X�# X0	�f�X�
 � �# .
Definition 18.24. If Df is hyperunbounded, we say that

#- lim �X��# �# f�X� � L, �18.58�

where L finite or hyperfinite if for every � � 0,� � 0, there is a number R � �c
#

such that |f�X� � L � 
| whenever �X� � R and X � Df.
Definition 18.25. If X0 � Df and is a #-limit point of Df, then we say that f is
#-continuous at X0 if

#- lim X�# X0 f�X� � f�X0�. �18.59�

Theorem 18.23.Suppose that X0 � Df and is a #-limit point of Df. Then f is
#-continuous at X0 if and only if for each 
 � 0,
 � 0 there is a � � 0,� � 0 such
that |f�X� � f�X0�| � 
 whenever �X � X0� � � and X � Df.
Definition 18.26.We will say that f is #-continuous on S if f is #-continuous at every
point of S.
Theorem 18.24. If f and g are #-continuous on a set S� �c

#n, then so are f � g, and fg.
Also, f/g is #-continuous at each X0 � Ssuch that g�X0� 	 0.
Definition 18.27. Suppose that g1,g2, . . . ,gn,n � �# are �c

#-valued functions defined
on a subset T � �c

#n, and define the vector-valued function G on T by

G�U� � �g1�U�,g2�U�, . . . ,gn�U��,U �T. �18.60�

Then g1,g2, . . . ,gn are the component functions of G � �g1,g2, . . . ,gn�.
We say that

#- lim U�# U0 G�U� � L ��L1, . . . ,Ln� �18.61�

if #-lim U�# U0 gi�U� � L i , 1 � i � n and that G is #-continuous at U0 if g1,g2, . . . ,gn are
each #-continuous at U0.
Theorem 18.25.For a vector-valued function G, #-lim U�# U0 G�U� � L if and only if for
each 
 � 0,
 � 0 there is a � � 0,� � 0 such that �G�U� � L� � 
 whenever
0 � U � U0 � � and U � DG.Similarly, G is #-continuous at U0 if and only if for

each 
 � 0,
 � 0 there is a � � 0,� � 0 such that �G�U� � G�U0�� � 
 whenever
U � U0 � � and U � DG.

Theorem 18.26.Let f be a �c
#-valued function defined on a subset of �c

#n,and let
the vector-valued function G � �g1,g2, . . . ,gn� be defined on a domain DG in �c

#n.
Let the set T � U|U � DG and G�U� � Df , be nonempty; and define the �c

#-valued

composite function h � f � G on T by h�U� � f�G�U��,U � T.Now suppose that U0 � T
and is a #-limit point of T, G is #-continuous at U0, and f is #-continuous at
X0 � G�U0�. Then h is #-continuous at U0.
Theorem 18.27.If f is #-continuous on a #-compact set S� �c

#n, then f is bounded
or hyperbounded on S.
Theorem 18.28.Let f be #-continuous on a compact set S� �c

#n and � � infX�Sf�X�,
	 � supX�Sf�X�.Then f�X1� � � and f�X2� � 	 for some X1 and X2 in S.
Theorem 18.29.(Intermediate Value Theorem) Let f be #-continuous on
a region S� �c

#n.Suppose that A and B are in Sand f�A� � u � f�B�.Then f�C� � u



for some C � S.
Definition 18.28. f is uniformly #-continuous on a subset Sof its domain in �c

#n

if for every 
 � 0,
 � 0 there is a � � 0,� � 0 such that |f�X� � f�X0�| � 
 whenever
X � X0 � � and X,X0 � S.

Theorem 18.30.If f is #-continuous on a #-compact set S� �c
#n then f is uniformly

#-continuous on S.

18.8.Partial #-Derivatives and the #-Differential
Definition 18.29. Let 
 be a unit vector and X a point in �c

#n. The directional
#-derivative

of f�X� at X in the direction of 
 is defined by

��#f�X�
��#


� #-
t�# 0
lim

f�X �t
� � f�X�
t �18.62�

if the #-limit exists. That is, ��#f�X�/��#
 is the ordinary derivative of the function
H�t� � f�X �t
� at t � 0, if H�#�t� exists.The directional #-derivatives that we are most
interested in are those in the directions of the unit vectors E i , 1 � i � n,where
all components of E i are zero except for the i-th, which is 1.
Definition 18.30. Since X and X �tE i differ only in the i-th coordinate, ��#f�X�/��#E i is
called the partial #-derivative of f with respect to xi at X. It is also denoted by
��#f�X�/��#xi or fxi

�#�X�, thus,

��#f�X�
��#xi

� fxi
�#�X� � #-

t�# 0
lim

f��xi � t� i�n� � f��xi� i�n�
t �18.63�

If X � �x,y�, then we denote the partial #-derivatives accordingly; thus,

��#f�x,y�
��#x

� fx
�#�x,y� � #-

h�# 0
lim

f�x � h,y� � f�x,y�
h

�18.64�

and

��#f�x,y�
��#y

� fy
�#�x,y� � #-

h�# 0
lim

f�x,y � h� � f�x,y�
h

. �18.65�

Theorem 18.31.If fxi
�#�X� and gxi

�#�X� exist, then

��#�f � g��X�
��#xi

� fxi
�#�X� � gxi

�#�X�,
��#�f 
 g��X�

��#xi
� fxi

�#�X�g�X� � gxi
�#�X�f�X�, �18.66�

and, if g�X� 	 0,

��#�f/g��X�
��#xi

�
g�X�fxi

�#�X� � f�X�gxi
�#�X�

	g�X�
2 . �18.67�

If fxi
�#�X� exists at every point of a set D � �c

#n, then it defines a function fxi
�#�X� on D.

If this function has a partial #-derivative with respect to xj on a subset of D, we
denote the partial #-derivative by

��#
��#xj

��#f�X�
��#xi

�
�2�#f�X�
��#xj��#xi

� fxixj
�# �X�. �14.68�

The function obtained by differentiating f�X� successively with respect to
xi 1,xi 2, . . . ,xi r is denoted by

�r�#f�X�
��#xi r��#xi r�1. . .��#xi 1

� fxi1...xi r�1xi r
�# �X� �18.69�



it is an r th-order partial derivative of f�X�.
Theorem 18.32.Suppose that f, fx

�#, fy
�#,and fxy

�# exist on a #-neighborhood � of �x0,y0�,
and fxy

�# is #-continuous at �x0,y0�. Then fyx
�# �x0,y0� exists, and

fyx
�#�x0,y0� � fxy

�#�x0,y0�. �18.70�

Theorem 18.33.Suppose that f and all its partial #-derivatives of order r are
#-continuous on an #-open subset Sof �c

#n.Then

fxi1,xi2,...,xi r
�# �X� � fxj1,xj2,...,xj r

�# �X�,X � S, �18.71�

if each of the variables x1,x2, . . . ,xn appears the same number of times in
�xi 1,xi 2, . . . ,xi r � and �xj 1,xj 2, . . . ,xj r �. If this number is r k, we denote the common
value of the two sides of (18.71) by

�r�#f�X�
��#xi r��#xi r�1. . .��#xi 1

. �18.72�

Definition 18.31. A function f�X� is #-differentiable at X0 � �x10,x20, . . . ,xn0� if there
are constants m1,m2, . . . ,mn such that

#- lim �X�X0��# 0
f�X� � f�X0� � Ext-� i�1

n mi�xi � xi0�
�X � X0�

� 0. �18.73�

Theorem 18.34. If f is differentiable at at X0 � �x10,x20, . . . ,xn0�, then fxi0
�# �X0�,

1 � i � n,exist and the constants mi , 1 � i � n, in Eq.(18.73) are given by

mi � fxi0
�# �X0�. �18.74�

Theorem 18.35.If f is #-differentiable at X0, then f is #-continuous at X0.
Definition 18.32. A linear function L : �c

#n � �c
# is a �c

#-valued function of the form

L�X� � Ext-� i�1
n mixi , �18.75�

where mi , 1 � i � n are constants. From Definition 14.31, f is #-differentiable at X0

if and only if there is a linear function L such that f�X� � f�X0� can be
approximated so well near X0 by

f�X� � f�X0� � L�X � X0� � E�X��X � X0�, �18.76�

where

#- lim �X�X0��# 0 E�X� � 0. �18.77�

Remark 18.3.Theorem 18.34 implies that if f is #-differentiable at X0, then there is
exactly one linear function L that satisfies (18.76) and (18.77).
This function is called the #-differential of f at X0. We will denote it by dX0

�# f and its
value by �dX0

�# f��X�; thus,

�dX0
�# f��X� � Ext-� i�1

n fxi0
�# �X0�xi . �18.78�

For convenience in writing dX0
�# f , and to conform with standard notation, we introduce

the function d�#xi : �c
#n � �c

# defined by dxi�X� � xi .That is, d�#xi is the function whose
value at a point in �c

#n is the i-th coordinate of the point. It is the #-differential of the
function gi�X� � xi .From Eq.(18.78)

dX0
�# f � Ext-� i�1

n fxi0
�# �X0�d�#xi . �18.78�

19.#-Analytic functions f : �c
# � �c

#.



19.1.�c
#-valued #-analytic functions f : �c

# � �c
#.

The class of #-analytic functions is formed by the complex functions of a complex
variable z � �c

# � �c
# � i�c

# which possess a #-derivative wherever the function is
defined. The term #-holomorphic function is used with identical meaning. For the
purpose of this preliminary investigation the reader may think primarily of functions
which are defined in the whole plane �c

#.
The definition of the #-derivative can be written in the form

f �#�z� � #- lim h�# 0
f�z� h� � f�z�

h
�19.1�

As a first obvious consequence f�z� is necessarily #-continuous. Indeed, from
f�z� h� � f�z� � h 
 �f�z� h� � f�z��/h one obtains #-lim h�# 0�f�z� h� � f�z�� �
0 
 f �#�z� � 0.If we write f�z� � u�z� � iv�z� it follows, moreover, that u�z� and v�z�
are both #-continuous.
Remark 19.1. When we consider the #-derivative of a �c

#-valued function, defined on a
set A� �c

# in the complex plane �c
#, it is

of course understood that z � A and that the limit is with respect to values
h such that z� h � A. The existence of the #-derivative will therefore
have a different meaning depending on whether z is an interior point or a
#-boundary point of A. The way to avoid this is to insist that all #-analytic
functions be defined on open sets.
Definition 19.1. A �c

#-valued function f�z�, defined on an open set �, is said to be
�c

#-analytic in � if it has a #-derivative at each point of �.And more explicitly that
f�z� is #-analytic function. A commonly used synonym is #-holomorphic function.
Definition 19.2.A function f�z� is #-analytic on an arbitrary point set A if it is the
restriction to A of a function which is #-analytic in some open set containing A.
Remark 19.2. Note that the real and imaginary parts of an #-analytic function in �
satisfy the generalized Cauchy-Riemann equations

�#u
�#x

� �#v
�#y

; �
#u
�#y

� � �
#v
�#x

. �19.2�

Conversely, if u and v satisfy these equations in �, and if the partial #-derivatives are
#-continuous, then u � iv is an #-analytic function in �.
Theorem 19.1. An #-analytic function f in a region � whose #-derivative vanishes
identically must reduce to a constant. The same is true if either the real part, the
imaginary part, the modulus, or the argument is constant.

19.2.The �c
#-valued #-Exponential Ext-exp�z�.

We define the #-exponential Ext-exp�z� function as the solution of the differential
equation

f �#�z� � f�z�, f�0� � 1. �19.3�

We solve it by setting

f�z� � Ext-�
n�0

�#

anzn, f �#�z� � Ext-�
n�0

�#

nanzn. �19.4�

If Eq.(15.4) is to be satisfied, we must have an�1 � nan,n � �# and the initial condition
gives a0 � 1. It follows by hypee infinite induction that an � 1/n!.



Abbreviation 19.1. The solution of the Eq.(15.4) is denoted by Ext-ez or Ext-exp�z�
or Ext-expz.Thus finally we obtain

Ext-exp�z� � Ext-�
n�0

�#

zn

n!
. �19.5�

19.3.The �c
#-valued Trigonometric Functions Ext-sin�z�,

Ext-cos�z�.
The �c

#-valued trigonometric functions Ext-sin�z�,Ext-cos�z� are defined by

Ext-sin�z� � 1
2
�Ext-exp�iz� � Ext-exp��iz�� �19.6�

and

Ext-cos�z� � 1
2
�Ext-exp�iz� � Ext-exp��iz��. �19.7�

Substitution (19.)-(19.) in (19.) gives that

Ext-sin�z� � �19.8�

and

Ext-cos�z� � �19.9�

From (14) we obtain generalized Euler’s formula

Ext-exp�iz� � Ext-cos�z� � i�Ext-sin�z�� �19.10�

and as well as the identity

�Ext-sin�z��2 � �Ext-cos�z��2 � 1. �19.11�

19.4. The periodicity of the #-exponential Ext-exp�iz�.
Definition 19.4.We say that f�z� has the period c if f�z� c� � f�z� for all z � �c

#.
Thus a period of Ext-ez satisfies Ext-ez�c � Ext-ez, or Ext-ec � 1. It follows that c � i�
with real � � �c

# we prefer to say that � is a period of Ext-eiz. We shall show that there
are periods, and that they are all integral multiples of a positive period �0.From
�Ext-sin�y�� �# � Ext-cos�y� � 1 and Ext-sin�0� � 0 one obtains Ext-sin�y� � y for y � 0,
either by integration or by use of the generalized mean-value theorem. In
the same way �Ext-cos�y�� �# � �Ext-sin�y� � �y and Ext-cos�0� � 1 gives
Ext-cos�y� � 1 � y2/2, which in turn leads to Ext-sin�y� � y � y3/6 and finally to
Ext-cos�y� � 1 � y2/2 � y4/24. This inequality shows that Ext-cos 3 � 0, and

therefore there is a y0 such that 0 � y0 � 3 and Ext-cos�y0� � 0. Because
�Ext-sin�y0��2 � �Ext-cos�y0��2 � 1,we have Ext-sin�y0� � �1, that is, Ext-eiy0 � �i,
and hence Ext-e4iy0 � 1. We have shown that 4y0 is a period. Actually, it is the
smallest positive period. To see this, take 0 � y � y0.
Then Ext-sin�y� � y�1 � y2/6� � y/2 � 0, which shows that Ext-cos�y� is
strictly decreasing. Because Ext-sin�y� is positive and
�Ext-sin�y��2 � �Ext-cos�y��2 � 1 it follows that Ext-sin�y� is strictly increasing, and
hence Ext-sin�y� � Ext-sin�y0� � 1.
The double inequality 0 � Ext-sin�y� � 1 guarantees that Ext-eiy is neither � 1 nor
�i. Therefore Ext-e4iy 	 1, and 4y0 is indeed the smallest positive period.We denote



it by �0.Consider now an arbitrary period �0. There exists an integer n such that
n�0 � � � �n � 1��0. If w were not equal to n�0, then � - n�0 would be a positive
period � �0. Since this is not possible, every period must be an integral multiple of
�0.
Abbreviation 19.2.The smallest positive period of Ext-eiz is denoted by 2�#.
Remark 19.3.Note that st��#� � � � �.

19.5.The �c
#-valued Logarithm.

Together with the exponential function Ext-eiz we must also introduce its inverse
function, the �c

#-valued logarithm. By definition, z � Ext-logw is a root of the equation
Ext-eiz � w. First of all, since Ext-eiz is always 	 0, the number 0 has no logarithm.
For w 	 0 the equation Ext-ex�iv � w is equivalent to

Ext-eiz � |w|,Ext-eiy � w
|w|

. �19.12�

The first equation has a unique solution x � Ext-log|w|, the �c
#-valued logarithm of

the positive number |w| � �c
#. The right-hand member of the second equation (15.12)

is a complex number in �c
# of absolute value 1. Therefore, as we have just seen, it has

one and only one solution in the interval 0 � y � 2�#. In addition, it is also satisfied by
all y that differ from this solution by an integral multiple of 2�#. We see that every
complex number other than 0 has hyper infinitely many logarithms which differ from
each other by multiples of 2�#i.
The imaginary part of Ext-logw is also called the argument of w, Ext-argw, and it is
interpreted geometrically as the angle, measured in radians, between the positive real
axis and the half line from 0 through the point w. According to this definition the
argument has hyper infinitely many values which differ by multiples of 2�#, and

Ext- logw � Ext- log|w| � i argw. �19.13�

Remark 19.4.The addition property of the exponential function Ext-eiz implies

Ext- log�z1 
 z2� � Ext- logz1 � Ext- logz2,

Ext-arg�z1 
 z2� � Ext-argz1 � Ext-argz2,
�19.14�

but only in the sense that both sides represent the same hyper infinite set of
complex numbers.The inverse of Ext-cos�z� is obtained by solving the equation

Ext-cos�z� � 1
2
�Ext-eiz � Ext-e�iz� � w. �19.15�

This is a quadratic equation in Ext-eiz with the roots

Ext-eiz � w � w2 � 1 �19.16�

and therefore

z � Ext-arccos�w� � �i Ext- log w � w2 � 1 , �19.17�

or in the form

Ext-arccos�w� � �i Ext- log w � w2 � 1 �19.18�

The hyper infinitely many values of Ext-arccos�w� reflect the evenness and periodicity
of Ext-cos�w�. The inverse sine is most easily defined by formula

Ext-arcsin�w� � �#

2
� �Ext-arccos�w��. �19.19�



20.Complex Integration of the �c
#-valued function f�t�.

20.1.Definition and basic properties of the complex
integral.

If f�t� � u�t� � iv�t� is a #-continuous function, defined in an interval �a,b�, we set by
definition

Ext- "
a

b

f�t�d#t � Ext- "
a

b

u�t�d#t � i Ext- "
a

b

v�t�d#t . �20.1�

This integral has most of the properties of the real integral. In particular, if c � � � i	
is a complex constant we obtain

Ext- "
a

b

cf�t�d#t � c Ext- "
a

b

f�t�d#t . �20.2�

The fundamental inequality

Ext- "
a

b

f�t�d#t � Ext- "
a

b

|f�t�|d#t. �20.3�

holds for arbitrary �c
#-valued function f�t�.

We consider now a piecewise #-differentiable arc � with the equation
z � z�t�,a � t � b.

If the function f�z� is defined and #-continuous on �, then f�z�t�� is also #-continuous
and we can set

v Ext- "
�

f�z�d#z � Ext- "
a

b

f�z�t��z�#�t�d#t. �20.4�

The most important property of the integral (20.4) is its invariance under a change of
parameter. A change of parameter is determined by an increasing function t � t���
which maps an interval � � � � 	 onto a � t � b; we assume that t��� is piecewise
#-differentiable. By the rule for changing the variable of integration we get

Ext- "
a

b

f�z�t��z�#�t�d#t � Ext- "
�

	

f�z�t�����z�#�t����t �#���d#�. �20.5�

We defined the opposite arc�� by the equation z � z��t�,�b � t � �a.We have thus

Ext- "
��

f�z�d#z � � Ext- "
�

f�z�d#z . �20.6�

The integral (20.4) has also a very obvious additive property. It is clear what is meant
by subdividing an arc � into a finite or hyperfinite number of subarcs. A subdivision can
be indicated by a symbolic equation:� � �1 � �2 �. . .��n,n � �#, and the corresponding
integrals satisfy the relation



Ext- "
�1��2�...��n

f�z�d#z � Ext-�
i�1

n

Ext- "
� i

f�z�d#z . �20.7�

Finally, the integral over a closed curve is also invariant under a shift of parameter.
The old and the new initial point determine two subarcs �1,�2, and the invariance
follows from the fact that the integral over �1 � �2 is equal to the integral over �2 � �1

In addition to integrals of the form (20.4) we can also consider line integrals with
respect to z. The most convenient definition is by double conjugation

Ext- "
�

f�z�d#z � Ext- "
�

f�z�d#z. �20.8�

Using notation (20.7), line integrals with respect to x or y can be introduced by

Ext- "
�

f�z�d#x � 1
2

Ext- "
�

f�z�d#z� Ext- "
�

f�z�d#z ,

Ext- "
�

f�z�d#y � 1
2i

Ext- "
�

f�z�d#z� Ext- "
�

f�z�d#z .

�20.9�

With f � u � iv we find that the integral (16.4) can be written in the form

Ext- "
�

�ud#x � vd#y� � i Ext- "
�

�ud#y � vd#x� . �16.10�

Of course we could just as well have started by defining integrals of the form

Ext- "
�

�pd#x � qd#y�, �20.11�

in which case formula (20.10) would serve as definition of the integral (20.4).
An essentially different line integral is obtained by integration with
respect to arc length. Two notations are in common use, and the definition is

Ext- "
�

fd#s � Ext- "
�

f�z�|d#z| � Ext- "
�

f�z�t��|z�#�t�|d#t. �20.12�

This integral is again independent of the choice of parameter. In contrast to (20.6)
we get

Ext- "
��

f�z�|d#z| � Ext- "
�

f�z�|d#z|, �20.13�

while (20.7) remains valid in the same form. The inequality

Ext- "
�

f�z�d#z � Ext- "
�

|f�z�||d#z| �20.14�

is a consequence of (20.3).
Remark 20.1.For f � 1 the integral (20.3) Generalized Cauchy’s Theorem for a



Rectangle reduces to "
�

|dz| which is by definition the length of �. As an example

we compute the length of a circle. From the parametric equation
z � z�t� � a � ��Ext-eit �, 0 � t � 2�#r, of a full circle we obtain z�#�t� � i��Ext-eit �
and hence

"
0

2�#

|z�#�t�|d#t � "
0

2�#

�d#t � 2�#� �20.15�

as expected.

20.2.Line Integrals as Functions of Arcs.
Remind that the length of an arc can also be defined as the least upper bound of all
hyperfinite sums

Ext-�
i�1

n

|z�t i � � z�t i�1�|, �20.16�

n � �#/�, where a � t0 � t1 � . . . � tn � b. If this least upper bound is finite or
hyperfinite we say that the arc is rectifiable. It is quite easy to show that piecewise
#-differentiable arcs are rectifiable, and that the two definitions of length coincide.
It is clear that the sums (20.16) and the corresponding sums

Ext-�
i�1

n

|x�t i � � x�t i�1�|;Ext-�
i�1

n

|y�t i � � y�t i�1�|, �20.17�

where z�t� � x�t� � iy�t�,are bounded or hyperbounded at the same time. When the
latter sums are bounded (or hyperbounded), one says that the functions x�t� and y�t�
are of bounded (or hyperbounded) variation. An arc z � z�t� is rectifiable if and only if
the real and imaginary parts of z�t� are of bounded (or hyperbounded) variation.
If � is rectifiable and f�z� #-continuous on � it is possible to define integrals of type
(20.12) as a #-limit

Ext- "
�

fd#s � #- lim n��# Ext-�
k�1

n

f�z�tk��|z�t i � � z�t i�1�| . �20.18�

General line integral of the form Ext-"
�
�pd#x � qd#y� can be considered as functional

of the arc �. It is then assumed that p and q are defined and #-continuous in a region
� and that � is free to vary in �. An important class of integrals is characterized by the
property that the integral over an arc depends only on its end points. In other words, if
�1 and �2 have the same initial point and the same end point, we require that

Ext- "
�1
�pd#x � qd#y� � Ext- "

�2
�pd#x � qd#y�. �20.19�

To say that an integral depends only on the end points is equivalent to saying that the
integral over any closed curve is zero. Indeed, if � is a closed curve, then � and ��
have the same end points, and if the integral depends only on the end points, we

obtain

Ext- "
�

�pd#x � qd#y� � Ext- "
��

�pd#x � qd#y� � � Ext- "
�

�pd#x � qd#y� �20.20�



and consequently "
�
�pd#x � qd#y� � 0. Conversely, if �1 and �2 have the same end

points, then �1 � �2 is a closed curve, and if the integral over any closed curve
vanishes, it follows that Ext-"

�1
�pd#x � qd#y� � Ext-"

�2
�pd#x � qd#y�.

Pic.20.1.

The following theorem gives a necessary and sufficient condition
under which a line integral depends only on the end points.
Theorem 20.1.The line integral Ext-"

�
�pd#x � qd#y�, defined in �, depends only on

the end points of � if und only if there exists a function U�x,y� in � with the partial
#-derivatives �#u/�#x � p,�#u/�#y � q.
The sufficiency follows at once, for if the condition is fulfilled we can write, with the
usual notations,

Ext- "
�

�pd#x � qd#y� � Ext- "
a

b

�#U
�#x

x�#�t� � �
#U
�#y

y�#�t� d#t �

Ext- "
a

b

d#

d#t
U�x�t�,y�t��d#t � U�x�b�,y�b�� � U�x�a�,y�a��.

�20.21�

and the value of this difference depends only on the end points. To prove the
necessity we choose a fixed point �x0,y0� � �, join it to �x,y� by a polygon �,
contained in �, whose sides are parallel to the coordinate axes (Pic.1) and define
a function U�x,y� by

U�x,y� � Ext- "
�

�pd#x � qd#y�. �20.22�

Since the integral depends only on the end points, the function is well defined.
Moreover, if we choose the last segment of � horizontal, we can keep y constant and
let x vary without changing the other segments. On the last segment we can choose x
for parameter and obtain

U�x,y� � Ext- "
x

p�x,y�d#x � const. , �20.23�

the lower limit of the integral being irrelevant. From Eq.(20.23) it follows at once that



�#U
�#x

� p. In the same way, by choosing the last segment vertical, we can show that

�#U
�#y

� q. It is customary to write d#U � ��#U/�#x�d#x � ��#U/�#y�d#y and to say that

an expression pd#x � qd#y which can be written in this form is an exact #-differential.
Thus an integral depends only on the end points if and only if the integrand is an
exact differential. Observe that p,q and U can be either real or complex. The function
U, if it exists, is uniquely determined up to an additive constant, for if two functions
have the same partial #-derivatives their #-difference must be constant.
When is f�z�d#z � f�z�d#x � if�z�d#y an exact #-differential? According to the definition
there must exist a function F�z� in � with the partial #-derivatives

�#F�z�
�#x

� f�z�,
�#F�z�
�#y

� if�z�. �20.24�

If this is so, F�z� fulfills the generalized Cauchy-Riemann equation

�#F�z�
�#x

� i
�#F�z�
�#y

, �20.25�

since f�z� is by assumption #-continuous F�z� is #-analytic with the #-derivative f�z�.
The integral Ext-"

�
fd#z, with #-continuous f, depends only on the end points of � if

and only iff is the derivative of an analytic function in �. Under these circumstances
we shall prove later that f�z� is itself #-analytic.
As an immediate application of the above result we find that

"
�

�z� a�nd#z � 0 �20.26�

for all closed curves �, provided that the integer n � �# is � 0. In fact, �z� a�n is the
#-derivative of �z� a�n�1/�n � 1�, a function which is #-analytic in the whole plane �c

#.
If n is negative, but 	 �1, the same result holds for all closed curves which do not
pass through a, for in the complementary region of the point a the indefinite integral
is still #-analytic and single-valued. For n � �1, Eq.(20.26) does not always hold.
Consider a circle C with the center a, represented by the equation z � a � ��Ext-eit �,
0 � t � 2�#. We obtain

"
�

d#z
�z� a�

� "
0

2�#

id#t � 2�#i. �20.27�

This result shows that it is impossible to define a single-valued branch of Ext-log�z� a�
in an annulus �1 � |z� a| � �2. On the other hand, if the closed curve � is contained in
a half plane which does not contain a, the integral vanishes, for in such a half plane a
single-valued and #-analytic branch of Ext-log �z� a� can be defined.

20.3.Generalized Cauchy’s Theorem for a Rectangle.
We consider, specifically, a rectangle R � �c

# defined by inequalities a � x � b,
c � y � d. Its perimeter can be considered as a simple closed curve consisting of
four line segments whose direction we choose so that R lies to the left of the directed
segments. The order of the vertices is thus �a,c�,�b,c�,�b,d�,�a,d�. We refer to this
closed curve as the boundary curve or contour of R, and we denote it by �#R



Pic.20.2.Bisection of rectangle.

Theorem 16.2. If the function f�z� is #-analytic on R, then

Ext- "
�#R

f�z�d#z � 0. �20.28�

Proof. The proof is based on the method of bisection. Let us introduce the notation

��R� � Ext- "
�#R

f�z�d#z . �20.29�

If R is divided into four congruent rectangles R�1�,R�2�,R�3�,R�4�,we get

��R� � ��R�1�� � ��R�2�� � ��R�3�� � ��R�4��. �20.30�

for the integrals over the common sides cancel each other,see Pic.201.It follows from
Eq.(16.30) that at least one of the rectangles R�k�,k � 1,2,3,4,must satisfy the

condition |��R�k��| � |��R�|/4.This process can be repeated inductively by hyper infinite
induction,

and we obtain a hyper infinite sequence of nested rectangles R  R1  R2. . . 
 Rn. . . . . .with the property |��Rn�| � 4�n|��Rn�1�|,n � �#.Thus

|��Rn�| � 4�n|��R�|. �20.31�

The rectangles Rn converge to a point z� � R in the sense that Rn will be contained
in a prescribed neighborhood |z� z� | � � as soon as n � �#\� is sufficiently large.
First of all, we choose � so small that f�z� is defined and #-analytic in |z� z� | � �,
� � 0.Secondly, if 
 � 0,
 � 0 is given, we can choose � such that

f�z� � f�z��
z� z�

� f �#�z�� � 
, �20.32�

and therefore

f�z� � f�z�� � �z� z��f �#�z�� � 
|z� z� |. �20.33�

for |z� z� | � �. We assume that � satisfies both conditions and that Rn is contained in
|z� z� | � �. We make now the observation that

Ext- "
�#Rn

d#z � 0,Ext- "
�#Rn

zd#z � 0 �20.34�

By virtue of the equations (20.34) we are able to write



|��Rn�| � Ext- "
�#Rn

f�z� � f�z�� � �z� z��f �#�z�� d#z �20.35�

and it follows by (20.33) that

|��Rn�| � 
 Ext- "
�#Rn

|z� z� | 
 |d#z| . �20.36�

In the last integral |z� z� | is at most equal to the length dn of the diagonal of Rn.
If Ln denotes the length of the perimeter of Rn, the integral is hence � dnLn. But if
d and L are the corresponding quantities for the original rectangle R, it is clear that
dn � 2�nd and Ln � 2�nL.By (20.36) we have hence

|��Rn�| � 4�ndL
 �20.37�

and comparison with (20.31) yields

|��R�| � dL
. �20.38�

Since 
 � 0 is arbitrary, we can only have ��R� � 0, and the theorem is proved.
Theorem 20.3.Let f�z� be #-analytic on the set R� obtained from a rectangle R by
omitting a finite or hyperfinite number of interior points � j If it is true that
#-lim z�# � j �z� � j �f�z� � 0 for all j � �#, then Ext-"

�#R
f�z�d#z � 0.

Proof. It is sufficient to consider the case of a single exceptional point �, for evidently
R can be divided into smaller rectangles which contain at most one � j . We divide now
R into nine rectangles, as shown in Pic.20.2, and apply Theorem 20.2 to all but the
rectangle R0 in the center. If the corresponding equations (20.28) are added, we

obtain,
after cancellations,

Ext- "
�#R

f�z�d#z � Ext- "
�#R0

f�z�d#z �20.39�

Pic.20.3.

If 
 � 0,
 � 0 we can choose the rectangle R0 so infinite small that |f�z�| � 
|z� �|
on �#R0. By (16.39) we have thus

Ext- "
�#R

f�z�d#z � 
 Ext- "
�#R0

|d#z|
|z� �|

�16.40�



If we assume, as we may, that R0 is a square of center �, elementary estimates show
that

Ext- "
�#R0

|d#z|
|z� �|

� 8. �20.41�

Thus finally we obtain

Ext- "
�#R

f�z�d#z � 8
. �20.42�

and since 
 is arbitrary the theorem follows.We conclude that the hypothesis of the
theorem is certainly fulfilled if f�z� is #-analytic and bounded or hyperbounded on R�.

20.4.Generalized Cauchy’s Theorem in a Disk.
It is not true that the integral of an #-analytic function over a closed curve is always
zero. For example

"
C

d#z
|z� a|

� 2i�#. �20.43�

Theorem 20.4.If f�z� is #-analytic in an open disk 	, then 20

Ext- "
�

f�z�d#z � 0 �20.44�

for every closed curve � � 	.
Proof. We define a function F�z� by

F�z� � Ext- "
�

f�z�d#z, �20.45�

where � consists of the horizontal line segment from the center �x0,y0� to �x,y0� and
the vertical segment from �x,y0� to �x,y�; it is immediately seen that �#F/�#y � if�z�.On
the other hand, by Theorem 20.2 � can be replaced by a path consisting of a vertical
segment followed by a horizontal segment. This choice defines the same function
F�z�,and we obtain �#F/�#x � f�z�. Hence F�z� is #-analytic in 	. with the #-derivative
f�z�, and f�z�d#z is an exact #-differential.
Theorem 20.5. Let f�z� be #-analytic in the region 	 � obtained by omitting a finite or
hyperfinite number of points � j from an open disk 	. If f�z� satisfies the condition
#-lim z�# � j �z� � j �f�z� � 0 for all j, then (20.44) holds for any closed curve � � 	 �.



Pic.20.4.

The proof must be modified, for we cannot let rr pass through the exceptional points.
Assume first that no � j lies on the lines x � x0 and y � y0. It is then possible to avoid
the exceptional points by letting � consist of three segments (Pic.20.4). By an obvious
application of Theorem 20.3 we find that the value of F�z� in (20.44) is independent
of the choice of the middle segment; moreover, the last segment can be either
vertical or horizontal. We conclude as before that F�z� is an indefinite integral of f�z�,
and the theorem follows..

20.5.Generalized Cauchy’s integral formula.
Through a very simple application of the generalized Cauchy’s theorem it becomes
possible to represent an #-analytic function f�z� as a line integral in which the variable
z � �c

# enters as a parameter. This representation, known in classical case as
Cauchy’s integral formula,has numerous important applications. Above all, it enables
us to study the local properties of an #-analytic function in full detail.
Lemma 20.1. If the piecewise #-differentiable closed curve � does not pass
through the point a, then the value of the integral

"
�

d#z
|z� a|

. �20.46�

is a multiple of 2i�#.
Definition 20.1.We define the index of the point a with respect to the curve � by the
equation

n��,a� � 1
2�#i

"
�

d#z
z� a . �20.47�

The index (20.47) is also called the winding number of � with respect to a. It is clear
that n���,a� � �n��,a�.The following property is an immediate consequence of
Theorem 20.4.
(i) If � lies inside of a circle, then n��,a� � 0 for all points a outside of the same circle.
As a point set � is #-closed and bounded (or hyperbounded). Its complement is
#-open and can be represented as a union of disjoint regions, the components of the
complement. We shall say, for short, that � determines these regions.
If the complementary regions are considered in the extended plane, there
is exactly one which contains the point at infinity. Consequently, � determines one and



only one unbounded region.
(ii) As a function of a the index n��,a� is constant in each of the regions determined by
�, and zero in the unbounded region.
Any two points in the same region determined by � can be joined by a polygon which
does not meet �. For this reason it is sufficient to prove that n��,a� � n��,b� if � does
not meet the line segment from a to b. Outside of this segment the function
�z� a�/�z� b� is never real and � 0. For this reason the principal branch of
Ext-log	�z� a�/�z� b�
 is #-analytic in the complement of the segment. Its derivative is
equal to �z� a��1 � �z� b��1, and if � does not meet the segment we get

Ext- "
�

1
z� a � 1

z� b
d#z � 0; �20.48�

hence n��,a� � n��,b�. If lal is sufficiently large, � is contained in a disk |z| � � � |a|
and we conclude by (i) that n��,a� � 0. This proves that n��,a� � 0 in the unbounded
region.
We shall find the case n��,a� � 1 particularly important, and it is desirable to formulate
a geometric condition which leads to this consequence.
For simplicity we take a � 0.
Lemma 20.2. Let z1,z2 be two points on a closed curve � which does not pass through
the origin. Denote the subarc from z1 to z2 in the direction of the curve by �1, and the
subarc from z2 to z1 by �2. Suppose that z1 lies in the lower half plane and z2 in the
upper half plane. If �1 does not meet the negative real axis and �2 does not meet the
positive real axis, then n��, 0� � 1.
For the proof we draw the half lines L1 and L2 from the origin through z1 and z2

(Pic. 4-5). Let s1,s2 be the points in which L1,L2 intersect a circle C about the origin.
If C is described in the positive sense, the arc C1 from s1 to s2 does not intersect the
negative axis, and the arc C2 from s2 to s1 does not intersect the positive axis. Denote
the directed line segments from z1 to s1 and from z2 to s2 by �1,�2. Introducing the
closed curves �1 � �1 � �2 � C1 � �1, �2 � �2 � �1 - C2 - �2 we get
that n��, 0� � n�C, 0� � n��1, 0� � n��2, 0� because of cancellations. But �1 does not
meet the negative axis. Hence the origin belongs to the unbounded region
determined by �1, and we obtain n��1, 0� � 0. For a similar reason n��2, 0� � 0, and
we conclude that n��, 0� � n�C, 0� � 1.

Pic.20.5



Let f�z� be #-analytic in an open disk 	. Consider a closed curve � � 	. and a point
a � 	

which does not lie on �. We apply Cauchy’s theorem to the function

F�z� �
f�z� � f�a�

z� a . �20.49�

This function is analytic for z 	 a. For z � a it is not defined, but it satisfies the
condition #-lim z�# a	�z� a�F�z�
 � #-lim z�# a	f�z� � f�a�
 � 0,which is the condition of
Theorem 20.5. We conclude that

Ext- "
�

f�z� � f�a�
z� a d#z � 0. �20.50�

This equation can be rewritten in the form

Ext- "
�

f�z�d#z
z� a � f�a� Ext- "

�

d#z
z� a , �20.51�

and we observe that the integral in the right-hand member is by definition 2�#in��,a�.
Theorem 20.6. Suppose that f�z� is #-analytic in an open disk 	, and let � be a closed
curve in 	. For any point a such that a � �

n��,a� 
 f�a� � 1
2�#i

Ext- "
�

f�z�d#z
z� a , �20.52�

where n��,a� is the index of a with respect to �.
In this statement we have suppressed the requirement that a be a point in 	. We have
done so in view of the obvious interpretation of the formula (16.52) for the case that a
is not in 	. Indeed, in this casebn��,a� and the integral in the right-hand member are
both zero.
It is clear that Theorem 16.6 remains valid for any region � to which Theorem 16.5
can be applied. The presence of exceptional points � j is permitted,provided none of
them coincides with a.
The most common application is to the case where n��,a� � 1. We have then

f�a� � 1
2�#i

Ext- "
�

f�z�d#z
z� a �20.53�

and this we interpret as a representation formula. Indeed, it permits us to compute
f�a� as soon as the values of f�z� on � are given, together with the fact that f�z� is
#-analytic in 	. In (20.53) we may let a take different values, provided that the order
of a with respect to � remains equal to 1. We may thus treat a as a variable, and it is
#-convenient to change the notation and rewrite (20.53) in the form

f�z� � 1
2�#i

Ext- "
�

f���d#�
� � z

. �20.54�

It is this formula which is usually referred to as Cauchy’s integral formula. We must
remember that it is valid only when n��,z� � 1, and that we have proved it only when
f�z� is #-analytic in a disk.



The representation formula (20.54) gives us a tool for the study of the local properties
of #-analytic functions. In particular we can now show that an #-analytic function has
#-derivatives of all orders n � �#, which are then also #-analytic.

We consider a function f�z� which is #-analytic in an arbitrary region �. To a point
a � � we determine a �-neighborhood 	 � �, and in 	 a circle C about a.
Theorem 20.6 can be applied to f�z� in 	. Since n�C,a� � 1 we have n�C,z� � 1 for all
points z inside of C. For such z we obtain by (20.54)

f�z� � 1
2�#i

Ext- "
C

f���d#�
� � z

�20.55�

Provided that the integral in (20.) can be #-differentiated under the sign of
integration we find

f �#�z� � 1
2�#i

Ext- "
C

f���d#�
�� � z�2 �20.56�

and

f �n�#�z� � 1
2�#i

Ext- "
C

f���d#�
�� � z�n �20.57�

If the #-differentiations can be justified, we shall have proved the existence
of all #-derivatives at the points inside of C. Since every point in � lies inside of some
such circle, the existence will be proved in the whole region �.
Lemma 20.3. Suppose that ���� is #-continuous on the arc �. Then the function

Fn�z� � 1
2�#i

Ext- "
�

����d#�
�� � z�n �20.58�

is #-analytic in each of the regions determined by �, and its #-derivative is
Fn
�#�z� � nFn�1�z�.

It is clear that Lemma 20.3 is just what is needed in order to deduce (20.55) and
(20.56) in a rigorous way. We have thus proved that an #-analytic function has
#-derivatives of all orders which are #-analytic and can be
represented by the formula (20.57).
Theorem 20.7. (Generalized Morera’s theorem) If f�z� is defined and #-continuous
in a region �, and if Ext-"

�
f�z�d#z � 0 for all closed curves � in �, then f�z� is

#-analytic in �.

20.6.Generalized Liouville’s theorem.
Theorem 20.8. (Generalized Liouville’s theorem) A function f�z� which is #-analytic
and bounded in the whole plane �c

# must reduce to a constant.
Proof. We make use of a simple estimate derived from (20.57). Let the radius of C
be r,and assume that |f�z�| � M on C. If we apply (20.57) with z � a, we obtain

f �n�#�a� � Mn!r�n �20.59�

We need only the case n � 1. The hypothesis means that |f�z�| � M on all circles.
Hence we can let r tend to �#,and (16.59) leads to f �#�a� � 0 for all a. We conclude



that the function is constant.

20.7.Generalized fundamental theorem of algebra.
Liouville’s theorem leads to an almost trivial proof of the generalized fundamental
theorem of algebra.
Theorem 20.9. (Generalized fundamental theorem of algebra) Suppose that P�z� is
external polynomial of degree n � �#.The equation P�z� � 0 must have a root � � �c

#.
Proof.Suppose that P�z� is a polynomial of degree n � �#\�. If P�z� were never zero,
the function 1/P�z� would be #-analytic in the whole plane �c

#. We know that P�z� � �#,
and therefore 1/P�z� tends to zero. This implies boundedness (the absolute value is
#-continuous on the Riemann sphere and has thus a finite or hyperfinite maximum),
and by Liouville’s theorem 1/P�z� would be constant. Since this is not so, the equation
P�z� � 0 has a root.

21.The local properties of #-analytic function.

21.1.Removable Singnlarities. Taylor’s Theorem.
Theorem 21.1. Suppose that f�z� is #-analytic in the region 	 � obtained by
omitting a point a from a region 	. A necessary and sufficient condition
that there exist an #-analytic function in 	 which coincides with f�z� in 	 � is
that #-lim z�# a�z� a�f�z� � 0. The extended function is uniquely determined.
Proof. The necessity and the uniqueness are trivial since the extended function
must be #-continuous at a. To prove the sufficiency we draw a circle
C about a so that C and its inside are contained in 	. Cauchy’s formula is valid, and
therefore we have

f�z� � 1
2�#i

Ext- "
C

f���d#�
� � z

�21.1�

for all z 	 a inside of C. But the integral in the right-hand member represents an
#-analytic function of z throughout the inside of C. Consequently, the function which is
equal to f�z� for z 	 a and which has the value

1
2�#i

Ext- "
C

f���d#�
� � z

. �21.2�

for z � a is #-analytic in 	. It is natural to denote the extended function by f�z� and
the value (21.2) by f�a�.We apply this result to the function F�z� � 	f�z� � f�a�
/�z� a�.
It is not defined for z � a, but it satisfies the condition #-lim z�# a�z� a�F�z� � 0.
The #-limit of F�z� as z �# a is f �#�a�. Hence there exists an #-analytic function which
is equal to F�z� for z � a and equal to f �#�a� f

Part II. �c
#-Valued Lebesgue Integral.

1.External �c
#-Valued Lebesgue Measure.

Let us consider a bounded interval I � �c
# with endpoints a and b �a � b�.The length of

this bounded interval I is defined by l�I� � b � a. In contrast,the length of an unbounded
interval, such as �a,�#�,���#,b� or ���#,��, is defined to be gyperinfinite. Obviously, the
length of a line segment is easy to quantify.However, what should we do if we want to



measure an arbitrary subset of �c
# ? Given a set E � �c

# of gyperreal numbers, we
denote the Lebesgue measure of set E by µ�E�. To correspond with the length of a line
segment, the measure of a set A � �c

# should keep the following properties:
(1) If A is an interval, then µ�A� � l�A�.
(2) If A � B, then µ�A� � µ�B�.
(3) Given A � �c

# and x0 � �c
# , define A � x0 � �x � x0 : x � A�. Then

µ�A� � µ�A � x0�.
(4) If A and B are disjoint sets, then µ�A � B� � µ�A� � µ�B�. If �Ai� i��# is a

hyperinfinite sequence of disjoint sets, then µ�� i��# Ai � � � i�1
�#

��Ai �.

2.External �c
#-Valued Lebesgue outer measure

Definition 2.1. Let E be a subset of �c
# . Let �I k� � �I k�k��# be a hyperinfinite

sequence
of open intervals such that E � �k��# Ak and let � be a set of the all such hyperinfinite
sequences. The external Lebesgue outer measure of E is defined by

µ��E� � inf�I k��� �k�1
�#

l�I k� . �2.1�

Note that 0 � µ��E� � �#.
Definition 2.2. A set E is #-countable if there exists an injective function f from E to

the
gypernatural numbers �#. If such an f can be found that is also surjective (and

therefore
bijective), then E is called #-countably infinite or gyperinfinite, i.e. a set is #-countably
infinite if it has one-to-one correspondence with the set �#.
Theorem 2.1.The external Lebesgue outer measure has the following properties:
(a) If E1 � E2, then µ��E1� � µ��E2�.
(b) The external Lebesgue outer measure of any #-countable set is zero.
(c) The external Lebesgue outer measure of the empty set is zero.
(d) The external Lebesgue outer measure is invariant under translation, that is,
µ��E � x0� � µ��E�.
(e) Lebesgue outer measure is #-countably sub-additive, that is,

µ� � i�1
�#

Ei � � i�1
�#

µ��Ei�. �2.2�

(f) For any interval I,µ��I� � l�I�.
Proof. Part (a) is trivial.
For part (b) and (c), let E � �xk|k � 
�#� be a #-countably hyper infinite set.
Let 
 � 0,
 � 0 and let 
k be a hyper infinite sequence of positive numbers such that

�k�1
�#


k � 
/2.Since E � �k�1
�#

�xk � 
k,xk � 
k�, it follows that µ��E� � 
. Hence,

µ��E� � 0. Since 	 � E, then µ��	� � 0.
For part (d), since each cover of E by open intervals can generate a cover of E � x0 by
open intervals with the same length, then µ��E � x0� � µ��E�.Similarly,
µ��E � x0� � µ��E�, since E � x0 is a translation of E Therefore, µ��E � x0� � µ��E�.

For part (e), if�
i�1

�#

µ��Ei� � �#, then the statement is trivial. Suppose that

the sum is hyperfinite and let 
 � 0,
 � 0. For each i � �#, there exists a hyperinfinite

sequence �I i
k� of open intervals such that Ei � �k�1

�#
and�k�1

�#

l�I i
k� � µ��Ei� � 
/2i .



Now �I i
k� is a double-indexed sequence of open intervals such that

� i�1
�#

Ei � � i�1
�# �k�1

�#
I i

k and

� i�1
�#

�k�1
�#

l�I i
k� ��

i�1

�#

�µ��Ei� � 
/2i � ��
i�1

�#

µ��Ei� � 
.

Therefore, µ� � i�1
�#

Ei ��
i�1

�#

µ��Ei� � 
. The result follows since 
 � 0,
 � 0 was

arbitrary.
For part (f), we need to prove µ��I� � l�I� and µ��I� � l�I� respectively.
We can assume that I � 	a,b
 where a,b � �c

# .
First, we want to prove µ��I� � l�I�. Let 
 � 0,
 � 0, we have
I � �a,b� � �a � 
,a � 
� � �b � 
,b � 
�.
Thus,µ��I� � l�a,b� � l�a � 
,a � 
� � l�b � 
,b � 
� �
� �b � a� � 2
 � 2
 � b � a � 4
.
As 
 � 0,
 � 0 is arbitrary, we conclude that µ��I� � b � a � l�I�.
Then, we want to prove that µ��I� � l�I�. Let �I k� be any sequence of open
intervals that covers I. Since I is compact, by the generalized Heine-Borel
theorem, there is a gyperfinite subcollection �Ji |1 � i � n�,n � �# of I k that
still covers I. By reordering and deleting if necessary, we can assume that
a � J1 � �a1,b1�,b1 � J2 � �a2,b2�, . . . ,bn�1 � Jn � �an,bn�,where bn�1 � b � bn.
We then can compute that

b � a � bn � a1 � Ext-�
i�2

n

�bi � bi�1� � �b1 � a1� � Ext-�
i�1

n

l�Ji� � Ext-�
i�1

�#

l�I k�.

Therefore, l�I� � µ��I�. We can now conclude that µ��I� � l�I�. This proves
the result for closed and bounded intervals.
Suppose that I � �a,b� is an open and bounded interval. Then, µ��I� � l�I�
as above and b � a � µ��	a,b
� � µ���a,b�� � µ��a� � µ��b� � µ���a,b��.
Hence l�I� � µ��I�. The proof for half-open intervals is similar.
Finally, suppose that I is an hyper infinite interval and let M � 0. There exists
a bounded interval J � I such that µ��J� � l�J� � M and it follows that
µ��I� � µ��J� � M. Since M � 0 was arbitrary, µ��I� � �# � l�I�.
This completes the proof.

2.2.External Lebesgue inner measure
In previous subsection, we have discussed external Lebesgue outer measure. There

is
another external measure named external Lebesgue inner measure. Let’s define the
external inner measure and see some basic properties.
Definition 2.2. Let E be a subset of �# . The external inner measure of E is defined by

µ��E� � sup�µ�K� : K � E and K is #-closed� �2.3�

iff supremum in RHS of the (2.3) exists.
Recall that external Lebesgue outer measure of a set E uses an infimum of the
union of a sequence open sets that cover the set E, while external Lebesgue inner
measure of a set E uses a supremum of a set inside the set E. Then, it is obvious that

µ��E� � µ��E� �2.4�

for any set E. Also, for A � B,µ��A� � µ��B�.
Theorem 2.2. Let A and E be subsets of �c

#.



(i) Suppose that µ��E� � �#. Then E is measurable if and only if µ��E� � µ��E�.
(ii) If E is measurable and A � E, then µ�E� � µ��A� � µ��E\A�.
Proof. For part (i), suppose that E is a measurable set and let 
 � 0,
 � 0. According
to Theorem 2.9, there exists a #-closed set K such that K � E and µ�E\K� � 
.
Thus,µ��E� � µ��E� � µ�K� � µ�E� � 
 � µ��E� � 
,which implies that the external

inner
measure and external outer measure of E are equal. Now let’s prove the reverse
direction. Suppose that µ��E� � µ��E�. Let 
 � 0,
 � 0. Then
there exists a #-closed set K and an #-open set G such that K � E � G and
µ�K� � µ��E� � 
/2 and µ�G� � µ��E� � 
/2.Then we find that
µ��G\E� � µ��G\K� � µ�G\K� � µ�G� � µ�K� � 
.
According to Theorem 2.9, the set E is measurable.
For part (2), let 
 � 0,
 � 0. There exists a #-closed set K � A such that
µ�K� � µ��A� � 
. Then, µ�E� � µ�K� � µ�E\K� � µ��A� � 
 � µ��E\A�
and it follows that µ�E� � µ��A� � µ��E\A�. According to Theorem 2.9, there
exists a measurable set B such that E\A � B � E and µ�B� � µ��E\A�.
Since E\B � A, it follows that µ��E\B� � µ��A�. Thus,
µ�E� � µ�B� � µ�E\B� � µ��E\A� � µ�E\B� � µ��E\A� � µ��A�.
By combining these two inequalities, we can obtain µ�E� � µ��A� � µ��E\A�.

2.3.External Lebesgue measure
Definition 2.3. A set E � �c

# is Lebesgue measurable if for each set A � �c
#,

the equality µ��A� � µ��A � E� � µ��A � E#� is satisfied. If E is a Lebesgue
measurable set, then the external Lebesgue measure of E is its external Lebesgue
outer measure and will be written as µ�E�.
Since the external Lebesgue outer measure satisfies the property of subadditivity,
then we always have µ��A� � µ��A � E� � µ� A � E# ,E# � �c

#\E and we only need to
check the reverse inequality.
Note that there is always a set E that can divide A into two mutually exclusive sets,
A � E and A � E#. But only when µ��A� � µ��A � E� � µ��A � E#� holds, the set E is
Lebesgue measurable. The latter theorem will show some properties of measurable
sets.
Theorem 2.3. The collection of measurable sets defined on �c

# has the following
properties:
(a) Both 	 and �c

# are measurable.
(b) If E is measurable, then E# is measurable,where E# � �c

#\E.
(c) If µ��E� � 0, then E is measurable.
(d) If E1 and E2 are measurable, then E1 � E2 and E2 � E2 are measurable.
(e) If E is measurable, then E � x0 is measurable.
Proof. For part (a), let A � �c

#.Then
µ��A � 	� � µ��A � 	#� � µ��	� � µ��A� � 0 � µ��A� � µ � �A�,
µ � �A � �c

#� � µ � �A � �c
##� � µ��A� � µ��	� � µ��A� � 0 � µ��A�.

For part (b), if E is measurable, then for every set A � �c
#, such that

µ��A� � µ��A � E� � µ��A � E#�. Then,
µ��A � E#� � µ��A � �E#� � µ��A � E#� � µ��A � E� � µ��A�.
For part (c), let A � �c

# . Since µ�(E) � 0 and A�E � E, then µ�(A�E) � 0.



We can obtain that µ�(A) � µ�(A � E)� µ�(A � E) � µ�(A � E),which implies that
µ�(A) � µ�(A � E) � µ�(A � E) by Theorem 2.1 part (e).
For part (d), let A � �c

# . Note that
A � �E1 � E2� � �A � E1� � �A � E2� � �A � E1� � �A � E1 � E2�
Then, by De Morgan Law and Theorem 14.1 part (e), we know that
µ��A� � µ��A � E1� � µ��A � E1� �
� µ��A � E1� � µ��A � E1 � E2� � µ��A � E1 � E2� � µ��A � �E1 � E2�� �
�µ��A � �E1 � E2��,
showing that E1� E2 is measurable. Since E1 � E2 � �E1 � E2�, then the set
E1 � E2 is measurable by Theorem 12.1 part (b).
For part (e), let A � �c

#. Then,
µ��A� � µ��A � x0� � µ���A � x0� � E� �µ���A � x0� � E#� �
µ����A � x0� � E� � x0� � µ����A � x0� � E#� � x0� �
µ��A � �E � x0�� � µ��A � �E# � x0��.
Therefore, E � x0 is measurable.
Lemma 2.1. Let Ei : 1 � i � n � �# be a gyperfinite collection of disjoint measurable
sets. If A � �c

#, then
µ� � i�1

n
�A � Ei� � µ� A � � i�1

n
Ei � Ext-�

i�1

n
µ��A � Ei�.

Proof. We will prove this by the principle of mathematical induction. When
n � 1, the equality holds. Suppose that the statement is valid for n � 1 disjoint
measurable sets when n � 1. Then, when there are n disjoint measurable sets,

µ� A � � i�1

n
Ei �

� µ� A � � i�1

n
Ei � En � µ� A � � i�1

n
Ei � En

# �

� µ��A � En� � µ� A � � i�1

n�1
Ei �

� µ��A � En� � Ext-�
i�1

n�1
µ��A � Ei� � Ext-�

i�1

n
µ��A � Ei�.

Note that when A � �c
# ,µ �

i�1

n

Ei � Ext-�
i�1

n

µ�Ei�.

Theorem 2.4. If �Ei� i�1
�#

is a hyper infinite sequence of disjoint measurable sets, then

µ � i�1

�#

Ei � Ext-�
i�1

�#

��Ei �. �2.5�

Proof. According to Lemma 2.1, Ext-�
i�1

n

µ�Ei� � µ �
i�1

n

Ei � µ � i�1

�#

Ei

for each positive integer n � �#, which implies that Ext-�
i�1

�#

µ�Ei� � µ � i�1

�#

Ei .

By #-countably subadditive property,Ext-�
i�1

�#

µ�Ei� � µ � i�1

�#

Ei .

Therefore, Ext-�
i�1

�#

µ�Ei� � µ � i�1

�#

Ei .

The previous theorem shows that if A and B are disjoint measurable sets,
then µ�A � B� � µ�A� � µ�B�. If �Ai� i��# is a hyper infinite sequence of disjoint

measurable sets,then µ � i�1

�#

Ei � Ext-�
i�1

�#

µ�Ai�. As so far, we have already

seen that when the sets are measurable, Lebesgue measure satisfies property



(1),(2),(3) and (4). But what kinds of sets are measurable? Certainly every interval is
measurable.
Theorem 2.5. Every interval 	a,b
 � �c

# is measurable.
Theorem 2.6. If �Ei� i��# is a hyper infinite sequence of measurable sets, then

are measurable sets.
Definition 2.4. Let f be a function from E � �c

# into �c
# � ���#,�#�. The

function f is (Lebesgue) measurable if
.

3.External Lebesgue Integral
Let ��,B,�� be the standard Lebesgue space on �.Our internal starting point
could be the internal measure space ���, �B, ���.By transfer we can write down
internal Lebesgue integrals

�	�f�t�
 � "
A

�f�t�d���t�,

where A � �B and f : � � �.

3.1.Lebesgue Integral of a �c
#-valued external function f�x�.

First, in particular, we need external function that can help us distinguish whether
a given value x is in the measurable set Ai . We call this function the characteristic
function. The following statement is the formal definition of characteristic function and
introduces the simple function.
Definition 3.1. For any set A, the function

�A�x� �
1, x � A,

0, otherwise
�3.1�

is called the characteristic function of set A. A linear combination of characteristic
functions,

ϕ�x� � � i�1
n ai�Ai �x� �3.2�

is called a simple function if the sets Ai are measurable.
For a function f : �c

# � �c
# defined on a measurable set A that takes no more than

gyper finitely many distinct values a1, . . . ,an,n � �# the function f can always be written
as a simple function

f�x� � � i�1
n ai�Ai �x�, �3.3�

where Ai � �x � A| f�x� � ai�.That is a simple function of the first kind.
Therefore, simple functions can be thought of as dividing
the range of f, where resulting sets Ai may or may not be intervals.
Let us pause for a second. We want to ask ourselves: is the simple function
ϕ�x� unique? The answer is no. Because we might define different disjoint sets
that have a same function value. The simplest expression is

ϕ�x� � � i�1
n ai�Ai �x� �3.4�

where Ai � �x � A|ϕ�x� � ai�. At this case, the constants ai are distinct, the
sets Ai are disjoint and we call that representation the canonical representation of φ.
Then, for simple functions, we define the Lebesgue integral as follows:



Definition 3.2. If ϕ�x� � � i�1
n ai�Ai �x� is a simple function and µ�Ai� is gyperfinite

for all i, then the Lebesgue integral of ϕ�x� is defined as

"
E
ϕ�x� � � i�1

n ai�Ai �x�. �3.5�

Definition 3.3. Suppose f : �c
# � �c

# is a bounded function defined on a measurable
set E with giperfinite measure. We define the upper and lower Lebesgue integrals if
exist, respectively, as

IL
#�f� � "

E
inf ϕ�x�|ϕ is simple and ϕ � f �3.6�

and

I#L�f� � "
E

sup ϕ�x�|ϕ is simple and ϕ � f . �3.7�

If (i) the quantity IL
#�f� and I#L�f� exist and (ii) IL

#�f� � I#L�f�, then the function f is called
Lebesgue integrable over set E and the external Lebesgue integral of f over set E is
denoted by IL�f� � "

E
fdx.

The Lebesgue Integral for Simple Functions of the second kind
Let ��x� be some simple external function of the second kind which takes on the
gyperinfinitely many distinct values y1, . . . ,yn, . . . ,n � �#,yi 	 yj for i 	 j.
It is natural to define the integral of the function ��x� over the set E by the equation

"
E
��x�d#� � �n��# yn��x|x � E,��x� � yn�. �3.8�

Definition 3.4.The simple function ��x� of the second kind is called integrable (with
respect to the measure �) over the set E if the gyperinfinite series (15.8) #-converges
absolutely.
If ��x� is #-integrable, then the sum of the series (15.8) is called the integral of ��x�
over the set E.
Remark 3.1. Note that in definition 15.4 we assume that all the yn are different. One
can, however, represent the value of the integral of a simple function as a sum of
products of the form ck��Вk� and not assume that all the ck are different.
Lemma 3.1. Let A � �k Bk,Bi � Bj � 	 fori 	 j, and assume that on each set Bk the
function f�x� takes on only one value ck. Then

"
A
��x�d#� � �k��# ck��Bk�. �3.9�

moreover, the function f�x� is integrable over A if and only if the gyper infinite series
(3.9) #-converges absolutely.
Proof. It is easy to see that every set An � �x|x � A, f�x� � yn�
is the union of those Bk for which ck � yn. Therefore
�n��# yn��An� � �n��# yn�ck�yk

��Bk� � �k��# ck��Bk�.Since the measure is

non-negative,�n��#|yn|��An� � �n��#|yn|�ck�yk
��Bk� � �k��#|ck|��Bk�.

i.e., the series �n��# yn��An� and�k��#|ck|��Bk� both either #-converge

absolutely or #-diverge.
Let us consider some properties of the external Lebesgue integral for simple external
functions:

"
A

f�x�d#� � "
A

g�x�d#� � "
A
	f�x� � g�x�
d#� �3.10�

moreover, from the existence of the integrals on the left-hand side it follows that the
integrals on the right-hand side exist.



To prove this assume that f�x� takes on the values f i , on the sets F i � A, and g�x� the
values gi , on the sets Gi � A, since

J1 � "
A

f�x�d#� � � i��# f i��F i� �3.11�

and

J2 � "
A

g�x�d#� � � i��# gi��Gj�. �3.12�

Then, by the Lemma 2.1 we get

J � "
A
	f�x� � g�x�
d#� � � i��#� j��#	f i � gj 
��F i � Gj�, �3.13�

where

��F i� � � j��# ��F i � Gj�,��Gj� � � i��# ��F i � Gj�. �3.14�

From the absolute #-convergence of the series (3.11)-(3.12) it follows the absolute
#-convergence of the series (3.13); here J � J1 � J2.
For any constant k � �c

#

k"
A

f�x�d#� � "
A
	kf�x�
d#� �3.15�

moreover, the existence of the integral on the left-hand side implies the existence of
the

integral on the right.A simple function f�x� which is bounded on the set A � �c
# is

#-integrable over A; moreover, if |f�x�| � M � �c
# on A, then

"
A

f�x�d#� � M��A�. �3.16�

4.General Definition and Basic Properties of the external
Lebesgue Integral.

Definition.4.1. We shall say that the function f�z� is #-integrable over the set A � �c
#, if

there exists a hyper infinite sequence of simple functions fn�z�,n � �# which are
#-integrable over A and #-converge uniformly to f�x�. We shall denote the #-limit

J � #-limn��# "
A

fn�x�d#� �4.1�

by

"
A

f�x�d#�. �4.2�

and call it the integral of the external function f : �c
# � �c

# over the set A.
This definition 4.1 is correct if the following conditions are satisfied:
1.The #-limit (4.1) for any uniformly #-convergent hyperinfinite sequence of simple
functions which are #-integrable over A exists.
2.This #-limit for a given function f(x) does not depend on the choice of the

hyperinfinite
sequence �fn�x��n��#.
3.For simple functions the definitions of #-integrability and #-integral are equivalent to
those given in section 3.
Notice that all these conditions are indeed satisfied.
To prove the first it suffices to note that by properties for #-integrals of simple

functions,



"
A

fn�x�d#� � "
A

fm�x�d#� � ��A�supx�A|fn�x� � fm�x�|. �4.3�

To prove the second condition, we must consider the two hyperinfinite sequences

�fn�x��n��# and �fn
��x��n��#, and use the inequality

"
A

fn�x�d#� � "
A

fn
��x�d#� � ��A� supx�A|fn�x� � f�x�| � supx�A fn

��x� � f�x� . �4.4�

Finally, to prove the third condition it suffices to consider the hyperinfinite sequence
fn�x� � f�x�.
The basic properties of the external Lebesgue #-integral.
Theorem 4.1.

"
A

1 � d#� � ��A�. �4.5�

Proof. Immediately from the definition of the #-integral.
Theorem 4.2.For any constant k � �c

#

k"
A

f�x�d#� � "
A
	kf�x�
d#� �4.6�

where the existence of the #-integral on the left-hand side implies the existence of the
#-integral on the right.
Proof. The proof is obtained from property (8.15) by proceeding to the #-limit for an
#-integral of simple functions.
Theorem 4.3. Assume that f�x� and g�x� are #-integrable over A then f�x� � g�x�
#-integrable over A and

"
A

f�x�d#� � "
A

g�x�d#� � "
A
	f�x� � g�x�
d#� �4.7�

Let �f i�x�� i�1
n ,n � �# be a hyperfinite sequence such that any f i�x� is #-integrable over

A

then�
i�1

n
f i�x� is #-integrable over A and

�
i�1

n "
A

f i�x�d#� � "
A
�

i�1

n
f i�x� d#� �4.8�

where the existence of the #-integrals on the left implies the existence of the #-integral
on the right.
Proof. The proof of (4.7) is obtained from property A) by proceeding to the #-limit for

an
#-integral of simple functions.
Theorem 4.4. A function f : A � �c

# which is hyperbounded on the set A is #-integrable
over A.
Proof. The proof is obtained from property C) by proceeding to the limit for an integral

of
simple functions.
Theorem 4.5. If f�x� � 0, then

"
A

f�x�d#� � 0 �4.9�

assuming that the #-integral exists.

Proof. For simple functions this follows immediately from the definition; for the general



case the proof is based on the possibility of approximating non-negative functions by
non-negative simple functions
Corollary 4.1. If f�x� � g�x�, then

"
A

f�x�d#� � "
A

g�x�d#�. �4.10�

Chapter III.��c
#-Valued abstract measures

1.σ#-algebras
Definition 1.1 (σ#-algebra). Let X be any set. We denote by 2X � P�X� � �A : A � X�
the set of all subsets of X.A family � � 2X is called a σ#-algebra (on X) if:
(i) 	 � �;
(ii) � is closed under complements, i.e. A � � implies X\A � �;
(iii) � is closed under hypercountable unions, i.e. if �An�n��# is a hyper infinite
sequence in � then �n��# An � �.

Proposition 1.1.If � is a σ#-algebra on X then:
1. � is closed under hypercountable intersections, i.e. if �An�n��# is a hyper infinite
sequence in � then �

n��#

An � �.

2. X � �.
3. � is closed under hyperfinite unions and hyperfinite intersections.
4. � is closed under set differences.
5. � is closed under symmetric differences.
Proposition 1.2.Suppose � � 2X is a family of subsets satisfying the following:
1. 	 � �;
2. � is closed under complements;
3. � is closed under hyperinfinite intersections.
Then � is a σ#-algebra.
Proposition 1.3.If ��α�α�I is a collection of σ#-algebras on X, then �

�
�α is also a

σ#-algebra on X.
Proposition 1.4.(σ#-algebra generated by subsets). Let K be a collection of subsets
of X.There exists a σ#-algebra, denoted σ#�K� such that K � σ#�K� and for every other
σ# algebra � such that K � � we have that σ#�K� � �
We call σ#�K� the σ#-algebra generated by K.
Proof. Define σ#�K� � ���|� is a σ#-algebra on X,K � ��.
This is a σ#-algebra with the required properties.
Proposition 1.5.If K � � then σ#�K� � σ#���. Also, if K � � and � is a
σ#-algebra, then σ#�K� � �.
Definition 1.2. (Borel σ#-algebra). Given a topological space X, the Borel σ#-algebra
is the σ#-algebra generated by the open sets. It is denoted B#�X�.
Specifically in the case X � ��c

#d,d � �#we have that
Bd

# � B#���c
#d� � σ#�U|U is an #-open set �.

A Borel-#-measurable set, i.e. a set in B#�X�, is called a #-Borel set.
Measurable functions. Let f be a ��c

#-valued function defined on a set X. We
suppose that some σ#-algebra  � P�X� is fixed.
Definition 1.3. We say that f is #-measurable, if f �1�	a,b
� �  for any hyperreals



a,b � ��c
# such that a � b.

The following three propositions are obvious.
Proposition 1.7. Let f : X � ��c

# be a function. Then the following conditions
are equivalent:
(a) f is #-measurable;
(b) f�1�	0,b�� �  for any hyperreal b � ��c

#;
(c) f�1��b,��� �  for any hyperreal b � ��c

#;
(d) f�1�B� �  for any B � B�R�.
Proposition 1.8 Let f and g be #-measurable functions, then
(a) α 
 f � β 
 g is #-measurable for any α,β � ��c

#;
(b) functions max�f,g� and f 
 g are #-measurable.
In particular, functions f � :� max�f, 0�, f � :� ��f� �, and |f|:� f � � f � are
#-measurable. .

§2.#-Measures and measure #-space
Definition 2.1. A pair �X,�� where � is a σ#-algebra on X is call a #-measurable
space. Elements of � are called #-measurable sets.
Given a #-measurable space �X,��, a function µ# : � � 	0,�#
 is called a #-measure
on �X,�� if
1. µ#�	� � 0;
2. (Hyper infinite additivity) For all hyper infinite sequences �An�n��# � � of pairwise

disjoint sets in �, we have that µ# �
n��#

An � Ext-�
n��#

µ#�An�.

�X,�,µ#� is called a #-measure space.
Definition 2.2. A measure space �X,�,µ#� is called: (a) hyperfinite if µ#�X� � �#.
(b)It is called σ#-hyperfinite if X � �

n��#

An where An � � and µ#�An� � �# for all n � �#.

Definition 2.3. Let Σ be a σ#-algebra of subsets of a set X, and let E � �E,�·�#� be
a non-Archimedean Banach space.A function µ# : Σ � E � ���� is called a
vector-valued #-measure (or E-valued measure) if
(a) µ#�	� � 0;

(b) µ# �
n��#

An � Ext-�
n��#

µ#�An� for any pairwise disjoint sequence An,n � �#,

An � Σ;
(c) for any S � Σ, µ#�S� � �, there exists B � Σ such that B � Sand
0 � �µ#�B��# �

��.

Definition 2.4.(a) A function µ# : � � ��c
# � ���� is called a complex #-measure

if
1.µ#�$� � 0,

2.µ# �
n��#

An � Ext-�
n��#

µ#�An� for any sequence An,n � �# of pairwise disjoint

sets from �, and, for any A � �,µ#�A� � ��, there exists B � � such that
B � A and 0 � |µ#�B�|# �

��.

(b) A function µ# : � � ��c
# � ���� is called a signed #-measure if



µ#�$� � 0

µ# �
n��#

An � Ext-�
n��#

µ#�An� for any sequence An,n � �# of pairwise disjoint

sets from �, , and, for any A � �,µ#�A� � ��, there exists B � � such that
B � A and 0 � |µ#�B�|� ��.
Definition 2.5. If a certain property involving the points of #-measure space is true,
except a subset having #-measure zero, then we say that this property is true
#-almost everywhere (abbreviated as #-a.e.).
Proposition 2.5. Let µ# be a #-measure on a σ#-algebra �,An � �, and An � A.
Then A � � and µ#�A� � #-lim n��� µ#�An�. In particular, if �Bn�n�1

�� is a decreasing
hyper infinite sequence of elements of � such that �n�1

�� Bn � $, then µ#�Bn� �# 0.
Definition 2.6. If � is a σ#-algebra of subsets of X and µ# is a #-measure on �,
then the triple �X,�,µ� is called a #-measure space. The sets belonging to �
are called #-measurable sets because the #-measure is defined for them. .

§2.1.#-Convergence of functions and the generalized
Egoroff theorem.

Definition 2.1.1. Let fn,n � �# be a hyper infinite sequence of ��c
#-valued functions

defined on X. We say that:
1. fn �# f pointwise, if fn�x� �# f�x� for all x � X;
2. fn �# f almost #-everywhere (#-a.e.), if fn�x� �# f�x� for all x � X except
a set of #-measure 0;
3. fn �# f uniformly, if for any ε � 0,
 � 0 there is n�ε� such that
sup�|fn�x� � f�x�|: x � X� � ε for all n � n�ε�.
Theorem 2.1.1. (generalized Egoroff ’s theorem) Suppose that µ#�X� � ��,
�fn�n�1

�� and f are #-measurable functions on X such that fn �# f #-a.e. Then, for
every 
 � 0,ε � 0,there exists E � X such that µ#�E� � ε and fn �# f uniformly on
Ec � X\E.
Proof: Without loss of generality, we may assume that fn �# f everywhere on
X and (by replacing fn with fn � f) that f � 0. For k, n � ��, let

En�k� :� �
m�n

��

�x : |fm�x�|� k � 1�.Then, for a fixed k,En�k� decreases as n increases,

and �
n�1

��

En�k� � $. Since µ#�X� � ��, we conclude that µ#�En�k�� �# 0 as n � ��.

Given 
 � 0,ε � 0 and ��, choose nk such that µ#�Enk�k�� � ε 
 2�k, and set

E ��
n�1

��

Enk�k�.Then µ#�E� � ε, and we have |fn�x�|� k�1��n � nk,x � E�.

Thus fn �# 0 uniformly on X\E.

Generalized exhaustion argument.
Let �X,Σ,µ#� be a σ#-finite #-measure space. Given a hyper infinite sequence
�Un�n�1

�� � Σ, a set A � Σ is called �Un�n-bounded if there exists n � �� such that
A � Un µ#-almost everywhere.
Theorem 2.1.2. (Generalized Exhaustion theorem) Let �Yn�n�1

�� � Σ be a



hyper infinite sequence satisfying Yn � X and µ#�Yn� � �� for all n � ��.
Let P be some property of �Yn�n-bounded
#-measurable sets, such that A � P iff B � P for all B,µ#�A	B� � 0. Suppose
that any �Yn�n-bounded set A, µ#�A� � 0, has a subset B � Σ,µ#�B� � 0 with the
property P. Moreover, assume that either
(a) A1 � A2 � P for every A1,A2 � P, or
(b) �n��� Bn � P for every at most hyper infinite family �Bn�n of pairwise disjoint
sets possessing the property P.
Then there exists hyper infinite sequence �Xn�n�1

�� � Σ such that Xn � X, and
P % Xn � Yn

for all n � ��. Moreover, there exists a pairwise disjoint sequence �An�n�1
�� � Σ

such that �n��� An � X and An � P for all n � ��.
Proof: Let A be a �Yn�n-bounded set with µ#�A� � 0. Denote
PA :� �B � P : B � A��m�A� :� sup�µ#�B� : B � PA�.
I(a) Suppose P satisfies (a). Then there exists a sequence �Fn�n�1

�� � PA such
that m�A� � #-lim n��� µ#�Fn�, We may assume, that Fn �. By Proposition 2.5
the set F � �n�1

�� Fn satisfies µ#�F� � m�A�. We show that µ#�A� � m�A�. If not
then µ#�A\F� � 0. The set A\F has a subset of positive #-measure F0 � P.
Then Fn � F0 � PA and µ#�Fn � F0� � m�A� for a sufficiently large n � ��, which
contradicts to the definition of m�A�. Therefore, µ#�A� � m�A�.
Now we apply this for A � Yn. Thus, there exists hyper infinite sequence �Xn

� �n � Σ
such that Xn

� � Yn, Xn
� ,n � P, and µ#�Yn\Xn

� � � n�1for all n � ��. By (a), we may
assume that Xn

� �. The set X0
� � �n�1

�� Xn
� satisfies Yn\X0

� � Yn\Xn
� , so µ#�Yn\X0

� � � n�1

for all n � ��. Then µ#�Yn\X0
� � � 0, and µ#���n�1

�� Yn�\X0
� � � 0, or µ#�X\X0

� � � 0.
Let Xn � �Xn

� � �X\X0
� � � Yn, then the hyper infinite sequence �Xn�n has the required

properties. The desired pairwise disjoint sequence �An�n�1
�� is given recurrently by

A1 � X1and Ak�1 � Xk�1\ � i�1
k Ai .

I(b) Suppose P satisfies (b). Let FA be the family of all pairwise disjoint
families of elements of PA of nonzero measure. Then FA is ordered by inclusion
and, obviously, satisfies the conditions of the Zorn lemma. Therefore, we have
a maximal element in FA, say &. Then & is at most hyper infinite family, say
& � �Dn�n. By (b), its union D � �n Dn is an element of PA as well. If D is
a proper subset of A, then µ#�A\D� � 0. The set A\D has a subset F � P
of the positive measure. Then &1 :� & � �F� is an element of FA which is
strictly greater then &. The obtained contradiction, shows that A � P for every
�Yn�n-bounded set A. So, we may take Xn � Yn for each n � ��.
Now we apply this for A � Zm � Ym\ �k�1

m�1 Yk be a pairwise
disjoint union, where Dn

m � P for all n,m � ��. The family �Dn
m�n,m is an at most

hyper infinite disjoint decomposition of X, say �Dn
m�n,m � �An�n�1

�� . The sequence
�An�n�1

�� satisfies the required properties.
Theorem 2.1.3.(The generalized Borel-Cantelli lemma) Let �X,Σ,µ#� be a
#-measure space. Assume that �An�n � Σ and Ext-�n�1

�� µ�An� � �� then

lim supn��� µ#�An� � 0. .

§2.2.Vector-valued #-measures
In this section, we extend the notion of a measure. Then we study the basic



operations with signed measures and present the Jordan decomposition theorem.

2.2.1. Vector-valued, signed and complex #-measures.
Let Σ# be a σ#-algebra of subsets of a set X, and let E# � �E#,���#� be a
non-Archimedean Banach space.
Definition 2.2.1 A function µ# : Σ# � E# � ���� is called a vector-valued
#-measure (or E#-valued measure) if
(a) µ#�$� � 0;
(b) µ#��k�1

�� Ak� � Ext-�k�1

�� µ#�Ak� for any pairwise disjoint sequence �Ak�k � Σ#;

(c) for any A � Σ#,µ#�A� � ��, there exists B � Σ# such that B � A and
0 � �µ#�B��# �

��.

Example 2.2.1 Take Σ# � P����, and c0
# is the non-Archimedean Banach space

of all #-convergent �c
#-valuedhyper infinite sequences with a fixed element

�αn�n � c0
#. Define now for any A � �ψ�A� :� �βn�n,

where βn � αn if n � A and βn � 0 if n � A. Then ψ is a c0
#-valued #-measure on

P����.
Example 2.2.2 Let X be a set and let  be a σ#-algebra in P�X�. Then for any
family �µk�k�1

m of finite #-measures on  and for any family �wk�k�1
m of vectors of

�c
#n, the �c

#n-valued #-measure Ψ on  is defined by the formula
Ψ�E� � Ext-�k�1

m µk�E� 
 wk,�E �  �.
Example2.2.3 Let X be a set and let  be a σ#-algebra in P�X�. Then for
any family �µk�k�1

m of finite #-measures on  , for any family �Ak�k�1
m of pairwise

disjoint sets in  , and for any family �wk�k�1
m of �c

#n,n � ��, the �c
#n-valued

#-measure Φ on  is defined by the formula Φ�E� � Ext-�k�1
m µk�E � Ak� 
 wk,

�E �  �.

§3. The Lebesgue #-Integral
In the following consideration, we fix a σ#-finite #-measure space �X,�,µ#�.
Definition 3.1.Let Ai � �, i � 1, . . . ,n � ��, be such that µ#�Ai� � �� for all i, and
Ai � Aj � $ for all i 	 j. The external function

f�x� � Ext-�
i�1

n
λ iχAi �x�, �3.1�

λ i � ��c
#, is called a simple external function. The Lebesgue external integral

(Lebesgue #-integral) of a simple external function f�x� is defined as

Ext- "
X

f�x�d#µ# � Ext-�
i�1

n
λ iµ#�Ai �. �3.2�

The Lebesgue external integral of a simple function is well defined.
Notation 3.1.Let Ai � �, i � 1, . . . ,n � ��, be such that µ#�Ai� � �� for all i, and
Ai � Aj � $ for all i 	 j. Let f1�x�, f2�x� be a simple external function such that
(i) 0 � f1�x� � f2�x� and (ii) f1�x� � Ext-�

i�1

n
λ1,iχAi �x�, f2�x� � Ext-�

i�1

n
λ2,iχAi �x�.

Ext-�
i�1

n
λ1,i � Ext-�

i�1

n
λ2,i , �3.3�

then we will write f1�x� �s f2�x�.
Definition 3.2. Suppose that µ# is hyperfinite. Let f : X � ��c

# be an arbitrary
nonnegative bounded in ��c

# #-measurable external function and let �fn�n��� , be a



hyper infinite sequence of simple external functions which #-converges uniformly
to f. Then the Lebesgue #-integral of f is

Ext- "
X

f�x�d#µ# � #- lim n�� � Ext- "
X

fn�x�d#µ# . �3.4�

Remark 3.1.It can be easily shown that the #-limit in Definition 3.2 exists and does
not depend on the choice of a hyper infinite sequence �fn�n��� , and moreover, the

hyper infinite sequence �fn�n���can be chosen such that 0 � fn � f for all n � ��.

Notation 3.2.Let f1 : X � ��c
# and f2 : X � ��c

# be an arbitrary nonnegative
bounded in ��c

# #-measurable external functions and let �f1,n�n��� and �f2,n�n���be

a hyper infinite sequences of simple external functions which #-converges uniformly
to f1 and to f2 correspondingly. We assume that for all n � �� the inequality (3.3)
is satisfied, then we will write f1�x� �s f2�x�.

Definition 3.3. Let f : X � ��c
# be a #-measurable function. Then the Lebesgue

#-integral of f is defined by

Ext- "
X

f�x�d#µ# � Ext- "
X

f !�x�d#µ# � Ext- "
X

f ��x�d#µ#. �3.5�

If both of these terms are finite or hyperfinite then the function f is called #-integrable.
In this case we write f � L1

# � L1
#�X,�,µ#�.

Notation 3.3.We will use the following notation. For any A � � :

Ext- "
A

f�x�d#µ# � Ext- "
X

f�x��A�x�d#µ#. �3.6�

Lemma 3.1.(1) Let f : X � ��c
# be an arbitrary nonnegative #-measurable function

then

Ext- "
X

f�x�d#µ# �

sup Ext- "
X
��x�d#µ# φ is a simple function such that 0 � φ�x� �s f�x� .

�3.7�

(2) If f,g : X � ��c
# are #-measurable, g is #-integrable, and |f�x�|�s g�x�, then f

is #-integrable and

Ext- "
X

f�x�d#µ# � Ext- "
X

g�x�d#µ#. �3.8�

(3) Ext-"
X
|f�x�|d#µ# � 0 if and only if f�x� � 0 #-a.e.

(4) If f1, f2, . . .fn : X � ��c
#,n � �� are integrable then, for λ1,λ2, . . . ,λn � ��c

#,
the linear combination Ext-� i�1

n
λ i f i is #-integrable and

Ext- "
X

Ext-� i�1
n
λ i f i d#µ# � Ext-� i�1

n Ext- "
X
λ i f id#µ# . �3.9�

(5) Let f � L1
#�X,�,µ#�, then the formula

ν#�A� � Ext- "
A

f�x�d#µ# � Ext- "
X

f�x��A�x�d#µ# �3.10�

defines a signed #-measure on the σ#-algebra �.
Remark 3.2. Assume that f,g : X � ��c

# are #-integrable functions and such that
0 � f �s g #-a.e., then



Ext-"
X

f�x�d#µ# � Ext-"
X

g�x�d#µ#.

#-Convergence theorem
Definition 3.4. We say that a hyper infinite sequence �fn�n�1

�� of #-integrable functions
L1

#-#-converges to f (or #-converges in L1
#�X,�,µ#�) if

Ext- "
X
|fn � f|d#µ# �# 0 as n � ��. �3.11�

Theorem 3.1 (The monotone #-convergence theorem) If �fn�n�1

�� is a hyper infinite
sequence in L1

#!�X,�,µ#� such that f j �s f j�1 for all j and f�x� � supn��� fn�x� then

Ext- "
X

f�x�d#µ# � #- lim n��� Ext- "
X

fn�x�d#µ#. �3.12�

Proof: The #-limit of the increasing sequence

Ext- "
X

fn�x�d#µ#

n�1

��

(�-finite or �-infinite) exists. Moreover by (3.2),

Ext-"
X

fn�x�d#µ# � Ext-"
X

f�x�d#µ#

for all n � ��, so

#-lim n��� Ext- "
X

fn�x�d#µ# � Ext-"
X

f�x�d#µ#.

To establish the reverse inequality, fix α � �0,1), let φ be a simple function with
0 � φ � f, and let En � �x : fn�x� � αφ�x��. Then �En�n�1

�� is an increasing hyper
infinite sequence of #-measurable sets whose union is X, and we have

Ext- "
X

fn�x�d#µ# � Ext- "
En

fn�x�d#µ# � � Ext- "
En

��x�d#µ# �3.13�

By (3.10) and by Proposition 2.5,

#- lim n��� Ext- "
En

��x�d#µ# � Ext- "
X
��x�d#µ#, �3.14�

and hence

#- lim n��� Ext- "
En

fn�x�d#µ# � � Ext- "
X
��x�d#µ# . �3.15�

Since this is true for all α, 0 � α � 1, it remains true for α � 1 :

#- lim n��� Ext- "
En

fn�x�d#µ# � Ext- "
X
��x�d#µ#. �3.16�

Using Lemma 3.1.(1), we may take the supremum over all simple functions φ,
0 � φ �s f. Thus

#- lim n��� Ext- "
En

fn�x�d#µ# � Ext- "
X

f�x�d#µ#. �3.17�

Proofs of the following two corollaries of Theorem 3.1 are straightforward.
Corollary 3.1 If �fn�n�1

�� is a hyper infinite sequence in L�1�X� and f � Ext-�n�1

�� fn

pointwise then

Ext- "
X

f�x�d#µ# � Ext-�n�1

�� Ext- "
X

fn�x�d#µ# . �3.18�

Corollary 3.2 If �fn�n�1
�� is a hyper infinite sequence in L�1�X�, f � L�1�X�, and

fn �# f µ#-a.e., then



Ext- "
X

fn�x�d#µ# �# Ext- "
X

f�x�d#µ#. �3.19�

Theorem 3.2 (Generalized Fatou’s lemma) If �fn�n�1
�� is any hyper infinite sequence

in L�1�X� then

Ext- "
X

#- lim inf n����fn�x��d#µ# � #- lim inf n��� Ext- "
X

fn�x�d#µ# . �3.20�

Theorem 3.3 (The dominated #-convergence theorem) Let f and g be #-measurable,
let fn be #-measurable for any n � �� such that |fn�x�|�s g�x� #-a.e., and fn �# f
#-a.e. If g is #-integrable then f and fn are also #-integrable and

Ext- "
X

f�x�d#µ# � #- lim n��� Ext- "
X

fn�x�d#µ#. �3.21�

Proof: f is #-measurable and, since f �s g µ#-a.e., we have

f � L�1�X�. We have that g � fn � 0 µ#-a.e. and g � fn � 0 so, by Fatou’s lemma,

Ext- "
X

gd#µ# � Ext- "
X

fd#µ# � #- lim inf n��� Ext- "
X
	g � fn
d#µ# �

Ext- "
X

gd#µ# � #- lim inf n��� Ext- "
X

fnd#µ# ,

Ext- "
X

gd#µ# � Ext- "
X

fd#µ# � #- lim inf n��� Ext- "
X
	g � fn
d#µ# �

� Ext- "
X

gd#µ# � #- lim supn��� Ext- "
X

fnd#µ#

�3.22�

Therefore

#- lim inf n��� Ext- "
X

fnd#µ# � Ext- "
X

fd#µ# � #- lim supn��� Ext- "
X

fnd#µ# �3.23�

and the required result follows from (3.23).

§ 4. #-Convergence in #-measure.
Definition 4.1. We say that a hyper infinite sequence �fn�n�1

�� of #-measurable
functions on �X,M,µ#� is Cauchy in #-measure if, for every 
 � 0,ε � 0,

µ#��x : |fn�x� � fm�x�|� ε�� �# 0 as m,n � ��, �4.1�

and that �fn�n�1

�� #-converges in #-measure to f if, for every 
 � 0,ε � 0,

µ#��x : |fn�x� � f�x�|� ε�� �# 0 as n � ��. �4.2�

Proposition 4.1. If fn �# f in L1 then fn �# f in #-measure.
Proof. Let En,ε � �x : |fn�x� � f�x�|� ε�. Then

Ext-"
X

fn � f dµ# � Ext-"
En,ε

fn � f dµ# � εµ#�En,ε�,

so µ�En,ε� � ε�1Ext-"
X

fn � f dµ# �# 0.

Theorem 3.1. Suppose that �fn�n�1

�� is Cauchy in #-measure. Then there is a
#-measurable function f such that fn �# f in #-measure, and there is a
hyper infinite subsequence �fnj � j��� that #-converges to f #-a.e. Moreover, if
fn �# g in #-measure then g � f #-a.e.
Proof. We can choose a hyper infinite subsequence �gj� j � �fnj � j of �fn�n�1

�� such

that if Ej � �x : |gj�x� � gj�1�x�|� 2�j� then µ#�Ej� � 2�j . If Fk � �
j�k

��
Ej then



µ#�Fk� � Ext-�
j�k

��
2�j � 21�k, and if x � Fk we have for i � j � k

|gj�x� � gi�x�|� Ext-�
l�j

i�1

|gl�1�x� � gl�x�|� Ext-�
l�j

i�1

� 21�j . �4.3�

Thus �gj� j is pointwise Cauchy on Fk
c. Let F � �

k�1

��
Fk � lim supj Ej .Then µ#�F� � 0,

and if we set f�x� � lim j��� gj�x� for x � F, and f�x� � 0 for x � F, then f is
#-measurable and gj �# f a.e. By (4.3), we have that |gj�x� � f�x�|� 21�j for x � Fk

and j � k. Since µ#�Fk� �# 0 as k � ��, it follows that gj �# f in #-measure,
because

�x : |fn�x� � f�x�|� ε� � �x : |fn�x� � gj�x�|� �1/2�ε� � �x : |gj�x� � f�x�|� �1/2�ε�, �4.4�

and the sets on the right both have infinte small #-measure when n and j are infinte
large. Likewise, if fn �# g in #-measure

�x : |f�x� � g�x�|� ε� � �x : |f�x� � fn�x�|� �1/2�ε� � �x : |fn�x� � g�x�|� �1/2�ε� �4.5�

for all n � ��, hence µ#��x : |f�x� � g�x�|� ε�� � 0 for all ε � 0, and f � g #-a.e.
Theorem 3.2 Let fn �# f in L1

# then there is a hyper infinite subsequence �fnk�k

such that fnk �# f #-a.e.
Proof. Let En, ε � �x : |fn�x� � f�x�|� ε�.Then

Ext- "
X
|fn � f|d#µ � Ext- "

En,ε

|fn � f|d#µ � εµ#�En,ε�,

so µ#�En,ε� �# 0. Then, by Theorem 3.1, there is a hyper infinite subsequence
�fnk�k such that fnk � f #-a.e.

§ 5.The Extension of #-Measure

§ 5.1.Outer #-measures.
Definition 5.1.1. Let X be a nonempty set. An outer #-measure

(or #-submeasure) on X is a function ξ# : P�X� � 	0,��
,P�X� � P�X� that
satisfies:
(a) ξ#�$� � 0;
(b) ξ#�A� � ξ�B� if A � B;

(c) ξ# �
j�1

��
Aj � Ext-�

j�1

��
ξ#�Aj� for all hyper infinite sequences �Aj� j�1

�� in P�X�.

The common way to obtain an outer #-measure is to start with a family G of
“elementary sets” on which a notion of measure is defined (such as rectangles
or cubes in ��c

#nand then approximate arbitrary sets from the outside by hyper
infinite unions of members of G.

Proposition 5.1.1 Let G � P�X� be a set such that $ � G,X � G and let
ρ : G � 	0,��
 be a function such that ρ�$� � 0. For any A � X, define

ξ#�A� � ρ��A� � inf Ext-�
j�1

��
ρ�Gj� : Gj � G and A � �

j�1

��
Gj . �5.1.1�

if ρ��A� exists. Then ξ# is an outer #-measure.
Definition 5.1.2.We will say that A � X is admissible if ρ��A� exists.



Proof. For any admissible A � X, ξ#�A� is well defined. Obviously ξ#�$� � 0.

To prove �-countable subadditivity, suppose �Aj� j�1
�� � P�X� and 
 �,ε � 0.

For each j � ��, there exists �Gk
j �k�1

�� � G such that Aj � �
k�1

��
Gk

j and

Ext-�
k�1

��
ρ�Gk

j � � ξ#�Aj� � ε2�j .Then if A � �
j�1

��
Aj , we have A � �

j,k�1

��
Gk

j and

Ext-�
j,k�1

��
ρ�Gk

j � � �
j�1

��
ξ�Aj� � ε,whence ξ#�A� � Ext-�

j�1

��
ξ#�Aj� � ε. Since ε � 0 is

arbitrary, we have done.
Definition 5.1.3. A set A � X is called ξ#-measurable if ρ��A� exists and
�B � X such that ρ��B� exists the equality (5.1.2) holds

ξ#�B� � ξ#�B � A� � ξ#�B � �X\A��. �5.1.2�

Of course, the inequality ξ#�B� � ξ#�B � A� � ξ#�B � �X\A�� holds for any
(admissible) set A and B.
So, to prove that A is ξ#-measurable, it suffices to prove the reverse inequality,
which is trivial if ξ#�B� � ��. Thus, we see that A is ξ#-measurable iff for
any admissible B � X,ξ#�B� � ��

ξ#�B� � ξ#�B � A� � ξ#�B � �X\A��. �5.1.3�

Theorem 5.1.1 (Generalized Caratheodory’s theorem) Let ξ# be an outer
#-measure on X. Then the family Σ of all ξ#-measurable sets is a σ#-algebra, and
the restriction of ξ# to Σ is a complete #-measure.
Proof: First, we observe that Σ is closed under complements, since the definition
of ξ#-measurability of A is symmetric in A and Ac � X\A. Next, if A,B � Σ and
E � X,
ξ#�E� � ξ#�E � A� � ξ#�E � Ac� � ξ#�E � A � B� � ξ#�E � A � Bc� � ξ#�E � Ac� B� �
�ξ#�E � Ac � Bc�.
But �A � B� � �A � B� � �A � Bc� � �Ac � B� so, by subadditivity,
ξ#�E � A � B� � ξ#�E � A � Bc� � ξ#�E � Ac � B� � ξ#�E � �A � B��,
and hence ξ#�E� � ξ#�E � �A � B�� � ξ#�E � �A � B�c�.
It follows that A � B � Σ, so Σ is an algebra. Moreover, if A,B � Σ and
A � B � $,ξ#�A � B� � ξ#��A � B� � A� � ξ#��A � B� � Ac� � ξ#�A� � ξ#�B�,
so ξ# is hyperfinitely additive on Σ.
To show that Σ is a σ#-algebra, it suffices to show that Σ is closed under
�-countable disjoint unions. If �Aj� j�1

�� is a sequence of disjoint sets in Σ, set

Bn � �
j�1

n

Aj � B � �
j�1

��
Aj .Then, for any admissible E � X,

ξ#�E � Bn� � ξ#�E � Bn � An� � ξ#�E � Bn � An
c� � ξ#�E � An� � ξ#�E � Bn�1�,

so a hyperfinite induction shows that ξ#�E � Bn� � Ext-�
j�1

n

ξ#�E � Aj�. Therefore

ξ#�E� � ξ#�E � Bn� � ξ#�E � Bn
c� � Ext-�

j�1

n

ξ#�E � Aj� � ξ�E � Bc�

and, letting n � ��, we obtain

ξ#�E� � Ext-�
j�1

��
ξ#�E � Aj� � ξ#�E � Bc� � ξ# �

j�1

��
E � Aj � ξ#�E � Bc� � ξ#�E � B� �



�ξ#�E � Bc� � ξ#�E�.
Thus the inequalities in this last calculation become equalities. It follows B � Σ.

Taking E � B we have ξ#�B� � Ext-�
j�1

��
ξ#�Aj�, so ξ# is σ#-additive on Σ. Finally, if

ξ#�A� � 0 then we have for any admissible set E � X
ξ#�E� � ξ#�E � A� � ξ#�E � Ac� � ξ#�E � Ac� � ξ#�E�, so A � Σ.
Therefore ξ#�E � A� � 0 and ξ#|Σ is a complete #-measure.
Combination of Proposition 5.1.1 and Theorem 5.1.1 gives the following corollary
which is also called generalized Caratheodory’s theorem.
Corollary 5.1.1 Let G � P�X� be a set such that $ � G,X � G, and let
ρ : G � 	0,��
 satisfy ρ�$� � 0. Then the family Σ of all ρ� #-measurable sets
(where ρ�is given by (5.1.1)) is a σ#-algebra, and the restriction ρ�|Σ of ρ� to Σ is a
complete #-measure.
Definition 5.1.4 Let A be an algebra of subsets of X, i.e. A contains $ and X, and
A is closed under hyperfinite intersections and complements. A function

ζ : A � 	0,��
 is called a #-premeasure if ζ�$� � 0 and ζ �
j�1

��
Aj � Ext-�

j�1

��
ζ�Aj� for

any disjoint sequence �Aj� j��� of elements of A such that �
j�1

��
Aj � A.

Theorem 5.1.2 If ζ is a #-premeasure on an algebra A � P�X� and
ζ� : P�X� � 	0,��
 is given by (5.1.1) then ζ�|A � ζ and every A � A is
ζ� #-measurable.

§ 5.2.The Lebesgue and Lebesgue – Stieltjes #-measure
on ��c

#.
The most important application of generalized Caratheodory’s theorem is the
construction of the Lebesgue #-measure on ��c

#. Take G as the set of all intervals
	a,b
, where a,b � ��c

# � ����,���� and 	a,b
 � $ if a � b. Define the
function ρ : G � ��c

# � ���� by

�a�b�a � b� 	ρ�	a,b
� � b � a
 and �a�b�a � b�	ρ�	a,b
� � 0
. �5.2.1�

The function ρ has the obvious extension (which we denote also by ρ) to the
algebra A generated by all intervals, and this extension is a #-premeasure on A.
The σ#-algebra Σ given by Corollary 5.1.1 is called the the Lebesgue σ#-algebra
in R, and the restriction of ρ� to Σ � Σ���c

#� is called the Lebesgue #-measure
on ��c

# and is denoted by µ#. By Theorem 5.1.2, µ# is the unique extension of ρ.
By the construction, B#���c

#� � Σ���c
#�. Hence the Lebesgue #-measure is a Borel

#-measure. It can be shown that B#���c
#� 	 Σ���c

#� and that the Lebesgue
#-measure can be obtained also as the completion of any Borel #-measure
ω# such that ω#�	a,b
� � b � a��a � b�.
The notion of the Lebesgue measure on ��c

# has the following generalization.
Suppose that µ# is a σ#-finite Borel measure on ��c

#, and let �x �� �c
#

F�x� � µ#�����,x
� �5.2.2�

Then F is increasing and right #-continuous . Moreover, if b � a, ����,b
 �
����,a
 � �a,b
, so µ#��a,b
� � F�b� � F�a�.



Our procedure used above can be to turn this process around and construct a
measure µ starting from an increasing, right-continuous function F. The special
case F�x� � x will yield the usual Lebesgue #-measure. As building blocks we can
use the left-#-open, right-#-closed intervals in ��c

# i.e. sets of the form �a,b
 or
�a, ��� or $, where ��� � a � b � ��. We call such sets h-intervals. The
family A of all finite disjoint unions of h-intervals is an algebra, moreover, the
σ#-algebra generated by A is the #-Borel algebra B#���c

#�.
Lemma 5.2.1. Given an increasing and right #-continuous function F :� �c

# � ��c
#,

if �aj ,bj
�j � 1, . . . ,n�,n � �� are disjoint h-intervals, let

µ0
# �

j�1

n

�aj ,bj
 � Ext-�
j�1

n

	F�bj� � F�aj�
, �5.2.3�

and let µ0
#�$� � 0. Then µ0

# is a #-premeasure.
Lemma 5.2.2.f Assume that ��aα,bα�|α � G� is a hyperfinite or �-countable
family of intervals in ��c

# such that 	0,1
 � �α�G �aα,bα� then Ext-�
α�G

|aα � bα| � 1.

Theorem 5.2.1 If F : ��c
# � ��c

# is any increasing, right #-continuous function,
there is a unique Borel #-measure µF

# on ��c
# such that �a�b�a,b � ��c

# �
µF

#��a,b
� � F�b� � F�a�.
If G is another such function then µF

# � µG
# iff F � G is constant.

Conversely, if µ# is a Borel #-measure on ��c
# that is gyperfinite on all #-bounded

#-Borel sets, and we define F�x� � µ#��0,x
� if x � 0,F�x� � 0 if x � 0,
F�x� � �µ#��x, 0
� if x � 0,
then F is increasing and right #-continuous function, and µ# � µF

# .
Proof: Each F induces a #-premeasure on B#���c

#� by Lemma 5.1.1. It is clear
that F and G induce the same #-premeasure iff F � G is constant, and that these

#-premeasures are σ#-finite (since ��c
# � �

���

��
�j, j � 1
�. The first two assertions

follow now from Lemma 5.2.2. As for the last one, the monotonicity of µ#

implies the monotonicity of F, and the #-continuity of µ# from above and from
below implies the right #-continuity of F for x � 0 and x � 0. It is evident that
µ# � µF

# on algebra A, and hence µ# � µF
# on B#���c

#� (accordingly to Lemma 5.2.4).
Lebesgue – Stieltjes #-measures possess some important and useful regularity
properties.
Let us fix a complete Lebesgue – Stieltjes #-measure µ# on ��c

# associated to an
increasing, right #-continuous function F. We denote by Σµ# the Lebesgue algebra
correspondent to µ#. Thus, for any E � Σµ#,

µ#�E� � inf Ext-�
j�1

��
	F�bj� � F�aj�
 E � �

j�1

��
�aj ,bj
 �

� inf Ext-�
j�1

��
µF

#��aj ,bj
� E � �
j�1

��
�aj ,bj


�5.2.4�

if infinum in RHS of (5.2.4) exists. Since B#���c
#� � Σµ#, we may replace in the

second formula for µ#�E� h-intervals by #-open intervals, namely
Lemma 5.2.3 For any E � Σµ#,



µ#�E� � inf Ext-�
j�1

��
µF

#��aj ,bj�� E � �
j�1

��
�aj ,bj� . �5.2.5�

Theorem 5.2.2 If E � Σµ# then

E � Σµ# � inf�µ#�U� : U � E and U is # � open� �

� sup�µ#�K� : K � Eand K is # � compact�.
�5.2.6�

Proof. By Lemma 5.2.2, for any 
 �,ε � 0, there exist intervals �aj ,bj� such that

E � �
j�1

��
�aj ,bj� and µ#�E� � Ext-�

j�1

��
µ#��aj ,bj�� �ε. If U � �

j�1

��
�aj ,bj� then U is #-open,

E � U, and µ#�U� � µ#�E� � ε. On the other hand, µ#�U� � µ#�E� whenever E � U
so the first equality is valid.
For the second one, suppose first that E is bounded in ��c

#. If E is #-closed then E
is #-compact and the equality is obvious. Otherwise, given 
 �,ε � 0, we can
choose an #-open U, �#-E�\E � U, such that µ#�U� � µ#��#-E� \E� � ε.
Let K � �#-E� \U. Then K is #-compact, K � E, and
µ#�K� � µ#�E� � µ#�E � U� � µ#�E� � 	µ#�U� � µ#�U\E�
 �
� µ#�E� � µ#�U� � µ#��#-E�\E� � µ#�E� � ε.
If E is unbounded in ��c

#, let Ej � E � �j, j � 1
. By the preceding argument, for
any 
 �,ε � 0, there exist a #-compact K j � Ej with µ#�K j� � µ#�Ej� � ε2�j . Let

Hn � �
j��n

j�n

K j . Then Hn is #-compact, Hn � E, and µ#�Hn� � µ# �
j��n

j�n

�Ej � � ε.

Since µ#�E� � #-lim n��� µ# �
j��n

j�n

Ej , the result follows.

Theorem 5.2.3. If E � ��c
#, the following are equivalent:

(a) E � Σµ#;

(b) E � V\N1, where V is a Gδ#–set and µ#�N1� � 0;
(c) E � H � N2, where H is an Fσ#–set and µ#�N2� � 0.
Theorem 5.2.4. If E � Σµ# and µ#�E� � �� then, for every 
 �,ε � 0, there is
a set A that is a hyperfinite union of #-open intervals such that µ#�E	A� � ε.
Lemma 5.2.4 Let A � P�X� be an algebra, let µ0

# be a σ#-finite #-premeasure on
A, and let  be the σ#-algebra generated by A. Then there exists a unique
extension of µ0

# to a #-measure µ# on  .

§ 5.3. Product #-measures.
Definition 5.3.1.Let ��Xα,�α,µα#��α�& be a nonempty family of #-measure spaces. We
define the family  of blocks:

A�Aα1,Aα2, . . . ,Aαn� :�

� Aα1

 Aα2 
 � � � 
Aαn 
 Ext- �

��	,�	αk,1�k�n

X�, �5.3.1�

where Aαk � �αk and define a function



µ�
# :  � ��c

# � ���� :�

�# Aα1

 �#�Aα2 � 
 � � � 
�#�Aαn � 
 Ext- �

��	,�	αk,1�k�n

�#�X�� .
�5.3.2�

This function possesses an extension (by #-additivity) on the #-algebra A generated
by  . It is easily to show that µ�

# is a #-premeasure on A.
Definition 5.3.2 The #-measure �µ# on the σ#-algebra Σ generated by A accordingly
to Theorem 2.1.3 is called the product #-measure of �µα#�α�&, and the triple

�
��	

Xα,Σ,�µ# is called the product of #-measure spaces �Xα,Σα,µα#�.

We denote the σ#-algebra Σ by �
α�&
Σα, and the #-measure �µ# by �

α�&
µα#.

Definition 5.3.3.If E � X1 
 X2 and x1 � X1,x2 � X2, we define
Ex1 � �x � X2 : �x1,x� � E� and Ex2 � �x � X1 : �x,x2� � E�.

If f : X1 
 X2 � ��c
# is a function, we define fx1 : X2 � ��c

# and fx2 : X1 � ��c
#

by fx1�x� � f�x1,x� and fx2�x� � f�x,x2�.
Theorem 5.3.1. (The generalized Fubini’s theorem) Let µ1

#,µ2
# be σ#-hyperfinite

#-measures on �X1,�1� and �X2,�2�,

�X1 
 X2,�1 '�2,µ1
# ' µ2

#� � �X1,�1,µ1
#� 
 �X2,�2,µ2

#�, �5.3.3�

and let f � L1
#�X1 
 X2,�1 '�2,µ1

# ' µ2
#�.Then fx1 � L1

#�X2,�2,µ2
#� µ1

#-#-a.e.,
and fx2 � L1

#�X1,�1,µ1
#� µ2

#-#-a.e., and

Ext- "
X1
X2

fd#�µ1
# ' µ2

#� � Ext- "
X2

Ext- "
X1

fx2d#µ1
# d#µ2

# �

� Ext- "
X1

Ext- "
X2

fx1d
#µ2

#

d#µ1
# �5.3.4�

Lemma 5.3.1. Let �X1,Σ1,µ1
#� and �X2,Σ2,µ2

#� be #-measure spaces, E � Σ1 ' Σ2,
and let f be a Σ1 ' Σ2-measurable function on X1 
 X2, then:
(a) Ex1 � Σ2 for all x1 � X1 and Ex2 � Σ1 for all x2 � X2;
(b) fx1is Σ2-measurable and fx2is Σ1-measurable for all x1 � X1 and x2 � X2.
Proof. Denote by A the collection of all A � X1 
 X2 such that Ax1 � Σ2and
Ax2 � Σ1��x1 � X1,x2 � X2�.
The family A contains all rectangles. Thus, since

�
n�1

��
An

x1

� �
n�1

��
	An
x1,	Bn
x2 � 	Bn
x2 �5.3.5�

and

	X1 
 X2\A
x1 � X2\Ax1,	X1 
 X2\A
x2 � X1\Ax2, �5.3.6�

A is a σ#-algebra. So Σ1 ' Σ2 � A, and (a) is proved.Now the part (b) follows from

(a) due to fx1
�1�A� � 	f �1�A�
x1 and 	fx2
�1�A� � 	f�1�A�
x2��A � ��c

#�.
Definition 5.3.4 A family M � P�X� is called a monotone class if M is
closed under �-countable increasing unions and �-countable decreasing
intersections.
Lemma 5.3.2. If A � P�X� is an algebra then the monotone class generated
by A coincides with the σ#-algebra generated by A.



Lemma 5.3.3. Let �X1,Σ1,µ1
#� and �X2,Σ2,µ2

#� be #-measure spaces, E � Σ1 ' Σ2.
Then the functions x1 � µ2

#�Ex1� and x2 � µ1
#�Ex2� are #-measurable on �X1,Σ1�

and �X2,Σ2�, and

µ1
# ' µ2

#�E� � Ext- "
X2

µ1
#�Ex2�d#µ2

# � Ext- "
X1

µ2
#�Ex1�d#µ1

#. �5.3.7�

Proof. First we consider the case when µ1
# and µ2

# are finite. Let A be the family
of all E � Σ1 ' Σ2 for which (5.3.7) is true. If E � A 
 B, then
µ1

#�Ex2� � µ1
#�A�χB�x2� and µ2

#�Ex1� � µ2
#�B�χA�x1�, so E � A. By additivity,

it follows that gyperfinite disjoint unions of rectangles are in A so, by Lemma
5.3.2,bit will suffice to show that A is a monotone class. If �En�n�1

�� is an increasing

hyper infinite sequence in A and E � �
n�1

��
En, then the function fn�x2� � µ1

#��En�x2�

are #-measurable and increase pointwise to f�y� � µ1
#�Ex2�. Hence f is #-measurable

and, by the monotone convergence theorem,

Ext- "
X2

µ1
#�Ex2�dµ2

# � #- lim n��� ExtX1 "
X2

µ1
#��En�x2�dµ2

# �

#- lim n��� µ1
# 
 µ2

#�En� � µ1
# 
 µ2

#�E�.

�5.3.8�

Likewise µ1
# 
 µ2

#�E� � Ext- "
X1

µ2
#�Ex�dµ1

#, so E � A. Similarly, if �En�n�1
�� is a decreasing

hyper infinite sequence in A and E � �
n�1

��
En, the function x2 � µ1

#��E1�x2� is in

L1
#�µ2

#� because µ1
#��E1�x2� � µ1

#�X1� � �� and µ2
#�X2� � ��, so the dominated

convergence theorem can be applied to show that E � A. Thus, A is a monotone
class, and the proof is complete for the case of finite #-measure spaces.
Finally, if µ1

# and µ2
# are σ#-finite, we can write X1 
 X2 as the union of an

increasing hyper infinite sequence �X1
j 
 X2

j � j�1
�� of rectangles of finite or hyperfinite

#-measure. If E � Σ1 ' Σ2, the preceding argument applies to E � �X1
j 
 X2

j � for each
j gives us

µ1
# 
 µ2

#�E � �X1
j 
 X2

j �� � Ext- "
X2

µ1
#�Ex2 � X1

j �µ2
# � Ext- "

X1

µ2
#�Ex1 � X2

j �µ1
#. �5.3.9�

The application of the monotone convergence theorem then yields the desired
result.
Lemma 5.3.3. (Generalized Tonelli’s theorem) Let �X1,Σ1,µ1

#� and �X2,Σ2,µ2
#�

be #-measure spaces, and f : X1 
 X2 � ��c�
# be a Σ1 ' Σ2-#-measurable

function.Then the functions

fµ2
#�x1� � Ext- "

X2

fx1d
#µ2

# and fµ1
#�x2� � Ext- "

X1

fx2d#µ1
# �5.3.10�

are Σ1-#-measurable and Σ2-#-measurable, respectively, and



Ext- "
X1
X2

fd#µ1
# ' µ2

# � Ext- "
X2

Ext- "
X1

fx2d#µ1
# d#µ2

# �

� Ext- "
X1

Ext- "
X2

fx1d
#µ2

# d#µ1
#.

�5.3.11�

Proof: In the case when f is a characteristic function, the statement of
this lemma follows from Lemma 5.3.3. Therefore, by linearity, it holds also
for nonnegative simple functions. If a nonnegative #-measurable function f is
arbitrary, there exists a sequence of nonnegative simple functions which increase
pointwise to f, say �fn�n�1

�� . By the monotone convergence theorem,

Ext- "
X1

fµ2
#d#µ1

# � #- lim n��� Ext- "
X1

fµ2
#

n d#µ1
# �

� #- lim n��� Ext- "
X1
X2

fnd#µ1
# ' µ2

#

�5.3.12�

and

Ext- "
X2

fµ1
#d#µ2

# � #- lim n��� Ext- "
X2

fµ1
#

n d#µ2
# �

� #- lim n��� Ext- "
X1
X2

fnd#µ1
# ' µ2

# ,

�5.3.13�

where

fµ2
#

n �x1� � Ext- "
X1

	fn
x1
d#µ2

#, fµ1
#

n �x2� � Ext- "
X2

	fn
x2d#µ1
#. �5.3.14�

This proves (5.3.11) and the lemma.
Proof of Theorem 5.3.1. Since an ��c

#-valued function f is Lebesgue #-integrable
iff its positive f � and negative f � parts are #-integrable, it is sufficient to
prove the theorem only for nonnegative function f � L1

#�X1 
 X2,Σ,µ1
# ' µ2

#�.
But this was exactly done in Lemma 5.3.3.

§ 5.4.Lebesgue #-measure and integral in ��c
#n.

In this section, we study ��c
#n,n � �� and functions from ��c

#nto ��c
# from the

point of view of the Lebesgue #-measure and Lebesgue integration. All results
presented below possess obvious ��c

#n-valued analogs. Then we define and study
generalized Cantor sets which are interesting from the point of view of the set
topology and the #-measure theory. Cantor sets are #-closed #-Borel nowhere
#-dense subsets of the interval 	0,1
 or, more generally, of a Hausdorff #-space.
Definition 5.4.1.The Lebesgue #-measure µ#n on ��c

#n is the #-completion of the
product of the Lebesgue #-measure on ��c

#n according to Definition 5.3.1.The



domain Σn of µ# (of course, B#���c
#n� � Σn� is the class of Lebesgue #-measurable

sets in ��c
#n. We write d#xn for d#µ#n and

Ext-" f�x�d#xn � Ext-" f d#µ#n.

We extend some of the results of previous section to the n-dimensional case with

n � ��. If E � Ext-�
j�1

n

Ej is a block in ��c
#n, we call sets Ej � ��c

#n the sides of

the block E.
Theorem 5.4.1. Let E � Σn.Then
(a) µ#n�E� � inf�µ#n�U� : E � U,U #-open� � sup�µ#n�K� : K � E,K #-compact�;
(b) E � A1 � N1 � A2\N2, where A1 is an Fσ# set, A2 is a Gδ# set, and
µ#n�N1� � µ#n�N2� � 0;
(c) If µ#n�E� � �� then, for any 
 � 0,ε � 0, there is a hyperfinite family �Rj� j�1

N

of disjoint blocks, whose sides are intervals such that µ#n�E	 � j�1
N Rj� � ε.

Proof: By the definition of product #-measures, if E � Σn and 
 � 0,ε � 0, there
is a �-countable family �Tj� j�1

�� of blocks such that E � � j�1
�� Tj and

Ext-� j�1

�� µ#n�Tj� � µ#n�E� � ε.

For each j, by applying Theorem 5.2.3 to the sides of Rj , we can find blocks
U j � F j whose sides are #-open sets such that µ#n�U j� � µ�Tj� � ε2�j .
If U � � j�1

�� U j then U is #-open and

µ#n�U� � Ext-� j�1

�� µ#n�U j� � µ#n�E� � 2ε.

This proves the first equation in part (a). The second equation and part (b)
follow as in the proofs of Theorems 2.1.6 and 2.1.7.
Next, if µ#n�E� � �� then µ#n�U j� � �� for all j. Since the sides of U j are
�-countable unions of #-open intervals, by taking suitable hyperfinite subunions,
we obtain blocks Vj � U j whose sides are hyperfinite unions of intervals such that
µ#n�Vj� � µ#n�U j� � ε2�j .If N � �� is sufficiently hyperfinite large, we have

µ#n E\�
j�1

N

Vj � µ#n �
j�1

N

U j \Vj � µ#n �
j�N�1

��

U j � 2ε

and

µ#n �
j�1

N

Vj \E � µ#n �
j�1

��

U j \E � ε,

so µ#n�E	 � j�1
N Vj � � 3ε. Since � j�1

N Vj can be expressed as a hyperfinite disjoint
union of rectangles whose sides are intervals, we have proved (c).

§ 5.5.Lebesgue #-integrable functions on ��c
#n

Let µ#n be the Lebesgue #-measure in ��c
#n. The set M���c

#n,µ#n� of all ��c
#-valued

µ#n-measurable functions on ��c
#n is a vector space (addition and scalar multiplication

are pointwise). By L1
#���c

#n,µ#n� we denote its subspace of all Lebesgue
#-integrable functions (with finite in ��c

# #-integral). Now write f � g for f and g in
M���c

#n,µ#n�, whenever f and g differ only on a µ#n-null set (a set of µ#n-measure
zero). It is easily seen that � is an equivalencerelation. Let L0 � L0���c

#n,µ#n� be the
set of equivalence classes of functions in M���c

#n,µ#n�. We denote the equivalence
classes of f,g, . . .by	f
,	g
, . . . . The set L0 becomes a vector space over field ��c

# by



defining 	f
 � 	g
 � 	f � g
 and α	f
 � 	αf
 for a real α � ��c
#. Observe that these

definitions do not depend on the choice of f and g in their equivalence classes. The
same is true for the partial order in L0, if we define 	f
 � 	g
 to mean f�x� � g�x� for
all x � ��c

#nexcept a null set. In practice, the elements of L0 � L0���c
#n,µ#n� are

usually denoted by f,g, . .. and treated as if they were functions instead of
equivalence classes of functions.
Definition 5.5.1.
Theorem 5.5.1. If f � L1

#�µ#n� and 
 � 0,ε � 0, there is a simple function
φ � Ext-� j�1

N
α jχRj , where each Rj is a product of intervals such that

Ext-"|f � φ|d#µ#n � ε, and there is a #-continuous function g vanishing outside of a

bounded in ��c
#n set such that Ext-"|f � g|d#µ#n � ε � ε.

Proof. By the definition of Lebesgue #-integrable functions, we can approximate
f by simple functions in L1

#-#-norm. Then use Theorem 5.4.1 to approximate a
simple function by a function φ of the desired form. Finally, use the generalized
Urysohn Lemma to approximate such φ by a #-continuous function.
Theorem 5.5.2.The Lebesgue #-measure on ��c

#n is translation-invariant. Namely,
let a � ��c

#n. Define the shift τa : ��c
#n � ��c

#nby τa�x� � x � a.
(a) If E � �#n then τa�E� � �#n and µ#n�τa�E�� � µ#n�E�;
(b) If f : ��c

#n � ��c
# is Lebesgue #-measurable then so is f�τa. Moreover, if either

f � 0 or f � L1
#�µ#n� then

Ext- "�f�τa�d#µ#n � Ext- " fd#µ#n. �5.5.1�

Proof. Since τa and its inverse τ�a are #-continuous, they preserve the class of
#-Borel sets. The formula µ#n�τa�E�� � µ#n�E� follows easily from the trivial one
dimensional variant of this result if E is a block. For a general #-Borel set E, the
formula µ#n�τa�E�� � µ#n�E� follows from the previous step, since µ#n is determined
by its action on blocks. Assertion (a) now follows immediately.
If f is Lebesgue #-measurable and B is a #-Borel set in ��c

#, we have f�1�B� � E � N,
where E is #-Borel and µ#�N� � 0. But τa�1�E� is Borel and µ#�τa�1�N�� � 0, so
�f�τa��1�B� � Σn and f is Lebesgue #-measurable. The equality (5.5.1) reduces to the
equality µ#n�τ�a�E�� � µ#n�E� when f � χE. It is true for simple functions by linearity,
and hence for nonnegative #-measurable functions by the definition of #-integral.
Taking positive and negative parts of real and imaginary parts, we obtain the result
for f � L1

#�µ#n�.
Theorem 5.5.3. (Generalized Lusin’s theorem) If f is a Lebesgue #-measurable
function on ��c

#n and 
 � 0,ε � 0 then there exist a #-measurable set A � ��c
#n

such that µ#n���c
#n\A� � ε and the restriction of f onto A is #-continuous.

Chapter IV.��c
#-valued distributions.

§1.��c
#-valued test functions and distributions

Definitions and theorems appropriate to analysis on non-Archemedean field ��c
# and

on complex field ��c
# � ��c

# � i ��c
#are given in [1]-[2].

Definition 1.1.[3].(i) Let U be a free ultrafilters on � and introduce an equivalence
relation on sequences in �� as f1 (U f2 iff i � �| f1�i� � f2�i� � U.



(ii) �� divided out by the equivalence relation (U gives us the nonstandard extension
��, the hyperreals; in symbols, �� � ��/ (U and similarly �� divided out by the
equivalence relation (U gives us the nonstandard extension ��, the hyperintegers; in
symbols,�� � ��/ (U .
Abbreviation 1.1.If f � ��, we denote its image in �� by 	f
, i.e.,	f
 � �g � ��|g (U f�.
Remark 1.1.For any real number r � � let r denote the constant function r :� � �
with value r, i.e.,r�n� � r, for all n � �.We then have a natural embedding

���� : � � ��
by setting �r � 	r�n�
 for all r � �.We denote it image ���� in �� by ��st.
Definition 1.2.[3]. An element x � �� is called finite if |x| � r for some r � �,r � 0.
Abbreviation 1.2.For x � �� we abbreviate x � ��fin if x is finite.
Remark 1.2.[3]. Let x � ��fin be finite. Let D1, be the set of r � � such that r � x
and D2 the set of r � � � such that x � r �. The pair �D1,D2� forms a Dedekind cut in �,
hence determines a unique r0 � �. A simple argument shows that |x � r0| is
infinitesimal,i.e., |x � r0| � 0.
Definition 1.3.[1].This unique r0 is called the standard part of x and is denoted by �x
or st�x�.
The following notation will be used throughout this paper.
n � �# is a fixed positive integer and U � ��c

#n is a fixed non-empty #-open subset of
lnear space ��c

#n over non Archemedan field��c
#.

� � �0,1,2,�� denotes the standard natural numbers.
k will denote a non-negative integer or �# .
If f is a function then Dom�f� will denote its domain and the support of f, denoted by
supp �f�, is defined to be the closure of the set �x � Dom �f� : f�x� 	 0� in Dom �f�.

For two functions f,g : U � ��c
#, the following notation defines external canonical

pairing:

�f,g
 � Ext- "
U

f�x�g�x�d#x. �1.1�

A multi-index of size n � �# is an element in �#n, if the size of multi-indices is
omitted then the size should be assumed to be n. The length of a multi-index
α � �α1,� ,αn� � �#n is defined as Ext-� i�1

n
α i and denoted by |α|.Multi-indices are

particularly useful when
dealing with functions of several variables, in particular we introduce the following
canonical notations for a given multi-index α � �α1,� ,αn� � �#n,

xα � x1
α1�xn

αn,

�#α � �#|α|

�#x1
α1��xn

αn

�1.2�

We also introduce a partial order of all multi-indices by β � α if and only if β i � α i for
all 1 � i � n. When β � α we define their multi-index binomial coefficient as:
β
α �

β1
α1

�
βn
αn

.

1.Let k � �# � �#.
2.Let C#k�U� denote the vector space of all k-times #-continuously #-differentiable
��c

#-valued or ��c
#-valued functions on U.



For any #-compact subset K � U, let C#k�K� and C#k�K;U� both denote the vector
space of all those functions f � C#k�U� such that supp�f� � K.
Note that C#k�K� depends on both K and U but we will only indicate K, where in
particular, if f � C#k�K� then the domain of f is U rather than K. We will use the

notation
C#k�K;U� only when the notation C#k�K� risks being ambiguous.
Every C#k�K� contains the constant 0 map, even if K � 	.
Let Cc

#k�U� denote the set of all f � C#k�U� such that f � C#k�K� for some #-compact
subset K of U.
Equivalently, Cc

#k�U� is the set of all f � C#k�U� such that f has #-compact support.
Cc

#k�U� is equal to the union of all C#k�K� as K � U ranges over all #-compact subsets
of U. If f is a ��c

#-valued function on U, then f is an element of Cc
#k�U� if and only if f

is a C#k bump function. Every ��c
#-valued test function on U is always also a

��c
#-valued test function on U.

For all j,k � � and any #-compact subsets K and L of U, we have:
C#k�K� � Cc

#k�U� � C#k�U�;
C#k�K� � C#k�L� if K � LC#k�K� � C#j�K� if j � k;
Cc

#k�U� � Cc
#j�U� if j � k;

C#k�U� � C#j�U� if j � k.
Definition1.1. Elements of Cc

#�#
�U� are called ��c

#-valued test functions on U and
Cc

#�#
�U� is

called the space of ��c
#-valued test functions on U. We will use both D�U� and Cc

#�#
�U�

to denote this space.
Definition1.2. Distributions on U are #-continuous ��c

#-valued linear functionals on
Cc

#�#
�U� when this vector space is endowed with a particular topology called the

canonical
LF-topology.
The following proposition states two necessary and sufficient conditions for the
#-continuity of a linear functional on Cc

#�#
�U� that are often straightforward to verify.

Proposition1.1. A linear functional T on Cc
#�#

�U� is #-continuous, and therefore a
distribution, if and only if either of the following equivalent conditions are satisfied:
1.For every #-compact subset K � U there exist constants C � 0 and N � � dependent
on K such that for all f � Cc

#�#
�U� with support contained in K

|T�f�|� Csup�|�#αf�x�|: x � U, |α|� N�.
2.For every #-compact subset K � U and every sequence �f i� i�1

�#
in Cc

#�#
�U� whose

supports are contained in K, if ��#αf i� i�1
� #-converges uniformly to zero on U for every

multi-index α, then #-lim i��# T�f i� � 0. .

§ 2.The non-Archimedian external��c
#-Valued Schwartz

distributions.
Defined below are the tempered distributions, which form a subspace of D#����c

#n�,
the space of distributions on ��c

#n . This is a proper subspace: while every tempered
distribution is a distribution and an element of D#����c

#n� the converse is not true.
Tempered distributions are useful if one studies the Fourier transform since all
tempered distributions have a Fourier transform, which is not true for an arbitrary



distribution in D#����c
#n� .

§ 2.1.Schwartz space S#���c
#n�.

Definition 2.1. A function f : X � ��c
# defined on some set X is called

finitely bounded (or bounded) if the set of its values is finitely bounded, i.e.,

f�X� � 	a,b
 where a,b � ��c,fin
# . In other words, there exists a finite hyperreal

number M � ��c,fin
# such that

|f�X�| � M. �2.1�

Definition 2.2.A function f : X � ��c
# defined on some set X is called

hyper finitely bounded (or hyper bounded) if the set of its values is hyper finitely

bounded, i.e., f�X� � 	a,b
 where a,b � ��c
#\��c,fin

# . In other words, there exists a
hyperfinite hyperreal number M � ��c

#\��c,fin
# such that |f�X�| � M.

Definition 2.3.For n � �#, an #-integrable function � : ��c
#n � ��c

# is called #-rapidly
decreasing if for all α � �#n the product function x 
 xα��x� is a finitely bounded or
hyper finitely bounded function.
Remark 2.1.If � is a #-rapidly decreasing function, then its integral exists

Ext- "
��c

#n

��x�d#nx � �# �2.2�

In fact for all α � �
#n the integral of x 
 xα��x� exists

Ext- "
��c

#n

xα��x�d#nx � �#. �2.3�

Definition 2.4.The Schwartz space, S#���c
#n�, is the space of all #-smooth functions

in C#�#
���c

#n� that are rapidly decreasing at #-infinity along with all partial #-derivatives.
Thus
ϕ : ��c

#n � ��c
# is in the Schwartz space provided that any #-derivative of ϕ, multiplied

with any power of |x|, #-converges to 0 as |x|� �#. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
α and β define:

pα,β�ϕ� � supx���c
#n |xα�#βϕ�x�|. �2.1�

Then ϕ is in the Schwartz space S#���c
#n� if all the values satisfy: pα,β�ϕ� � �#.

Thus

S#���c
#n, ��c

#� � � � C�#
���c

#n, ��c
#�|��,	 � �#n�pα,β�ϕ� � �#� .

Similarly

S#���c
#n, ��c

#� � � � C�#
���c

#n, ��c
#�|��,	 � �#n�pα,β�ϕ� � �#�

The family of seminorms pα,β��� defines a locally convex topology on the Schwartz
space S#���c

#n�.
For n � 1, the seminorms are norms on the Schwartz space S#���c

#�. One can
also use the following family of seminorms to define the topology:

|f|m,k � sup|p|�m supx���c
#n��1 � |x|�k|��#αf��x�|� ,k,m � �#. �2.2�



Otherwise, one can define a norm on S#���c
#n� by

�ϕ�k � max|α|�|β|�k supx���c
#n |xα�βϕ�x�|,k � 1. �2.3�

The Schwartz space S#���c
#n� is a Fréchet space (that is, a #-complete metrizable

locally convex space). Because the Fourier transform changes �#α into multiplication
by xα and vice versa, this symmetry implies that the Fourier transform of a Schwartz
function is also a Schwartz function.
Definition 2.5. A sequence �f i� i�1

�#
#-converges to 0 in S#���c

#n� if and only if the
functions �1 � |x|�k��#pf i��x� #-converge to 0 uniformly in the whole of ��c

#n, which
implies that such a sequence must converge to zero in C�#

���c
#n�.

The subset of all #-analytic Schwartz functions is #-dense in S#���c
#n�

The Schwartz space is nuclear and the tensor product of two maps induces a

canonical surjective TVS-isomorphisms S#���c
#m� ' S#���c

#n� � S#���c
#m�n�,

where ' represents the #-completion of the injective tensor product

§ 2.2.Schwartz space Sfin
# ���c,fin

#n �
Definition 2.6.For n � �, an ��c,fin

#n -valued and #-integrable function
� : ��c

#n � ��c,fin
# is called #-rapidly decreasing if for all α � �n the product function

x 
 xα��x� is a finitely bounded function.

Remark 2.2.If � is a #-rapidly decreasing ��c,fin
#n -valued function, then its integral exists

and finite,i.e.,

Ext- "
��c

#n

��x�d#nx � ��c,fin
# . �2.2�

In fact for all α � �n the integral of x 
 xα��x� exists and finite,i.e.,

Ext- "
��c

#n

xα��x�d#nx � ��c,fin
# . �2.3�

It follows from () that for all α � �n and for any R � ��c
#\��c,fin

#

Ext- "
��c

#n\B�R�

xα��x�d#nx � 0 �2.3�

where B�R� � �x � ��c
#||x| � R�

Definition 2.7.The Schwartz space, Sfin
# ��c,fin

#n , is the space of all ��c,fin
#n - valued

#-smooth functions that are rapidly decreasing at #-infinity along with all partial
#-derivatives any finite order 1 � m � �.
Thus
ϕ : ��c

#n � �c
# is in the Schwartz space provided that any #-derivative of ϕ, multiplied

with any power of |x|, #-converges to 0 as |x|� �#. These functions form a #-complete
TVS with a suitably defined family of seminorms. More precisely, for any multi-indices
α and β define:

pα,β�ϕ� � supx���c
#n |xα�#βϕ�x�|. �2.1�

§ 2.3.Non-Archimedian tempered distributions S#����c
#n�.



A non-Archimedian tempered distribution is a distribution u � D����c
#n� that does not

“grow too fast” – at most polynomial (or tempered) growth – at #-infinity in all
directions; in particular it is only defined on ��c

#n, not on any #-open subset.
Formally, a tempered distribution is a #-continuous linear functional on the Schwartz
space S#���c

#n� of smooth functions with #-rapidly decreasing #-derivatives. The
space of tempered distributions (with its natural topology) is denoted S#����c

#n�.
Every #-compactly supported distribution is a tempered distribution , yielding an
inclusion E#����c

#n� � S#����c
#n�.

.

§ 3. The Fourier transform on S#���c
#n�,Sfin

# ���c
#n�

We begin by defining the Fourier transform, and the inverse transform, on S#���c
#n�,

n � �#, the Schwartz space of C�# functions of rapid decrease.
Definition 3.1. Suppose f � S#���c

#n�. The Fourier transform of f�x� is the function
�
f ���

given by

�
f ��� � 1

�2�#�n/2
Ext- "

��c
#n

f�x�	Ext-exp��ix � ��
d#nx , �3.1�

where x � � � Ext-� i�1
n xi� i . The inverse Fourier transform of f, denoted by f!, is the

function

f!��� � 1
�2�#�n/2

Ext- "
��c

#n

f�x�	Ext-exp�ix � ��
d#nx . �3.2�

We will usualy write f� � �	f
 and f! � ��1	f
.
Since every function in Schwartz space is in �1

#���c
#n�, the above integrals (1.1) and

(1.2) make sense.
We will use the standard multi-index notation. A multi-index � � ��1, . . . ,�n
,n � �# is
an n-tuple of nonnegative integers. The collection of all multi-indices will be denoted
by I�n. The symbols |�|,x�,D#�,and x2 are defined as follows:

|�| � Ext-�
i�1

n

� i

x� � Ext-�
i�1

n

xi
� i or Ext-�x1

�1x2
�2 � � �xn

�n � or simbolically x1
�1x2

�2 � � �xn
�n

D#�f�x� � Ext-�
i�1

n
�#� i

�#x� i
f�x� or simbolically D#�f�x� �

�#|�|f�x�
�#x�1�#x�2 � � ��#x�n

x2 � Ext-�
i�1

n

xi
2.

�3.3�

Lemma 1.1.The maps f � f� and f � f! are #-continuous linear transformations of
S#���c

#n� into S#���c
#n�.Furthermore, if � and 	 are multi-indices, then

�i���D#	f� ��� � D#� ��ix�	f�x� ���. �3.4�



Proof The map f � f� is clearly linear. Since

�i���D#	f� ��� �

1
�2�#�n/2

Ext- "
��c

#n

������ix�	f�x�	Ext-exp��ix���
f�x�d#nx �

1
�2�#�n/2

Ext- "
��c

#n

1
��i��

�Dx
#�	Ext-exp��ix���
���ix�	f�x�d#nx �

��i��

�2�#�n/2
Ext- "

��c
#nx

#	

	Ext-exp��ix���
Dx
#� ��ix�	f�x� d#nx .

�3.5�

We conclude that

f�
�,	
�
����c

#n

sup �� D#	f� ��� � 1
�2�#�n/2

Ext- "
��c

#n

|Dx
#��x	f�x��|d#nx � �# �3.6�

so f � f� takes S#���c
#n� into S#���c

#n�, and we have also proven (1.4).Furthermore,
if k is large enough, "�1 � x2��kd#nx � �# so that

f�
�,	
� 1

�2�#�n/2
Ext- "

��c
#n

�1 � x2��k

�1 � x2��k
Dx

#� ��ix�	f�x� d#nx �

1
�2�#�n/2

Ext- "
��c

#n

�1 � x2��kd#nx
x���c

#n

sup �1 � x2��k Dx
#� ��ix�	f�x� .

�3.7�

Using generalized Leibnitz’s rule we easily conclude that there exist multi-indices
� j ,	 j and constants cj so that

f�
�,	
��

j�1

M

cj�f�� j ,	 j
. �1.8�

Thus the map f � f� is bounded and therefore #-continuous. The proof for f � f! is
the same.
Theorem 1.1. (Generalized Fourier inversion theorem) The Fourier transform (3.1)
is a linear bicontinuous bijection from S#���c

#n� onto S#���c
#n�. Its inverse map is the

inverse Fourier transform, i.e.,��1��	f
� � f and ����1	f
� � f.
Proof. We will prove that ��1��	f
� � f. The proof that ����1	f
� � f is similar.
����1	f
� � f implies that �	f
 is surjective and ��1��	f
� � f implies that �	f
 is
injective. Since �	f
 and ��1	f
 are #-continuous maps of S#���c

#n� onto S#���c
#n�, it

is sufficient to prove that ��1��	f
� � f for f contained in the dense set C0
�#
���c

#n�.
Let C
,
 � 0 be the cube of volume �2/
�n centered at the origin in ��c

#n.Choose 
 � 0
infinite small enough so that the support of f is contained in C
. Let
K
 � �k � ��c

#n| each ki /
�# � k is an integer �



f�x� � Ext-�
k�K


1
2



n/2
	Ext-exp�ik � x�
, f 1

2



n/2
	Ext-exp�ik � x�
 �3.9�

is just the hyper infinite Fourier series of f which #-converges uniformly in C
 to f since
f is #-continuously #-differentiable. Thus

f�x� � Ext-�
k�K


�
f �k�	Ext-exp�ik � x�


�2�#�n/2
�
�#�n. �3.10�

Since ��c
#n is the disjoint union of the cubes of volume �
�#�n centered about the

points in K
, the right-hand side of (1.10) is just a hyper finite Riemann sum for the
integral of the function

�
f �k�	Ext-exp�ik � x�
. By the lemma 3.1,

�
f �k�	Ext-exp�ik � x�
 � S#���c

#n�, so the hyperfinite Riemann sums (1.10)
#-converge to the integral. Thus ��1��	f
� � f.
Corollary 3.1.Suppose f � S#���c

#n�. Then

Ext- "
��c

#n

|f�x�|2d#nx � Ext- "
��c

#n

|f�k�|2d#nk. �3.11�

Proof. This is really a corollary of the proof rather than the statement of Theorem 1.1.
If f has #-compact support, then for 
 � 0 small enough,

f�x� � Ext-�
k�K


1
2



n/2
	Ext-exp�ik � x�
, f 1

2



n/2
	Ext-exp�ik � x�
 �3.12�

Since 1
2 


n/2n/2
	Ext-exp�ik � x�


k�K

is an orthonormal basis for �2

#�C
�,

Ext- "
��c

#n

|f�x�|2d#nx � Ext- "
C


|f�x�|2d#nx � �
k�K


1
2 


n/2
�	Ext-exp�ik � x�
, f�x��

2
�

�
k�K


�
f �k�

2
�
�#�n


�# 0
�# Ext- "

��c
#n

|f�k�|2d#nk.
�3.13�

This proves the corollary for f � C0
�#
���c

#n�. Since f 

�
f and ���2 are #-continuous

on S#���c
#n� and C0

�#
���c

#n� is #-dense, the result holds for all of S#���c
#n�.

Definition 3.2. Let T � S#����c
#n�the Fourier transform of T,denoted by T� or �	T
,

is the tempered distribution defined by T� ��� � T � .

Suppose that h,� � S#���c
#n�, then by the polarization identity and the corollary to

Theorem 1.1 we have �h,�� �
�
h,� . Substituting �	g
 � ��1	g
 for h, we obtain

T�g��� � Ext- "
��c

#n

�g�x���x�d#nx � Ext- "
��c

#n

g�x���x�d#nx � Tg � � T� g���.

where T�g and Tg are the distributions corresponding to the functions �g and g

respectively. This shows that the Fourier transform on S#����c
#n� extends the

transform we previously defined on S#���c
#n�.

Theorem 3.2. The Fourier transform is a one-to-one linear bijection from S#����c
#n�

to S#����c
#n� which is the unique weakly #-continuous extension of the Fourier

transform on S#���c
#n�.

Proof. If hyper infinite sequence ��n�n��# #-convergence to � � S#, then by
Theorem 1.1, hyper infinite sequence �n n��#

#-convergence to � � S#,so



T �n �# T � for each T � S#�. Thus #-lim n��# T �n � T � , which shows that

T is a #-continuous linear functional on S#. Furthermore, if Tn
w
�w T, then

�
Tn

w
�w

�
T

because T �n �# T � implies
�
T��n� �#

�
T���. Thus T �

�
T is weakly #-continuous.

Definition 3.3. Suppose that f,g � S#���c
#n�. Then the convolution of f and g,

denoted by f � g, is the function

�f � g��y� � Ext- "
��c

#n

f�y � x�g�x�d#nx. �3.14�

Convolutions frequently occur when one uses the Fourier transform because the
Fourier transform takes products into convolutions.
Theorem 3.3.(a) For each f � S#���c

#n�, g 
 f � g is a #-continuous map of S#���c
#n�

into S#���c
#n�.

(b) fg � �2�#��n/2
�
f � �g and f � g � �2�#�n/2

�
f�g.

(c) For f,g,h � S#���c
#n� , f � g � g � f and f � �g � h� � �f � g� � h.

Definition 3.4. Suppose that f � S#���c
#n�,T � S#����c

#n� and let
�
f �x� denote the

function, f��x�. Then, the convolution of T and f denoted T � f is the distribution in ,
S#����c

#n� given by �T � f���� � T
�
f � � for all � � S#���c

#n�.

The fact that g�
�
f � g is a #-continuous transformation guarantees that

T � f � S#����c
#n�.

Abbreviation 3.1.Let fy denote the function fy�x� � f�x � y� and
�
f y the function

f�y � x�.When f is given by a longe expression �� � ��, we will sometimes write �� � ��~

rather than ���� ��.
Theorem 3.4. For each f � S#���c

#n� the map T � T � f is a weakly #-continuous
map of S#����c

#n� into S#����c
#n� which extends the convolution on S#���c

#n�.
Furthermore,
(a) T � f is a polynomially bounded C�# function. In fact, �T � f��y� � T

�
f y and

D#	�T � f� � �D#	T� � f � T � D#	f;
(b) �T � f� � g � T � �f � g�;

(c) T � f � �2�#�n/2
�
f
�
T.

Theorem 3.5. Let T � S#����c
#n� and f � S#���c

#n�. Then fT � OM
n and

fT �k� � �2�#�n/2T�f	Ext-exp��ik � x�
�. In particular, if T has #-compact support and
� � S#���c

#n� is identically one on a #-neighborhood of the support of T, then
�
T�k� � �2�#�n/2T��	Ext-exp��ik � x�
�. �3.15�

Proof By Theorem 3.4.c and the Fourier inversion formula we have

fT � �2�#�n/2
�
f �

�
T.Thus fT � OM

n and fT �k� � �2�#�n/2
�
T

��
f k �

�2�#�n/2T�f	Ext-exp��ik � x�
�.
Remark 3.1.We remark that one can also define the convolution of a distribution
T � D#����c

#n� with an f � D#���c
#n� by �T � f��y� � T

�
f y .

Definition 3.5. Let j�x� be a positive C�# function whose support lies in the sphere of
radius one about the origin in ��c

#n and which satisfies Ext-"��c
#n

j�x�d#nx � 1. The

function j 
�x� � 
�nj�x/
�,
 � 0 is called an approximate identity.
Proposition 3.1. Suppose T � S#����c

#n� and let j 
�x� be an approximate identity. Then



T � j 
�x� �# T weakly as 
 �# 0.
Proof. If � � S#���c

#n�, then �T � j 
���� � T
�
j 
 � � , so it is sufficient to show that

�
j 
 � � �# � in S#���c

#n�.To do this it is sufficient to show that �2�#�n/2
�
j 
� �# � in

S#���c
#n�.Since

�
j 
��� � j�
�� and j�0� � �2�#�n/2, it follows that �2�#�n/2

�
j 
�x�

#-converges to 1 uniformly on #-compact sets and is uniformly bounded. Similarly,
D#�

�
j 
 #-converges uniformly to zero. We conclude that �2�#�n/2

�
j 
� �# �.

Theorem 3.6 (The generalized Plancherel theorem) The Fourier transform extends
uniquely to a unitary map of �2

#���c
#n� onto �2

#���c
#n�. The inverse transform extends

uniquely to its adjoint.
Proof The corollary to Theorem 3.1 states that if f � S#���c

#n�, then �f�2 �
�
f

2
.

Since �	S#
 � S# is a surjective isometry on �2
#���c

#n�.
Theorem 3.7 (The generalized Riemann-Lebesgue lemma) The Fourier transform
extends uniquely to a bounded map from �1

#���c
#n� into C�#

���c
#n�, the #-continuous

functions vanishing at �#.
Proof For f � S#���c

#n�, we know that
�
f � S#���c

#n� and thus
�
f � C�#

���c
#n�. The

estimate is trivial. The Fourier transform is thus a bounded linear map from a
#-dense set of �1

#���c
#n� into C�#

���c
#n�. By the generalized B.L.T. theorem, extends

uniquely to a bounded linear transformation of C�#
���c

#n� into C�#
���c

#n�.
Remark 3.2.We remark that the Fourier transform takes �1

#���c
#n� into, but not onto

C�#
���c

#n�.
A simple argument with test functions shows that the extended transform on �1

#���c
#n�

and �2
#���c

#n� is the restriction of the transform on S#����c
#n�, but it is useful to have an

explicit integral representation. For f � �1
#���c

#n�, this is easy since we can find
fm � S#���c

#n� so that #-limm��#�f � fm�1 � 0.Then, for each �,

f��� � #- limm��#

�
f m��� �

#- limm��#
1

�2�#�n/2
Ext- "

��c
#n

	Ext-exp��ik � x�
fm�x�d#x �

1
�2�#�n/2

Ext- "
��c

#n

	Ext-exp��ik � x�
f�x�d#x .

�3.16�

So, the Fourier transform of a function in �1
#���c

#n� is given by the usual formula.
Next, suppose f � �2

#���c
#n� and let

�R�x� �
1 if |x| � R

0 if |x| � R
�3.17�

Then �Rf � �1
#���c

#n� and #-limR��# �Rf � f in �2
#, so by the generalized Plancherel

theorem #-limR��# �Rf �
�
f in �2

#.Thus

f��� � #- limR��#
1

�2�#�n/2
Ext- "

|x|�R

	Ext-exp��ik � x�
f�x�d#x �3.18�

where by #-limR��# we mean the #-limit in the �2
#-norm. Sometimes we will dispense



with |x| � R and just write

f��� � #- limR��#
1

�2�#�n/2
Ext- "	Ext-exp��ik � x�
f�x�d#x �3.19�

for functions f � �2
#���c

#n�.
We have proven above that � : �2

#���c
#n� � �2

#���c
#n� and � : �1

#���c
#n� � ��#

# ���c
#n�

and in both cases is a bounded operator.
Theorem 3.8 (Generalized Hausdorff-Young inequality) Suppose 1 � q � 2,
and p�1 � q�1 � 1. Then the Fourier transform is a bounded map of �p

#���c
#n� to

�q
#���c

#n� and its norm is less than or equal to �2�#�n�1/2�1/q�.

Chapter V.Non-Archiedean Hilbert Spaces over field ��c
#.

§ 1. Non-Archiedean Hilbert Spaces over field ��c
#

Basics.
Definition 1.1.(i) Let H be external hyper infinite dimensional vector space over field
��c

# � ��c � i ��c.An inner #-product(or non-Archiedean inner product) on H

is a ��c
#-valued function, ��, �
# : H 
 H � ��c, such that

(1) ��x � 	y,z
# � ��x,z
 � 	�y,z
#, i.e. x � �x,z
# is linear.
(2) �x,y
# � �y,x
#.
(3) �x�#

2 � �x,x
# � 0 with equality �x�#
2 � 0 iff x � 0.

Notice that combining properties (1) and (2) that x � �z,x
 is anti-linear for
fixed z � H, i.e. �z,ax� by
# � a�z,x
# � b�z,y
#.
(ii) Let �an�n�0

k ,k � � be finite sequence in H,�an�n�0
k � H.

We define external hyper infinite sequence �an�n�0
k � H by

�An;k�n�0

�� � �an�n�0
k �

� a0,a1, . . . ,am, . . . ,ak�1,ak .
�a � �a,a, . . . .�,a � H.

�0.1�

(iii) Let �an�n�0
� be countable sequence in H : �an�n�0

� � H.

We define hyper infinite sequence �An�n�0

�� � �an�n�0
� � H by

�An
� ;��n�0

�� � �an�n�0
� �

� �a0,a1, . . . ,ak, . . .�an�n�0
� ,�an�n�0

� .
�0.2�

(iv) Let �an�n�0
N ,N � ��\� be external hyperfinite sequence in H : �an�n�0

N � H.

We define hyper infinite sequence �an�n�0
N � H by

�An;N�n�0

�� � �an�n�0
N �

� a0,a1, , . . . ,am, . . . ,aN�1aN,aN .
�0.3�

(v) Let �an�n�0
k ,k � � be finite sequence in H,�an�n�0

N � H.



We define external finite sum Ext-�n�0

n�k

an by

Ext-�n�0

n�k

an � �cn�n�0
k � �c0,c1, . . . ,ck, . . . ,

�ck� � 		�ck

 �0.4�

where c0 � a0,cj � Ext-�n�0
n�j an, 0 � j � k.

(vi) Let �an�n�0
� be countable sequence in H : �an�n�0

� � H.We define external

countable sum Ext-�n�0

n��
an by

Ext-�n�0

n��
an � �cn�n�0

� �

� c0,c1, . . . ,ck, . . .�cn�n�0
� ,�cn�n�0

� � �cn�n�0
�

�0.5�

where c0 � a0,ck � Ext-�n�0
n�k an,k � �.

(vii) Let �an�n�0
n�N,N � ��\� be external hyperfinite sequence in H : �an�n�0

N � H.

We define external hyperfinite sum Ext-�n�0

n�N

an by

Ext-�n�0

n�N

an � �cn�n�0
n�N � �c0,c1, . . . ,ck, . . . ,cN,�cN� � 		�cN

 �0.6�

where c0 � a0,ck � Ext-�n�0
n�k an, 0 � k � N,cN � Ext-�n�0

n�N an.

(viii) Let �an�n�0
n�N,N � ��\� be external hyperfinite sequence in H : �an�n�0

N � H
such that an � 0 for all n � ��\�.We assume that

Ext-�n�0

n�N

an � Ext-�n�0

n��
an. �0.7�

Remark 1.1. (i) Let �xi� i�1
N � H and �yi� i�1

N � H,N � �� by external hyperfinite

sequences; let �� i� i�1
N � ��c

# and �	 i� i�1
N � ��c

#.Then the equality holds

Ext-�
i�1

N

�� ixi � 	 iyi ,z
# � Ext-�
i�1

N

� i�xi ,z
# � Ext-�
i�1

N

	 i�yi ,z
# �0.8�

(ii) Let �xij � � H ,N,K � ��,K � j � i � N, by external hyperfinite sequences; let

�� ij � i�1
N � ��c

# .Then the equality holds

Ext-�
K�j�i�N

N

� ij xij ,z
#

� Ext-�
i�K

N

Ext-�
i�K

N

� ij �xij ,z
# . 0.9

(iii) Let �xi� i�1

�� � H by external hyperinfinite sequence in H. We call �xi� i�1

�� a Cauchy
hyperinfinite sequence if for any 
 � 0,
 � 0 there is N � ��\�such that for any
m,n � N,�xn � xm�# � 
.
(iv) We now stand ready to give construction of H#. The members of H# will be
constructed as equivalence classes of Cauchy hyperinfinite sequences in H. Let C�H�
denote the set of all Cauchy hyperinfinite sequences in H. We must define an
equivalence relation on C�H�.For s � C�H�, denote by 	s
 the set of all elements in

C�H�
that are related to s. Then for any s, t � C�H�, either 	s
 � 	t
 or 	s
 and 	t
 are disjoint.
Let �xi� i�1

�� and �yi� i�1

�� be in C�H�. Say they are equivalent (i.e. related �xi� i�1

�� ( �yi� i�1

�� )
if �xn � yn�# �# 0��c

; i.e. if the hyperinfinite sequence �xn � yn�# #-tends to 0��c
as

n � ��.
(vi) Definition (iv) yields an equivalence relation �� ( �� on C�H�.



Proof. We need to show that this relation is reflexive, symmetric, and transitive.
� Reflexive: xn �xn � 0��c

,n � �� and the sequence all of whose terms are 0��c

clearly #-converges to 0��c
.So �xi� i�1

�� is related to �xi� i�1

�� .

� Symmetric: Suppose �xi� i�1

�� is related to �yi� i�1

�� , so �xn � yn�# �# 0��c
. But

yn � xn � ��xn � yn�,and since only the absolute value �xn � yn�# � �yn � xn�# comes
into play in Definition (iv), it follows that �yn � xn�# �# 0��c

as well. Hence, �yi� i�1

�� is

related to �xi� i�1

�� .

� Transitive: Suppose �xi� i�1

�� is related to �yi� i�1

�� , and �yi� i�1

�� is related to �zi� i�1

�� .
This means that �xn � yn�# �# 0��c

and �yn � zn�# �# 0��c
.

To be fully precise, let us fix 
 � 0,
 � 0; then there exists an N � ��\� such that
for all n � N,�xn � yn�# � 
/2; also, there exists an M such that for all n � M,
�yn � zn�# � 
/2. Well, then, as long as n is bigger than both N and M, we have that
�xn � zn�# � ��xn � yn� � �yn � zn��# � �xn � yn�# � �yn � zn�# � 
/2 � 
/2 � 
.
So, choosing L equal to the max�N,M� , we see that given 
 � 0,
 � 0 we can always
choose L so that for n � L, �xn � zn�# � 
. This means that �xn � zn� �# 0��c

– i.e.

�xi� i�1

�� is related to �zi� i�1

�� .
So, we really have an equivalence relation �� ( ��, and therefore the set C�H� is
partitioned into disjoint subsets (equivalence classes).We will denote that partition
C�H�/ ( by H#

C�H�/ ( � H#. 0.10

(vii) assume that 	s
 � �xi� i�1

�� � H#and 	t
 � �yj� i�1

�� � H#, we define inner

#-product �	s
,	t

# on H# by

�xi� i�1

�� , �yj� i�1

��
#
� Ext-�

i,j�1

i,j���

�xi ,yj 
#. 0.11

In particular if for all i 	 j �xi ,yj 
# � 0��c

�xi� i�1

�� , �yj� i�1

��
#
� Ext-�

i�1

i���

�xi ,yi 
#. 0.12

Remark 1.2.The following formula useful:

�x � y�#
2 � �x � y,x � y
# � �x�#

2 � �y�#
2 � �x,y
# � �y,x
# � �x�#

2 � �y�#
2 � 2Re�x,y
# �1.1�

Theorem 1.1. (Generalized Schwarz Inequality). Let �H,��, �
#� be an inner #-product
space and x,y � H. Assume that:
(1) at least one of hyperreals �x�#,�y�# is invertible

in ��c
# then

|�x,y
#|� �x�# 
 �y�# �1.2�

and equality holds iff x and y are linearly dependent.

(2) both of hyperreals �x�#,�y�# is not invertible in ��c
# then

|�x,y
#|
1� ��c
# � �x�# 
 �y�#. �1.2��

Proof. (1) If y � 0, the result holds trivially. So assume that y 	 0 and �y�# is
invertible

in ��c
#.First off notice that if x � αy for some α � ��c

#, then �x,y
 � α�y�#
2 and hence



|�x,y
#|� |α|�y�#
2 � �x�#�y�#

Note that in this case α � �x,y
�y�2.Now suppose that x � H is arbitrary, let
z � x � �y�#

�2�x,y
#y. So z is the orthogonal projection of x onto y. Then

0 � �z�#
2 � x �

�x,y
#

�y�#
2 y

#

2

� �x�#
2 �

|�x,y
#|
2

�y�#
4
�y�#

2 � 2Re x,
�x,y
#

�y�#
2 y �

� �x�#
2 �

|�x,y
#|
2

�y�#
2 .

�1.3�

from (1.3) it follows that 0 � �y�#
2�x�#

2 � |�x,y
#|
2 with equality iff z � 0 or equivalently

iff x � �y�#
�2�x,y
#y.

(2) Let z � x � �y�#
�1� 2

�x,y
#y. So z is the orthogonal projection of x onto y. Then

0 � �z�#
2 � x � �x,y
# �y�#

�1� 2
y

#

2
�

�x�#
2 � |�x,y
#|

2 �y�#
�1� 4

�y�#
2 � 2Re x,�x,y
# �y�#

�1� 2
y �

� �x�#
2 � |�x,y
#|

2 �y�#
�1� 2

.

�1.3��

From (1.3�) it follows that 0 � �y�#
2 
 �x�#

2 � |�x,y
#|
2 
 1� ��c

#.

Corollary 1.1. Let �H#,��, �
� be an inner #-product space and �x�# :� �x,x
# . Then

���# is a ��c-valued #-norm on H#. Moreover ��, �
# is #-continuous on H# 
 H#, where
H is viewed as the #-normed space �H#,���#�.
Proof. The only non-trivial thing to verify that ���# is a #-norm is the triangle
inequality:
�x � y�2 � �x�2 � �y�2 � 2Re�x,y
# � �x�2 � �y�2 � 2�x�#�y�# � ��x�# � �y�#�

2

where we have made use of Schwarz’s inequality. Taking the square root of this
inequality shows �x � y� � �x� � �y�. For the #-continuity assertion:
|�x,y
# � �x

�,y� 
#|� |�x � x�,y
# � �x
�,y � y� 
#|� �y�#�x � x��# � �x��#�y � y��#

� �y�#�x � x��# � ��x�# � �x � x��#��y � y��# � �y�#�x � x��# � �x�#�y � y��#

� �x � x��#�y � y��# from which it follows that ��, �
 is #-continuous.

Definition 1.2. Let �H,��, �
#� be an inner #-product space, we say x,y � H are
orthogonal and write x � y iff �x,y
# � 0. More generally if A � H is a set,
x � H is orthogonal to A and write x � A iff �x,y
 � 0 for all y � A. Let
A� � �x � H : x � A� be the set of vectors orthogonal to A. We also say that a
set S� H is orthogonal if x � y for all x,y � Ssuch that x 	 y. If S further
satisfies, �x�# � 1 for all x � S, then S is said to be orthonormal.
Proposition 1.1. Let �H,��, �
#� be an inner product space then
(1) (Parallelogram Law)

�x � y�#
2 � �x � y�#

2 � 2�x�#
2 � 2�y�#

2 �1.4�

for all x,y � H.
(2) (Pythagorean Theorem) If S� H is a hyperfinite orthonormal set, then

Ext-�
x�S

x
#

2

� Ext-�
x�S
�x�#

2 �1.5�

(3) If A � H# is a set, then A� is a #-closed linear subspace of H#.



Proof. We will assume that H# is a complex Hilbert space with ��c
#-valued inner

product, the real case being easier. Statements (1) and (2) are proved by the
following elementary computations:

�x � y�#
2 � �x�#

2 � �y�#
2 � 2Re�x,y
# � �x�#

2 � �y�#
2 � 2Re�x,y
# � 2�x�#

2 � 2�y�#
2 �1.6�

and

Ext-�
x�S

x
#

2

� Ext-�
x�S

x,Ext-�
y�S

y

#

� Ext-�
x,y�S

�x,y
# �

� Ext-�
x�S

�x,x
# � Ext-�
x�S

�x�#
2.

�1.7�

Item 3. is a consequence of the #-continuity of ��, �
# and the fact that
A� � �x�A Ker���,x
� where Ker���,x
� � �y � H|�y,x
# � 0� is a #-closed subspace
of H.
Definition 1.3. A non-Archiedean Hilbert space H# is an inner #-product space
�H,��, �
#� such that the induced Hilbertian #-norm is #-complete.
Example 1.3. Let �X,M,µ#� be a #-measure space then H# � L2

#�X,M,µ#� with

inner #-product �f,g
# � Ext-"
X

fgd#µ# is a non-Archiedean Hilbert space. Note that

every non-Archiedean Hilbert space H# is “equivalent” to a Hilbert space of this form.
Definition 1.4. A subset C of a non-Archiedean vector space X is said to be convex
if for all x,y � C the line segment 	x,y
 � �tx � �1 � t�y : 0 � t � 1� joining x to y is
contained in C as well. (Notice that any vector subspace of X is convex.)
Definition 1.5.M � H# is essentially #-closed if �x�x � H#��	infz�M�x � z�#
.
Theorem 1.2. Suppose that H# is a non-Archiedean Hilbert space and M � H# be a
essentially #-closed convex subset of H#. Then for any x � H# there exists a unique
y � M such that �x � y�# � dist�x,M� � infz�M�x � z�# Moreover, if M is a vector
subspace of H#, then the point y may also be characterized as the unique point in M
such that �x � y� � M.
Proof. (1) Uniquiness: By replacing M by M � x � �m� x|m � M� we may assume
x � 0.Let δ � dist�0,M� � infm�M �m�# and y,z � M.By the parallelogram law and the
convexity of M one obtains

2�y�#
2 � 2�z�#

2 � �y � z�#
2 � �y � z�#

2 � 4
y � z

2 #

2
� �y � z�#

2 � 4�2 � �y � z�#
2. �1.8�

Hence if �y�# � �z�# � δ, then 2δ2 � 2δ2 � 4δ2 � �y � z�#
2, so that �y � z�#

2 � 0.
Therefore, if a minimizer for dist�0,��|M exists, it is unique.
(2) Existence: Let yn � M be chosen such that �yn�# � δn �# δ � dist�0,M�. Taking

y � ym and z � yn in Eq.(1.8) shows 2δm
2 � 2δn

2 � 4δ2 � �yn � ym�#
2. Passing to

the #-limit m,n � ��in this equation implies, 2δ2 � 2δ2 � 4δ2 �
� #-lim supm,n����yn � ym�#

2.Therefore �yn�n�1
�� is hyper infinite Cauchy

sequence and hence #-convergent.Because M is #-closed, y � #-lim supn��� yn � M
and because ���# is #-continuous, �y�# � #-lim supn����yn�# � δ � dist�0,M�.So y
is the desired point in M which is closest to 0.
Now for the second assertion we further assume that M is a #-closed subspace of
H and x � H#. Let y � M be the closest point in M to x. Then for w � M, the



function g�t� � �x � �y � tw��#
2 � �x � y�#

2 �2tRe�x � y,w
# � t2�w�#
2 has a minimum

at t � 0. Therefore 0 � g�#�0� � �2Re�x � y,w
#. Since w � M is arbitrary, this implies
that �x � y� � M. Finally suppose y � M is any point such that �x � y� � M. Then for
z � M, by Pythagorean’s theorem,
�x � z�#

2 � �x � y � y � z�#
2 � �x � y�#

2 � �y � z�#
2 � �x � y�#

2 which shows 	dist�0,M�
2 �
�x � y�#

2. That is to say y is the point in M closest to x.

Definition 1.6. A : H# � H# is a bounded in ��c
# operator if and only if there exists

some M � ��c
#,M � 0 such that for all x � H#, �Ax�# � M�x�#.The smallest such M

if exists is called the operator #-norm of A and denoted by �A�#OP or �A�#.Thus

�A�# � sup�x�#�1��Ax�#� �
�� �1.9�

if supremum in RHS of (1.9) exists and sup�x�#�1��Ax�#� �
��.Conversely if (1.9)

holds
Proposition 1.2.A linear operator A : H1

# � H2
# between #-normed spaces is bounded

in��c
# if and only if it is #-continuous.

Proof.Suppose that A is bounded in ��c
# Then,for all vectors x,h � H1

# with h � 0
non zero we have �A�x � h� � A�x��# � �A�h��# � M�h�#,M � ��c

#,M � 0.Letting h
go to zero shows that A is #-continuous at x .Moreover, since the constant M does
not depend on x, this shows that in fact A is uniformly #-continuous, and even
Lipschitz #-continuous.
Conversely, it follows from the #-continuity at the zero vector that there exists a 
 � 0,
ε � 0 such that �A�h��# � �A�h� � A�0��# � 1 for all vectors h � H1

# with
�h�# � ε. Thus, for all non-zero x � H1

#, one has

�Ax�# �
�x�#

 A ε

�x�#
x

#
�
�x�#

 A ε

�x�#
x

#
� �x�#


 .

This proves that A is bounded in��c
#.

Definition 1.7. Suppose that A : H# � H# is a bounded in ��c
# operator. The

#-adjoint of A, denote A�, is the unique operator A� : H# � H# such that �Ax,y
# �
�x,A�y
#.(The proof that A� exists and is unique will be given in Proposition below.)
A bounded in ��c

# operator A : H# � H# is self #-adjoint or Hermitian if A � A�.
Definition 1.8. Let H# be a non-Archiedean Hilbert space and M � H be a #-closed
subspace.The orthogonal projection of H# onto M is the function PM : H# � H# such
that for x � H#,PM�x� is the unique element in M such that �x � PM�x�� � M.
Proposition 1.3. Let H# be a non-Archiedean Hilbert space and M � H# be a #-closed
subspace.The orthogonal projection PM satisfies:
(1) PM is linear (and hence we will write PMx rather than PM�x�.
(2) PM

2 � PM (PM is a projection).
(3) PM

� � PM, (PM is self-#-adjoint).
(4) Ran�PM� � M and ker�PM� � M�.
Proof. (1) Let x1,x2 � H# and α � ��c

#, then PMx1 � αPMx2 � M and
PMx1 � αPMx2 � �x1 � αx2� � 	PMx1 � x1 � α�PMx2 � x2�
 � M�

showing PMx1 � αPMx2 � PM�x1 � αx2�, i.e. PM is linear.
(2) Obviously Ran�PM� � M and PMx � x for all x � M. Therefore PM

2 � PM.
(3) Let x,y � H#, then since �x � PMx� � M� and �y � PMy� � M�,
�PMx,y
# � �PMx,PMy � y � PMy
# � �PMx,PMy
# � �PMx � �x � PM�,PMy
# � �x,PMy
#.
(4) It is clear that Ran�PM� � M. Moreover, if x � M, then PMx � x implies



that Ran�PM� � M. Now x � ker�PM� iff PMx � 0 iff x � x � 0 � M�.
Corollary 1.2. Suppose that M � H# is a proper closed subspace of a
non-Archiedean Hilbert space H#, then H# � M ) M�.
Proof. Given x � H#, let y � PMx so that x � y � M�. Then x � y � �x � y� � M ) M�.
If x � M �M �, then x � x, i.e. �x�#

2 � �x,x
# � 0. So M �M� � �0�.

Proposition 1.4. (Generalized Riesz Theorem). Let H#� be the dual space of H#.
The map

z � H# j
� ��,z
# � H#� �1.9��

is a conjugate linear #-isometric isomorphism.
Proof. The map j is conjugate linear by the axioms of the non-Archiedean inner
products. Moreover, for x,z � H#, |�x,z
#|� �x�# �z�# for all x � H# with equality when
x � z. This implies that �jz�H#� � ��,z
H#� � �z�# . Therefore j is #-isometric and this
shows that j is injective. To finish the proof we must show that j is surjective. So let
f � H#� which we assume with out loss of generality is non-zero. Then M � ker�f� is
a #-closed proper subspace of H#. Since, by Corollary 1.1, H# � M ) M�,
f : H#/M � M� � ��c

# is a linear isomorphism. This shows that dim�M�� � 1 and
hence H# � M ) ��c

#x0 where x0 � M�\�0�.Alternatively, choose x0 � M�\�0� such
that f�x0� � 1. For x � M� we have f�x � λx0� � 0 provided that λ � f�x�. Therefore
x � λx0 � M �M� � �0� , i.e. x � λx0. This again shows that M� is spanned by x0.
Choose z � λx0 � M� such that f�x0� � �x0,z
. (So λ � f�x0�/�x0�2 .) Then for
x � m� λx0 with m � M and λ � ��c

#, f�x� � λf�x0� � λ�x0,z
# � �λx0,z
# �
� �m� λx0,z
# � �x,z
# which shows that f � jz.

Proposition 1.5. (Adjoints). Let H# and K# be a non-Archiedean Hilbert spaces and
A : H# � K# be a bounded in ��c

# operator. Then there exists a unique bounded
operator A� : K# � H# such that

�Ax,y
K# � �x,A�y
H# �1.10�

for all x � H# and y � K#.Moreover �A � λB�� � A � �λB�,A�� * �A��� � A,
�A��# � �A�# and �A�A�# ��A�#

2 for all A,B � L�H#,K#� and λ � ��c
#.

Proof. For each y � K#, then map x � �Ax,y
K# is in H#� and therefore there
exists by Proposition 12.15 a unique vector z � H# such that �Ax,y
K# � �x,z
H# for all
x � H#.This shows there is a unique map A� : K# � H# such that �Ax,y
K# �
� �x,A��y�
H# for all x � H# and y � K#. To finish the proof, we need only show A� is
linear and bounded in ��c

# operator. To see A� is linear, let y1,y2 � K# and λ � ��c
#,

then for any x � H#,�Ax,y1 � λy2
K# � �Ax,y1
K# � λ�Ax,y2
K#

� �x,A��y1�
K# � λ�x,A��y2�
K# � �x,A��y1� � λA��y2�
K# and by the uniqueness of
A��y1 � λy2� we find A��y1 � λy2� � A��y1� � λA��y2�.
This shows A� is linear and so we will now write A�y instead of A��y�. Since
�A�y,x
H# � �x,A�y
H# � �Ax,y
K# � �y,Ax
K# it follows that A�� � A. The assertion that
�A � λB�� � A� � λB� is left to the reader.
The following arguments prove the assertions about #-norms of A and A� :
�A��# � supk�K#,�k�#�1�A�k�# � supk�K#,�k�#�1 suph�H#,�h�#�1|�A�k,h
#|�

� suph�H#,�h�#�1 supk�K#,�k�#�1|�k,Ah
#|� suph�H#,�h�#�1�Ah�# � �A�#,

�A�A�# � �A��#�A�# � �A�#
2 and



�A�#
2 � suph�H#,�h�#�1|�Ah,Ah
#|� suph�H#,�h�#�1|�h,A�Ah
#|� suph�H#,�h�#�1�A�Ah� �

� �A�A�#.

Corollary 1.3. Let H#,K#,M# bea non-Archiedean Hilbert space, A,B � L�H#,K#�,

C � L�K#,M#� and λ � ��c
#. Then �A � λB�� � A� � λB� and �CA�� �

� A�C� � L�M#,H#�.

Corollary 1.4. Let H# � ��c
#

n
and K# � ��c

#
n

equipped with the canonical inner

products, i.e. �z,w
H# � Ext-�
1�i�n

zi � wi for z,w � H#. Let A be an m
 n external

hyperfinite matrix thought of as a linear operator from H# to K#. Then the hyperfinite
matrix associated to A� : K# � H# is the conjugate transpose of A.
Corollary 1.5. Let K : L2

#�ν#� � L2
#�µ#� be the operator defined in Corollary 1.3.

Then K� : L2
#�X,µ#� � L2

#�X,ν#� is the operator given by

K�g�y� � Ext- "
X

k�x,y�g�x�d#µ#�x�.

Definition 1.9. �uα�α�A � H# is an orthonormal set if uα � uβ for all α 	 β and
�uα�# � 1.

Proposition 1.6 (Generalized Bessel’s Inequality). Let �uα�α�A be an orthonormal set,
then

Ext-�
α�A

|�x,uα 
#|
2 � �x�#

2 �1.11�

for all x � H#. In particular the set �α � A : �x,uα 
# 	 0� is at most �-countable, i.e.
card�A� � card���� for all x � H#.
Proof. Let Γ � A be any hyperfinite set. Then

0 � x � Ext-�
α�


�x,uα 
#uα
#

2

� �x�#
2 � 2Re Ext-�

α�

�x,uα 
#�uα,x
# �

�Ext-�
α�


|�x,uα 
#|
2 � �x�#

2 � Ext-�
α�


|�x,uα 
#|
2

�1.12�

and (1.12) gives that

Ext-�
α�


|�x,uα 
#|
2 � �x�#

2. �1.13�

Taking the supremum of the inequality (1.13) of 
 �� A then proves (1.11).
Proposition 1.7. Suppose A � H# is an orthogonal set. Then s � Ext-�

v�A
v exists in

H# iff Ext-�
v�A
�v�#

2 � ��. In particular A must be at most a �-countable set.

Moreover, Ext-�
v�A
�v�#

2 � ��, then

(1) �s�#
2 � Ext-�

v�A
�v�#

2 and

(2) �s,x
# � Ext-�
v�A

�v,x
# for all x � H#.

Similarly if �vn�n�1
�� is an orthogonal set, then s � Ext-�

n�1

��

vn exists in H# iff

Ext-�
n�1

��

vn � ��. In particular if Ext-�
n�1

��

vn exists, then it is independent of

rearrange ments of �vn�n�1
�� .



Proof. Suppose s � Ext-�
v�A

v exists. Then there exists 
 �� A such that

Ext-�
v��
�v�#

2 � Ext-�
v��

v
#

2

� 1 for all Λ �� A\
 ,wherein the first inequality we

have used Pythagorean’s theorem.

Taking the supremum over such Λ shows that Ext-�
v�A\


�v�#
2 � 1 and therefore

Ext-�
v�A
�v�#

2 � 1 � Ext-�
v�

�v�#

2 � ��.

Conversely, suppose that Ext-�
v�A
�v�#

2 � ��.Then for all 
 � 0,
 � 0 there exists

Γ
 �� A such that if Λ �� A\Γ
,

Ext-�
v��

v
#

2

� Ext-�
v��
�v�#

2 � 
. �1.14�

Hence by Ext-�
v�A

v exists.

For item 1, let Γ
 be as above and set s
 � Ext-�
v�Γ


v.Then

|�s�# � �s
�#| � �s� s
�# � 
 and by Eq.(1.14), 0 � Ext-�
v�A
�v�#

2 ��s
�#
2 � 
2

Letting 
 �# 0 we deduce from the previous two equations that �s
�# �# �s�# and

�s
�#
2 �# Ext-�

v�A
�v�#

2 as 
 �# 0 and therefore �s�#
2 � Ext-�

v�A
�v�#

2.

For the final assertion, let sN � Ext-�n�1
N vn and suppose that #-limN��� sN � s exists

in H# and in particular �sN�N�1
�� is Cauchy. So for N � M : Ext-�

n�M�1

N

�vn�#
2 �

� �sN � sM�#
2 �# 0 as M,N � ��which shows that Ext-�

n�1

��

vn is #-convergent,

i.e.Ext-�
n�1

��

vn � ��.

Corollary 1.6.Suppose H# is a non-Archiedean Hilbert space, β � H# is an
orthonormal set and M � span�β�. Then

PMx � Ext-�
u�β

�x,u
#u, �1.15�

�PMx�#
2 � Ext-�

u�β
|�x,u
#|2, �1.16�

and

�PMx,y
# � Ext-�
u�β

�x,u
#�u,y
#, �1.17�

for all x,y � H#.

Proof. By Bessel’s inequality, Ext-�
u�β

|�x,u
#|2 � �x�#
2 for all x � H# and therefore

by Proposition 12.18, Px � Ext-�
u�β

�x,u
#u exists in H# and for all x,y � H#,

�Px,y
# � Ext-�
u�β

��x,u
#u,y
# � Ext-�
u�β

�x,u
#�u,y
#. �1.18�

Taking y � β in Eq. (1.18) gives �Px,y
 � �x,y
#, i.e. that �x � Px,y
# � 0 for all y � β.



So �x � Px� � span�β� and by continuity we also have �x � Px� � M � #-span�β�.
Since Px is also in M, it follows from the definition of PM that Px � PMx proving
Eq. (1.15). Equations (1.16) and (1.17) now follow from (1.18), Proposition 1.7 and
the fact that �PMx,y
# � �PM

2 x,y
# � �PMx,PMy
# for all x,y � H#.

§2.Non-Archimedean Hilbert Space Basis.
Definition 2.1. (Basis). Let H# be a non-Archiedean Hilbert space. A basis β of H#

is a maximal orthonormal subset β � H#.
Proposition 2.1. Every non-Archiedean Hilbert space H# has an orthonormal basis.
Proof. Let � be the collection of all orthonormal subsets of H# ordered by
inclusion. If Φ � � is linearly ordered then �Φ is an upper bound. By Zorn’s
Lemma there exists a maximal element β � �.
An orthonormal set β � H# is said to be complete if β� � �0�. That is to say
if �x,u
# � 0 for all u � β then x � 0.

Lemma 2.1. Let β be an orthonormal subset of H# then the following are equivalent:
(1) β is a basis,
(2) β is #-complete and
(3) span�β� � H#.
Proof. If β is not #-complete, then there exists a unit vector x � β�\�0�.
The set β � �x� is an orthonormal set properly containing β, so β is not maximal.
Conversely, if β is not maximal, there exists an orthonormal set β1 � H# such that
β � β1. Then if x � β1\β, we have �x,u
# � 0 for all u � β showing β is not #-complete.
This proves the equivalence of (1) and (2). If β is not complete and
x � β�\�0�, then #-span�β� � x� which is a proper subspace of H#. Conversely
if span�β� is a proper subspace of H#,β� � #-span�β�

�
is a non-trivial subspace by

Corollary 1.2 and β is not #-complete. This shows that (2) and (3) are equivalent.
Theorem 2.1. Let β � H# be an orthonormal set. Then the following are
equivalent:
(1) β is #-complete or equivalently a basis.

(2) x � Ext-�
u�β

�x,u
#u for all x � H#.

(3) �x,y
# � Ext-�
u�β

�x,u
#�u,y
# for all x,y � H#.

(4) �x�#
2 � Ext-�

u�β
|�x,u
#|2 for all x � H#.

Proof. Let M � #-span�β� and P � PM.

(1) � (2) By Corollary 1.6, Ext-�
u�β

�x,u
#u � PMx. Therefore

x- Ext-�
u�β

�x,u
#u � x � PMx � M� � β� � �0�.

(2) � (3) is a consequence of Proposition 1.6.
(3) � (4) is obvious, just take y � x.
(4) � (1) If x � β�, then by 4), �x�# � 0, i.e. x � 0. This shows that β is #-complete.
Proposition 2.2. A non-Archimedean Hilbert space H# is �-separable iff H# has
a �-countable orthonormal basis β � H#. Moreover, if H# is �-separable, all
orthonormal bases of H# are �-countable.
Proof. Let D � H# be a �-countable dense set D � �un�n�1

�� . By Gram-Schmidt



process there exists β � �vn�n�1
�� an orthonormal set such that

span��vn|1 � n � N�� � span��un|1 � n � N��. So if �x,vn
# � 0 for all n � �� then
�x,un
# � 0 for all n � ��. Since D � H# is #-dense we may choose �wk� � D such
that x � #- lim k��� wk and therefore �x,x
# � #- lim k����x,wk
 � 0. That is to say
x � 0 and β is #-complete.
Conversely if β � H# is a �-countable orthonormal basis, then the �-countable set

D � Ext-�
u�β

auu|au � Q � iQ : #�u : a 	 0� � �� is #-dense in H#.

Finally let β � �un�n�1
�� be an orthonormal basis and β1 � H# be another orthonormal

basis. Then the sets Bn � �v � β1|v,un 	 0� are �-countable for each n � �� and
hence B :� �n�1

�� Bn is a countable subset of β1.
Suppose there exists v � β1\B, then �v,un
# � 0 for all n � �� and since β � �un�n�1

��

is an orthonormal basis, this implies v � 0 which is impossible since �v�# � 1.
Therefore β1\B � 	 and hence β1 � B is �-countable.
Definition 2.2.A linear map U : H# � K# is an isometry if �Ux�#K# � �x�#H#

for all x � H# and U is unitary if U is also surjective.
Proposition 2.3. Let U : H# � K# be a linear map, show the following are equivalent:
(1) U : H# � K# is an isometry,
(2) �Ux,Ux� 
#K# � �x,x� 
#H#for all x,x� � H#,

(3) U�U � idH#.
Proposition 2.4. Let U : H# � K# be a linear map, show the following are equivalent:
(1) U : H# � K# is unitary
(2) U�U � idH# and UU� � idK#.
(3) U is invertible and U�1 � U�.
Proposition 2.5.Let H# be a non-Archimedean Hilbert space. Then there exists
a set X and a unitary map U : H# � l 2

#�X�. Moreover, if H# is �-separable and
dim�H#� � ��, then X can be taken to be �� so that H# is unitarily equivalent to
l 2
#����.

Remark 2.1. Suppose that �un�n�1
�� is a #-total subset of H#, i.e. #-span�un� � H#.

Let �vn�n�1
�� be the vectors found by performing Gram-Schmidt on the set �un�n�1

�� .
Then �vn�n�1

�� is an orthonormal basis for H#.

§3.1.Weak #-Convergence.
Suppose H# is an hyper infinite dimensional non-Archimedean Hilbert space
and �xn�n�1

�� is an orthonormal subset of H#. Then, by Eq. (1.1), �xn � xm�#
2 � 2

for all m 	 n and in particular, �xn�n�1
�� has no #-convergent subsequences. From

this we conclude that C :� �x � H# : �x�# � 1� , the #-closed unit ball in H#, is not
#-compact. To overcome this problems it is sometimes useful to introduce a weaker
topology on X having the property that C is #-compact.
Definition 3.1. Let �X,���#� be a non-Archimedean Banach space and X� be its
#-continuous dual. The weak topology, τw, on X is the topology generated by X�. If
�xn�n�1

�� � X is a hyper infinite sequence we will write xn
w
�# x as n � �� to mean

that xn �# x in the weak topology.
Because τw � τ�X�� � τ���# � τ���x � ��# : x � X�, it is harder for a function
f : X � F to be #-continuous in the τw - topology than in the #-norm topology, τ���#.
In particular if φ : X � F is a linear functional which is τw -continuous, then φ is



τw -continuous and hence φ � X�.
Proposition 3.1. Let �xn�n�1

�� � X be a hyper infinite sequence, then xn
w
�# x � X as

n � ��iff φ�x� � #-lim n��� φ�xn� for all φ � X�.

Proof.By definition of τw,we have xn
w
�# x � X iff for all 
 �� X� and 
 � 0,
 � 0

there exists an N � �� such that |φ�x� � φ�xn�|� 
 for all n � N and φ � 
.
This later condition is easily seen to be equivalent to φ�x� � #- lim n��� φ�xn� for all
φ � X�.
The topological space �X,τw� is still Hausdorff, however to prove this one needs
to make use of the generalized Hahn Banach Theorem 18.16 below. For the
moment we will concentrate on the special case where X � H# is a non-
Archimedean Hilbert space in which case H#� � �φz :� ��,z
# : z � H#�, see
Propositions 3.2. If x,y � H# and z � y � x 	 0,then
0 � 
 :� �z�#

2 � φz�z� � φz�y� � φz�x�.
Thus Vx � �w � H# : |φz�x� � φz�w�|� 
/2� and Vy � �w � H# : |φz�y� � φz�w�|� 
/2�
are disjoint sets from τw which contain x and y respectively. This shows that
�H#,τw� is a Hausdorff space. In particular, this shows that weak #-limits are unique
if they exist.
Remark 3.1. Suppose that H# is an �-infinite dimensional non-Archimedean
Hilbert space and �xn�n�1

�� an orthonormal subset of H#. Then generalized Bessel’s
inequality (Proposition 1.6) implies xn

w
�# 0 � H# as n � ��. This points out the

fact that if xn
w
�# x � H# as n � ��, it is no longer necessarily true that

�x�# � #- lim n����xn�# . However we do always have �x�# � #- lim inf n����xn�#

because, �x�#
2 � #-lim n����xn,x
# � #-lim inf n���	�xn�#�x�#
 �

� �x�##-lim inf n����xn�#.

Proposition 3.3. Let H# be a non-Archimedean Hilbert space, β � H# be an
orthonormal basis for H# and �xn�n�1

�� � H# be a bounded in ��c
# hyper infinite

sequence, then the following properties are equivalent:
(1) xn

w
�# x � H# as n � ��.

(2) �x,y
# � #-lim n����xn,y
# for all y � H#.
(3) �x,y
# � #-lim n����xn,y
# for all y � β.
Moreover, if cy � #-lim n����xn,y
# exists for all y � β, then

Ext-�
y�β

|cy|2 � �� and xn
w
�# x � Ext-�

y�β
cyy � H# as n � ��.

Proof. 1. � 2. This is a consequence of Propositions 1.4 (Generalized Riesz
Theorem) and Proposition 3.2. �3. is trivial.
3. � 1. Let M � supn �xn�# and H0 denote the #-algebraic span of β. Then for
y � H# and z � H0,
|�x � xn,y
#|� |�x � xn,z
#|�|�x � xn,y � z|
# � |�x � xn,z
#|� 2M�y � z�# .
Passing to the #-limit in this equation implies
#-lim supn��� |�x � xn,y
#|� 2M �y � z�#

which shows #-lim supn��� |�x � xn,y
#| � 0 since H0 is #-dense in H#.
To prove the last assertion, let Γ �� β. Then by Bessel’s inequality (Proposition

1.6),Ext-�
y�Γ

|cy|2 � #-lim n��� Ext-�
y�Γ

|�x � xn,y
#|
2 � #-lim inf n����xn�#

2 � M2.

Since Γ �� β was arbitrary, we conclude that Ext-�
y�	

|cy|2 � M � �� and hence



we may define x � Ext-�
y�	

cyy. By construction we have

�x,y
# � cy � #-lim n����xn,y
# for all y � β and hence xn
w
�# x � H# as n � �� by

what we have just proved.
Theorem 3.1. Suppose that �xn�n�1

�� � H# is a bounded in ��c
# hyper infinite

sequence. Then there exists a subsequence yk � xnk of �xn�n�1
�� and x � X such

that yk
w
�# x as k � ��.

Proof. This is a consequence of Proposition 3.3.Let H0
# � #-span�xn : n � ��� is

a �-separable non-Archimedean Hilbert subspace of H#. Let �λm�m�1
�� � H0

# be an
orthonormal basis and use hyper infinite Cantor’s diagonalization argument to find a
hyper infinite subsequence yk � xnk such that cm � #-lim k����yk,λm
# exists for all
m � ��. Finish the proof by appealing to Proposition 3.3.
Theorem 3.2. (Alaoglu’s Theorem for a non-Archimedean Hilbert Spaces).
Suppose that H# is a �-separable non-Archimedean Hilbert space,
C � �x � H#|�x�# � 1� is the #-closed unit ball in H# and �en�n�1

�� is an orthonormal
basis for H#. Then

ρ�x,y� � Ext-�
n�1

��
�1/2n�|�x � y,en
#| �3.1�

defines a non-Archimedean metric on C which is compatible with the weak
topology on C, τC � �τw�C � �V � C|V � τw�. Moreover �C,ρ� is a #-compact
non-Archimedean metric space.
Proof. That is simple to check that ρ is a #-��c

#- valued metric . Let τρ be
the topology on C induced by ρ. For any y � H# and n � ��, the map x � H# �
�x � y,en
# � �x,en
# � �y,en
# is τw continuous and since the sum in Eq. (3.1) is
uniformly #-convergent for x,y � C, it follows that x � ρ�x,y� is τC - continuous.
This implies the #-open balls relative to ρ are contained in τC and therefore τρ � τC.
For the converse inclusion, let z � H#,x � φz�x� � �z,x
# be an element of H#�, and

for n � �� let zN � Ext-�
n�1

N

�z,en
#en. Then φzN � Ext-�
n�1

N

�z,en
#φen is

ρ-#-continuous, being a hyperfinite linear combination of the φen which are easily
seen to be ρ- #-continuous. Because zN �# z as N � ��. it follows that
supx�C|φz�x� � φzN�x�| � �z� zN�# �# 0 as N � ��.
Therefore φz " C is ρ- #-continuous as well and hence τC � τ�φz " C|z � H#� � τρ.
The last assertion follows directly from Theorem 3.1 and the fact that sequential
#-compactness is equivalent to #-compactness for a non-Archimedean metric
spaces.

Theorem 3.3. (Weak and Strong #-Differentiability). Suppose that f � L2
# ��c

#
n

and v � ��c
#

n
\�0�. Then the following are equivalent:

(1) There exists �tn�n�1
�� � ��c

#\�0� such that #-lim n��� tn � 0 and

supn���
f�� � tnv� � f���

tn
#2

� ��.

(2) There exists g � L2���c
#

n
� such that �f,�v

#φ
# � ��g,φ
# for all φ � Cc
�� ��c

#
n

.

(3) There exists g � L2
# ��c

#
n

and fn � Cc
�� ��c

#
n

such that fn
L2

#

�# f and



�v
#fn

L2
#

�# g as � ��.

(4) There exists g � L2
# ��c

#
n

such that

f�� � tv� � f���
t

L2
#

�# g

as t �# 0.
Proof. 1. � 2. We may assume, using Theorem 3.1 and passing to a
subsequence if necessary, that

f�� � tnv� � f���
tn

w
�# g

for some g � L2
#���c

#n�. Now for φ � Cc
�����c

#n�,

�g,φ
# � #-lim n���
f�� � tnv� � f���

tn
,φ

#

� #-lim n��� f,
φ�� � tnv� � φ���

tn
#

�

� f, #- lim n���
φ�� � tnv� � φ���

tn
#

� ��f,�v
#φ
#,

wherein we have used the translation invariance of Lebesgue #-measure and the
dominated #-convergence theorem.

2. � 3. Let φ � Cc
�� ��c

#
n
, ��c

# such that Ext-"
��c

#
n φ�x�d#x � 1 and let φm�x� �

mnφ�mx�, then by Proposition 11.24, hm � φm � f � C
�� ��c

#
n

for all m � ��

and �v
#hm�x� � �v

#φm � f�x� � Ext-"
��c

#
n �v

#φm�x � y�f�y�d#y � �f,��v
#	φm�x � ��

# �

�g,φm�x � ��
# � φm � g�x�.

By Theorem11.21, hm �# f � L2
# ��c

#
n

and �v
#hm � φm � g �# g in L2

# ��c
#

n
as

m � ��. This shows 3. holds except for the fact that hm need not have #-compact

support. To fix this let ψ � Cc
�� ��c

#
n
,	0,1
 such that ψ � 1 in a neighborhood of 0

and let ψ
�x� � ψ�
x� and ��v
#ψ�
�x� � ��v

#ψ��
x�. Then
�v

# �ψ
hm� � �v
#ψ
hm � ψ
�v

#hm � 
��v
#ψ�
hm � ψ
�v

#hm

so that ψ
hm �# hm in L2
# and �v

# �ψ
hm� �# �v
#hm in L2

# as 
 �# 0. Let fm � ψ
mhm

where 
m is chosen to be greater than zero but small enough so that
�ψ
mhm � hm�#2 ���v

#�ψ
mhm� � �v
#hm�#2 � 1/m.

Then fm � Cc
�����c

#n�, fm �# f and �v
#fm �# g in L2

# as m � ��.
3. � 4. By the fundamental theorem of calculus

τ�tvfm�x� � fm�x�
t �

fm�x � tv� � fm�x�
t � 1

t "
0

1

d#

d#s
fm�x � stv�d#s

� "
0

1

��v
#fm��x � stv�d#s.

�3.2�

Let

Gt�x� � "
0

1

τ�stvg�x�d#s � "
0

1

g�x � stv�d#s

which is defined for #-almost every x and is in L2
#���c

#n� by generalized Minkowski’s
inequality for integrals. Therefore



τ�tvfm�x� � fm�x�
t � Gt�x� � "

0

1

	��v
#fm��x � stv� � g�x � stv�
d#s

and hence again

τ�tvfm � fm

t � Gt
#2
� "

0

1

�τ�stv��vfm� � τ�stvg�#2 d#s � "
0

1

��vfm � g�#2d
#s.

Letting m� �� in this equation implies �τ�tvf � f�/t � Gt #-a.e. Finally one more
application of Minkowski’s inequality for integrals implies,

τ�tvf � f
t � g

#2
� �Gt � g�#2 � "

0

1

�τ�stvg � g�d#s

#2

� "
0

1

��τ�stvg � g��#2d
#s

By the dominated convergence theorem and Proposition 11.13, the latter term tends
to 0 as t �# 0 and this proves 4. The proof is now complete since 4. � 1. is trivial
Proposition 3.3. Let �H#,��, �
#� be a not necessarily #-complete inner product
space and β � H# be an orthonormal set. Then the following two conditions are
equivalent:

(1) x � Ext-�
u�β

�x,u
#u for all x � H#.

(2) �x�#
2 � Ext-�

u�β

|�x,u
#|2 for all x � H#.

Moreover, either of these two conditions implies that β � H# is a maximal
orthonormal set. However β � H# being a maximal orthonormal set is not
sufficient to conditions for 1) and 2) hold.
Proof. As in the proof of Theorem 12.24, (1) implies (2). For (2) implies (1) let
Λ �� β and consider

x � Ext-�
u��

�x,u
#u
#

2

� �x�#
2 � 2 Ext-�

u��

|�x,u
#|2 � Ext-�
u��

|�x,u
#|2

� �x�#
2 � Ext-�

u��

|�x,u
#|2 .

�3.3�

Since �x�#
2 � Ext-�

u�	

|�x,u
#|2, it follows that for every 
 � 0,
 � 0, there exists

Λ
 �� β such that for all Λ �� β such that Λ
 � Λ,

x � Ext-�
u��

�x,u
#u
#

2

� �x�#
2 � Ext��

u��

|�x,u
#|2 � 
 �3.4�

showing that x � Ext-�
u�β

�x,u
#u.

Suppose x � �x1,x2, . . . ,xn, . . .� � β�. If (2) is valid then �x�#
2 � 0, i.e. x � 0. So

β is maximal.
Let us now construct a counter example to prove the last assertion.
Take H# � Span��ei�n�1

�� � � l 2
# and let �un � e1 � �n � 1�en�1 for n � 1,2. . . . Applying

Gramn-Schmidt to ��un�n�1
�� we construct an orthonormal set β � �un�n�1

�� � H#.



I now claim that β � H# is maximal. Indeed if x � �x1,x2, . . . ,xn, . . .� � β� then
x � un for all n, i.e. 0 � �x,u˜n
# � x1 � �n � 1�xn�1.
Therefore xn�1 � �n � 1��1x1 for all n. Since x � Span��ei�n�1

�� �,xN � 0 for some
N sufficiently large and therefore x1 � 0 which in turn implies that xn � 0 for all n.
So x � 0 and hence β is maximal in H#. On the other hand, β is not maximal
in l 2

# . In fact the above argument shows that β� in l 2
# is given by the span of

v � �1,1/2,1/3,1/4,1/5, . . .�. Let P be the orthogonal projection of l 2
# onto the

Span�β� � v�.Then Ext-�
i�1

��

�x,un
#un � Px � x �
�x,v
#

�v�#
2 v so that

Ext-�
i�1

��

�x,un
#un � x iff x � Span�β� � v� � l 2
#. For example if x � �1,0,0, . . .� � H#

(or more generally for x � ei for any i),x 	 v� and hence Ext-�
i�1

��

�x,un
#un 	 x.

Proposition 3.4. (Parallelogram Law Converse). If �X,���#� is a #-normed space
such that Eq.(11.4) holds for all x,y � X, then there exists a unique inner product
on ��, �
# such that �x�# � �x,x
# for all x � X. In this case we say that ���# is a

Hilbertian #-norm.
Proof. If ���# is going to come from an inner product ��, �
#, it follows from Eq.(12.1)
that 2Re�x,x
# � �x � y�#

2 � �x�#
2 � �y�#

2 and �2Re�x,x
# � �x � y�#
2 � �x�#

2 � �y�#
2.

Subtracting these two equations gives the “polarization identity,”

4Re�x,x
# � �x � y�#
2 � �x � y�#

2. �3.5�

Replacing y by iy in this equation then implies that

4 Im�x,x
# � �x � iy�#
2 � �x � iy�#

2. �3.6�

from which we get

�x,y
# � 1/4 Ext-�
��G

��x � �y�#
2 �3.7�

where G � ��1,�i� - a cyclic subgroup of �S1 � ��c
#. Hence if ��, �
# is going to exists

we must define it by Eq. (3.7). Notice that

�x,x
# � 1/4 Ext-�
��G

��x � �x�#
2 � �x�#

2 � i�x � ix�#
2 � i�x � ix�#

2 �

�x�#
2 � i|1 � i |2�x�#

2 � i|1 � i |2�x�#
2 � �x�#

2.

�3.8�

So to finish the proof of (4) we must show that �x,y
# in Eq. (3.7) is an inner
product. Since

4�y,x
# � Ext-�
��G

��y � �x�#
2 � Ext-�

��G

����y � �x��#
2 � Ext-�

��G

����y � �2x��#
2

� �y � x�#
2 � ��y � x�#

2 � i�y � ix�#
2 � i��iy � x�#

2 �

� �x � y�#
2 � �x � y�#

2 � i�x � iy�#
2 � i�x � iy�#

2 � 4�x,y
#

�3.9�

it suffices to show x � �x,y
# is linear for all y � H#. We will need to derive an
identity from Eq. (1.4). To do this we make use of Eq. (1.4) three times to find



�x � y � z�#
2 � ��x � y � z�#

2 � 2�x � y�#
2 � 2�z�#

2 �

� �x � y � z�#
2 � 2�x � z�#

2 � 2�y�#
2 � 2�x � y�#

2 � 2�x � y�#
2 � 2�z�#

2 �

�y � z� x�#
2 � 2�x � z�#

2 � 2�y�#
2 � 2�x � y�#

2 � 2�z�#
2 �

��y � z� x�#
2 � 2�y � z�#

2 � 2�x�#
2 � 2�x � z�#

2 � 2�y�#
2 � 2�x � y�#

2 � 2�z�#
2.

�3.10�

Solving this equation for �x � y � z�#
2 gives

�x � y � z�#
2 � �x � z�#

2 � �x � y�#
2 � �x � z�#

2 � �x�#
2 � �z�#

2 � �y�#
2. �3.11�

Using Eq. (3.11), for x,y,z � H#,

4Re�x � z,y
# � �x � z� y�#
2 � �x � z� y�#

2 �

� �y � z�#
2 � �x � y�#

2 � �x � z�#
2 � �x�#

2 � �z�#
2 � �y�#

2 �

� �z� y�#
2 � �x � y�#

2 � �x � z�#
2 � �x�#

2 � �z�#
2 � �y�#

2 �

� �z� y�#
2 � �z� y�#

2 � �x � y�#
2 � �x � y�#

2 �

4Re�x,y
# � 4Re�z,y
#.

�3.12�

Now suppose that δ � G, then since |δ|� 1,

4��x,y
# � 1/4 Ext-�
��G

���x � �y�#
2 � 1/4 Ext-�

��G

���x � ��1�y�#
2 �

� 1/4 Ext-�
��G

����x � ��y�#
2 � 4��x,y
#.

�3.13�

where in the third inequality, the substitution � δ was made in the sum. So
Eq.(3.13) says ��ix,y
# � �i��ix,y
#, and ��x,y
# � ��x,y
#. Therefore

Im�x,y
# � Re��i�x,y
#� � Re���ix,y
#� �3.14�

which combined with Eq. (3.12.) shows
Im�x � z,y
# � Re��ix � iz,y
# � Re��ix,y
# � Re��iz,y
# � Im�x,y
# � Im�z,y
#

and therefore (again in combination with Eq. (3.12)),
�x � z,y
# � �x,y
# � �z,y
# for all x,y � H#.
Because of this equation and Eq. (3.13) to finish the proof that x � �x,y
# is
linear, it suffices to show ��x,y
# � ��x,y
# for all λ � 0. Now if λ � m � ��, then
�mx,y
# � �x � �m� 1�x,y
# � �x,y
# � ��m� 1�x,y
#

so that by hyper infinite induction �mx,y
# � m�x,y
#. Replacing x by x/m then shows
that �x,y
# � m�m�1x,y
#, so that �m�1x,y
# � m�1�x,y
# and so if m,n � ��, we find

n
m x,y

#
� n 1

m x,y
#
� n

m �x,y
# so that ��x,y
# � ��x,y
# for all λ � 0 and λ � ��.

By #-continuity, it now follows that ��x,y
# � ��x,y
# for all � � ��c
#,λ � 0.

Proposition 3.5. Let �H#,��, �
#� be a not necessarily #-complete inner product space
and β � H# be an orthonormal set. Then the following two conditions are equivalent:

(1) x � Ext-�
u�β

�x,u
#u for all x � H#.

(2) �x�#
2 � Ext-�

u�β

|�x,u
#|2 for all x � H#.



Moreover, either of these two conditions implies that β � H# is a maximal ortho-
normal set. However β � H# being a maximal orthonormal set is not sufficient to
conditions for 1) and 2) hold.
Proof. As in the proof of Theorem 2.1, (1) implies (2). For (2) implies (1) let
Λ �� β and consider

x � Ext-�
u�Λ

�x,u
#u
#

2

� �x�#
2 � 2 Ext-�

u�Λ

|�x,u
#|2 � Ext-�
u�Λ

|�x,u
#|2 �

�x�#
2 � Ext-�

u�Λ

|�x,u
#|2 .

�3.15�

Since �x�#
2 � Ext-�

u�	

|�x,u
#|2, it follows that for every 
 � 0��c
#,
 � 0��c

# there exists

Λ
 �� β such that for all Λ �� β such that Λ
 � Λ,

x � Ext-�
u�Λ

�x,u
#u
#

2

� �x�#
2 � Ext-�

u�Λ

|�x,u
#|2 � 
 �3.16�

showing that x � Ext-�
u�β

�x,u
#.Suppose x � �x1,x2, . . . ,xn, . . .� � β�. If (2) is valid

then �x�#
2 � 0��c

#, i.e. x � 0. So β is maximal. Let us now construct a counter example

to prove the last assertion. Take H# � Span�ei� i�1
�� � l 2

# and let �un � e1 � �n � 1�en�1

for n � ��. Applying Gramn-Schmidt to ��un�n�1
�� we construct an orthonormal set

β � �un�n�1
�� � H#.

We now claim that β � H# is maximal. Indeed if x � �x1,x2, . . . ,xn, . . .� � β� then
x � un for all n � ��, i.e. 0��c

# � �x,�un
# � x1 � �n � 1�xn�1.

Therefore xn�1 � �n � 1��1x1 for all n � ��. Since x � Span�ei� i�1
�� , xN � 0 for some

N sufficiently large and therefore x1 � 0 which in turn implies that xn � 0��c
# for all

n � ��. So x � 0��c
# and hence β is maximal in H#. On the other hand, β is not

maximal in l 2
#. In fact the above argument shows that β� in l 2

#
is given by the span of

v � �1��c
#, 1��c

#/2��c
#, 1��c

#/3��c
#, 1��c

#/4��c
#, 1��c

#/5��c
#, . . .�. Let P be the orthogonal

projection of l 2
#

onto the Span�β� � v�.

Ext-�
u�Λ

�x,un
#un � Px � x �
�x,v
#

�v�#
2 v, so that Ext-�

u�Λ

�x,un
#un � x iff

x � Span�β� � v� � l 2
#. For example if x � �1��c

#, 0��c
#, 0��c

#, . . .� � H#(or more

generally for x � ei for any i � ��), x � v� and hence Ext-�
u�Λ

�x,un
#un 	 x.

§ 3.2.#-Analytic vectors.Generalized Nelson’s #-analytic
vector theorem.

Let H# be a #-complex Hilbert space over field ��c
#.The most natural way to construct

a #-continuous one-parameter unitary group U�t� : H# � H# is to try to make sense



of the power series Ext-�
n�0

�#

�itA�n on a #-dense set of vectors. Notice that this can

certainly be done if A is self-adjoint. For let E� be the family of spectral projections for

A.Then on each of the spaces E	�M,M
, A is a bounded operator and Ext-�
n�0

�#

�itA�n/n!

#-converges to Ext-exp�itA� in #-norm. In particular, for any � � �M�0
E	�M,M
,

#- limN��# Ext-�
n�0

N
�itA�n

n!
� Ext-exp�itA�. �3.1�

Since �M�0
E	�M,M
 is #-dense in H#, we see that the group generated by a self-adjoint

operator A is completely determined by the well-defined action of the hyper infinite

series Ext-�
n�0

�#

�itA�n/n! on a #-dense set. We will prove the #-converse: namely,

if A is symmetric and has a #-dense set of vectors to which Ext-�
n�0

�#

�itA�n/n! can be

applied, then A is essentially self-#-adjoint. We need several definitions.
Definition1.1. Let A be an operator on a non-Archimedean Hilbert space H#. The set

C�#
�A� ��n�0

�#

D�An� is called the C
�#

-vectors for A. A vector � � C�#
�A� is called an

#-analytic vector for A if

Ext-�
n�0

�#

�An��tn

n!
� �� �3.2�

for some t � 0.If A is self-adjoint, then C�#
�A� will be #-dense in D�A�. However, in

general, a symmetric operator may have no C�#
-vectors at all even if A is essentially

self-#-adjoint. We caution the reader to remember that #-analytic vectors and vectors
of

uniqueness (defined below) must be C
�#

- vectors for A. A vector � � D�A� can be an
#-analytic vector for an extension of A but fail to be an #-analytic vector for A because
it is not in C�#

�A�.
Definition1.2.Suppose that A is symmetric. For each � � C�#

�A�, define

D� � Ext-�
n�0

N

�nAn� N � ��,�n � ��c
# . �3.3�

Let H�
# � #-D� and define A� : D� � D� by A� Ext-�

n�0

N

�nAn� � Ext-�
n�0

N

�nAn�1�.

� is called a vector of #-uniqueness if and only if A� is essentially self-#-adjoint on D�

as an operator on H�
# .

Finally, a subset S� H# is called #-total if the set of hyperfinite linear combinations of
elements of S is #-dense in H#.
Lemma (Generalized Nussbaum’s lemma) Let A be a symmetric operator and
suppose that D�A� contains a #-total set of vectors of #-uniqueness. Then A is
essentially self-#-adjoint.
Proof We will show that Ran�A � i� are #-dense in H#. By the fundamental criterion
this will show that A is essentially self-#-adjoint. Suppose � � H# and 
 � 0 are given
and let Sdenote the set of vectors of #-uniqueness. Since S is #-total we can find
��n�n�1

N and ��n�n�1
N with �n � Sso that



� � Ext-�
n�1

N

�n�n

#

� 
/2. �3.4�

Since �n is a vector of #-uniqueness, there is a �n � D�n so that

��n � �A � i��n�# �


2

Ext-�
n�1

N

|�n|
�1

. �3.5�

Setting � � Ext-�n�1
N �n�n we have � � D�A� and �� � �A � i���# � 
.

Thus Ran�A � i� is #-dense. The proof for �A � i� is the same.
Theorem 3.1. (Generalized Nelson’s #-analytic vector theorem) Let A be a symmetric
operator on a non-Archimedean Hilbert space H#. If D�A� contains a #-total set of
#-analytic vectors, then A is essentially self-#-adjoint.
Proof By Generalized Nussbaum’s lemma, it is enough to show that each #-analytic
vector � is a vector of #-uniqueness. First notice that А� always has self-#-adjoint
extensions, since the operator

C : Ext-�
n�0

N

�nAn� �3.6�

extends to a conjugation on H�
# which commutes with А�. Suppose that B is a

self-#-adjoint extension of А� on H�
# and let �# be the spectral #-measure for B

associated to �. Since � is an #-analytic vector for A,

Ext-�
n�0

N

�An��#/n! � �� �3.7�

for some t � 0. Let 0 � s � t. Then

Ext-�
n�0

�#

sn

n!
Ext- "

��c
#

|x|nd#�# �

� Ext-�
n�0

�#

sn

n!
Ext- "

��c
#

x2nd#�#

1/2

Ext- "
��c

#

d#�#

1/2

�

���#Ext-�
n�0

�#

sn

n!
�An��# �

��.

�3.8�

Therefore by generalized Fibini’s theorem

Ext- "
��c

#

Ext-�n�0

�� sn

n!
|x|n d#�# � Ext- "

��c
#

Ext-�s|x|�d#�# � ��. �3.9�

As a result, the function

��,	Ext-exp�itB�
�
# � Ext- "
��c

#

	Ext-exp�itx�
d#�# �3.10�

has an #-analytic continuation

Ext- "
��c

#

	Ext-exp�izx�
d#�# �3.11�



to the region |Imz|� t. Since

d#

d#z

k

Ext- "
��c

#

	Ext-exp�izx�
d#�#

z�0

�

� Ext- "
��c

#

Ext-exp�ix�k d#�# � �,�iA�k�
#
,

�3.12�

we obtain

��,	Ext-exp�isB�
�
# � Ext-�
n�0

�#

�is�n

n!
� �,�iA�k�

#
�3.13�

for |s|� t. Thus, for |s|� t (and therefore for all s), the function ��1,	Ext-exp�isB�
�2
#

is completely determined by the numbers ��1,An�2
#,n �
��.

Similar proof shows that ��1,	Ext-exp�isB�
�2
# is determined by the numbers
��1,An�2
#,n �

��for any �1,�2 � D�. Since D� is #-dense in H�
# and Ext-exp�isB�

is unitary, Ext-exp�isB� is completely determined by the numbers ��1,An�2
#,n �
��

for any �1,�2 � D�.Thus, all self-#-adjoint extensions of A� generate the same unitary
group, so by generalized Stone’s theorem A� has at most one self-#-adjoint extension.
As we have already remarked, A� has at least one self-#-adjoint extension. Thus A� is
essentially self-#-adjoint and � is a vector of uniqueness.
Corollary 3.1 A #-closed symmetric operator A is self-#-adjoint if and only if D�A�
contains a #-dense set of #-analytic vectors.
The statement of Corollary 1 is not true if “self-#-adjoint” is replaced by “essentially
self-#-adjoint.” A self-#-adjoint operator A may be essentially self-#-adjoint on a
domain D � D�A� and D may not even contain any #-vectors.
Corollary 3.2 Suppose that A is a symmetric operator and let D be a #-dense linear
set contained in D�A�. Then, if D contains a #-dense set of #-analytic vectors and if D
is invariant under A, then A is essentially self-#-adjoint on D.
Proof Since D is invariant under A, each #-analytic vector for A in D is also an
#-analytic vector for А " D. Thus, by Theorem 3.1 А " D is essentially self-#-aadjoint.
The reason that one needs the invariance condition in Corollary 2 is that for a vector
� � D to be #-analytic for А " D, it must first be C

�� for А " D. This requires that
Аn � D for all n � ��.

§4.The generalized Spectral Theorem

§ 4.1.The #-continuous functional calculus
In this section, we will discuss the generalized spectral theorem in its many guises.
This structure theorem is a concrete description of all self-#-adjoint operators. There
are several apparently distinct formulations of the spectral theorem. In some sense
they are all equivalent.
The form we prefer says that every bounded self-#-adjoint operator is a multiplication
operator. (We emphasize the word bounded since we will deal extensively with
unbounded self-#-adjoint operators in the next chapter; there is a spectral theorem for
unbounded operators which we discuss in Section § 4.3)
This means that given a bounded self-#-adjoint operator A on a non-Archimedean



Hilbert space H# over field ��c
# or ��c

#, we can always find a #-measure �# on
a #-measure space M and a unitary operator U : H# � L2

#�M,d#�#� so that

�UAU�1f��x� � F�x�f�x� �4.1.1�

for some bounded real-valued #-measurable function F on M.
In practice, M will be a union of copies of ��c

# and F will be x so the core of the proof of
the theorem will be the construction of certain #-measures. This will be done in

Section
§ 4.2 by using the generalized Riesz-Markov theorem. Our goal in this section will be

to
make sense out of f�A�, for f a #-continuous function.
In the next section, we will consider the #-measures defined by the functionals

f � ��, f�A��
# �4.1.2�

for fixed � � H#.
Given a fixed operator A, for which f can we define f�A�? First, suppose that A is an
arbitrary bounded in��c

# operator. If f�x� � Ext-�n�1
N cnxn, N � ��is a polynomial,

we let f�A� � Ext-�n�1
N cnAn. Suppose that f�x� � Ext-�n�1

�� cnxn is a hyper infinite

power series with radius of #-convergence R. If �A�# � R then hyper infinite power

series Ext-�n�1

�� cnAn #-converges in ��H#� so it is natural to set

f�A� � Ext-�n�1

�� cnAn �4.1.3�

In this last case, f was a function #-analytic in a domain including all of ��A�.
The functional calculus we have talked about thus far works for any operator in any
Banach space. The special property of self-adjoint operators or more generally normal
operators is that ||Р�A�||# � sup����A�|P���| for any polynomial P, so that one can use the
B.L.T. theorem to extend the functional calculus to #-continuous functions. Our major
goal in this section is the proof of:
Theorem 4.1.1. (#-continuous functional calculus) Let A be a self-#-adjoint operator on
a Hilbert space H#. Then there is a unique map � : C#���A�� � ��H#� with the
following properties:
(a) � is an algebraic �-homomorphism, that is,

��fg� � ��f���g�,���f� � ���f�,��1� � I,��f� � ��f��.

(b) � is #-continuous, that is, ���f��� H# � C�f� ��.

(c) Let f be the function f�x� � x; then ��f� � A.
Moreover, � has the additional properties:
(d) If А� � ��, then ��f�� � f����.
(e) �	��f�
 � �f���|� � ��A�� [spectral mapping theorem].
(f) If f � 0, then ��f� � 0.
(g)���f��# � �f� ��. [this strengthens (b)].
The proof which we give below is quite simple, (a) and (c) uniquely
determine ��Р� for any hyperfinite polynomial P�x�. By the generalized Weierstrass
theorem, the set of polynomials is #-dense in C#���A�� so the main part of the proof is
showing that

||Р�A�||#op � �P�x��C#���A�� � sup����A�|P���|. �4.1.4�



The existence and uniqueness of � then follow from the generalized B.L.T. theorem.
To prove the crucial equality, we first prove a special case of (e) (which holds for
arbitrary bounded operators):
Lemma 4.1.1.Let P�x� � Ext-�n�1

N cnxn, N � ��. Let Р�A� � Ext-�n�1
N cnAn. Then

��Р�A�� � �P���|� � ��A��. �4.1.5�

Proof Let � � ��A�. Since x � � is a root of P�x� � P���, we have
P�x� � P��� � �x � ��Q�x�, so P�A� � P��� � �A � ��Q�A�. Since �A � �� has no
inverse neither does P�A� � P��� that is, P��� � ��P�A��.
Conversely, let � � ��P�A�� and let �1, . . . ,�n be the roots of P�x� � �, that is,
P�x� � � � a Ext-� i�1

n �x � � i � . If �1, . . . ,�n � ��A�, then

�P�A� � ���1 � a�1 Ext-� i�1
n �A � � i ��1 �4.1.6�

so we conclude that some � i � ��A� that is, � � P��� for some � � ��A�.
Definition Let r�A� � sup����A� |�|.Then r�A� is called the spectral radius of A.

Theorem 4.1.2. Let X be a Banach space, A � ��X� Then lim n��� n �An�#op exists

and is equal to r�A� . If X is a Hilbert space and A is self-#-adjoint, then r�A� � �A�#op.

Lemma 4.1.2. Let A be a bounded in ��c
# self-#-adjoint operator. Then

||Р�A�||# � sup����A�|P���|. �4.1.7�

Proof By Theorem 4.1.2 and by Lemma 4.1.1 we obtain

||Р�A�||#2 � ||Р�A��Р�A�||# � ||�PР��A�||# �

�
��� PР �A�

sup|�| �
����A�
sup |PР���| �

����A�
sup |Р���|

2

.
�4.1.8�

Proof of Theorem 4.1.1. Let ��Р� � P�A�. Then ���Р��� H# � �P�C#���A�� so � has a

unique linear extension to the #-closure of the polynomials in C#���A��. Since the
polynomials are an algebra containing I, containing complex conjugates, and
separating points, this #-closure is all of C#���A��. Properties (a), (b), (c), (g) are
obvious and if

�
� obeys (a), (b), (c) it agrees with � on polynomials and thus by

#-continuity on C#���A�� To prove (d), note that ��Р�� � Р���� and apply
#-continuity. To prove (f), notice that if f � 0, then f � g2 with g ��c

#-valued
and g � C#���A��. Thus ��f� � ��g�2 with ��g� self-#-adjoint, so ��f� � 0.
Remark 4.1.1. In addition:
(1) ��f� � 0 if and only if f � 0.
(2) Since fg � gf for all f,g, �f�A�|f � C#���A��� forms an abelian algebra closed
under adjoints. Since ���f��# � �f� �� and C#���A�� is #-complete, �f�A�|f � C#���A���
is #-norm-#-closed. It is thus an non-Archimedean abelian C� algebra of operators.
(3) Ran��� is actually the non-Archimedean C� algebra generated by A that is, the
smallest C�-algebra containing A.
(4) This result, that C#���A�� and the non-Archimedean C�-algebra generated by A
are #-isometrically isomorphic
(5) (b) actually follows from (a) and Proposition 4.1.1. Thus (a) and (c) alone
determine � uniquely.



Proposition 4.1.1. Suppose that �: C#�X� � ��H#� is an algebraic �-homomorphism,
X a #-compact metric space. Then
(a) If f � 0, then ��f� � 0.
(b) ���f��# � �f� ��.

Definition 4.1.1 if n,k � �� with k � n, then we define

n
k

� n!#

k!#�n � k�!# �4.1.8�

where n!# � Ext-�1�m�n
m,see ref [7].

Lemma 4.1.3. Whenever n,k � �� are such that k � n, then

n
k

� n
n � k

. �4.1.9�

Proof. Directly from the formula (4.1.8)

n
n � k

� n!#

�n � k�!#	n � �n � k�
!# � n!#

�n � k�!#k!# � n!#

k!#�n � k�!# � n
k

. �4.1.10�

Lemma 4.1.4. Let n,k � �� with 0 � k � n, then

n
k

� n � 1
k � 1

� n � 1
k

. �4.1.11�

Proof. Directly by hyper infinite induction [7].
Proposition 4.1.2. (Generalized binomial theorem) Let x,y � ��c

# and let n � ��,
then we have

�x ! y�n � Ext-�k�0
n n

k
xn�kyk � Ext-�k�0

n n
k

xkyn�k. �4.1.8�

Proof.We prove the result by hyper infinite induction. When n � 1, we trivially have

�x ! y�1 � x ! y � 1
0

x � 1
1

y.

Suppose that there is an n � ��for which the statement (4.1.8) is true. We then
have

�x ! y�n�1 � �x ! y�n�x ! y� �

Ext-�k�0
n n

k
xn�kyk �x ! y� �

Ext-�k�0
n n

k
xn�kyk x � Ext-�k�0

n n
k

xn�kyk y �

Ext-�k�0
n n

k
xn�1�kyk � Ext-�k�0

n n
k

xn�kyk�1 �

xn�1 � Ext-�k�1
n n

k
� n

k � 1
xn�kyk � yn�1 �

n � 1
0

xn�1 � Ext-�k�1
n n

k
� n

k � 1
xn�kyk � n � 1

n � 1
yn�1 �

� Ext-�k�0
n�1 n � 1

k
xn�1�kyk

where we have used Lemma 4.1.4.
Definition 4.1.2 (Hyperfinite Bernstein Polynomials). For each n � ��, the n-th
Bernstein Polynomial Bn

#�x, f� of a function f � C#�	a,b
, ��c
#� is defined as

Bn
#�x, f� � Ext-�k�0

n f k
n

n
k

xk�1 � x�n�k. �4.1.9�



Lemma 4.1.3.For any n � �� :

Ext-�k�0
n n

k
xk�1 � x�n�k � 1, �4.1.10�

Ext-�k�0
n n

k
xk�1 � x�n�k�k � nx� � 0, �4.1.11�

Ext-�k�0
n n

k
xk�1 � x�n�k�k � nx�2 � nx�1 � x�. �4.1.12�

Proof. To prove these identities, first, from the generalized binomial theorem, for any
n � �� one obtains that

Ext-�k�0
n n

k
xk�1 � x�n�k � 	x ! �1 � x�
n � 1. �4.1.13�

By the generalized binomial theorem we have

Ext-�k�0
n n

k
ykzn�k � �y ! z�n. �4.1.14�

By the #-differentiating with respect to y of the identity (4.1.14) we obtain

d#

d#y
Ext-�k�0

n n
k

ykzn�k � Ext-�k�0
n n

k
kyk�1zn�k �

� d#

d#y
�y ! z�n � n�y ! z�n�1.

�4.1.15�

Thus

Ext-�k�0
n n

k
kyk�1zn�k � n�y ! z�n�1 �4.1.16�

and therefore

Ext-�k�0
n n

k
kykzn�k � ny�y ! z�n�1. �4.1.17�

Replacing y by x and z by 1 � x in the above expression, we have identity

Ext-�k�0
n n

k
kxk�1 � x�n�k � nx. �4.1.18�

From (4.1.18) we obtain

Ext-�k�0
n n

k
k
n xk�1 � x�n�k � x. �4.1.19�

From (4.1.19) and (4.1.13) we obtain the identity (4.1.11).By the #-differentiating with
respect to y of the identity (4.1.17) we obtain

d#

d#y
Ext-�k�0

n n
k

kykzn�k � Ext-�k�0
n n

k
k2yk�1zn�k �

� n d#

d#y
y�y ! z�n�1 � n�y ! z�n�1 � n�n � 1�y�y ! z�n�2.

�4.1.20�

Thus

Ext-�k�0
n n

k
k2yk�1zn�k � n�y ! z�n�1 � n�n � 1�y�y ! z�n�2. �4.1.21�

and therefore

Ext-�k�0
n n

k
k2ykzn�k � ny�y ! z�n�1 � n�n � 1�y2�y ! z�n�2. �4.1.22�

Replacing y by x and z by 1 � x in the expression (4.1.22) we have identity



Ext-�k�0
n n

k
k2xk�1 � x�n�k � nx� n�n � 1�x2. �4.1.23�

From (4.1.23) and (4.1.10)-(4.1.11) one obtains (4.1.12).
Theorem 4.1.2. (Generalized Weierstrass Approximation Theorem). Let
f � C#�	a,b
, ��c

#�. Then there is a hyper infinite sequence of polynomials
pn�x�,n � �� that #-converges uniformly to f�x� on 	a,b
.

Proof. For a #-continuous function f defined on 	0,1
 by (4.1.9) and (4.1.10) we obtain

f�x� � Bn
#�x� � Ext-�k�0

n f�x� � f k
n

n
k

xk�1 � x�k. �4.1.24�

From the identity (4.1.24) one obtains that

f�x� � Bn
#�x� � Ext-�k�0

n f�x� � f k
n

n
k

xk�1 � x�k. �4.1.25�

Since f is #-continuous on [0,1], it is bounded in ��c
#on 	0,1
, i.e., there exists a

number M � ��c
# such that |f�x�|� M,x � 	0,1
. Moreover f is uniformly #-continuous

on 	0,1
.Choose 
 � 0,ε � 0, then there exists � � 0,δ � 0 such that x,y � 	0,1
 with
|x � y|� δ implies that |f�x� � f�y�|� ε. For x � 	0,1
, split the sum in the righthand side of
(4.1.1) into two parts:

Ext- �
|x�k/n|�δ

f�x� � f k
n

n
k

xk�1 � x�k �4.1.12�

and

Ext- �
|x�k/n|�δ

f�x� � f k
n

n
k

xk�1 � x�k �4.1.13�

From (4.1.9) we obtain

Ext- �
|x�k/n|�δ

f�x� � f k
n

n
k

xk�1 � x�k � 
. �4.1.14�

From (4.1.9) we obtain

Ext- �
|x�k/n|�δ

f�x� � f k
n

n
k

xk�1 � x�k � 2M Ext- �
|x�k/n|�δ

n
k

xk�1 � x�k

� 2M
�2 Ext- �

|x�k/n|�δ

x � k
n

2 n
k

xk�1 � x�k �

� 2M
�2 Ext-�k�0

n x � k
n

2 n
k

xk�1 � x�k � 2M
n�2 .

�4.1.15�

Finally we obtain

|f�x� � Bn
#�x�| � 
 ! 2M

n�2 . �4.1.16�

By choosing n � �� large enough the righthand side can be made less than 2ε.This
estimate is independent of x � 	0,1
. Hence, for ε � 0 there exists a number N � ��
such that n � N and x � 	0,1
 imply |f�x� � Bn

#�x�|� 2ε.Therefore f is the uniform #-limit
of the polynomials Bn

#.
Theorem 4.1.3.(Generalized B.L.T.theorem) Suppose that Z is a #-normed space, Y
is a non-Archimedean Banach space, and S� Z is a #-dense linear subspace of Z. If
T : S � Y is a bounded linear transformation (i.e. there exists C � �� such that



�Tz�# � C �z�# for all z � S), then T has a unique extension to an element of ��Z,Y�.

§ 4.2.The spectral #-measures
Theorem 4.2.1.(Generalized Riesz-Markov theorem) Let X be a locally #-compact
non-Archimedean metric space endowed with ��c

#-valued metric.Let Cc
#�X� be the

space of #-continuous #-compactly supported ��c
#-valued functions on X.

For any positive linear functional 
 on Cc
#�X�, there is a unique #-measure μ# on X

such that
�f � Cc

#�X� : 
�f� � Ext-"
X

f�x�d#μ#�x�.

Theorem 4.2.2.(Generalized Riesz lemma) Let Y be a #-closed proper vector
subspace of a normed space �X,���#� and let α � ��c

# be any real number
satisfying 0 � α � 1.Then there exists a vector u � X of unit #-norm �u�# � 1
such that �u � y�# � α for all y � Y.
We are now introduce the #-measures corresponding to bounded in��c

# self-#-adjoint
operators. Let A be an bounded in��c

# self-#-adjoint operator. Let � � H#. Then

f � ��, f�A��
# �4.2.1�

is a positive linear functional on C#���A��. Thus, by the generalized Riesz-Markov
theorem, there is a unique #-measure ��

# ��� on the #-compact set ��A� with the
property

��, f�A��
# � Ext- "
��A�

f���d#��
# . �4.2.2�

Definition 4.2.1.The #-measure ��
# ��� is called the spectral #-measure associated with

the vector � � H#.
The first and simplest application of the ��

# ��� is to allow us to extend the functional
calculus to B#���c

#�, the bounded in��c
# #-Borel functions on ��c

#. Let g � B#���c
#�.

It is natural to define g�A� so that ��,g�A��
# � Ext- "
��A�

g���d#��
# . The polarization

identity lets us recover ��,g�A��
# from the proposed ��,g�A��
# and then
the Generalized Riesz lemma lets us construct g�A�.
Theorem 4.2.1.(spectral theorem-functional calculus form) Let A be a
bounded in��c

# self-#-adjoint operator on H#. There is a unique map
�
� : B#���c

#� � ��H#� so that

(a)
�
� is an algebraic �-homomorphism.

(b)
�
� is #-norm #-continuous:

�
��f�

� H#
� �f� ��.

(c) Let f be the function f�x� � x; then
�
��f� � A.

(d) Suppose fn�x� �# f�x� for each x as n � ��and hyper infinite sequence
�fn� ��,n � �� is bounded in��c

#. Then
�
��fn� �#

�
��f� as n � ��strongly.

Moreover
�
���� has the properties:

(e) If А� � ��, then
�
��f� � f����.

(f) If f � 0,then
�
��f� � 0.

(g) If BA � AB then
�
��f�В � В

�
��f�.

Remark 4.2.1. Note that: (i) Theorem 4.2.1 can be proven directly by extending
Theorem 4.1.1, part (d) requires the dominated #-convergence theorem. Or,



Theorem 4.2.1 can be proven by an easy corollary of Theorem 4.2.3 below.
The proof of Theorem 4.2.3 uses only the #-continuous functional calculus,

�
�

extends � and as before we write
�
��f� � f�A�. As in the #-continuous functional

calculus, one has f�A�g�A� � g�A�f�A�.
(ii) Since B#���c

#� is the smallest family closed under #-limits of form (d) containing

all of C#���c
#�, we know that any

�
��f� is in the Smallest non Archimedean C�-algebra

containing A which is also strongly #-closed; such an algebra is called a von
Neumann #-algebra or non Archimedean W�-algebra. When we study von Neumann
#-algebras we will see that this follows from (g).
(iii) The #-norm equality of Theorem 4.2.1 carries over if we define �f� ��

� to be the
L ��

# #-norm with respect to a suitable notion of “#-almost everywhere.” Namely, pick
an orthonormal basis ��n�n�1

�� and say that a property is true #-a.e. if it is true #-a.e.

with respect to each ��n
# Then

�
��f�

� H#
� �f� ��

� .

Definition 4.2.2. A vector � � H# is called a cyclic vector for A if gyperfinite linear
combinations of the elements �An��n�0

�� are #-dense in H#.
Not all operators have cyclic vectors, but if they do.
Lemma 4.2.1. Let A be a bounded in��c

# self-#-adjoint operator with cyclic vector �.
Then, there is a unitary operator U : H# � L2

#���A�,d#��
# �, with �UAU�1f���� � �f���

where equality holds is in the sense of elements of L2
#���A�,d#��

# �.
Proof Define U by U��f� � f where f is #-continuous. U is essentially the inverse
of the map � of Theorem 4.1.1. To show that U is well defined operator we compute
���f���#

2 � ��,���f���f��
# � �,� f 
 f �
#
� Ext-"|f���|2d#��

# .

Therefore, if f � g a.e. with respect to ��
# , then ��f�� � ��g��. Thus U is well

defined on ���f��|f � C#���A��� and is #-norm preserving. Since � is cyclic it
#-closure #-���f��|f � C#���A��� � H# so by the generalized B.L.T. theorem U
extends to an #-isometric map of H# into L2

#���A�,d#��
# �. Since C#���A�� is #-dense

in L2
#, Ran U � L2

#���A�,d#��
# �.Finally, if f � C#���A�� one obtains

�UAU�1f���� � 	UA��f�
��� � 	U��xf�
��� � �f���.
By #-continuity, this extends from C#���A�� to L2

#.
To extend this lemma to arbitrary Ay we need to know that A has a family of
invariant subspaces spanning H# so that A is cyclic on each subspace:
Lemma 4.2.2. Let A be a self-adjoint operator on a �-separable Hilbert space H#.

Then there is a direct sum decomposition H# � Ext-�
n�1

N

Hn
# with N � �� or

H# �Ext-�
n�1

��
Hn

# such that:

(a) A leaves each Hn
# invariant, that is, � � Hn

# implies А� � Hn
# � Ext-�

n�1

��
Hn

#

so that:
(b) For each n � ��, there is a �n � Hn

# which is cyclic for A " Hn
#, i.e.

Hn
# � #-�f�A��n|f � C#���A���

Theorem 4.2.3 (spectral theorem-multiplication operator form) Let A
be a bounded in��c

# self-#-adjoint operator on H#, a �-separable Hilbert space.
Then, there exist #-measures ��n

#�n�1
N with N � �� or ��n

#�n�1

�� on ��A� and a



unitary operator U : H# � �
n�1

N

L2
#���c

#,d#�n
#� or U : H# � �

n�1

��
L2

#���c
#,d#�n

#�

so that �UAU�1��n��� � ��n���

where we write an element � � �
n�1

N

L2
#���c

#,d#�n
#� as an N-tuple ��1���, . . . ,�N���


or �-tuple
This realization of A is called a spectral representation.
Proof. Use Lemma 4.2.2 to find the decomposition and then use Lemma 4.2.1
on each component.
This theorem tells us that every bounded self-#-adjoint operator is a multiplication
operator on a suitable #-measure space; what changes as the operator changes
are the underlying #-measures. Explicitly:
Corolarly 4.2.1. Let A be a bounded in��c

# self-adjoint operator on a �-separable
Hilbert space H#. Then there exists a finite in��c

# measure space �M,�#
, a
bounded in��c

# function F on M, and a unitary map, U : H# � L2
#�M,d#�#� so that

�UAU�1f��m� � F�m�f�m�.
Proof Choose the cyclic vectors �n so that ��n�# � 2�n. Let M � �n�1

N� �c
#

i.e. the union of N � �� copies of ��c
#. Define � by requiring that its restriction

to the n-th copy of ��c
# be �n. Since ��M� � Ext-�n�1

N �n
#���c

#� � ��, �n is finite

in��c
#. We also notice that this last theorem is essentially a rigorous form of the

formaal Dirac notation. If we write �n � ��х;n�, we see that in the “new
representation defined by U” one has

��,�
# � Ext-�n
Ext-"d#�n

#���;n����;n�

and
��,A�
# � Ext-�n

Ext-"d#�n
#���;n�����;n�.

These are the Dirac type formulas familiar to physicists except that the formal
sums of Dirac are replaced with integrals over spectral measures, where we define:
Definition 4.2.3. The #-measures d#�n are called spectral measures; they are just
d#�� for suitable �.
Remark 4.2.2. Notice these #-measures are not uniquely determined.
We now investigate the connection between spectral measures and the spectrum.
Definition 4.2.3. If ��n

#�n�1
N ,N � �� is a family of #-measures, the support of ��n

#�n�1
N

is the complement of the largest #-open set B with �n
#�B� � 0 for all n � �� so

supp ��n
#�n�1

N � #-�n�1
N supp��n

#�. �4.2.1�

Proposition 4.2.1. Let A be a self-#-adjoint operator and ��n
#�n�1

N ,N � �� a family of
spectral #-measures. Then
��A� � supp ��n

#�n�1
N .

Definition 4.2.4. Let F be a ��c
#-valued function on a #-measure space �M,�#
 .

We say � is in the essential range of F if and only if
�#�m|� � 
 � F�m� � � ! 
� � 0.
for all 
 � 0,
 � 0.
Proposition 4.2.2. Let F be a bounded in ��c

# ��c
#-valued function on a #-measure

space �M,�#
. Let Tf be the operator on L2
#�M,d#�#� given by �TFg��m� � F�m�g�m�



Then ��TF� is the essential range of F.
Definition 4.2.5. Let A be a bounded in ��c

# self-#-adjoint operator on H#

Let Hpp
# � ��|��

# is pure point�, Hac
# � ��|��

# is absolutely #-continuous},
Hsing

# � ��|��
# is #-continuous singular�.

We have thus proven.
Theorem 4.2.4.H# � Hpp

# ) Hac
# )Hsing

# . Each of these subspaces is invariant under A.

A " Hpp
# has a #-complete set of eigenvectors, A " Hac

# has only absolutely #-continuous
spectral #-measures and A " Hsing

# has only #-continuous singular spectral #-measures.
Definition 4.2.6. �pp�A� � ��|� is an eigenvalue of A�,
�#cont�A� � ��A " H#cont

# � Hsing
# ) Hac

# �,
�ac�А� � ��A " Hac

# �,
�sing�А� � ��A " Hsing

# �.

These sets are called the pure point, #-continuous, absolutely #-continuous, and
singular (or #-continuous singular) spectrum respectively.
Remark 4.2.2. While it may happen that �ac�A� � �sing�А� � �pp�А� 	 ��А� this is only
true because we did not define �pp�А� as ��A " Hpp

# � but rather as the actual set of
eigenvalues.
Proposition 4.2.3. �#cont�A� � �ac�A� � �sing�А�,
��А� � #-�pp�А� � �#cont�A�.
The sets need not be disjoint, however. The reader should be warned that �sing�А�
may have nonzero #-Lebesgue measure. For many purposes, breaking up the
spectrum in this way gives useful information.
Finally, we turn to the question of making canonical choices for the spectral
#-measures, a subject which goes under the title of “multiplicity theory.” We will
describe the basic results without proof:

§ 4.2.1. Multiplicity free operators
We must first ask when A is unitariiy equivalent to multiplication by x on L2

#���c
#,d#�#�,

that is, when only one spectral #-measure is needed. An symple examples tells us this
happens in the finite-dimensional case only when A has no repeated eigenvalues, so
we define:
Definition 4.2.7. A bounded in ��c

#self-#-adjoint operator A is called multiplicity
free if and only if A is unitarily equivalent to multiplication by A on L2

#���c
#,d#�#� for

some #-measure �#.
One is interested in intrinsic characterizations of “multiplicity free” and there are
several:
Theorem 4.2.5. The following are equivalent:
(a) A is multiplicity free.
(b) A has a cyclic vector.
(c) �B|AB � BA� is an abelian algebra.
#-Measure classes
Next we must ask about the nonuniqueness of the #-measure in the multiplicity free
case. Suppose d#�# on ��c

# is given and let F be a #-measurable function which is
positive and nonzero #-a.e. with respect to �# and locally L1

#���c
#,d#�#�, that is,

"
�

|F|d#�# � �� for every compact set � � ��c
#. Then d#v � Fd#�# is a #-Borel



#-measure and the map, U : L1
#���c

#,d#v� � L1
#���c

#,d#�#� given by �Uf���� � U��f�
is unitary (onto since F 	 0 #-a.e.) and ��Uf� � U��f�, Thus, an operator A with a
spectral representation in terms of pi could just as well be represented in terms of v.
By the generalized Radon-Nikodym theorem, d#v � Fd#�# with F #-a.e. nonzero if
and only if v# and �# have the same sets of #-measure zero. This suggests the
definition:
Definition 4.2.8. Two #-Borel #-measures �# and �# are called equivalent if and only
if they have the same sets of #-measure zero. An equivalence class ��#
 is called a
#-measure class.
Then, the nonuniqueness question is answered by:
Proposition 4.2.7. Let �# and �# be #-Borel #-measures on ��c

# with bounded in
��c

# support. Let A�# be the operator on L2
#���c

#,d#�#� given by �A�#f���� � �f���

and similarly for A�# on L2
#���c

#,d#�#�. Then A�# and A�# are unitarily equivalent if and
only if �# and �# are equivalent #-measures.

§ 4.2.2. Operators of uniform multiplicity
If one wants a canonical listing of the eigenvalues of a matrix, it is natural to list all
eigenvalues of multiplicity one, all eigenvalues of multiplicity two, etc. We thus need
a way of saying that A is an operator of uniform multiplicity two, three, etc. It is natural
to take:
Definition 4.2.9. A bounded self-adjoint operator A is said to be of uniform multiplicity
m � �� if A is unitarily equivalent to multiplication by � on Ext-)L2

#���c
#,d#�#� where

there are m terms in the external sum and �# is a fixed #-Borel #-measure.
That this is a good definition is shown by
Proposition 4.2.8.If A is unitarily equivalent to multiplication by � on

Ext-)L2
#���c

#,d#�#�
(m times) and on Ext-)L2

#���c
#,d#�� (n times), then m� n and �# and v# are equivalent

#-measures.

§ 4.2.3.Disjoint #-measure classes.The multiplicity
theorem

In listing eigenvalues of multiplicity one, two, three, etc. in the finitedimensional case,
we must add a requirement that prevents us from counting an eigenvalue of

multiplicity
three once as an eigenvalue of multiplicity one and once as an eigenvalue of

multiplicity
two. In the hyperfinite-dimensional case, we avoid this “error” by requiring the lists to

be
disjoint. The analogous notion for #-measures is:
Definition 4.2.10. Two #-measure classes ��#
 and �v#
 are called disjoint if any
�1

# � ��#
 and v1
# � �v#
 are mutually singular.

We can now state the basic theorem:
Theorem 4.2.6.(commutative multiplicity theorem) Let A be abounded in
��c

#self-#-adjoint operator on a Hilbert space H#. Then there is a decomposition
Ext-)m�1

�� Hm
# so that



(a) A leaves each H i
# invariant.

(b) A " Hm
# has uniform multiplicity m � ��.

(c) The #-measure classes ��m
# 
 associated with the spectral representation of A " Hm

#

are mutually disjoint.
Remark 4.2.3. Moreover, the subspaces �Hm

# �m�1

�� (some of which may be zero) and

the #-measure classes ���m
# 
�m�1

�� are uniquely determined by (a)-(c).
The spectral theorem with the multiplicity theory just described is thus one of those
gems of mathematics: a structure theorem, that is, a theorem that describes all

objects
of a certain sort up to a natural equivalence. Each bounded in ��c

# self-#-adjoint
operator A is described by a family of mutually disjoint #-measure classes on
	��A�#,�A�#
; two operators are unitarily equivalent if and only if their spectral
multiplicity #-measure classes are identical.

§ 4.3. Spectral projections.
In the last section, we constructed a functional calculus, f 
 f�A� for any #-Borel
function and any bounded in��c

# self-#-adjoint operator A. The most important
functions gained in passing from the continuous functional calculus to the #-Borel
functional calculus are the characteristic functions of sets.
Definition 4.3.1. Let A be a bounded self-#-adjoint operator and � a #-Borel set
of ��c

#. P� � ���A� is called a spectral projection of A.
As the definition suggests, P� is an orthogonal projection since �� � ��2 � 1
pointwise. The properties of the family of projections P�|� an arbitrary #-Borel set

is given by the following elementary translation of the functional calculus.
Proposition 4.3.1. The family �P�� of spectral projections of a bounded
self-#-adjoint operator A,has the following properties:
(a) Each P� is an orthogonal projection.
(b) P	 � 0; P��a,a� � I for some a � ��c

#.

(c) If � � Ext-�n�1

�� �n with �n � �m � 	 for all n 	 m then

P� � s-#- limN��� Ext-�n�1
N P�n . �4.3.1�

(d) P�1P�2 � P�1��2.
Definition 4.3.2. A family of projections obeying (a)-(c) is called a projection-valued
#-measure (p.v.#-m.).
We remark that (d) follows from (a) and (c) by abstract considerations.
As one might guess, one can integrate with respect to a p.v.#-m. If P� is a p.v.#-m.,
then ��,P��
# is an ordinary #-measure for any �. We will use the symbol
d#��,P��
# to mean integration with respect to this #-measure. By generalized Riesz
lemma methods, there is a unique operator B with ��,B�
# � Ext-" f���d#��,P��
#.

Theorem 4.3.1. If P� is a p.v.#-m. and f a bounded in ��c
# #-Borel function on

supp�P��, then there is a unique operator B which we denote Ext-" f���d#P� so that

��,B�
# � Ext- " f���d#��,P��
#. �4.3.2�

Theorem 4.3.2.(spectral theorem-p.v.#-m. form) There is a one-one correspondence
between (bounded) self-#-adjoint operators A and (bounded) projection valued
#-measures �P�� given by



A 
 �P�� � ����A�� �4.3.3�

and

�P�� 
 A � Ext- "�d#P�. �4.3.4�

Spectral projections can be used to investigate the spectrum of A.
Proposition 4.3.1. � � ��A� if and only if P���
,��
��A� for any 
 � 0.
The essential element of the proof is that ��A � ���1�

#
� 	dist��,��A��
�1.

This suggests that we distinguish between two types of spectrum.
Definition 4.3.3. We say that (i) � � �ess�A�, the essential spectrum of A if and only
if P���
,��
��A� is hyper infinite dimensional for all 
 � 0.
(ii) If � � ��A� but P���
,��
��A� is hyperfinite dimensional for some 
 � 0, we say
� � �disc�A�, the discrete spectrum of A.P is hyper infinite dimensional means
Ran�P� is hyper infinite dimensional.
Thus, we have a second decomposition of ��A�. Unlike the first, it is a
decomposition into two necessarily disjoint subsets. We note that �disc is not
necessarily #-closed, but notice that.
Theorem 4.3.3 �ess�A� is always #-closed.
Proof Let �n �# � with each �n � �ess�A�. Since any #-open interval I about �
contains an interval about some �n,PI�A� is hyper infinite dimensional.
The following three theorems give alternative descriptions of �disc and �ess;
Theorem 4.3.4 � � �disc if and only if both the following hold:
(a) � is an #-isolated point of ��A� that is, for some 
 � 0,
�� � 
,� � 
� � ��A� � ���.
(b) � is an eigenvalue of hyperfinite multiplicity, i.e., ��|A� � ��� is hyperfinite
dimensional.
Theorem 4.3.5 � � �ess if and only if one or more of the following holds:
(a) � � �#cont�A� � �ac�A� � �sing�A�.
(b) � is a #-limit point of �pp�A�.
(c) � is an eigenvalue of hyper infinite multiplicity.
Theorem 4.3.6 (Generalized Weyl’s criterion) Let A be a bounded in ��c

#

self-#-adjoint operator. Then (i) � � ��A� if and only if there exists ��n�n�1

�� with
��n�# � 1 and #-lim n�����A � ���n�# � 0.
(ii)� � �ess�A� if and only if the above ��n� can be chosen to be orthogonal.
As one might guess, the essential spectrum cannot be removed by essentially
hyperfinite dimensional perturbations. In Section 4.4, we will prove a general
theorem which implies that �ess�A� � �ess�B� if A\B is #-compact.
Finally, we discuss one useful formula relating the resolvent and spectral projections.
It is a matter of computation to see that

f
�x� �#

0 if x � 	a,b


1/2 if x � a � x � b

1 if x � �a,b�

if 
 �# 0, where



f
�x� � �2�#i��1 Ext- "
a

b

�x � � � i
��1 � �x � � � i
��1 d#� . �4.3.5�

Moreover, |f
�x�| is bounded in x �� �c
# uniformly in 
 � 0, so by the functional

calculus, one obtains that.
Theorem 4.3.7 (Generalized Stone’s formula) Let A be a bounded in ��c

#

self-#-adjoint operator. Then

s- lim 
�# 0�2�#i��1 Ext- "
a

b

�A � � � i
��1 � �A � � � i
��1 d#� �

� 1
2
	P	a,b
 � P�a,b� 
.

�4.3.6�

§ 4.4.The #-continuous functional calculus related to
unbounded in��c

# self-#-adjoint operators
In this section we will show how the spectral theorem for bounded in��c

#

self-#-adjoint operators which we developed in § 4.3 can be extended to unbounded
in��c

# self-#-adjoint operators. To indicate what we are aiming for, we first prove the
following:
Proposition 4.4.1. Let �M,�#
 be a #-measure space with �# a hyperfinite
#-measure. Suppose that f is a #-measurable, ��c

#-valued function on M which is
finite or hyperfinite a.e.�#. Then the operator Tf : � � f� on L2

#�M,d#�#� with domain

D�Tf� � ��|f� � L2
#�M,d#�#�� �4.4.1�

is self-#-adjoint and ��Tf� is the essential range of Tf.
Proof Tf is clearly symmetric. Suppose that � � D�Tf

�� and let

�N �
1 if |f�m�| � N

0 otherwise

Then, using the generalized monotone #-convergence theorem,

�Tf
���

#
� #-limN�����NTf

���
#
� #-limN���

���#�1
sup �,�NTf

��
#

�

#-limN���
���#�1
sup |��NTf�,�
#| � #-limN���

���#�1
sup |��,�Nf�
#| �

#-limN�����Nf��#

Thus, f� � L2
#�M,d#�#�, so � � D�Tf� and therefore Tf is self-#-adjoint. That ��Tf�

is the essential range of f follows as in the bounded case.
With more information about f, one can say something about the domains on which
Tf is essentially self-#-adjoint:
Proposition 4.4.2. Let f and Tf obey the conditions in Proposition 4.4.1. Suppose
in addition that f � Lp

#�M,d#�#� for 2 � p � ��. Let D be any #-dense set in
Lq

#�M,d#�#� where q�1 � p�1 � 1/2. Then D is a #-core for Tf.

Proof Let us first show that Lq
# is a #-core for Tf. By the generalized Holder’s

inequality �g�#2 � �1�#p � �g�#q, and �fg�#2 � �f�#p � �g�#q so Lp
# � D�Tf�.

Moreover, if g � D�Tf� let gn,n � �� be that function which is zero where



|g�m�| � n and equal to g otherwise. By the generalized dominated convergence
theorem, gn �# g and fgn �# fg in L2

#. Since each gn is in Lq
#, we conclude

that Lq
# is a #-core for Tf.Now let D be #-dense in Lq

# and let g � Lq
#. Find gn � D

with gn �# g in Lq
#. Since �gn � g�#2 � �1�#p � �gn � g�#q and

�Tf�gn � g��#2 � �f�#p � �gn � g�#q, g � #- D�Tf " D�.

Thus Lq
# � D�Tf " D� so D is a #-core. Unless f� L ��

# �M,d#�#� the operator Tf

described in Propositions 4.4.1 and 4.4.2 will be unbounded.
Thus, we have found a large class of unbounded self-#-adjoint operators. In fact,
we have found them all.
Theorem 4.4.1. (spectral theorem-multiplication operator form) Let A be a
self-adjoint operator on a ��-dimensional a non-Archimedean Hilbert space H#

with domain D�A�.Then there is a #-measure space �M,�#
 with �# a hyperfinite
#-measure, a unitary operator U : H# � L2

#�M,d#�#�, and a ��c
#-valued function f

on M which is finite or hyperfinite �#-a.e. so that
(a) � � D�A� if and only if f����U����� � L2

#�M,d#�#�.
(b) If � � U	D�A�
, then �UAU�1���m� � f�m���m�.
Proof It easily verify that A � i and A � i are one to one correspondence and

Ran�A � i� � H#.Since A � i are #-closed, A � i
�1

are #-closed and therefore

bounded in ��c
#. Note that the operators �A � i��1 and �A � i��1 commute. The

equality ��A � i��,�A � i��1�A � i��
# � ��A � i��1�A � i��,�A � i��
#and the fact that
Ran�A � i� � H# shows that ��A � i��1�� � �A � i��1. Thus the operator �A � i��1 is
normal.
We now use the easy extension of the spectral theorem for bounded in ��c

#

self-#-adjoint operators to bounded in ��c
# normal operators. The proof of this

extension is a straightforward. We conclude that there is a #-measure space �M,�#

with �# a hyperfinite #-measure, a unitary operator U : H# � L2

#�M,d#�#�, and a
#-measurable, bounded, in ��c

# ��c
#-valued function g�m� so that

U�A � i��1U�1��m� � g�m���m� for all � � L2
#�M,d#�#�.Since Кеr��A � i��1� is empty,

g�m� 	 0 a.e.�#, so the function f�m� � g�1�m� � i is hyperfinite а.е.�#. Now, suppose
� � D�A�. Then � � �A � i��1� for some � � H# and U� � gU�. Since fg is bounded
in ��c

#, we conclude that f�U�� � L2
#�M,d#�#�. Conversely, if f�U�� � L2

#�M,d#�#�,
then there is a � � H# so that U� � �f � i�U�. Thus, gU� � g�f � i�U� � U�, so
� � �A � i��1� which shows that � � D�A�. This proves (a).
To prove (b) notice that if � � D�A� then � � �A � i��1� for some � � H# and
A� � � � i�. Therefore, �UA���m� � �U���m� � i�U���m� � �g�1�m� � i��U���m�
� f�m��U���m�. Finally, if Im�f� � 0 on a set of nonzero Lebesgue #-measure, there
is a bounded in ��c

# set B in the upper half plane so that S � �x|f�x� � B� has nonzero
Lebesgue #-measure. If ��x� is the characteristic function of S then f� � L2

#�M,d#�#�
and Im��, f�
 � 0. This contradicts the fact that multiplication by /is self-adjoint
(since it is unitarily equivalent to A). Thus f is ��c

#-valued function.
There is a natural way to define functions of a self-#-adjoint operator by using the
above theorem. Given a bounded in ��c

# #-Borel function h on ��c
# we define

h�A� � UTh�f�U�1 �4.4.2�

where Th�f� is the operator on L2
#�M,d#�#� which acts by multiplication by the function



h�f�m��. Using this definition the following theorem follows easily from Theorem 4.4.1.
Theorem 4.4.2. (spectral theorem-functional calculus form) Let A be a self-#-adjoint
operator on H#. Then there is a unique map

�
� from the bounded #-Borel functions on

��c
# into ��H#� so that

(a)
�
� is an algebraic �-homomorphism.

(b)
�
� is #-norm #-continuous, that is,

�
��h�

� H#
� �h� ��

(c) Let hn�x�,n � �� be a hyper infinite sequence of bounded in ��c
# #-Borel

functions with #-lim n��� hn�x� � x

for each x and |hn�x�| � |x| for all x and n � ��. Then, for any � � D�A�,
#-lim n���

�
��hn�� � А�.

(d) If hn�x� �# h�x� pointwise and if the hyper infinite sequence �hn� ��,n � ��

is bounded in ��c
#, then

�
��hn� �#

�
��h� strongly.

In addition:
(e) If А� � �� then

�
��h� � h����.

(f) If h � 0, then
�
��h� � 0.

The functional calculus is very useful. For example, it allows us to define the
exponential Ext-exp�itA� and prove easily many of its properties as a function of t
(see the next section). In the case where A is bounded in ��c

# we do not need the
functional calculus to define the exponential since we can define Ext-exp�itA� by
the power series which #-converges in #-norm.
The functional calculus is also used to construct spectral #-measures and can be
used to develop a multiplicity theory similar to that for bounded self-#-adjoint
operators.
A vector � � H# is said to be cyclic for A if �g�A��|g � C

�����c
#�� is #-dense in H#.

If � is a cyclic vector, then it is possible to represent H# as L2
#���c

#,d#��
# � where ��

#

is the measure satisfying Ext- "
��c

#

g�x�d#��
# �x� � ��,g�A��
#in such a way that A

becomes multiplication by x. In general, H# decomposes into a direct sum of cyclic
subspaces so the #-measure space, M in Theorem 4.4.1 can be realized as a union
of copies of ��c

#. As in the case of bounded in ��c
# operators we can define

�ac�A�,�pp�A�,�sing�A� and decompose H# accordingly.
Finally, the spectral theorem in its projection-valued #-measure form follows easily
from the functional calculus. Let P� be the operator ���A� where �� is the
characteristic function of the measurable set � � ��c

#. The family of operators
�P�� has the following properties:
(a) Each P� is an orthogonal projection.
(b) P	 � 0; P����,��� � I .

(c) If � � Ext-�n�1

�� �n with �n � �m � 	 for all n 	 m then

P� � s-#- limN��� Ext-�n�1
N P�n . �4.4.3�

(d) P�1P�2 � P�1��2.
Definition 4.4.1.Such a family is called a projection-valued #-measure (p.v.#-m.).
Remark 4.4.1. This is a generalization of the notion of bounded in ��c

# projection-
valued #-measure introduced in § 4.3.In that we only require P����,��� � I rather
than P��a,a� � I for some a � ��c

#. For � � H#,��,P��
# is a well-defined Borel



#-measure on ��c
# which we denote by d#��,P��
# as in § 4.3.

The complex ��c
#-valued #-measure d#��,P��
# is defined by polarization. Thus, given

a bounded in ��c
# #-Borel function g we can define g�A� by

��,g�A��
# � Ext- "��c
#
g���d#��,P��
# �4.4.4�

It is not difficult to show that this map g 
 g�A� has the properties (a)-(d) of
Theorem 4.4.1, so g�A� as defined by (4.4.4) coincides with the definition of g�A�
given by Theorem 4.4.1. Now, suppose g is an unbounded ��c

#-valued #-Borel
function and let

Dg � �|Ext- "��c
#
g���d#��,P��
# �

�� . �4.4.5�

Then, Dg is #-dense in H# and an operator g�A� is defined on Dg by

��,g�A��
# � Ext- "��c
#
g���d#��,P��
#. �4.4.6�

As in § 4.3, we write symbolically

g�A� � Ext- "��c
#
g���d#P�. �4.4.7�

In particular, for �,� � D�A�,

��,A��
# � Ext- "��c
#
g���d#��,P��
#. �4.4.8�

if g is ��c
#-valued, then g�A� is self-#-adjoint on Dg. We summarize:

Theorem 4.4.3. (spectral theorem-projection valued measure form) There is a
one-to-one correspondence between self-#-adjoint operators A and projection-valued
#-measures �P�� on H# the correspondence being given by

A � Ext- "��c
#
�d#P�. �4.4.9�

We use the functional calculus developed above to define Ext-exp�itA�.
Theorem 4.4.4. Let A be a self-#-adjoint operator and define U�t� � Ext-exp�itA�.
Then
(a) For each t � ��c

#,U�t� is a unitary operator and U�t � s� � U�t�U�s� for all
s, t � ��c

#.
(b) If � � H# and t �# t0, then U�t�� �# U�t0��.

(c) For any � � D�A� :
U�t�� � �

t �# iA� as t �# 0.

(d) If #-lim t�# 0
U�t�� � �

t exists, then � � D�A�.

Proof (a) follows immediately from the functional calculus and the corresponding
statements for the complex-valued function Ext-exp�it��. To prove (b) observe that

�Ext-exp�itA�� � ��#
2 � Ext- "��c

#|Ext-exp�it�� � 1|2d#�P��,�
#. �4.4.10�

Since |Ext-exp�it�� � 1|2 is dominated by the #-integrable function g��� � 2 and
since for each � � ��c

# : |Ext-exp�it�� � 1|2 �# 0 as t �# 0 we conclude that
�U�t�� � ��#

2 �# 0 as t �# 0, by the generalized Lebesgue dominated-#-convergence
theorem. Thus t 
 U�t� is strongly #-continuous at t � 0, which by the group property
proves t 
 U�t� is strongly #-continuous everywhere. The proof of (c), which again
uses the dominated #-convergence theorem and the estimate |Ext-exp�ix� � 1|2 � |x|.
To prove (d), we define



D�B� � � #- lim t�# 0
U�t�� � �

t exists �4.4.11�

and let

iB� � #- lim t�# 0
U�t�� � �

t . �4.4.12�

A simple computation shows that B is symmetric.By (с), В  A,so B � A.
Definition 4.4.2. An operator-valued function U�t� satisfying (a) and (b) is called a
strongly #-continuous one-parameter unitary group.
Definition 4.4.3. If U�t� is a strongly #-continuous one-parameter unitary group, then
the self-#-adjoint operator A with U�t� � Ext-exp�itA� is called the infinitesimal
generator of U�t�.
Suppose that U�t� is a weakly #-continuous one-parameter unitary group. Then
�U�t�� � ��#

2 � �U�t���#
2 � �U�t��,�
# � ��,U�t��
# � ���#

2 �# 0 as t �# 0. Thus
U�t� is actually strongly #-continuous. As a matter of fact, to conclude that U�t� is
strongly #-continuous one need only show that U�t� is weakly #-measurable,that is,
that �U�t��,�
# is #-measurable for each � and �. This startling result sometimes
useful since in applications one can often show that �U�t��,�
# is the #-limit of a
hyper infinite sequence of #-continuous functions;�U�t��,�
# is therefore
#-measurable and by generalized von Neumann’s theorem U�t� is then strongly
#-continuous.
Theorem 4.4.5. Let U�t� be a one-parameter group of unitary operators on a hy
infinite dimensional Hilbert space H#. Suppose that for all �,� � H#,�U�t��,�
# is
#-measurable. Then U�t� is strongly #-continuous.
Proof. Let � � H#.Then for all � � H#, �U�t��,�
# is a bounded in ��c

# #-measurable

function and � 
 "
0

a

�U�t��,�
#d
#t is a linear functional on H# of #-norm less than or

equal to а���#. Thus, by the generalized Riesz lemma there is а �a � H# so that

��a,�
# � "
0

a

�U�t��,�
#d
#t. �4.4.13�

Note that

�U�b��a,�
# � ��a,U��b��
# � "
0

a

�U�t��,U��b��
#d
#t �

"
0

a

�U�t � b��,�
#d
#t � "

b

a�b

�U�t��,�
#d
#t.

�4.4.14�

From (4.1.14) we obtain

|�U�b��a,�
# � ��a,�
#| �

� "
0

b

�U�t��,�
#d
#t � "

b

a�b

�U�t��,�
#d
#t � 2a���#���#

�4.4.15�



and therefore #-lim b�# 0�U�b��a,�
# � ��a,�
# so that U�b� is weakly and therefore
strongly #-continuous on the set of vectors of the form ��a|� � H#�. It remains only
to show that this set is #-dense, since by by an 
 � 0,
/3 argument we can then
conclude that t 
 U�t� is strongly #-continuous on H#. Suppose that
� � ��a|� � H#,a � ��c

#�� and let ���n��n��� be an orthonormal basis for H#.

Then for each n � ��

Ext- "
0

a

�U�t���n�,�
#
d#t � �a

�n�,�
#
� 0 �4.4.16�

for all a � ��c
# which implies that �U�t���n�,�
#

� 0 except for t � Sn, a set of

Lebesgue #-measure zero. Choose t0 � �n��� Sn. Then �U�t0���n�,�
#
� 0 for all

n � �� which implies that � � 0, since U�t0� is unitary.
Theorem 4.4.6.Suppose that U�t� is a strongly continuous one-parameter unitary
group. Let D be a #-dense domain which is invariant under U�t� and on which U�t� is
strongly #-differentiable. Then i �1 times the strong #-derivative of U�t� is essentially
self-#-adjoint on D and its #-closure is the #-infinitesimal generator of U�t�.
This theorem has a reformulation which is sufficiently important that we state it as a
theorem.
Theorem 4.4.7. Let A be a self-adjoint operator on H# and D be a #-dense linear set
contained in D�A�. If for all t, Ext-exp�itA� : D � D then D is a #-core for A.
Theorem 4.4.8.Let U�t� be a strongly #-continuous one-parameter unitary group on a
Hilbert space H#. Then, there is a self-#-adjoint operator A on H# so that
U�t� � Ext-exp�itA�.
Proof Part (d) of Theorem 4.4.4 suggests that we obtain A by differentiating
U�t� at t � 0. We will show that this can be done on a #-dense set of especially nice
vectors and then show that the #-limiting operator is essentially self-#-adjoint by
using the basic criterion. Finally, we show that the exponential of this #-limiting
operator is just U�t�.Let f � C0

�����c
#� and for each � � H# define

� f � Ext- "
��c

#

f�t�U�t��d#t. �4.4.17�

Since U�t� is strongly #-continuous the integral in (4.4.7) can be taken to be a
Riemann integral. Let D be the set of hyperfinite linear combinations of all such
� f with � � H# and f � C0

�����c
#�. If j 
�t� is the approximate identity then

�� j 
 � ��# � Ext- "
��c

#

j 
�t�	U�t�� � �
d#t

#

�

� Ext- "
��c

#

j 
�t�d#t
t�	�
,


sup �U�t�� � ��#.

�4.4.18�

Since U�t� is strongly #-continuous, D is #-dense in H#. We have used the inequality

Ext- "
��c

#

h�t�d#t

#

� Ext- "
��c

#

�h�t��#d
#t �4.4.19�

for non-Archimedean Banach space-valued #-continuous functions on the real line
��c

# (which can be proven using the approximate partial sums as in the ��c
#-valued



case). For � f � D we obtain that

U�s� � I
s � f � Ext- "

��c
#

f�t�
U�s� t� � U�t�

s �d#t �

Ext- "
��c

#

f�� � s� � f���
s U����d#� �# � Ext- "

��c
#

f#����U����d#� � ��f#�

�4.4.20�

since 	f�t � s� � f�t�
/s #-converges to �f#��t� uniformly. For � f � D we define
A� f � i �1��f#� . Note that U�t� : D � D,A : D � D and U�t�A� f � AU�t�� f for � f � D.

Futhermore if � f,�g � D we obtain that

�A� f,�g
# � #- lim s�# 0
U�s� � I

is
� f,�g

#
�

� #- lim s�# 0 � f,
I � U��s�

is
�g

#
� 1

i
� f,��g#�

#
� �� f,A�g
#

�4.4.21�

so A is symmetric. Now we show that A is essentially self-#-adjoint. Suppose that
there is a u � D�A�� so that A�u � iu. Then for each � � D�A� � D

d#

d#t
�U�t��,u
# � �iAU�t��,u
# � �i�U�t��,A�u
# � �i�U�t��, iu
# � �U�t��,u
# �4.4.22�

Thus, the ��c
#-valued function f�t� � �U�t��,u
# satisfies the ordinary differential

equation f#� � f so f�t� � f�0�	Ext-exp�t�
. Since U�t� has #-norm one, |f�t�| is bounded,
in ��c

# which implies that f�0� � ��,u
# � 0. Since D is #-dense, u � 0. A similar proof
shows that A�u � �iu can have no nonzero solutions. Therefore A is essentially
self-#-adjoint on D.
Let V�t� � Ext-exp�it�#-A��. It remains to show that U�t� � V�t�. Let � � D�A�. Since
� � D��#-A��, V�t�� � D��#-A�� and V#��t�� � iAV�t�� by (c) of Theorem 4.4.4, We
already know that U�t�� � D � D�#-A� for all� ��c

#. Let w�t� � U�t�� � V�t��. Then
w�t� is a strongly #-differentiable vector-valued function and

w#��t� � iAU�t�� � i�#-A�V�t�� � iAw�t�. �4.4.23�

Thus

d#

d#t
�w�t��#

2 � �i��#-A�w�t�,w�t�
#
� i�w�t�,�#-A�w�t�
#

. �4.4.24�

Therefore w�t� � 0 for all t � ��c
# since w�t� � 0. This implies that U�t�� � V�t��

for all t � ��c
#,� � D. Since D is #-dense in H#,U�t� � V�t�.

Remark 4.4.2.Finally, we have the following generalization of Stone’s theorem 4.4.8.
If g is a ��c

#-valued #-BoreI function on ��c
#, then

g�A� � Ext- "��c
#
g���d#P� �4.4.25�

defined on Dg (4.4.5) is self-#-adjoint. If g is bounded, g�A� coincides with
�
��g� in

Theorem 4.4.2.
We conclude with several remarks. First, generalized Stone’s formula, given in
Theorem 4.3.7 relates the resolvent and the projection-valued measure associated
with any self-#-adjoint operator. The proof is the same as in the bounded in ��c

# case.
The spectrum of an unbounded self-#-adjoint operator is an unbounded subset of
the real axis ��c

#. One can define discrete and essential spectrum; Theorem 4.3.6



(Generalized Weyl’s criterion) still holds if one adds the criterion that the vectors ��n�
must be in the domain of A.
Finally, we note that the measure space of Theorem 4.4.1 can always be chosen so

that
Proposition 4.4.2 is applicable.
The following theorem says that every strongly #-continuous unitary group arises
as the exponential of a self-#-adjoint operator.
Theorem 4.4.9. Let U�t� � U�t1, . . . ,tn� be a strongly continuous map of ��c

#n into the
unitary operators on a hyper infinite dimensional Hilbert space H# satisfying
U�t � s� � U�t�U�s� Let D be the set of hyperfinite linear combinations of vectors of
the form

� f � Ext- "��c
#n

f�t�U�t�d#nt �4.4.26�

where � � H#, f � C0
#�����c

#n�.Then D is a domain of essential self-#-adjointness for
each of the generators Aj of the one-parameter subgroups U�0,0, . . . ,t j , . . , 0�, each
Aj : D � D and the Aj commute, j � 1, . . . ,n. Furthermore, there is a projection-valued
#-measure P� on ��c

#n so that

��,U�t��
# � Ext- "��c
#n

Ext-exp�i�t,�
�d#��,P��
# �4.4.27�

for all �,� � H#.
Proof Let Aj be the infinitesimal generator of U j�t j� � U�0, . . . ,t j , . . , , 0�.The
procedure used in the proof of Theorem 4.4.8 shows that D � D�Aj�,
Aj : D � D,and U j�t j� : D � D. Theorem 4.4.7 shows that Aj is essentially
self-#-adjoint on D.Because of the relation U�t � s� � U�t�U�s�, U j�t j� commutes
with U i�t i� for all t j , t i � ��c

#.
Therefore, it follows from Theorem 4.5.1, that Ai and Aj commute in the sense
that is, their spectral projections commute.Let P�

j be the projection-valued
#-measure on ��c

# corresponding to Aj . Define a projection valued #-measure

P� on ��c
#n by defining it first on rectangles rn � Ext-�

i�1

n

�ai ,bi � by Prn � Ext-�
i�1

n

P�ai ,bi �
i

and then letting P� be the unique extension to the smallest �#-algebra containing
the rectangles, namely the #-Borel sets. Notice that, by Theorem 4.5.1, the P� j

j

commute since the groups U j commute. For each �,� � H#, ��,P��
# is a
��c

#-valued #-measure of hyperfinite mass which we denote by d#��,P��
#.
Applying generalized Fubini’s theorem we conclude that

��,U�t��
# � �,Ext-�
i�1

n

U�t i��
#

� Ext- "��c
#n

Ext-exp�i�t,�
�d#��,P��
#. �4.4.28�

§ 4.5.Nearstandard C#
� algebras generated by spectral

prodjections related to unbounded in��c
# self-#-adjoint

operators.
Suppose that A and B are two unbounded self-#-adjoint operators on a
non-Archimedean Hilbert space H#. We would like to find a reasonable definition
for the statement: "A and B commute."
This cannot be done in the straightforward way since AB� BA may not make sense



on any vector � � H# for example, one might have �Ran�A�� � D�B� � 	 in which
case BA does not have a meaning. This suggests that we find an equivalent
formulation of commutativity for bounded self-#-adjoint operators. The spectral
theorem for bounded self-#-adjoint operators A and B shows that in that case
AB� BA � 0 if and only if all their projections, �P�

A � and �P�
B �, commute, We take

this as our definition in the unbounded case.
Definition 4.5.1.Two possibly unbounded in��c

# self-#-adjoint operators A and B
are said to commute if and only if all the projections in their associated projection-
valued #-measures commute.
Remark 4.5.1.The spectral theorem shows that if A and B commute, then all the
bounded in��c

# #-Borel functions of A and B also commute. In particular, the
resolvents R��A� and R��B� commute and the unitary groups Ext-exp�itA� and
Ext-exp�isA� commute.
The converse statement is also true and this shows that the above definition of
"commute" is reasonable:
Theorem 4.5.1. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert spaceHilbert space H#.
Then the following three statements are equivalent:
(a) Spectral projections P�a,b�

A and P�c,d�
B , commute.

(b) If Im� and Im� are nonzero, then R��A�R��B� � R��B�R��A� � 0.
(c) For all s, t � ��c

#,	Ext-exp�itA�
	Ext-exp�isB�
 � 	Ext-exp�isB�
	Ext-exp�itA�
.
Proof The fact that (a) implies (b) and (c) follows from the functional calculus. The
fact that (b) implies (a) easily follows from the formula which expresses the spectral
projections of A and B as strong #-limits of the resolvents (generalized Stone’s
formula) together with the fact that

s-#- lim 
�# 0	i
Ra�i
�A�
 � P�a�
A . �4.5.1�

To prove that (c) implies (a), we use some simple facts about the Fourier
transform. Let f � S#���c

#�. Then, by generalized Fubini’s theorem,

Ext- "��c
#
f�t��	Ext-exp�itA�
�,�
#d

#t �

� Ext- "��c
#
f�t� Ext- "��c

# 	Ext-exp��it��
d�
#�P�

A�,�
# d#t �

� 2�# Ext- "��c
#

�
f ���d�

#�P�
A�,�
# � 2�# �,

�
f �A��

#
.

�4.5.2�

Thus, using (c) and generalized Fubini’s theorem again,

�,
�
f �A��g�B��

#
�

Ext- "��c
#
Ext- "��c

#
f�t�g�s���,	Ext-exp��itA�
	Ext-exp��isB�
�
#d

#sd#t �

� �,�g�B�
�
f �A��

#

�4.5.3�

so, for all f,g � S#���c
#�,

�
f �A��g�B� � �g�B�

�
f �A� � 0.

Since the Fourier transform maps S#���c
#� onto S#���c

#� we conclude that
f�A�g�B� � g�B�f�A� for all f,g � S#���c

#�. But, the characteristic function, ��a,b�

can be expressed as the pointwise #-limit of a hyperinfinite sequence fn,n � ��
of uniformly bounded functions in S#���c

#�. By the functional calculus,



s-#- lim n��� fn�A� � P�a,b�
A . �4.5.4�

Similarly,we find uniformly bounded gn � S#���c
#� #-converging pointwise to ��c,d�

and

s-#- lim n��� gn�B� � P�c,d�
B . �4.5.5�

Since the fn and gn are uniformly bounded in��c
# and

fn�A�gn�B� � gn�B�fn�A� �4.5.6�

for each n � ��, we conclude that P�a,b�
A and P�c,d�

B , commute which proves (a).

Definition 4.5.2. Let A : H# � H# be bounded in��c
# self-#-adjoint operator. The

operator A is essentially bounded in��c
# if there is st��A�#� � � and st��A�#� 	 �.

Remark 4.5.2. Note that if A is essentially bounded in��c
# operator then for any

nearstandard vector � � H# vector A� again nearstandard, i.e. st��A��#� 	 �.

Definition 4.5.3.Let A and B be self-#-adjoint essentially bounded in��c
#operators on

a non-Archimedean Hilbert spaceHilbert space H#. .The operators A and B are
�-commute if �AB�# � �BA�#

Remark 4.5.3. Note that the operators A and B are �-commute if for any nearstandard
vector � � H# : A� � B�.
Theorem 4.5.2. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert space H# and essentially bounded in��c

#.Then the following three statements
are equivalent:
(a) Spectral projections P�a,b�

A and P�c,d�
B , �-commute.

(b) If Im� and Im� are nonzero, then R��A�R��B� and R��B�R��A� �-commute.
(c) For all s, t � ��c

#,	Ext-exp�itA�
	Ext-exp�isB�
 and 	Ext-exp�isB�
	Ext-exp�itA�

�-commute.
Theorem 4.5.3. Let A and B be self-#-adjoint operators on a non-Archimedean
Hilbert space H#.Then the following three statements are equivalent:
(a) Spectral projections P�a,b�

A and P�c,d�
B , �-commute.

(b) For all s, t � ��c
#,	Ext-exp�itA�
	Ext-exp�isB�
 � 	Ext-exp�isB�
	Ext-exp�itA�
.

�-commute.

§4.6. ��c
#-valued quadratic forms.

One consequence of the generalized Riesz lemma is that there is a one-to-one
correspondence between bounded in ��c

# quadratic forms and bounded in ��c
#

operators; that is, any sesquilinear
map q : H 
 H � ��c

# which satisfies |q��,��#| � M���#���# is of the form
q��,�� � ��,A�
# for some bounded operator A. As one might expect, the situation is
more complicated if one removes the boundedness restriction. It is the relationship
between unbounded forms and unbounded operators which we study briefly in this
section.
Definition 4.6.1. A quadratic form is a map q : Q�q� 
 Q�q� � ��c

#, where Q�q� is a
#-dense linear subset of H called the form domain, such that q��,�� is conjugate linear
and q��, �� is linear for �,� � Q�q�. If q��,�� � q��,�
�# we say that q is symmetric. If
q��,�� � 0 for all � � Q�q�, q is called positive, and if q��,�� � �M���

#

2 for some

M � ��c
#we say that q is semibounded in ��c

#.
Notice that if q is semibounded, then it is automatically symmetric if H is complex.



Example 4.6.1. Let H � �2
#���c

#� and Q�q� � C0
�#
���c

#� with q�f,g� � f�0�g�0�. Then q
is a positive quadratic form. Since q�f,g� � �#�fg� one could formally write

q�fg� � �f,Ag�
where A : g 
 �#�x�g�x�. Since multiplication by ��x� is not an operator, q is an

example
of a quadratic form not likely to be associated with an operator.
Example 4.6.2 Let A be a self-#-adjoint operator on H#. Let us pass to a spectral
representation of A, so that A is multiplication by x on 'n�1

N �2
#���c

#,�n
#�. Let

Q�q� � ��n�n�1
N |Ext-�n�1

N Ext- "��c
#|x||�n�x�|2d#�n

# � �� �4.6.1�

and for �,� � Q�q� define

q��,�� � �n�1
N Ext- "��c

#
x�n�x��n�x�d#�n

# . �4.6.2�

We call q the quadratic form associated with A and write Q�q� � Q�A�;Q�A� is called
the form domain of the operator A. For �,� � Q�A�, we will write q��,�� � ��,А�
#

although A does not make sense on all � � Q�A�, then Q�A� is in some sense the
largest domain on which q can be defined.
To investigate the deep connection between self-#-adjointness and semi-bounded
in ��c

# quadratic forms we need to extend the notion of “#-closed” from operators to
forms. An operator A is #-closed if and only if its graph is #-closed which is the same
as saying that D�A� is complete under the #-norm ���А � �А��# � ���#.
Analogously we define:
Definition 4.6.2. Let q be a semibounded in ��c

# quadratic form, q��,�� � �M���
#

2

is called #-closed if Q�q� is complete under the #-norm

���#!1 � q��,�� ! �M ! 1����
#

2 . �4.6.3�

If q is #-closed and D � Q�q� is #-dense in Q�q� in the ���#!1 #-norm, then D is
called a form #-core for q.
Notice that ���#!1 comes from the inner product

��,�
#!1 � q��,�� ! �M ! 1���,�
#. �4.6.4�

It is not hard to see that q is #-closed if and only if whenever

�n � Q�q� �n
H#

� � and q��n � �m,�n � �m� �# 0, as n,m� ��, then � � Q�q�
and q��n � �,�n � �� �# 0. This criterion and the dominated #-convergence
theorem show that the form q associated with a semibounded self-#-adjoint operator
(Example 4.6.2) is #-closed. Furthermore, any operator #-core for A is a form #-core
for q.
Now, let q�f,g� � f�0�g�0� as in Example 4.6.1 and �n � C0

�#
���c

#�. Then �n �# 0, and
q��n � �m,�n � �m� �# 0, but q��n,�n� �# 1 	 q�0,0� which proves that q has no
#-closed extensions. Therefore, even though q is positive (and therefore symmetric)
there is no semibounded self-#-adjoint operator A so that q�f,g� � �f,Ag
# for all
f,g � C0

�#
���c

#� .
The deep fact about semibounded quadratic forms is that unlike the case for

operators,
they cannot be #-closed and symmetric, yet not self-#-adjoint.
Theorem 4.6.2. If q is a #-closed semibounded in ��c

# quadratic form, then q is the



quadratic form of a unique self-#-adjoint operator.
Proof We may assume without loss of generality that q is positive. Then, since q is
#-closed and symmetric, Q�q� is a Hilbert space, which we denote by H�1

# , under the
inner product ��,�
#�1 � q��,�� � ��,�
#.We denote by H�1

# the space of bounded

in ��c
# conjugate linear functionals on H�1

# . Let j, given by �
j
� ��,�
# be the linear

imbedding of H# into H�1
# is bounded in ��c

# because

|	j������
| � ���#���# � ���#���# � ���#�1���#. �4.6.5�

Since the identity map i embeds H�1
# in H# we have a “scale of spaces”

H�1
# i
� H# j

� H�1
# . �4.6.6�

We now exploit the generalized Riesz lemma. Given 
 � H�1
# , let B
 be the element

of H�1
# which acts by 	B

��� � q��,
� � ��,
�#.By the generalized Riesz lemma, B

is an isometric isomorphism of H�1
# onto H�1

# . Let D�B� � � � H�1
# |B� � Ran�j� .

Define now B on D�B� by B � j �1B.Notice that

H#  H�1
# B
� H�1

# j
# H#. �4.6.7�

First, we prove that the range of j is #-dense in H�1
# . If it were not, there would

be a � � H�1
#� so that � 	 0, and �	j���
 � 0 for each � � H#.By the generalized

Riesz Lemma, there is a �� 	 0 in H�1
# so that 0 � �	j���
 � 	j���
���� � ���,�
#

for all � � H#.Since �� 	 0, this is impossible. Therefore Ran�j� is #-dense in H�1
# .

Since B is an isometric isomorphism we conclude that D�B� is ���#�1 #-dense in H�1
# .

Further, since ���# � ���#�1 and H�1
# is #-norm #-dense in H#,D�B� is #-norm #-dense

in H#.Suppose �,� � D�B�. Then one obtains that

��,В�
# � q��,�� � ��,�
# � q��,�� � ��,�
# � ��,B�
# � �B�,�
#. �4.6.8�

Thus, B is a #-densely defined symmetric operator.

We will prove now that B is self-#-adjoint. Let C � B
�1

j. C takes H# into H# and is

an everywhere defined symmetric operator. By the generalized Hellinger-Toeplitz
theorem, C is a bounded in ��c

# self-#-adjoint operator. Moreover, C is injective.
A simple application of the spectral theorem in multiplication operator form shows that
C�1 : Ran �C� � H# is a self-#-adjoint operator. But C�1 � B.
We now define А � В � I. Then A is also self-#-adjoint on D�A� � D�B� and for
�,� � D�A�, ��,A�
# � q��,��. Since D�A� is ���#�1 #-dense in H�1

# is the quadratic
form associated to A. Uniqueness is obvious.
Thus, there is an principal distinction between semi-bounded in ��c

# symmetric
operators and semi-bounded in ��c

# quadratic forms. For symmetric operators, there
is never any problem finding #-closed extensions.
Reark 4.6.1. Note that: (1) If A and B are self-#-adjoint operators and D�A� � D�B�
with B " D�A� � A then A � B. But it can happen that a and b are #-closed
semibounded in ��c

# quadratic forms and b " Q�a�xQ�a� � a without having a � b.
(2) Let A be a symmetric operator that is semibounded in ��c

#. Let q be the quadratic
form q��,�� � ��,A�
# with Q�a� � D�A�. Suppose that q has a #-closure , that is,
a smallest #-closed form which extends it. Then the self-#-adjoint operator A which
corresponds to �q (by Theorem 4.6.2) may be bigger than the operator #-closure of A.



(3) While a general quadratic form may have no #-closed extensions, forms that come
directly from semibounded in ��c

# operators always have #-closures and thus
semibounded in ��c

# operators always have self-#-adjoint extensions.

§ 4.7. #-Convergence of unbounded in ��c
# operators

One of the main difficulties with unbounded in ��c
# operators is that they are only

#-densely defined. This difficulty is especially troublesome when one wants to find a
notion of #-convergence for a hyper infinite sequence An �# A,n � �� of unbounded
in ��c

# operators since the domains of the operators An may have no vector in
common. For example, if An � �1 � n�1�x on L2

#���c
#�, it is clear that in some sense

An �# A � x; yet we could have been given domains D�An� and D�A� of essential
self-#-adjointness for these operators which have no nonzero vector in common. Of
course, in this simple case the #-closures of An and A all have the same domain, but
in general this will not be true, and in any case, one is often forced to deal with
domains of essential self-adjointness since closures of operators are sometimes
difficult to compute. It is very natural to say that self-#-adjoint operators are “close” if
certain bounded in ��c

# functions of them are “close.” Most of this section is devoted
to this approach. However, we also introduce graph #-limits, a topic which will be
explored further.
Definition 4.7.1.Let �An�n���and A be self-#-adjoint operators. Then An is said to

#-converge to A in the #-norm resolvent sense (or #-norm generalized sense) if
R��An� �# R��A� in #-norm for all � with Im� 	 0. An is said to #-converge
to A in the strong resolvent sense (or strong generalized sense) if R��An� �# R��A�
strongly for all � with Im� 	 0..
We have not introduced the notion of weak resolvent #-convergence since weak
resolvent #-convergence implies strong resolvent #-convergence. The following
theorem shows that #-norm resolvent #-convergence is the right generalization of
#-norm convergence for bounded in ��c

# self-#-adjoint operators. A similar result
holds for strong resolvent #-convergence, but the analogue for weak #-convergence
is not true.
Theorem 4.7.1.Let �An�n�1

�� and A be a family of uniformly bounded in ��c
#

self-#-adjoint operators. Then An �# A as n � �� in the #-norm resolvent sense
if and only if An �# A as n � ��in #-norm.
Proof. Let An �# A as n � ��in #-norm. Then if Im� 	 0, �An � A��A � ���1 �# 0

in #-norm. Thus, using the equality �An � ���1 � �A � ���1 I � �An � A��A � ���1 �1

we obtain that �An � ���1 �# �A � ���1 in #-norm as n � ��.
Conversely, suppose An �# A as n � ��in the #-norm resolvent sense. Then,
since An � A � �An � i��An � i��1	�A � i��1 � �An � i��1
�A � i�, we conclude that
�An � A�# � �supn�An�# � 1���A � i��1 � �An � i��1�#��A�# � 1� �# 0 as n � ��.

The following theorem shows that to prove generalized convergence one need only
show #-convergence of the resolvents at one point off the hyperreal axis ��c

#.
Theorem 4.7.2. Let �An�n�1

�� and A be self-#-adjoint operators, and let �0 � ��c
#.

(a) If Im�0 	 0 and �R�0�An� � R�0�A��# �# 0, then An �# A as n � ��in
the #-norm resolvent sense.
(b) If Im�0 	 0 and if R�0�An�� � R�0�A�� �# 0, for all � � H# then An �# A as
n � ��in the strong resolvent sense.



Proof (a) Both R��A� and R��An� are analytic in the half-plane of ��c
# containing �0

and have hyper infinite power series around �0,

R��A� � Ext-�
m�0

��

��0 � ��m	R�0�A�

m�1,

R��An� � Ext-�
m�0

��

��0 � ��m	R�0�An�
m�1

�4.7.1�

which #-converge in #-norm in the circle |� � �0| � |Im�0|�1. Since R�0�An� �# R�0�A�
in #-norm, R��An� �# R��A� in #-norm for A in this circle. Therefore, by repeating this
process, we get #-convergence for all A in the half-plane of ��c

# containing �0.
Furthermore, since

�R�0
�An� � R�0

�A��
#
� ��R�0�An� � R�0�A��

��# �

�R�0�An� � R�0�A��# �# 0 as n � ��
�4.7.2�

the same argument shows that the resolvents converge in #-norm in the hal-fplane
of ��c

# containing �0.
(b) The proof is the same as the proof of (a) except for two things. First, we consider
the vector-valued functions R��An�� and R��A��. Secondly, since the map T � T�

is not #-continuous in the strong topology, one needs a separate argument to get
from one half-plane of ��c

# to the other. Suppose that �0 is in the lower half-plane of
��c

#. Then, as in (a), we get #-convergence everywhere in the lower half-plane of ��c
#,

in particular at � � �i. The formula

�An � i��1 � �A � i��1 �

	�An ! i��An � i��1
	�An ! i��1 � �A ! i��1
	�An ! i��An � i��1

�4.7.3�

which follows from elementary calculations, can then be used to prove that hyper
infinite sequence �An � i��1,n � �� #-converges strongly to �A � i��1. The above
argument then shows that hyper infinite sequence R��An� ,n � �� #-converges
strongly to R��A� everywhere in the upper half-plane of ��c

#.
For alternative ways of proving that strong #-convergence, R��An�

s
�# R��A� in one

half-plane implies strong #-convergence in the other half-plane, see Theorem 4.7.9.
We will investigate several aspects of generalized #-convergence. First, we ask how
resolvent #-convergence is related to the #-convergence of other bounded functions
of An and A. Secondly, we investigate the relationship between the spectra of An and
the spectrum of A if An �# A in a generalized sense. Finally, we give criteria on the
operators An,A themselves which are sufficient to guarantee that An �# A as n � ��
in a generalized sense.
Theorem 4.7.3. Let An and A be self-#-adjoint operators.
(a) If An �# A as n � ��in the #-norm resolvent sense and f is a #-continuous
function on��c

# vanishing at ��, then �f�An� � f�A��# �# 0 as n � ��
(b) If An �# A in the strong resolvent sense and f is a bounded in ��c

# #-continuous
function on ��c

#, then f�An�� �# f�A�� as n � ��, for all � � H#.
Proof By the generalized Stone-Weierstrass theorem, polynomials in �x ! i��1 and
�x � i��1 are #-dense in C

�����c
#�, the #-continuous functions vanishing at hyper



infinity. Thus, given 
 � 0,
 � 0, we can find an hyperfinite polynomial P�s, t� so that

�f�x� � P �x ! i��1,�x � i��1 � ��
� 


3
. �4.7.4�

Therefore,

�f�An� � P �An ! i��1,�An � i��1 � ��
� 


3
�4.7.5�

and

�f�A� � P �A ! i��1,�A � i��1 � ��
� 


3
. �4.7.6�

If An �# A as n � ��in the #-norm resolvent sense, then

P �An ! i��1,�An � i��1 �# P �A ! i��1,�A � i��1 �4.7.7�

in #-norm as n � ��,and thus for hyperfinite n large enough,�f�An� � f�A��# � 
.
This proves (a).
To prove (b) we first note that the same proof as above shows that if An �# A in the
strong resolvent sense and h � C

�����c
#�, then h�An�� �# h�A��. Let � � H# and


 � 0,
 � 0 be given and define gm�x� � Ext-exp��x2/m�. Since gm�x� �# 1 pointwise,
gm�A�� �# � by spectral theorem , so we can find an m with
�gm�A�� � ��# � 
�6�f� ���

�1.Furthermore since gm � C
�����c

#�,gm�An�� �# gm�A��
by the remark above, so we can find an N0, so that n � N0 implies
�gm�An�� � gm�A���# � 
�6�f� ���

�1. Therefore, if n � N0,

�gm�An�� � ��# � 
�3�f� ���
�1. �4.7.8�

Since fgm is #-continuous and goes to zero at ��, there is an N1 so that n � N1

implies

�f�An�gm�An�� � f�A�gm�A���# �


3

. �4.7.9�

Let N � max�N0,N1�. Then for n � N,

�f�An�� � f�A���# � �f�An�gm�An�� � f�A�gm�A���# �

��An�#�gm�An�� � ��# � �A�#�gm�A�� � ��#.
�4.7.10�

Since � and 
 were arbitrary, this proves (b).
As an example of an application of part (a) let �An�n�1

�� and A be positive self-#-adjoint
operators. Then, if An �# A in the #-norm resolvent sense Ext-exp��tAn� #-converges
in #-norm to Ext-exp��tA� for each positive t. To see that part (a) does not extend to all
of C#���c

#�, notice that on L2
#���c

#� the operators An � �1 � n�1�x #-converge to the
operator A � x in the #-norm resolvent sense but �Ext-exp�iAn� � Ext-exp�iAn��# � 1
for all n � ��.
An important application of part (b) is the following generalization of the classical
Trotter theorem.
Theorem 4.7.4. Let �An�n�1

�� and A be self-#-adjoint operators. Then An �# A in the
strong resolvent sense if and only if Ext-exp�itAn� #-converges strongly to Ext-exp�itA�
for each t.
Proof Since Ext-exp�itx� is a bounded #-continuous function of x, Theorem 4.7.3
implies that if An �# A in the strong resolvent sense, then
Ext-exp�itAn� �# Ext-exp�itA� as n � ��,strongly for each t.
To prove the theorem in the other direction, we first derive a formula for the resolvent



of a self-#-adjoint operator A. Suppose that Im� � 0. Then, by the functional calculus

��,R��A��
# � Ext- "
��c

#

1
� � � d#��,P��
# �

Ext- "
��c

#

Ext- "
0

��

i	Ext-exp��it��
	Ext-exp�it��
d#t �

Ext- "
0

��

i	Ext-exp��it��
#��,Ext-exp�itA��
# �

�,Ext- "
0

��

i	Ext-exp��it��
	Ext-exp�itA�
�d#t

#

.

�4.7.11�

Therefore,

R��A�� � Ext- "
0

��

i	Ext-exp��it��
	Ext-exp�itA�
�d#t �4.7.12�

where the #-integral is a Riemann #-integral. The third step in the computation uses
generalized Fubini’s theorem. Applying (4.7.12) to the operators An and A we obtain

�R��An�� � R��A���# �

Ext- "
0

��

	Ext-exp�t Im��
�	Ext-exp�itAn� � Ext-exp�itA�
��#d
#t

�4.7.13�

so if Ext-exp�itAn� �# Ext-exp�itA� as n � ��for each t,�R��An�� � R��A���# �# 0

as n � ��by the generalized Lebesgue dominated convergence theorem. Using a
formula similar to (4.7.12) one concludes in the same way that
�R��An�� � R��A���# �# 0 for Im� � 0.We remark that it is possible to show that if
An �# A in the strong resolvent sense, then Ext-exp�itAn� �# Ext-exp�itA� for each �

uniformly for t in any gyperfinite interval.
Theorem 4.7.5. (Generalized Trotter-Kato theorem) Let �An�n�1

�� be a sequence of
self-#-adjoint operators. Suppose that there exist points, �0 in the upper half-plane
of ��c

# and �0 in the lower half-plane of ��c
# so that R�0�An�� and R�0�An��

#-converge as n � �� for each � � H#. Suppose further that one of the limiting
operators, T�0 or T�0, has a #-dense range. Then there exists a self-#-adjoint operator
A so that An �# A as n � ��in the strong resolvent sense.
Proof Since �R�0�An��# � |Im�0|�1,�T�0� � |Im�0|�1, and so

T� � Ext-�
n�0

��

��0 � ��n�T�0 �
n�1. �4.7.14�

is well defined for |�0 � �| � |Im�0|�1.Furthermore, since R�0�An�� �# T�0�,
R��An�� �# T�� in the same circle.
Continuing in this way we can define an #-analytic operator valued function T� in the
half-plane containing �0 which is the strong #-limit of R��An�. Since the half-plane is
simply #-connected, the determination of T� at a point � is independent of the path



taken from �0 to �. The same argument for the half-plane containing shows that we
can extend the definition of T� to that half-plane of ��c

# so that for all � with Im� 	 0

T�� � #- lim n��� R��An��. �4.7.15�

The T� commute, satisfy the first resolvent equation, and T�
� � T� since these

statements are true for each R��An� It follows from the first resolvent formula and
the commutativity that the ranges of all the T� are equal; we denote this common
range by D. By hypothesis, D is #-dense and this implies that the kernel of T� is
empty, since Ker�T�� � �Ran�T�

���� � �Ran�T���� � D� � �0�. We can therefore
define A � �I � T�

�1 on D and a short calculation with the resolvent equation shows
that this definition is independent of which � with Im� 	 0, is chosen. Since
Ran�A � i� � Ran�T�i

�1� operator A is self-#-adjoint. It is clear that the resolvent of A
is T�.
Notice that in the Trotter-Kato theorem we need convergence at two points, one in
the upper half-plane and one in the lower half-plane of ��c

#. For, we cannot use
Theorem 4.7.3 until we know that the #-limiting operator is self-#-adjoint, and the
self-#-adjointness proof depends on the #-convergence in both half-planes of ��c

#.
The Trotter-Kato theorem is important since its hypotheses do not assume the a
priori existence of a #-limiting operator A. It can be used to assert the existence of a
generalized #-limit of a sequence of self-#-adjoint operators. This can also be done
with the one-parameter groups. To see why it is necessary to use the resolvents or
groups rather than the operators themselves to prove such an existence theorem
consider the following example: Let A be a closed symmetric operator which is not

self-#-adjoint but which has a self-#-adjoint extension A. Let Pn be the spectral

projection of A corresponding to the interval 	�n,n
. Then PnAPn are bounded
self-#-adjoint operators (and therefore essentially self-#-adjoint on D�A�) such that

for all � � D�A� : PnAPn� �# A� � A�.Thus the PnAPn are essentially self-#-adjoint
on D�A� and the strong #-limit exists but the #-limit is not essentially self-#-adjoint.
One of the most useful aspects of generalized #-convergence is that the spectra and
projections of the An are related to the spectrum and projections of A.
Theorem 4.7.6. Let �An�n�1

�� and A be self-#-adjoint operators and suppose that
An �# A in the #-norm resolvent sense. Then
(a) If � � ��A�, then � � ��An� for n � �� sufficiently large and

�R��An� � R��A��# �# 0 �4.7.16�

(b) Let a,b � ��c
#, a � b, and suppose that a � ��A�, b � ��A�. Then

�P�a,b��An� � P�a,b��A��# �# 0 �4.7.17�

Proof (a) We need only consider the case where � � ��c
#. Since � � ��A�, there

is a � � 0,� � 0 so that �� � �,� � �� � ��A� � 	. Thus, by the functional calculus,
�R�!i�/3�A��# � 1/�. Now, we can find N so that �R�!i�/3�An��# � 2/� for n � N which
implies that the power series for R��An� about � ! i�/3 has radius of #-convergence
at least 5/2. We already know that where the series #-converges it is an inverse for
An.So, � � ��An� for n � N and �R��An� � R��A��# �# 0 as n � ��.

To prove (b), we note that since a,b � ��A�, there exists 
 � �1/2��b � a� and an N,
so that supn�N ��An � a��1�

#
,��An � b��1�

#
� 1/
.Therefore, by the functional

calculus, ��An� � �a,b� � �a ! 
,b � 
� for n � N. Let f
 be a #-continuous function



which equals one on �a ! 
,b � 
� and is equal to zero outside �a,b�.Then
P�a,b��An� � f
�An� and P�a,b��A� � f
�A� and so by Theorem 4.7.3 one obtains
�P�a,b��An� � P�a,b��A��# �# 0 as n � ��.

Theorem 4.7.7. Let �An�n�1

�� and A be self-#-adjoint operators and suppose that
An �# A in the strong resolvent sense. Then
(a) If a,b � ��c

# a � b, and �a,b� � ��An� � 	 for all n � ��, then
�a,b� � ��A� � 	. That is, if � � ��A�, then there exists �n � ��An� so that �n �# �.
(b) If a,b � ��c

# a � b,and a,b � �pp�A� then
P�a,b��An�� �# P�a,b��A�� for all � � H#.
Proof By the functional calculus, the statement that �a,b� � ��An� � 	 is equivalent
to the statement that ��A � �0��1�

#
� 2 /�b � a� where �0 � �a � b�/2 � i�b � a�/2.

But �An � �0��1 #-converges strongly to �A � �0��1 so we have
��A � �0��1�

#
� #-lim n�����An � �0��1�

#
� 2 /�b � a�.This proves (a).

To prove (b), we find uniformly bounded sequences of #-continuous functions �fn�n�1

��

and �gn�n�1

�� so that 0 � fn � ��a,b�, fn�x� �# ��a,b��x� pointwise and ��a,b� � gn,
gn�x� �# �	a,b
�x� pointwise. Then fn�A� �# P�a,b��A� and gn�A� �# P	a,b
�A� strongly.
Since a,b � �pp�A�, P�a,b��A� � P	a,b
�A� which means that given � and 
 � 0,
 � 0,
we can find #-continuous functions f,g, with f � ��a,b� � �	a,b
 � g so that
�f�A�� � f�A���# � 
/5 By Theorem 4.7.3(b) we can find N � �� so that n � N
implies �f�An�� � f�A���# � 
/5 and �g�An�� � g�A���# � 
/5 so by an 
/3 argument
we get �g�An�� � g�An���# � 3
/5.Since the functional calculus implies
�f�A�� � P�a,b��A���# � �f�A�� � g�A���# another 
/3 argument implies
�P�a,b��A�� � P�a,b��A���# � 
.

Remark.Part (a) of Theorem 4.7.7 says that the spectrum of the #-limiting operator
cannot suddenly expand. It can, however, contract rather spectacularly as the
following example shows: Let �An�n�1

�� � �x/n�n�1

�� on L2
#���c

#� then An #-converges to
the zero operator in the strong resolvent sense. For each n, ��An� � ��c

#, but the
spectrum of the #-limiting operator contains only the origin. An easy application of
part (a) is the statement that if the An are positive and An �# A in the strong resolvent
sense, then A is positive.
If An #-converges to A in #-norm resolvent sense, Theorem 4.7.6 tells us that the
spectrum of the #-limiting operator cannot suddenly contract in the sense that if
� � ��An� for all sufficiently infinitely large n, then � � ��A�. Notice that in the
example An � x/n above, An does not #-converge to A in the #-norm resolvent sense.
The principle of noncontraction of the spectrum under #-norm resolvent
#-convergence remains true even when An and A are not self-#-adjoint. But the
principle of nonexpansion of the spectrum in the strong resolvent #-limit is not always
valid for general not-necessarily-self-#-adjoint operators. In fact, there exists a #-norm
#-convergent sequence of uniformly bounded operators An �# A with ��An� the unit
circle in ��c

# for each n � �� and ��A� the entire unit disc. Thus the reader should
be careful to apply Theorem 4.7.7 only in the self-#-adjoint case.
In applications, one is usually given the operators �An�n�1

�� and A on domains of
self-#-adjointness or essential self-#-adjointness and it may be very difficult to
compute the resolvents. Thus, in order to use Theorem 4.7.6 and Theorem 4.7.7
one must have criteria on the operators �An�n�1

�� and A themselves which guarantee



#-norm or strong resolvent #-convergence.
Theorem 4.7.8. (a) Let �An�n�1

�� and A be self-#-adjoint operators and suppose that
D is a common #-core for all An and A. If An� �# A� for each � � D then An �# A
as n � �� in the strong resolvent sense.
(b) Let �An�n�1

�� and A be self-#-adjoint operators with a common domain, D.
Norm D with ���#A � �A��# ! ���#. If sup���#A�1���An � A���#� �# 0 as n � ��
then An �# A in the #-norm resolvent sense.
(c) Let �An�n�1

�� and A be positive self-#-adjoint operators with a common form domain
H!1

# which we norm with ���#!1 � ��,A�
# � ��,�
#. If An �# A in #-norm in the sense
of maps from H!1

# to H�1
# that is, if

�	0,��D

sup
|��,�A � An��
#|
���#!1���#!1

�
�	0,��D

sup
|��,�A � An��
#|
��,�A � I��
#

�# 0 �4.7.18�

then An �# A in the #-norm resolvent sense.
Proof (a) Let � � D, � � �A � i��, then �An � i��1 � �A � i��1 � � �An � i��1�A � An��

#-converges to zero as as n � ��, since �A � An�� �# 0 and the �An � i��1 are
uniformly bounded. Since D is a #-core for A the set of such � is #-dense so for all
� � H# : �An � i��1� �# �A � i��1�.A similar proof holds for �An � i��1.
We sketch the proofs of (b) and (c). For (b), first one proves that the hypothesis is
equivalent to �An � A��A � i��1 �# 0 in the ordinary H#-operator #-norm. Thus

I � �An � A��A � i��1 �1
exists and #-converges to I in #-norm as as n � ��.As a

result �An � i��1 � �A � i��1 I � �An � A��A � i��1 �1
�# �A � i��1in #-norm. Similarity

�An � i��1 �# �A � i��1.To prove (c), we first prove that the hypothesis is equivalent
to �A � I��1/2�An � A��A � I��1/2 �# 0 in the ordinary operator #-norm. Using the identity

�An � I��1 � �A � I��1/2 I � �A � I��1/2�An � A��A � I��1/2 �1
�A � I��1/2 one then follows

the proof of (b).

§ 4.8.Graph #-limits.
Definition 4.8.1.Let �An�n�1

�� be a hyper infinite sequence of operators on a non
Archimedean Hilbert space H#, We say that a pair ��,�
# � H# 
 H# is in the strong
graph #-limit of An as as n � ��if we can find �n � D�An� so that �n �# �,
An�n �# �. We denote the set of pairs in the strong graph #-limit by 
 ��

s . If 
 ��
s is the

graph of an operator A we say that A is the strong graph #-limit of An and write

A � st.gr.-#- lim An. �4.8.1�

First, we consider the case where all the An are self-#-adjoint and A is also
self-#-adjoint
Theorem 4.8.1. Suppose that �An�n�1

�� and A are self-#-adjoint operators. Then
An �# A in the strong resolvent sense if and only if A � st.gr.-#-lim An.
Proof Suppose first that �An � i��1 �# �A � i��1 strongly. Suppose � � D�A�.
Then �n � �An � i��1�A � i�� �# � and An�n � �A � i�� � i�, so ��,A�
# � 
 ��

s .
Thus 
�A� � 
 ��

s . On the other hand, suppose �n � D�An�,�n �# �
and An�n �# �. We let �n � �A � i��1�An � i��n � D�A�, then



�n � �n � 	�A � i��1 � �An � i��1
	�An � i��n
 �

� 	�A � i��1 � �An � i��1
	�An � i��n � � � i�
 �

�	�A � i��1 � �An � i��1
	� � i�
 �# 0

�4.8.2�

as n � ��.Thus, �n �# � and A�n � �An � i��n � i�n �# � so since A is #-closed
��,�
# � 
�A�. Thus, 
�A� � 
 ��

s .
Conversely, suppose that A � st.gr.-#-lim An. Let � � D�A�. Then there exist
�n � D�An� so that �n �# � and An�n �# A� as n � ��. Thus,
	�An � i��1 � �A � i��1
	�A � i��
 � �An � i��1	�An � i�� � �An � i��n
 � �� � �n� �# 0
as n � ��since ��An � i��1�# � 1,�An � i��n �# �A � i�� , and �n �# �. Since
Ran�A � i� � H. # the strong #-convergence of �An � i��1 to �A � i��1 follows.
Remark 4.8.1.Thus, we see that if the #-limit is self-#-adjoint, then strong graph and
strong resolvent #-convergence are the same. It is in the case when we do not know
a priori that the #-limit is self-#-adjoint that strong graph #-limits are particularly
important. For example, the existence of graph #-limits can sometimes be combined
with other information to prove that the #-limit is self-#-adjoint.
Theorem 4.8.2. Let �An�n�1

�� be a hyper infinite sequence of symmetric operators.
(a) Let D ��

s � �|��,�
# � 
 ��
s for some � .If D ��

s is #-dense, then 
 ��
s is the graph

of an operator.
(b) Suppose that D ��

s is #-dense and let A � st.gr.-#-lim An.
Then A is symmetric and #-closed.
Proof We will prove (a); the proof of (b) is obvious. Suppose �n,�n

� � D�An� and
�n �# �,�n

� �# � and An�n �# �,An�n
� �# ��. Let � � D ��

s . Then there is an
�n � D�An�, so that �n �# � and An�n �# � as n � ��. Thus,
�� � �,�
# � #-lim n����An��n � �n

� �,�n
# � #-lim n�����n � �n
� ,An�n
# � 0

so � � �� since D ��
s is #-dense.

We also define weak graph #-limits. We give the definition and state one theorem.
Definition 4.8.2. Let �An�n�1

�� be a gyper infinite sequence of operators on H#. We
say that ��,�
# � H# 
 H# is in the weak graph #-limit 
 ��

w if we can find �n � D�An�

so that �n
���#�# � and An�n �# � weakly. If 
 ��

w is the graph of an operator, A we
say that A is the weak graph #-limit of An and abbreviated as A � w.gr.-#-lim An.
Theorem 4.8.3. Let �An�n�1

�� be a gyper infinite sequence of symmetric operators. If
D ��

s � �|��,�
# � 
 ��
s for some � is #-dense, then 
 ��

w is the graph of a symmetric

operator.
Remark 4.8.2.Finally we note that if An is a uniformly bounded sequence of operators
then A � w.gr.-#-lim An if and only if An �# A as n � ��in the weak operator
topology. This fact shows that the notions of weak graph #-limit and weak resolvent
#-convergence are distinct. It is not true that weak graph #-limits are necessarily
#-closed if each An is symmetric.

§ 4.9. Generalized Trotter product formula
Theorem 4.9.1. (Generalized Lie product formula) Let A and B be external
hyperfinite-dimensional matrices.Then

Ext-exp�A � B� � #- lim n����	Ext-exp�A/n�
 
 	Ext-exp�B/n�
�n. �4.9.1�



Proof Let Sn � Ext-exp��A � B�/n� and Tn � 	Ext-exp�A/n�
 
 	Ext-exp�B/n�
. Then

Sn
n � Tn

n � Ext-�
m�0

n�1

Sn
m�Sn � Tn�Tn

n�m�1 �4.9.2�

so that

�Sn
n � Tn

n�# � n�max��Sn�#,�Tn�#��
n�1�Sn � Tn�# �

� n�Sn � Tn�#	Ext-exp��A�# � �B�#�
.
�4.9.3�

Since

�Sn � Tn�# �

Ext-�
m�0

��
1

m!#
A � B

n
m
� Ext-�

m�0

��
1

m!#
A
n

m
Ext-�

m�0

��
1

m!#
B
n

m

#

� C/n

�4.9.4�

where constant C depends only on �A�# and �B�#we conclude that
#-lim n����Sn

n � Tn
n�# � 0.

Remark 4.9.1.This theorem and its proof can be extended to the case where A and B
are unbounded self-#-adjoint operators and A � B is self-#-adjoint on D�A� � D�B�.
Theorem 4.9.2 Let A and B be self-#-adjoint operators on H# and suppose that A � B
is self-#-adjoint on D � D�A� � D�B�. Then

Ext-exp	it�A � B�
 � s-#- lim n����	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�n. �4.9.5�

Proof Let � � D. Then

s�1�	Ext-exp�isA�
 
 	Ext-exp�isB�
 � I�� �

s�1�	Ext-exp�isA�
 � I�� � s�1�	Ext-exp�isB�
 � I�� �# i�A � B��
�4.9.6�

and

s�1�	Ext-exp�isA�
 
 	Ext-exp�isB�
 � I�� �# i�A � B�� �4.9.7�

as s �# 0. Letting

K�s� � s�1�	Ext-exp�isA�
 
 	Ext-exp�isB�
 � 	Ext-exp�is�A � B��
� �4.9.8�

we see that K�s�� �# 0 as s �# 0, for each � � D. Since A � B is self-#-adjoint on D,
D is a
Banach space under the #-norm

���#A�B � ��A � B���# ! ���#. �4.9.9�

Each of the maps K�s� : D � H# is bounded and K�s��
H#

�# 0 as s �# 0 or �� for
each � � D.
Thus, we conclude from the uniform boundedness theorem that the K�s� are uniformly
bounded, that is, there is a constant C so that �K�s���# � C���#A�B for all s � ��c

#

and � � D.Therefore, an 
/3 argument shows that on ���#A�B #-compact subsets of D
K�s�� �# 0 uniformly.Since A ! B is self-#-adjoint on D, 	Ext-exp�is�A � B��
� � D if
� � D. Moreover, s � 	Ext-exp�is�A � B��
� is a #-continuous map of ��c

# into D
when D is given the ���#A�B #-norm topology. Thus �	Ext-exp�is�A � B��
�|s � 	�1,1
�
is a ���#A�B #-compact set in D for each fixed �.



We are now ready to mimic the proof of the generalized Lie product formula. We
know that

t�1�	Ext-exp�itA�
 
 	Ext-exp�itB�
 � 	Ext-exp�it�A � B��
� 



	Ext-exp�is�A � B��
� �# 0
�4.9.10�

uniformly for s � 	�1,1
. Therefore, we write

��	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�n � 	Ext-exp�it�A � B�/n�
n�� �

Ext-�
k�0

n

�	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�k 


	��	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
� � 	Ext-exp�it�A � B�/n�
�
 


	Ext-exp�it�A � B�/n�
n�k�1�

�4.9.11�

The #-norm of the RHS of (4.9.11)

|t| 


|s|�t
max t

n
�1
�	Ext-exp�it�A � B�/n�
 � �	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
��

#

�4.9.12�

and so we conclude that

�	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�n�
H#

� # Ext-exp�it�A � B��� �4.9.13�

as n � �� if � � D;Since D is #-dense and the operators are bounded by one, this
statement holds on all of H#.The above proof shows that on a fixed vector the
#-convergence is uniform for t in a #-compact subset of ��c

#.
Remark 4.9.2.The same argument can be used to show that

s-#- lim n����	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�n � Ext-exp�t�A � B�� �4.9.14�

if A and B satisfy the same hypotheses and in addition are semibounded. The
following

result is considerably stronger than Theorem 4.9.2 since it only requires essential
self-#-adjoint ness of A ! B on D�A� � D�B�.
Theorem 4.9.3 (the generalized Trotter product formula) If A and B are self-#-adjoint
operators and A �B is essentially self-adjoint on D�A� � D�B� then

s-#- lim n����	Ext-exp�itA/n�
 
 	Ext-exp�itB/n�
�n � Ext-exp�it�A � B�� �4.9.15�

Moreover, if A and B are bounded from below, then

s-#- lim n����	Ext-exp��tA/n�
 
 	Ext-exp��tB/n�
�n � Ext-exp��t�A � B��. �4.9.16�

§ 4.10.The polar decomposition
Note that an arbitrary bounded operator T can be written T � U|T| where |T| is positive
and self-#-adjoint and U is a partial isometry. Moreover, the conditions that Ker�|T|� �
� Ker�T� and that the initial space of U equals �Ker�T��� uniquely determine |T| and

U. In this section we extend this result to closed #-unbounded operators. As in the
bounded case, U is easy to construct once |T| has been constructed and, as in
the bounded case, we will let |T| � T�T . In the bounded case, the hard part was the
construction of the square root. Now that we have the spectral
theorem, it is easy to construct T�T if we can prove that T�T is a positive self-



#-adjoint operator. It is this fact that is hard in the unbounded case. A priori, it is not
clear that ��|� � D�T� and Т� � D�T��� is different from �0�. In fact, this set is
#-dense, but our approach using the theory of semi-bounded quadratic forms does not
require us to prove this.
Theorem 4.10.1. (the polar decomposition) Let 
 be an arbitrary #-closed operator on

a
non Archimedean Hilbert space H#. Then, there is a positive self-adjoint operator |T|,
with D�|T|� � D�T� and a partial isometry U with initial space, �Ker�T���, and final
space #-Ran�T� so that T � U|T| and U are uniquely determined by these properties
together with the additional condition Ker�|T|� � Ker�T�.
Proof. Define the ��c

#-valued quadratic form s��,�� on D�T� by

s��,�� � �Т�,Т�
#. �4.10.1�

Quadratic form s��,�� is clearly positive. Now suppose ��n � �m�#!1 �# 0. Then
��n � �m�# �# 0 and �T��n � �m��# �# 0. Since T is #-closed there is а � � D�T�
with

��n � ��# ! �T��n � ���# �# 0, �4.10.2�

i.e. ��n � ��#!1 �# 0.
Thus s��,�� is a #-closed form. Therefore, by Theorem VIII.15, there is a unique,
positive self-#-adjoint operator Swith Q�S� � D�T� and s��,�� � ��,S�
# in the sense
of ��c

#-valued quadratic forms. Let |T| � S1/2. Then D�|T|� � Q�S� � D�T� and by
construction �|Т|��#

2 � s��,�� � �Т��#
2 so Ker�|T|� � Ker�T�. Define the operator

U : Ran�|T|� � Ran�T� by U|T|� � Т�.Since �|Т|��# � �Т��#, U is well defined and
#-norm preserving. Thus U extends to a partial isometry from Ran�|T|� to Ran�T�.
Finally, since |T| is self-#-adjoint, #-Ran�T� � �Ker�|T|��� � �Ker�T���. Uniqueness
is obvious.

§ 5.Tensor products and second quantization.

§ 5.1.Tensor products.
In this section we describe some aspects of the theory of tensor products of operators
on non Archimedean Hilbert spaces. Let A and. B be #-densely defined operators on
non Archimedean Hilbert spaces H1

# and H2
# respectively. We will denote by

D�A� ' D�B� the set of hyperfinite linear combinations of vectors of the form � ' �
where � � D�A� and � � D�B�. D�A� ' D�B� is dense in H1

# ' H2
# We define A' B on

D�A� ' D�B� by

A' B�� ' �� � А� ' В� �5.1.1�

and extend by linearity.
Proposition 5.1.1 The operator A' B is well defined. Further, if A and B are

#-closable,
so is A' B.
Proof Suppose that Ext-�ci � i ' � i and Ext-�dj� j

� ' � j
� are two representations of

the same vector f � D�A� ' D�B�. Using Gram-Schmidt orthogonalization we
obtain bases ��k� and �� l� for the spaces spanned by �� i� � �� i

�� and �� j� � �� j
��

respectively so that �k � D�A� and � l � D�B�. � i ' � i and � j
� ' � j

� can be expressed



� i ' � i � Ext-�kl
�kl

i ��k ' � l � �5.1.2�

and

� j
� ' � j

� � Ext-�kl
	kl

j ��k ' � l �. �5.1.3�

Since the two expressions for f give the same vector, Ext-� i
ci�kl

i � Ext-� j
dj	kl

j for

each pair �k, l�.Thus,

�A' B� Ext-� i
ci�� i ' � i � � Ext-�kl

Ext-� i
ci�kl

i �A�k ' B� l � �

Ext-�kl
Ext-� j

dj	kl
j �A�k ' B� l � � �A' B� Ext-� j

dj�� j
� ' � j

��
�5.1.4�

so A' B is well defined. If g is any vector in D�A�� ' D�B�� then
��A' B�f,g
# � �f,�A� ' B��g
# so

D�A�� ' D�B�� � D��A' B���. �5.1.5�

If A and B are #-closable, D�A �� and D�B�� are #-dense. Therefore, in that case
�A' B�� is #-densely defined which proves that A' B is #-closable.
Similarly, if A and B are #-closable then A' I � I ' B defined on D�A� ' D�B� is
#-closable.
Definition 5.1.1. Let A and B be #-closable operators on a non Archimedean Hilbert
spaces H1

# and H2
#. The tensor product of A and B is the #-closure of the operator

A' B defined on D�A� ' D�B�. We will denote the #-closure by A' B also. Usually
A ! B will denote the #-closure of A' I � I ' B on D�A� ' D�B�.
Proposition 5.1.1. Let A and B be bounded in ��c

# operators on a non Archimedean
Hilbert spaces H1

# and H2
#. Then �A' B�# � �A�# 
 �B�#.

Proof Let ��k� and �� l� be orthonormal bases for H1
# and H2

# and suppose
Ext-�kl

ckl�k ' � l is a gyperfinite sum. Then

��A' I� Ext-�kl
ckl�k ' � l �#

2
� Ext-� l

�Ext-�k
cklA�k�#

2
�

� Ext-� l
�A�#

2 Ext-�k|ckl |2 � �A�#
2�Ext-�k

ckl�k ' � l�#

2
.

�5.1.6�

Since the set of such gyperfinite sums is #-dense in H1
# ' H2

#, we conclude that
�A' I�# � �A�#.Thus �A' B�# � �A' I�# 
 �B' I�# � �A�# 
 �B�#.
Conversely, given 
 � 0,
 � 0,there exist unit vectors � � H1

#, � � H2
# so that

�A��# � �A�# � 
 �5.1.7�

and

�B��# � �B�# � 
. �5.1.8�

Then

�A' B�� ' ���# � �A��# 
 �B��# � �A�# 
 �B�# � 
�A�# � 
�B�# ! 

2. �5.1.9�

Since 
 � 0 is arbitrary �A' B�# � �A�# 
 �B�#. which concludes the proof.
Remark 5.1.1.We notice that both of the above propositions have natural
generalizations to arbitrary hyperfinite tensor products of operators. This can be
proven directly or by using the associativity of the hyperfinite tensor product of a non
Archimedean Hilbert spaces.
Remark 5.1.2.We turn now to questions of self-adjointness and spectrum. Let �Ak�k�1

N

be a hyperfinite family of operators, Ak self-#-adjoint on Hk
#. We will denote the



#-closure of I1 ' � � � 'Ak ' � � � 'IN on D � Ext-'k�1
N D�Ak� by Ak also. Let P�x1, . . . ,xN�

be a polynomial with ��c
#-valued coefficients of degree nk in xk. Then, the operator

P�A1, . . . ,AN� makes sense on Ext-'k D�Ank� since D�Ank� � D�Al� for all l � nk. In fact,
P�A1, . . . ,AN� is essentially self-#-adjoint on that domain.
Theorem 5.1.1. Let Ak be a self-#-adjoint operator on Hk

#. Let P�x1, . . . ,xN� be a
polynomial with ��c

#-valued coefficients of degree nk in the k-th variable and suppose
that Dk

l is a domain of essential self-#-adjointness for Ak
nk. Then,

(a) P�A1, . . . ,AN� is essentially self-adjoint on D l � Ext-'k�1
N Dk

l .
(b) The spectrum of #-P�A1, . . . ,AN� is the #-closure of the range of P�A1, . . . ,AN� on the
product of the spectra of the Ak. That is � #-P�A1, . . . ,AN� � #-P���A1�, . . . ,��AN��.

Proof We will first prove that P�A1, . . . ,AN� is essentially self-#-adjoint on
D � Ext-'k�1

N D�Ak
nk�. By the spectral theorem, there is a #-measure space �Mk,�k

#
 so
that Ak is unitarily equivalent to multiplication by a ��c

#-valued #-measurable function
fk on L2

#�Mk,d#�k
#�. Thus we may assume that �k

# is hyperfinite and that
fk � �1�p��� Lp

#�Mk,d#�k
#�.Furthermore Ext-'k�1

N L2
#�Mk,d#�k

#� is naturally isomorphic
to L2

#�Ext- 
k�1
N Mk,Ext- 'k�1

N d#�k
#�. Under this isomorphism P�A1, . . . ,AN� corresponds

to multiplication by P�f1, . . . ,fN� and D corresponds to the set of hyperfinite linear
combinations of hyperfinite linear combinations of functions Ext-� i�1

N � i�mi �

such that fk
nk�k � L2

#�Mk,d#�k
#�.

To prove essential self-#-adjointness we use result from functional calculus. First,

since �k
# is hyperfinite and fk

nk�k � L2
#�Mk,d#�k

#� we conclude that fk
l � Lp

#�Mk,d#�k
#�

for 1 � p � ��. From this it follows immediately that P�f1, . . . ,fN� is in Lp
# for all such

p; in particular P�f1, . . . ,fN� � L4
#�Ext- 
k�1

N Mk,Ext- 'k�1
N d#�k

#�. Since fk
nk is self-#-adjoint

on Dk,Dk contains the characteristic functions of #-measurable sets in Mk.
Thus D contains all hyperfinite linear combinations of the characteristic functions of
rectangles. By the property on product #-measures we conclude that the characteristic
function of any #-measurable set in Mk is equal to such a hyperfinite linear
combination except on a set of arbitrarily small Ext-'k�1

N d#�k
# #-measure. Thus the

simple functions on Ext-
k�1
N Mk can be approximated in the Lp

# sense with 1 � p � ��
by elements of D. In particular D is #-dense in L4

#�Ext- 
k�1
N Mk,Ext- 'k�1

N d#�k
#�. Essential

self-#-adjointness now follows from Proposition 5.1.2.
To show that P�A1, . . . ,AN� is essentially self-adjoint on D l we need only show
that #-P�A1, . . . ,AN� " D l extends P�A1, . . . ,AN� " D. Suppose Ext-'k�1

N �k � D. Then
�k � D�Ak

nk�, so since Dk
l is a domain of essential self-#-adjointness of Ak

nk there is a
hyper infinite sequence ��k

l � l�1

�� so that �k
l �# �k and Ak

nk�k
l �# Ak

nk�k. An easy estimate

shows that this implies that Ak
m�k

l �# Ak
m�k for all 1 � m � nk. Therefore

Ext-'k�1
N �k

l �# Ext-'k�1
N �k and P�A1, . . . ,AN��Ext- 'k�1

N �k
l � �# P�A1, . . . ,AN��Ext- 'k�1

N �k�
The same argument works for hyperfinite linear combinations of vectors of the form
Ext-'k�1

N �k so #-P�A1, . . . ,AN� " D l extends P�A1, . . . ,AN� " D. This completes the proof
of (a).
To prove (b), suppose that � � � #-P�A1, . . . ,AN� . If I is any #-open interval about �

then P�1�A1, . . . ,AN��I� contains a product Ext-
k�1
N I k of open #-intervals so that

I k � ��Ak� 	 	. Since ��Ak� � #-ess range�fk
nk �,�k

# �fk
nk ��1�I k� 	 0 so

�	P�f1, . . . ,fN��I�
 	 0. That is, � � #-ess range�P�f1, . . . ,fN�� which equals



� #-P�A1, . . . ,AN� .

Conversely if � � #-P���A1�, . . . ,��AN�� then �� � P�f1, . . . ,fN���1 is bounded #-a.e.
on Ext-
k�1

N Mk so � � � #-P�A1, . . . ,AN� .

Remark 5.1.3.If A1. . . ,AN,N � �� are bounded in��c
#, P�A1, . . . ,AN� is #-closed,

but in general it is not.
Corollary 5.1.1. Let A1. . . ,AN,N � �� be self-#-adjoint operators on H1

#, . . . ,HN
# and

suppose that, for each k,Dk is a domain of essential self-#-adjointness for Ak. Then,
(a) The operators A� � Ext-'k�1

N Ak and A� � Ext-�k�1
N Ak are essentially self-#-adjoint

on D � Ext-'k�1
N Dk.

(b) ��A�� � #-Ext-�k�1
N ��Ak� and ��A�� � #-Ext-�k�1

N ��Ak� .

Example 5.1.1. Suppose that V�x� is a potential so that H1 � �+x
# � V�x� is essentially

self-#-adjoint on S#���c
#3�. Then H2 � �+x

# � V�x� � +y
# � V�y� is essentially

self-#-adjoint on the set of hyperfinite sums of products ��х���у�, with
�,� � S#���c

#3�. Further ��H2� � #-��H1� � ��H1�.
is obvious.

§ 5.2.Non-Archimedean Fock spaces.
Let H# be a non-Archimedean Hilbert space and denote by H

#n,n � �� the n-fold
tensor product H

#n � Ext-'k�1
n H

#and define

�#�H#� � Ext- 'n�0
�� H

#n �5.2.1�

�#�H#� is called a non-Archimedean Fock space over H#; it will be �-separable if H#

is. For example, if H# � L2
#���c

#�, then an element � � ��H#� is a hyper infinite
sequence of functions

� � ��0,�1�x1�,�1�x1,x2�,�1�x1,x2,x3�, . . . ,� �5.2.2�

so that

|�0|2 � Ext-�n�1

�� Ext- "��c
#n
�n�x1, . . . ,xn�d#nx � ��, �5.2.3�

where �0 � ��c
#,d#nx � Ext-� i�1

n d#nxi .Actually, it is not �#�H#� itself, but two of its

subspaces which are used in quantum field theory. These two subspaces are
constructed as follows: Let Pn,n � �� be the permutation group on n � ��
elements and let ��k�k�1

�� be a basis for H#. For each � � Pn we define an operator
(which we also denote by a) on basis elements of H

#�n�,n � ��by

��Ext- ' i�1
n �ki � � Ext- ' i�1

n �k��i� �5.2.4�

a extends by linearity to a bounded in ��c
# operator (of #-norm one) on H# so we can

define

Sn � 1
n!# Ext-�

��Pn
�. �5.2.5�

It is easy to show that Sn
2 � Sn and Sn

� � Sn, so Sn is an orthogonal projection The range
of Sn is called the n-fold symmetric tensor product of H#. In the case where
H# � L2

#���c
#� and H

#n � Ext-'k�1
n L2

#���c
#� � L2

#���c
#n�,SnH#n is just the subspace of

L2
#���c

#n� of all functions left invariant under any permutation of the variables. We now
define



�s
#�H#� � Ext-�

n�0

��

SnH#n �5.2.6�

�s
#�H#� is called the symmetric non Archimedean Fock space оvег H# or the non

Archimedean Boson Fock space over H#.

§ 5.3.Second quantization of the free Hamiltonian.
Let H# be a non Archimedean Hilbert space, �#�H#� the associated non Archimedean
Fock space over H#. Suppose that A is a self-#-adjoint operator on H# with a domain

of
essential self-#-adjointness D.Corresponding to each such A we can define an

operator d
#�A� on �#�H#� as follows.Let

A�n� � A' I ' � � � ' I � I ' A' � � � ' I � I ' � � � ' I ' A �5.3.1�

on Ext-' i�1
n D as follows. Let DA � �#�H#� be the set of ��0,�1, . . .� such that �n � 0

for n large enough and �n � Ext-'k�1
n D for each n. DA is #-dense in �#�H#� since D is

#-dense in H#. Define A�0� � 0 and d
#�A� � Ext-�n�0

�� A�n�. d
#�A� makes sense on

DA and obviously to be symmetric. By Theorem 5.1.1, A�n� is essentially self-#-adjoint
on Ext-'k�1

n D.Thus A�n� � �i has a #-dense range on Ext-'k�1
n D whenever � � ��c

#

and � 	 0. From this it follows that d
#�A� � i has a #-dense range on DA.Thus d
#�A�
is essentially self-#-adjoint on DA . If A is the quantum mechanical operator which
corresponds to the free energy, d
#�A� is called the second quantization of the free
energy. d
#�A� commutes with the projections onto the symmetric and antisymmetric
non Archimedean Fock spaces and it follows that d
#�A� " �s

#�H#� and
d
#�A� " �a

#�H#�
are essentially self-#-adjoint on D ��s

#�H#� and D ��a
#�H#� respectively.

Chapter IV.Non-Archimedean Banach spaces endroved
with��c

#-valued norm.

1.Definitions and examples
A non-Archimedean normed space with��c

#-valued norm (#-norm) is a pair �X,���#�
consisting of a vector space X over a non-Archimedean scalar field ��c

#or complex
field ��c

# together with a distinguished norm ���# : X � ��c
#. Like any norms, this

#-norm induces a translation invariant distance function, called the canonical or (norm)
induced non-Archimedean ��c

#-valued metric for all vectors x,y � X, defined by

d#�x,y� � �x � y�# � �y � x�#. �1.1�

Thus (1.1) makes X into a metric space �X,d#�. A hyper infinite sequence �xn�n�1
�#

is
called d#-Cauchy or Cauchy in �X,d#� or ���# -Cauchy if for every hyperreal r � ��c

#,
r � 0, there exists some N � �# such that

d#�xn,xm� � �xn � xm�# � r, �1.2�

where m and n are greater than N. The canonical metric d# is called a #-complete
metric if the pair �X,d#� is a #-complete metric space, which by definition means for
every d#-Cauchy sequence �xn�n�1

�#
in �X,d#�, there exists some x � X such that



#- lim n��#�xn � x�# � 0 �1.3�

where because �xn � x�# � d#�xn,x�, this hyper infinite sequence’s #-convergence to x
can equivalently be expressed as: #-lim n��# xn � x in �X,d#�.
Definition 1.1. The normed space �X,���#� is a non-Archimedean Banach space
endroved with��c

#-valued norm if the #-norm induced metric d# is a #-complete
metric, or said differently, if �X,d#� is a #-complete metric space. The #-norm ���# of a
#-normed space �X,���#� is called a #-complete #-norm if �X,���#� is a
non-Archimedean Banach space endroved with��c

#-valued #-norm.
Remark 1.1.For any #-normed space �X,���#�, there exists an L-semi-inner product

��, �
# :X 
 X � ��c
# such that �x�# � �x,x
# for all x � X ; in general, there may be

infinitely many L-semi-inner products that satisfy this condition. L-semi-inner products
are a generalization of inner products, which are what fundamentally distinguish
non-Archimedean Hilbert spaces from all other non-Archimedean Banach spaces.
Characterization in terms of hyper infinite series,see ref. [1].
The vector space structure allows one to relate the behavior of hyper infinite Cauchy
sequences to that of #-converging hyper infinite series of vectors.
Remark 1.2.A #-normed space X is a non-Archimedean Banach space if and only if

each absolutely #-convergent hyper infinite series Ext-�n�1
�#

vn in X #-converges in

X,i.e., Ext- �
n�1

�#

�vn� � �# implies that Ext- �
n�1

�#

vn #-converges in X.

2.Linear operators,isomorphisms
If X and Y are #-normed spaces over the same ground field ��c

#, the set of all
#-continuous ��c

#-linear maps T : X � Y is denoted by B#�X,Y�. In hyper infinite-
dimensional spaces, not all linear maps are #-continuous. A linear mapping from a
#-normed space X to another normed space is #-continuous if and only if it is
bounded or hyper bounded on the #-closed unit ball of X. Thus, the vector space
B#�X,Y� can be endroved with the operator norm

�T� � sup��Tx�#Y , x � X,�x�#X � 1�. �2.1�

For Y a non-Archimedean Banach space, the space B#�X,Y� is a Banach space with
respect to this #-norm.
If X is a non-Archimedean Banach space, the space B#�X� � B#�X,X� forms a unital
Banach algebra; the multiplication operation is given by the composition of linear

maps.
Definition 2.1.If X and Y are #-normed spaces, they are #-isomorphic #-normed

spaces
if there exists a linear bijection T : X � Y such that T and its inverse T�1 are
#-continuous. If one of the two spaces X or Y is #-complete then so is the other space.
Two #-normed spaces X and Y are #-isometrically isomorphic if in addition, T is an
#-isometry, that is, �T�x�� � �x� for every x � X.
Definition 2.2.Let �X,���� be standard Banach space.For x � �X and 
 � 0,
 � 0
we define the open �-ball about x of radius 
 to be the set
B
�x� � �y � �X|��x � y� � 
�.

Definition 2.3.Let �X,���� be standard Banach space, Y � X thus �Y � �X and let



x � �X.Then x is an �-accumulation point of �X if for every

 � 0,
 � 0,Y� �B
�x�\�x�� 	 	.
Definition 2.4.Let �X,���� be a standard Banach space, let Y � �X,Y is �-closed if
every �-accumulation point of Y is an element of Y.
Definition 2.5.Let �X,���� be standard Banach space.We shall say that internal hyper
infinite sequence �xn�n�1

n��� in �X �-converges to x � �X as n � ��if for any

 � 0,
 � 0 there is N � �� such that for any n � N : ��xn � x� � 
.
Definition 2.6.Let �X,����,�Y,���� be a standard Banach spaces. A linear internal
operator A : D�A� � �X � �Yis �-closed if for every internal hyper infinite
sequence �xn�n�1

n��� in D�A� �-converging to x � �X such that Axn � y � �Y as
n � �� one has x � D�A� and Ax � y. Equivalently, A is �-closed if its graph is

�-closed
in the direct sum �X ) �Y.
Given a linear operator A : �X � �Y, not necessarily �-closed, if the �-closure of its
graph in �X ) �Y happens to be the graph of some operator, that operator is called
the �-closure of A, and we say that A is �-closable. Denote the �-closure of A by �-A.
It follows that A is the restriction of �-A to D�A�.
A �-core (or �-essential domain) of a �-Aclosable operator is a subset C � D�A� such
that the �-closure of the restriction of A to C is �-A.
Definition 2.7. The graph of the linear transformation T : H � H is the set of pairs
���,T�
|�� � D�T���.
The graph of T, denoted by 
�Т�, is thus a subset of H 
 H which is a

non-Archimedean
Hilbert space with inner product ���1,�1
,��2,�2
�.
T is called a #-closed operator if 
�T� is a #-closed subset of H 
 H.
Definition 2.8. Let T1 and T be operators on H. If 
�T1�  
�T�, then T1 is said to be

an
extension of T and we write T1  T. Equivalently, T1  T if and only if D�T1�  D�T�
and T1� � T� for all � � D�T�.
Definition 2.9. An operator T is #-closable if it has a #-closed extension. Every

#-closable
operator has a smallest #-closed extension, called its #-closure, which we denote by

#-T.
Theorem 2.1.If T is #-closable, then 
�#-T� � #-
�T�.
Definition 2.10.Let T be a #-densely defined linear operator on a non-Archimedean
Hilbert space H. Let D�T�� be the set of � � H for which there is an � � H with
�T�,�� � ��,�� for all � � D�T�.
For each � � D�T��, we define T�� � �. T� is called the #-adjoint of T. Note that
� � D�T�� if and only if |�T�,��| � C��� for all � � D�T�. We note that S� T implies
T� � S�.
Theorem 2.2. Let T be a #-densely defined operator on a non-Archimedean Hilbert
space H.
Then:(i) T� is #-closed.
(ii) T is #-closabie if and only if D�T�� is #-dense in which case T � T��.
(iii) If T is #-closabie, then �#-T�� � T�.
Definition 2.11. Let T be a #-closed operator on a Hilbert space H. A complex number



� � ��c
# is in the resolvent set,��T�,if �I � T is a bijection of D�T� onto H with a

a finitely or hyper finitely bounded inverse. If � � ��T�, R��T� � ��I � T��1 is called the
resolvent of T at �.
The definitions of spectrum, point spectrum, and residual spectrum are the same for
unbounded operators as they are for bounded operators. We will sometimes refer to
the spectrum of nonclosed, but closabie operators. In this case we always mean the
spectrum of the closure.

3. Symmetric and self-#-adjoint operators: the basic
criterion for self-#-adjointness.

Definition 3.1. A #-densely defined operator T on a non-Archimedean Hilbert space is
called symmetric (or Hermitian) if T � T�, that is, if D�T� � D�T�� and T� � T�� for
all � � D�T�.
Equivalently, T is symmetric if and only if �T�,�� � ��,T�� for all �,� � D�T�
Definition 3.2. T is called self-adjoint if T � T�, that is, if and only if T is symmetric and
D�T� � D�T��.
A symmetric operator is always #-closable, since D�T��  D�T� is #-dense in H. If T is
symmetric, T� is a closed extension of T so the smallest #-closed extension T�� of T
must be contained in T�. Thus for symmetric operators, we have
T � T�� � T�.For #-closed symmetric operators,T � T�� � T� and, for self-adjoint
operators,T � T�� � T�

From this one can easily see that a #-closed symmetric operator T is self-adjoint if
and only if T� is symmetric.
The distinction between #-closed symmetric operators and self-adjoint operators is

very
important. It is only for self-adjoint operators that the spectral theorem holds
and it is only self-adjoint operators that may be #-exponentiated to
give the one-parameter unitary groups which give the dynamics in
QFT. Chapter X is mainly devoted to studying methods for proving that operators are
self-adjoint. We content ourselves here with proving the basic criterion for

selfadjointness.
First, we introduce the useful notion of essential self-adjointness.
Definition 3.3 A symmetric operator T is called essentially self- #-adjoint if its

#-closure #-T is self- #-adjoint. If T is #-closed, a subset D � D�T� is called a core for T
if

# � T " D � T.
If T is essentially self-#-adjoint, then it has one and only one self-#-adjoint extension.
The importance of essential self-#-adjointness is that one is often given a nonclosed
symmetric operator T. If T can be shown to be essentially self-#-adjoint, then there is
uniquely associated to Ta self-adjoint operator T � T��. Another way of saying this is
that if A is a self-#-adjoint operator, then to specify A uniquely one need not give the
exact domain of A (which is often difficult), but just some #-core for A

Chapter V. Semigroups of operators on a
non-Archimedean Banach spaces.



§1.Semigroups on non-Archimedean Banach spaces and
their generators.

A family of #-bounded operators �T�t�|0 � t � �#� on external hyper infinite
dimensional

non-Archimedean Banach space X endoved with ��c,�
# - valued norm ���# is called a

strongly #-continuous semigroup if:
(a) T�0� � I
(b) T�s�T�t� � T�s� t� for all s, t � ��c,�

#

(c) For each � � X, t 
 T�t� is #-continuous mapping.
We will see that strongly continuous semigroups are the “exponentials,”
T�t� � Ext-exp��tA�, of a certain class of operators. .
We begin by studying a special class of semigroups:
Definition 1.1. A family �T�t�|0 � t � �#� of bounded or hyper bounded operators on
external hyper infinite dimensional Banach space X is called a contraction semigroup
if it is a strongly #-continuous semigroup and moreover ||T�t�||# � 1 for all t � 	0,�#�.
Note that the all theorems about general strongly #-continuous semigroups are easy
generalizations of the corresponding theorems for #-contraction semigroups. Thus,
we study the special case first. We then briefly discuss the general theory and
conclude the section by studying another special class, #-holomorphic semigroups.
Proposition 1.1. Let T�t� be a strongly #-continuous semigroup on a
non-Archimedean Banach space X and set A� � #-lim r�# 0 Ar� where
D�A� � ��| #-lim r�# 0 Ar� exists�. Then A is
#-closed and #-densely defined. A is called the infinitesimal generator of T�t�. We will
also say that A generates T�t� and write T�t� � Ext-exp��tA�.
Proof.Let T�t� be a contraction semigroup on a Banach space X. We obtain the
generator of T�t� by #-differentiation. Set At � t�1�I � T�t�� and define

D�A� � ��| #-lim t�# 0 At� exists�.
For � � D�A�, we define A� � #-lim t�# 0 At�. Our first goal is to show that D�A� is
#-dense. For � � X, we set

�s � Ext- "
0

s

T�t��d#t. �2.1�

For any r � 0, we get

T�r��s � Ext- "
0

s

T�t � r��d#t �2.2�

thus

Ar�s � � 1
r Ext- "

0

s

	T�t � r�� � T�t��
d#t �

� 1
r Ext- "

s

r�s

T�t��d#t � 1
r Ext- "

s

r

T�t��d#t .

�2.3�



From Eq.(2.3) one obtains #-lim r�# 0 Ar�s � �T�s�� � �. Therefore, for each � � X

and s � 0, �s � D�A�. Since s�1�s �# � as �# 0, A is #-densely defined.
Furthermore, if � � D�A�, then ArT�t�� � T�t�Ar�, so T�t� : D�A� � D�A� and

d#

d#t
T�t�� � �AT�t�� � �T�t�A� �2.4�

A is also #-closed, for if �n � D�A�, #-lim n��# �n � �, and #-lim n��# A�n � �, then

#- lim r�# 0 Ar� � #- lim r�# 0 #- lim n��# � 1
r �T�r��n � �n� �

#- lim r�# 0 #- lim n��#
1
r Ext- "

s

r

T�t�A�nd#t �

#- lim r�# 0
1
r Ext- "

s

r

T�t��d#t

�2.5�

so � � D�A� and A� � �.
The formal Laplace transform

1
� � A

� � Ext- "
0

�#

�Ext-exp���t���Ext-exp��tA��d#t �2.6�

suggests that all � � ��c
# with Re� � 0 are in ��A�. This is in fact true and the

formula (2.6) holds in the strong sense. For suppose that Re� � 0. Then, since
�Ext-exp��tA�� � 1, the formula (2.7)

R� � Ext- "
0

�#

�Ext-exp���t���Ext-exp��tA���d#t �2.7�

defines a hyper bounded linear operator of #-norm less than or equal to �Re���1.
Moreover, for r � 0,

ArR� � � 1
r Ext- "

0

�#

�Ext-exp���t���Ext-exp���t � r�A� � Ext-exp��tA���d#t �

1 � Ext-exp��r�
r Ext- "

0

�#

�Ext-exp���t���Ext-exp��tA���d#t �

Ext-exp��r�
r Ext- "

0

r

�Ext-exp���t���Ext-exp��tA���d#t

�2.8�

so as r �# 0,ArR� �# �� � �R��. Thus R� � D�A� and AR� � � � �R� which
implies �� � A�R� � �. In addition, for � � D�A� we have AR� � RA� since



A Ext- "
0

�#

�Ext-exp���t���Ext-exp��tA���d#t �

Ext- "
0

�#

�Ext-exp���t��A�Ext-exp��tA���d#t �

Ext- "
0

�#

�Ext-exp���t���Ext-exp��tA��A�d#t.

�2.9�

The first equality follows by approximation with external hyperfinite Riemann
sums (see [1]) from the facts that �Ext-exp���t���Ext-exp��tA��� and
A�Ext-exp���t���Ext-exp��tA�� are #-integrable, A is #-closed. Thus, for � � D�A�,
R�� � A�� � � � �� � A�R� which implies that

R � �� � A��1. �2.10�

The properties of A which we have derived are also sufficient to guarantee that A
generates a contraction semigroup. In fact, we only need information about real
positive A.
Theorem 1.1. (Generalized Hille-Yosida theorem) A necessary and sufficient
condition that a #-closed
linear operator A on a Banach space X generate a contraction semigroup is that
(i) ���#, 0� � ��A�
(ii) ��� � A��1�# for all � � 0.

Furthermore, if A satisfies (i) and (ii), then the entire #-open left half-plane is
contained in ��A� and

�� � A��1� � �Ext- "
0

�#

�Ext-exp���t���Ext-exp��tA��d#t �2.11�

for all � � X and � with Re� � 0. Finally, if T1�t� and T2�t� are contraction semigroups
generated by A1 and A2 respectively, then T2�t� 	 T1�t� for some t implies that

A1 	 A2.
Proof. Since we showed above that conditions (i) and (ii) are necessary and that

(2.11)
holds, we need only show sufficiency. So, suppose that A is a #-closed operator on X
satisfying (i) and (ii). For � � 0, define A��� � � � �2�� � A��1. We will show that as
� � �#, A��� �# A strongly on D�A� and then construct Ext-exp��tA� as the strong
#-limit of the semigroups Ext-exp��tA����.For � � D�A�, A���� � ��� � A��1A�.
Moreover, by (ii),

#- lim ���#	��� � A��1� � �
 � #- lim ���#	��� � A��1A�
 � 0. �2.12�

By condition (ii) the family ���� � A��1|� � 0� is #-uniformly hyperfinitely bounded
in #-norm, so since D�A� is #-dense, #-lim ���#	��� � A��1�
 � � for all � � X.
Thus #-lim ���# A���� � A� for all � � D�A�.Since A is hyperfinitely bounded, the
semigroups Ext-exp��tA���� can be defined by hyper infinite power series. Since



�Ext-exp��tA�����#
� ��Ext-exp���t���Ext-exp�t�2�� � A��1���# �

� �Ext-exp���t�� Ext-�
n�0

�#

tn�2n

n!
��� � A��1�#

n � 1
�2.13�

they are contraction semigroups. For all �,�, t � 0, and all � � D�A�, we have

	Ext-exp��tA����
� � 	Ext-exp��tA����
� �

Ext- "
0

t

d#

d#s
�Ext-exp��sA�������Ext-exp���t � s�A�������d#s

�2.14�

so,

�	Ext-exp��tA����
� � 	Ext-exp��tA����
��#
�

Ext- "
0

t

��Ext-exp��sA�������Ext-exp���t � s�A�������#
�A���� � A�����

#
d#s �

� t�A���� � A�����
#
.

�2.15�

We have used the fact that Ext-exp��tA���� and 	Ext-exp���t � s�A����
 commute
since �A���|� � 0� is a commuting family. Since we have proven above that
#-lim ���# A���� � A�,�Ext-exp��tA����� is Cauchy as � � �# for each t � 0 and
� � D�A�. Since D�A� is #-dense and the Ext-exp��tA���� are uniformly hyperfinitely
bounded, the same statement holds for all � � X. Now, define

T�t�� � #- lim ���#	Ext-exp��tA�����
. �2.16�

T�t� is a semigroup of contraction operators since these properties are preserved
under strong #-limits. The above inequality shows that the #-convergence in Eq.(2.16)
is uniform for t restricted to a hyperfinite interval, so T�t� is strongly #-continuous since
Ext-exp��tA���� is. Thus, T�t� is a contraction semigroup.It remains to show that the

infinitesimal generator of T�t�, call it A, is equal to A. For all t
and � � D�A�,

	Ext-exp��tA�����
 � � �� � Ext- "
0

t

Ext-exp��sA���� A����d#s �2.17�

so, since #-lim ���# A���� � A�, we have

T�t�� � � � � Ext- "
0

t

T�s�A�d#s . �2.18�

Thus, At� �# A� as t �# 0. Therefore D A  D�A� and A " D�A� � A. For � � 0,

�� � А��1 exists by hypothesis and � � А
�1

exists by the necessity part of the

theorem.

§2 Hypercontractive semigroups
In the previous section we discussed �#

p-contractive semigroups. In this section we will
prove a self-adjointness theorem for operators of the form A � V where V is a



multiplication operator and A generates an �#
p-contractive semigroup that satisfies a

strong additional property.
Definition 2.1. Let �M,�#
 be a #-measure space with �#�M� � 1 and suppose that A
is a positive self-adjoint operator on �#

2�M,d#�#�. We say that Ext-exp��tA� is a
hypercontractive semigroup if:
(i) Ext-exp��tA� is �#

p-contractive;
(ii) for some b � 2 and some constant Cb, there is a T � 0 so that
�Ext-exp��tA���b � Cb���2 for all � � �#

2�M,d#�#�.
By Theorem X.55, condition (i) implies that Ext-exp��tA� is a strongly #-continuous
contraction semigroup for all p � �#.Holder’s inequality shows that

���q � ���p �1�

if p � q.Thus the �#
p-Spaces are a nested family of spaces which get smaller as p gets

larger; this suggests that (ii) is a very strong condition. The following proposition
shows

that b plays no special role.
Proposition 2.1. Let Ext-exp��tA� be a hypercontractive semigroup on �#

2�M,d#�#�.
Then for all p,q � �1,�#�, there is a constant Cpq and a tpq � 0 so that if t � tpq then
�Ext-exp��tA���p � Cpq���q for all � � �#

q.

Proof. The case where p � q follows immediately from (i) and (1). So suppose that
p � q. Since Ext-exp��tA� : �#

2 � �#
b and Ext-exp��tA� : �#

�#
� �#

�#
, the generalized

Riesz-Thorin theorem implies that there is a constant C so that for all r � 2,
�Ext-exp��tA���r � C���br/2. We now consider two cases. First, if q � 2 we choose

n large enough so that 2�b/2�n � p. Then �Ext-exp��nTA���2�b/2�n � C���2 so the

conclusion follows if 2 � q,p � 2�b/2�n, by using (1), and hypothesis (i). If 1 � q � 2,
then we choose n large enough so that 2�b/2�n � p and q � c where
c�1 � �2�b/2�n��1 � 1. Since A is self-adjoint and Ext-exp��nTA�� is a bounded or hyper
bounded map from �#

2 to �#
2�b/2�n

,�Ext-exp��nTA��� � Ext-exp��nTA� is a bounded or
hyper bounded map from �#

c to �#
2. Thus Ext-exp��2nTA� is a bounded or hyper

bounded map from �#
c to �#

2�b/2�n

. Since c � q � p � 2�b/2�n, (1) implies the proposition.
Theorem 2.1. The operator � 1

2 d#2/d#x2 � xd#/d#x on �#
2 ��c

#,�#
�1/2Ext-exp��x2�d#x

is positive and essentially self-adjoint on the set of hyperfinite linear combinations of
Hermite polynomials, and generates a hypercontractive semigroup.
As a preparation for our main theorem, we prove the following result.
Theorem 2.2 Let �M,�
 be a #-measure space with ��M� � 1 and let H0 be the
generator of a hypercontractive semigroup on �#

2�M,d��. Let V be a real-valued
measurable function on �M,�#
 such that V � �#

p�M,d#�#� for all p � 	1,�#� and
Ext-e�tV � �#

1�M,d#�#� for all t � 0. Then H0 � V is essentially self-#-adjoint on
C�#

�H0� � D�V� and is bounded below. C�#
�H0� � �p��# D�H0

p�

Chapter VI. Singular Perturbations of Selfadjoint

Operators on a non-Archimedean Hilbert space.

§1. Introduction



We study the sum A � B of two #-selfadjoint operators on a non-Archimedean
Banach spaces, and we find sufficient conditions for C � A � B to be #-selfadjoint.
Our technique is to approximate B by a hyperinfinite sequence of bounded

#-selfadjoint
operators Bn,n � �� and so to approximate C by #-selfadjoint operators Cn � A � Bn.
We answer three questions separately:
1.When do the operators Cn have a #-lim C? 2.When is C a #-selfadjoint operator?
3.When is C � A � B?
In Theorem 8 we give a set of estimates on the relative size of A and B which
ensure a positive answer to all three questions. Hence these estimates show that
A � B � C is #-selfadjoint. In another paper [5], we use Theorem 2.8 to prove
the existence of a self-interacting, causal quantum field in 4-dimensional
space-time. Formally this field theory is Lorentz covariant and has non-trivial
scattering; this application was the motivation for the present work.
In order to investigate the meaning of #-lim n��� Cn, we give a new definition for
the strong #-convergence of a hyperinfinite sequence of operators. Consequences
of this definition
are worked out in Section 2. In Section 3 we give estimates on operators Cn

which are sufficient to ensure that the #-lim n��� Cn � C exists and that C is maximal
symmetric or #-selfadjoint. This result is given in Theorem 5 and Corollary 6.
In Section 4 we investigate whether #-lim n��� Cn � C is equal to A � B.
We combine this work in Theorem 8, our second main theorem, where B is
a singular, but nearly positive #-selfadjoint perturbation of a positive #-selfadjoint
operator A. To illustrate this theorem, let A � I and let B be essentially #-selfadjoint on

D# � �n��� D�An�. �1.0�

Assume now that, for some 	 � 0 and some �,

A��1�	�BA��1�	� and A	BA� �1.1�

are #-densely defined, bounded operators. Also, for some positive a,
 � ��c�
#

satisfying 2a � 
 � 1, suppose that there is a constant b � ��c
# such that, as bilinear

forms on D 
 D,

0 � aA� B � b �1.2�

and

0 � 
A2 � 	A1/2,	A1/2,B

 � b. �1.3�

Then A � B is #-selfadjoint.
We see from this example that neither the operator B nor the bilinear form B
need be bounded relative to A.
While it may not appear evident, the conditions (1.1)-(1.3) are closely related
to a more easily understandable estimate on D# 
 D#,

A2 � B2c�A � B�2 � c. �1.4�

In fact, estimates (1.1)-(1.3) are chosen because they allow us not only to prove (1.4),
but also the similar inequality where B is replaced by Bn.
Let us now see that if A � B is #-selfadjoint, then (1.4) must hold for every
vector in D�A � B� � D�A� � D�B�.



Proposition 1.1. Let A and B be #-closed operators. Then A � B is #-closed if and
only if there is a constant c � ��c

# such that for all � � D�A � B�

�A��# � �B��# � ��A � B���# � c���# �1.5�

and (1.5) is equivalent to (1.4) on D�A � B� 
 D�A � B�.
Proof: Certainly (1.5) implies that A � B is #-closed. Conversely, assume that
A � B is #-closed and introduce the #-norms on D�A � B� � D�A� � D�B�,

���#1 � ���# � �A��# � �B��# �1.6�

and

���#2 � ���# � ��A � B���# �1.7�

Then D�A � B�,���#2 is a non-Archimedean Banach space because A � B is #-closed.
The identity map from D�A � B�,���#2 to D�A � B�,���#1 has a #-closed graph because
A,B, and A � B are c#-losed. By the #-closed graph theorem, the identity map is
#-continuous; hence

���#1 � c���#2. �1.7��

Proposition 1.2.Let A � I,B be #-selfadjoint operators with D# � D(B) and
suppose (1.2) and (1.3) hold. Then (1.4) is valid on D# 
 D#.
Proof The operators A2,B2,AB,BA, and A1/2BA1/2 define bilinear forms
on D# 
 D#. Using (1.2) and (1.3), we have the inequality:
A2 � B2 � �A � B�2 � 2A1/2BA1/2 � 	A1/2,	A1/2,B

 � �A � B�2 � �2a � 
�A2 � 2Ab� b
which establishes (1.4).

§2. Strong #-Convergence of Operators

Let ��C� be the graph of the operator C. For any hyperinfinite sequence �Cn�,n � ��
of #-densely defined operators we define

� ���C� � ��,�|� � #- lim n��� �n,�n � D�Cn�,� � #- lim n��� Cn�n�. �8�

In general, � �� will not be the graph of an operator. If the hyperinfinite sequence
�Cn

��, n � ��#-converges strongly on a #-dense domain D to an operator C�, namely,

C�� � #- lim n��� Cn
��,� � D,

then � �� is the graph of some operator C�. In particular, if each Cn is self #-adjoint,
and if the Cn #-converge on a #-dense set D to an operator C defined on D,
then � �� � � ���C��� and C�� is a symmetric extension of C.
Definition 2.1. G #-CONVERGENCE. The hyperinfinite sequence of operators
Cn,n � �� #-converge strongly to C�� in the sense of graphs, written

Cn �#G C�� �8��

if � �� is the graph of a #-densely defined operator C�� .
Remark 2.1.Note that for a hyperinfinite sequence of uniformly bounded operators
�Cn

��n��� such that Cn �#G C��, C�� is the usual strong #-limit of the operators

Cn,n � �� and is everywhere defined.
Definition 2.2.R #-CONVERGENCE. Let the resolvents Rn�z� � �Cn � z��1,n � ��
exist for some z � ��c

#, and be uniformly bounded in n. The operators Cn #-converge
strongly to C�� in the sense of resolvents, written



Cn �#R C�� �8���

if the resolvents Rn�z� #-converge strongly to an operator R�z�, which has a #-densely
defined inverse.
Remark 2.2.Note thatIn that case, the operator C�� � R�1�z� � z exists for all z � ��c

#

for which the strong #-limit of the Rn�z� exists, and R�1�z� � z is independent of z.
Remark 2.3.Note that G #-convergence is weaker than R #-convergence, in the case
Cn � Cn

� at least, because, as we shall show, in this case Cn �#R C�� implies
Cn �#G C��. It seems likely that G #-convergence is strictly weaker than
R #-convergence; this could be established by giving an example for which
Cn
� � Cn �#G C�� with C�� not maximal symmetric. The importance of

G #-convergence is that it is technically easier to verify-and gives less information
about the #-limit-than R #-convergence, whiIe automatically selecting the correct
domain in the case that R #-convergence also holds. The most familiar examples of
G #-convergence occur where there is Cn strong #-convergence on a #-dense domain.
A less trivial example occurs where there is D�Cn� is independent of n,but apparently

D�C� � D�Cn� � �0�.

We have the following connection between G and R #-convergence for a hyperinfinite
sequence of #-selfadjoint operators.
Proposition 3.Let Cn,n � �� be #-selfadjoint.
(a) The domain D �� � �|��,�� � � �� for some � is #-dense in H and oniy if

Cn �#G C��,and in this case C�� is necessarily symmetric.
(b) If Rn�z� � �Cn � z��1,n � �� #-converges to a bounded operator R�z� for an
unbounded set of z’s with �zR,�z��# bounded uniformly in z � ��c

# and n � ��
and if Cn �#G C��, then each R�z� is invertible.
(c) If Rn�z� #-converges to an invertible R�z�, then Cn �#R C.
(d) If Cn �#R C, then Cn �#G C��,� �� � ��C�,and C is maximal symmetric.
(e) Conversely, if Cn �#G C, where C is maximal symmetric, then Cn �#R C.

In case the #-limit of the Cn,n � �� is actually selfadjoint, there are further
connections between G and R #-convergence.
Theorem 4.
(a) Cn �#G C, and C � C�.
(b) Cn �#R C, and C � C�.
(c) The hyper infinite sequences �Rn�z�� and �	Rn�z�
��,n � �� #-converge
strongly and #-lim n��� Rn�z� is invertible for some z.
(d) Statement (c) holds for all non-real z � ��c

#

§3.Estimates on a G #-convergent hyper infinite
sequence

In this section we give estimates which are sufficient to assure that it G #-convergent
sequence of operators is R #-convergent, and that the limit is maximal symmetric or
selfadjoint. In order to measure the rate of #-convergence, we introduce a selfadjoint
operator N � I and the associated non-Archimedean Hilbert spaces H� with the scalar
product



��,�
#� � �N�/2�,N�/2�
#
. �3.1�

By standard identifications we have for � � 0 : H� � H0 � H�1 and H0 � H.
If D : H� � H	 is a #-densely defined, bounded operator from H� to H	, we let
�D�#�,	 denote its #-norm. Setting �D�# � �D�#0,0 we obtain

�D�#�,	 � �N	/2DN��/2�. �3.2�

Let Cn,n � �� be a hyper infinite sequence of #-selfadjoint operators, and consider
the following three conditions.
(i) Suppose that Cn � Cm is a #-densely defined, bounded operator from H�to H��, for
some �,and that as n,m � ��

�Cn � Cm�#�,�� �# 0. �3.3�

(ii) Suppose that, for some p and for an unbounded set of z � x � iy � ��c
# in the

sector |x| � const
 |y|,

�Rn�z��#�,� � M�z�, �3.4�

where the bound M�z� is uniform in n � ��.
(iii) Suppose that, for the above z’s,

�Rn�z��#�,� � M�z�. �3.5�

Theorem 5. Let Cn,n � �� be a hyper infinite sequence of #-selfadjoint operators
with a common domain, such that

Cn �#G C.
If conditions (i) and (ii) hold, then

Cn �#R C
and C is maximal symmetric.
Corollary 6. If in addition to the hypothesis of Theorem 5, condition (iii) also holds,
then C is #-selfajoint.
Remark 3.1.(1) If � � 0 in (ii), then the resolvents #-converge uniformly.
(2) If the Cn are uniformly semibounded from below, then we may choose
the z in condition (ii) to be infinite large negative numbers. In that case the conclusion
of Theorem 5 is that Cn �#R C � C�.

§ 4.Estimates for singular perturbations
In this section we consider a singular perturbation B of a #-selfadjoint operator A.
We give estimates on B which ensure that the sum A � B is #-selfadjoint.
Abbreviation 4.1.We abbreviate A#� instead #-A.
Definition 4.1. A #-core of an operator C is a domain D contained in D�C� such
that C � �C " D�#�.
Lemma 7. Let A,An,n � ��,B,Bn,n � �� and Cn � A,�Bn,n � �� be
#-selfadjoint operators with a common #-core D. Assume the hypotheses of
Theorem 5 and Corollary 6 for Cn,n � �� and suppose also that, for � � D,

��A � An���# � ��B � Bn���# �# 0 as n � �� �4.9�

and

�An��#
2 � �Bn��#

2 � const.
���#
2 � const.
�Cn��#

2, �4.10�



with constants independent of n. Then A � B is #-selfadjoint and Cn �#R A � B.
Remark 4.1.As hypothesis for our next theorem, our second main result, we assume
that N � A and that N and A commute. Let

D
���A� � �n��� A�An� �4.11�

the elements of D
���A� are called C

�� vectors for A. Assume that D
���A� is a #-core

for the #-selfadjoint operator B. Also assume that, as bilinear forms on D
�� 
 D

��,
and for some � and 
 in the indicated ranges,

0 � �N � B � const. , 0 � � � 1/2 �4.12�

and

0 � 
A2 � const
 B � 	A1/2,	A1/2,B

 � const. , 2� � 
 � 1. �4.13�

Let B be a bounded operator from Hv to H�v and from H� to H	 for some �, 	 and
v,	 � 0 (H� is defined following Theorem 4.) If v � 2, assume that for all 
 � 0

0 � 
N��2 � 	N���1�/2,	N���1�/2,B

 � const. �4.14�

as bilinear forms on D
�� 
 D

��, for some � � v � 2.
Theorem 8. Under the above hypothesis, A � B is #-selfadjoint.

Chapter IX.
§1.Free scalar field

Let H# be a #-complex Hilbert space over field �c
# and let ��H#� ��

n�0

�#

H#
�n�

(where H#
�n� � �

k�1

n

H#) be the Fock space over H#. Our goal is to

define the abstract free field on �s�H#�, the Boson subspace of ��H#�; to do this we
need to introduce several other families of operators and some terminology. Let f � H#

be
fixed. For vectors in H#

�n� of the form � � �1 ' �2 ' � � � '�n we define a map b��f� :
H#

�n� � H#
�n�1� by

b��f�� � �f,�1���2 ' � � � '�n� �1�

b��f� extends by linearity to finite linear combinations of such �, the extension is well
defined, and ||b��f��||� ||f||
||�||. Thus b��f� extends to a bounded map (of norm ||f||) of
H#

�n� into H#
�n�1�. Since this is true for each n (except for n � 0 in which case we define

b��f� : H#
�0� � 0), b��f� is in a natural way a bounded operator of norm ||f|| from ��H#�

to
��H#�. It is easy to check that b��f� � �b��f��� takes each H#

�n� into H#
�n�1� with the

action

b��f�� � f ' �1 ' �2 ' � � � '�n �2�

on product vectors. Notice that the map f � b��f� is linear, but f � b��f� is antilinear.

Let Sn be the symmetrization operators introduced in Section II.4. Then S � �
n�0

�#

Sn is



the projection onto the symmetric Fock space �s�H#� ��
n�0

�#

SnH#�n� We will write

SnH#�n� � Hs
#�n� and call Hs

#�n� the n-particle subspace of �s�H#�. Notice that b��f� takes

�s�H#� into itself, but that b��f� does not. A vector � � ���n��n�1
�#

for which ��n� � 0

for all except finitely many n is called a finite particle vector. We will denote the set of
finite particle vectors by F0. The vector �0 � �1,0,0, . . .
 plays a special role; it is
called the vacuum.
Let A be any self-adjoint operator on H# with domain of essential selfadjointness D.
Let DA � � � F0|��n� � 'k�1

n D for each n � �# and define d
#�A� on DA � Hs
#�n� as

d
#�A� � A' I � � � 'I � I ' A' � � � 'I � � � � � 'I � � � 'I ' A. �3�

Note that d
#�A� is essentially self-adjoint on DA ; d
#�A� is called the second
quantization of A. For example, let A � I. Then its second quantization N � d
#�I� is
essentially self-adjoint on F0 and for � � Hs

#�n�,N� � n�. N is called the number
operator. If U is a unitary operator on H#, we define d
#�U� to be the unitary operator
on �s�H#� which equals Ext-'k�1

n U when restricted to Hs
#�n� for n � 0, and which

equals
the identity on Hs

#�0�. If Ext-exp�itA� is a #-continuous unitary group on H#, then

#�Ext-exp�itA�� is the group generated by d
#�A�, i.e., 
#�Ext-exp�itA�� �
Ext-exp	itd
#�A�
.
Deinition1.1. We define the annihilation operator a��f� on �s�H#� with domain F0 by

a��f� � N � 1 b��f� �4�

a��f� is called an annihilation operator because it takes each �n � 1�-particle
subspace into the n-particle subspace. For each � and � in F0,

N � 1 b��f��,� � �,Sb��f� N � 1 . �5�

Then Eq.(5) implies that

�a��f��� " F0 � Sb��f� N � 1 �6�

The operator �a��f��� is called a creation operator. Both a��f� and a��f�� " F0 are
#-closable; we denote their #-closures by a��f� and a��f�� also.

Example 1.1. If H# � L2
#�M,d#��, then � i�1

n L2
#�M,d#�� � L2

#�
 i�1
n M,' i�1

n d#�� and that
S� i�1

n L2
#�M,d#�� � L2,s

# �
 i�1
n M,' i�1

n d#��,where L2,s
# is the set of functions in L2

# which
are invariant under permutations of the coordinates. The operators a��f� and a��f��

are given by

a��f���n��m1, . . . ,mn� � n � 1 Ext- "
M

f$�m���n�1��m,m1, . . . ,mn�d#�

a��f����n��m1, . . . ,mn� � 1
n
�

i�1

n
f�mi ���n�1��m1, . . . ,m$ i , . . . ,mn�

�7�

where m$ i means that mi is omitted. If A operates on L2
#�M,d#�� by multiplication by the

��c
#-valued function ��m�, then

�d
#�A����n��m1, . . . ,mn� � �
i�1

n
��mi� ��n��m1, . . . ,mn� �8�

Eq.(6) implies that the Segal field operator �S
#�f� on F0 defined by



�S
#�f� � 1

2
	a��f� � a��f�� 
 �9�

is symmetric and essentially self-#-adjoint. The mapping from H# to the self-#-adjoint
operators on �s�H#� given by

f 
 �S
#�f� �10�

is called the Segal quantization over H#. Notice that the Segal quantization is a real
(but not complex) linear map since f 
 a��f� is antilinear and f 
 a��f�� is linear. The
following theorem gives the properties of the Segal quantization.
Theorem 1.1. Let H# be hyper infinite dimensional Hilbert space over field
��c � ��c

# � i ��c
#and �S

#�f� the corresponding Segal quantization. Then:
(a) (self-adjointness) For each f � H# the operator �S

#�f� is essentially self-adjoint on
F0,

the hyperfinite particle vectors.
(b) (cyclicity of the vacuum) �0 is in the domain of all hyperfinite products
� i�1

n
�S

#�f i �,n � �#

and the set � i�1
n

�S
#�f i ��0 f i and n arbitrary is #-total in �s�H#�.

(c) (commutation relations) For each � � F0 and f,g � H#

	�S
#�f��S

#�g� � �S
#�g��S

#�f�
� � i Im�f,g�H#�. �11�

Further, if W�f� denotes the external unitary operator Ext-exp�i�S
#�f�� then

W�f � g� � Ext-exp
�i Im�f,g�H#

2
W�f�W�g� �12�

(d) (#-continuity) If �fn�n�1
�#

is hyper infinite sequence such as #-lim n��# fn � f in H#,
then: (i) #-lim n��# W�fn�� exists for all � � �s�H#� and

#- lim n��# W�fn�� � W�f�� �13�

(ii) #-lim n��# �S
#�fn�� exists for all � � F0 and

#- lim n��# �S
#�fn�� � �S

#�f��. �14�

(e) For every unitary operator U on H#,
#�U� : D �S
#�f� � D �S

#�Uf� and for

� � D �S
#�Uf�


#�U��S
#�f�
#�U��1� � �S

#�Uf�� �15�

for all f � H#.
Proof. Let � � Hs

#�n�. Since �S
#�f� : F0 � F0, � is in С�#

��S
#�f��. Further, it follows

from Eq.(5)-Eq.(6), and the fact that ||b��f�||� ||f||, that

�a��f��k�
#
� Ext-� i�1

k p � i �f�#
k���# �16�

where a��f� represents either a��f� or a��f��. Therefore,

��S
#�f�k��

#
� 2k/2��n � k�!�1/2�f�#

k���# �17�

Since Ext-�k�0

�� tk2k/2��n � k�!�1/2�f�#
k���# �

�� for all t,� is an #-analytic vector

for �S
#�f�.Since F0 is #-dense in �s�H#� and is left invariant by �S

#�f� is essentially
self-adjoint on F0 by generalized Nelson’s analytic vector theorem (Theorem ).
The proof of (b) is obviously.
To prove (c) one first computes that if � � F0, then



a��f�a��g��� � a��g��a��f�� � �f,g�� �18�

Eq.(11) follows immediately. Although Eq.(11) and Eq.(12) are formally equivalent,
Eq.(11) by itself does not imply Eq.(12) We sketch a proof of Eq.(12) which uses
special properties of the vectors in F0.Let � � Hs

#�p�. Then

��S
#�f�n�S

#�g�m��
#
� 2�n�m�/2 Ext-� i�1

n�m p � i �f�#
n�g�#

m���# �19�

which implies that hyper infinite series Ext-�n�0,m�0
�#

��S
#�f�n�S

#�g�m��
#
/n!m!

#-converges for all t � ��c
#.Since � is an #-analytic vector for �S

#�g�,

Ext-�m�0
�#

��i�S
#�g�m�/m!�� � �Ext-exp	i�S

#�g�
��.Further, for each n � �#,

�Ext-exp	i�S
#�g�
�� is in the domain of �S

#�f�
n
since any finite and hyperfinite sum

Ext-exp�
m�0

M �i�S
#�g�m�
m!

�

with M � �# is in it and �S
#�f�n Ext-�m�0

M ��i�S
#�g�m�/m!�� #-converges as M � �#.

Thus the estimate Ext-�n�0,m�0
�#,�#

��S
#�f�n�S

#�g�m��
#
/n!m! tntm � �# shows that

�Ext-exp	i�S
#�g�
�� is an #-analytic vector for �S

#�f� and therefore can be computed by
the external hyper infinite power series. Thus

�Ext-exp	i�S
#�f�
��Ext-exp	i�S

#�g�
�� � Ext-�n�0,m�0
�#,�# �i�S

#�f��n�i�S
#�g��m

n!m!
�. �20�

Similarly one obtains

Ext-exp � it 2

2
Im�f,g�H# �Ext-exp	it�S

#�f � g�
�� �

Ext-�n�0,m�0
�#,�# 1

n!m!
� it 2

2
Im�f,g�H#

m
�it�S

#�f � g��n �
�21�

where the hyper infinite series in RHS of Eq.(21) #-converges absolutely. Direct
computations using Eq.(11) now show that Eq.(12) holds by a term-by-term
comparison of the #-convergent external hyper infinite power series.
To prove (d) let � � Hs

#�k� and suppose that #-lim n��# fn � f in H#. Then

��S
#�fn�� � �S

#�f��� � 2�k � 1� �fn � f���� �22�

so #-lim n��# �S
#�fn� � �S

#�f�. Thus, Ф5(/„) #-converges strongly to �S
#�f� on F0.

Since F0 is a core for all �S
#�fn� and �S

#�f�, Theorems VIII.21 and VIII.25 imply that
#-lim n��#�Ext-exp	it�S

#�fn�
�� � Ext-exp	it�S
#�f�
� for all � � �s�H#�.

To prove (e), let � � H#�n� be of the form � � �1 ' � � � '�n. Then

#�U�b��f�
#�U��1� � 
#�U�b��f��U�1�2 ' � � � 'U�1�n� �

#�U��f,U�1�1��U�1�2 ' � � � 'U�1�n� � �Uf,�1���2 ' � � � '�n� � b��Uf��.
Since finite linear combinations of such � are dense in H#�n� and b��g� has norm
�g�, we conclude that 
#�U�b��f�
#�U��1 � b��Uf�. But N and S commute with

#�U� so this immediately implies that 
#�U�a��f�
#�U��1 � a��Uf� on F0. Taking
adjoints and restricting to F0 we also have 
#�U��a��f���
#�U��1 � �a��Uf���.
Thus for � � F0, 
#�U��S

#�f�
#�U��1� � �S
#�Uf��. Since the operators on both the

right- and left-hand sides of this equality are essentially self-#-adjoint on F0, we
conclude that 
#�U��S

#�f�
#�U��1 � �S
#�Uf�.

Remark 1.1. Henceforth we use �S
#�f� to denote the #-closure of �S

#�f�.
Definition 1.1. For each m � 0,m � ��c,fin

# let



Hm
# � �p � ��c

#4p � p$ � m2,p0 � 0�, �23�

where p$ � �p0,�p1,�p2,�p3�.The sets Hm
# , which are called mass hyperboloids, are

invariant under ���
� . Let jm be the #-homeomorphism of Hm

# onto ��c
#3 (or in the case

m � 0 onto ��c
#3\�0�) given by jm : �p0,p1,p2,p3
 � �p1,p2,p3
 � p. Define a

#-measure �m
# on Hm

# by

�m
# �E� � Ext- "

j m�E�

d#3p

|p|2 � m2
�24�

for any measurable set E � Hm
# . The measure �m

# �E� can easily be seen to be
���

� -invariant. In fact, up to a constant multiple, �m
# is the only ���

� -invariant measure
on Hm

# . Furthermore, every polynomially bounded ���
� -invariant measure on V� is the

sum of a multiple of � and an integral of the measures �m
# . We state this fact as a

theorem.
Theorem 1.2. Let �# be a polynomially bounded #-measure with support in V� . If �# is
�
��
� -invariant, there exists a polynomially bounded #-measure � on 	0,�#� and a

constant c so that for any f � S#���c
#4�

Ext- "
��c

#4
f d#�# � cf�0� � Ext- "

0

�#

d#�#�m� Ext- "
Hm

#
fd#�m

# . �25�

Theorem 1.3.
We can now use the Segal quantization to define the free Hermitian scalar field of
mass m. We take H# � �2

#�Hm
# ,d#�m,�

# �, where Hm
# ,m � 0, is the mass hyperboloid in

��c
#4 consisting of those p � ��c

#4 satisfying p � p$ � m2 � 0 and p0 � 0, and d#�m
#

is the Lorentz invariant #-measure.
For each f � S#���c

#4� we define Ef � H# by Ef � 2�#
�
f " Hm

# where the Fourier
transform

�2�#��2 Ext- " Exp-exp i p � x$ f�x�d#4x �26�

is defined in terms of the Lorentz invariant inner product p � x$. The reason for the
extra 2�# in our definition of E and the plus sign in the definition of Fourier transform

is that if f is the distribution f�x� � g�x��#�t�, then 2�#
�
f is the ordinary

three-dimensional
Fourier transform of g. If �S

#��� is the Segal quantization over �2
#�Hm

# ,d#�m,�
# �, we

define
for each ��c

#-valued f � S#���c
#4�


m,�
# �f� � �S

#�Ef�. �27�

For ��c
#-valued function f � S#���c

#4� we define


m,�
# �f� � 
m,�

# �Ref� � i
m,�
# �Im f� �28�

The mapping f 
 
m
# �f� is called the free Hermitian scalar field of mass m.

On �2
#�Hm

# ,d#�m� we define the following unitary representation of the restricted
Poincare group:

�Um�a,�����p� � Exp-exp i p � ã ����1p� �29�

where we are using � to denote both an element of the abstract restricted Lorentz
group



and the corresponding element in the standard representation on ��st
4 � �4.

Remark 1.3. Recall that a #-conjugation on a Hilbert space H# is an antilinear
#-isometry C# so that C#2 � I.
Definition 1.2. Let H# be a ��c

#-complex Hilbert space, �S
#��� the associated Segal

quantization. Let C# be a #-conjugation on H# and define HC#
# � �|C#f � f�. For each

f � HC#
# we define �#�f� � �S

#�f� and �#�f� � �S
#�if�. The map f � �#�f� is called the

canonical free field over the doublet �H#,C#
 and the map f � �#�f� is called the
canonical conjugate momentum. We often drop the �H#,C#
 and just write H# if the
intended #-conjugation is clear.
Remark 1.4.Note that the set of elements of H# for which the maps f � �#�f� and
f � �#�f� are defined depends on the #-conjugation C#.
Theorem 1.4. Let H# be a ��c

#-complex Hilbert space with #-conjugation C#. Let
�#��� and �#��� be the corresponding canonical fields. Then:
(i) For each f � HC#

# ,�#�f� is essentially self-adjoint on F0.
(ii) ��#�f�|f � HC#

# � is a commuting family of self-adjoint operators.
(iii) �0 is a #-cyclic vector for the family ��#�f�|f � HC#

# �.
(iv) If #-lim n��# fn � f in HC#

# , then
#-lim n��# �#�fn�� � �#�f�� for all � � F0

and
#-lim n��#�Exp-exp	i�#�fn�
�� � Exp-exp	i�#�f�
� for all � � �s�H#�

(v) Properties (i)-(iv) hold with �#�f� replaced by �#�f�.
(vi) If f,g � HC#

# , then

�#�f��#�g�� � �#�g��#�f�� � i�f,g�� �30�

for all � � F0 and

Exp-exp i�#�f� Exp-exp i�#�g� �

�Exp-exp	i�f,g�
� Exp-exp i�#�g� Exp-exp i�#�f� .
�31�

Proof. (i) and (iv) follow immediately from the corresponding properties
of �S

#��� proven in Theorem 1.1. To see that ��#�f�|f � HC#
# � is a commuting family,

notice that (12) implies

Exp-exp it�#�f� Exp-exp is�#�g� �

�Exp-exp	�itsIm�f,g�
� Exp-exp is�#�g� Exp-exp it�#�f�
�32�

where we have used the fact that �#��� is real linear. If f,g � HC#
# , then it follows

from polarization that �f,g� � �C#f,C#g� � �g, f�,so Im�f,g� � 0. Thus

Exp-exp it�#�f� Exp-exp is�#�g� �

Exp-exp is�#�g� Exp-exp it�#�f�
�33�

for s and t. Therefore, by Theorem VIII. 13, �#�g� and �#�f� commute.
The proof of (b) is similar to the proof of (a). (X.70) and (X.71) follow immediately from
(X.64), (X.65), and the fact that if f,g � HC#

# , then Im�f, ig� � Re�f,g� � �f,g�.
Definition 1.3.We write f � �2

#�Hm
# ,d#�m,�

# � as f�p0,p� and define now the
#-conjugation by �C#f��p0,p� � f�p0,�p�.



Remark 1.4.Note that C# is well-defined on �2
#�Hm

# ,d#�m,�
# � since �p0,p
 � Hm

# if
and only if �p0,�p
 � Hm

# . C# is clearly a #-conjugation.
Definition 1.4.We denote the canonical fields corresponding to C# by �#��� and
�#��� and define �m

# �f� � �#�Ef� and �m
# �f� � �#��Ef�,� � p2 � m2 for ��c

#-valued

f � ����c
#4�, extending to all of ����c

#4� by linearity. In terms of a��f�,

�m
# �f� � ��a��Ef��� � a��C#Ef��/ 2 ,

�m
# �f� � i��a��Ef��� � a��C#�Ef��/ 2 .

�34�

Remark 1.5.Note that the a’s in these last formulas differ from those most often
used in discussing the free field and that the correct space-time free field is �m

# and
not �m

# as we will discuss below, �m
# and �m

# are useful for discussing the time-zero
field. The maps f 
 �m

# �f� and f 
 �m
# �f� are complex linear and �m

# �f�,�m
# �f� are

self-adjoint if and only if Ef � HC#
# .

Because of the projection E we can extend the class of functions on which �m
# ��� and

�m
# ��� are defined to include distributions of the form ��t � t0�g�x1,x2,x3� where

g � ��c
#3. In particular, if t0 � 0,g is ��c

#-lvalued, and Ext-�g is the usual Fourier
transform on ��c

#3, then

C#E�g �p0,�p� � �2�#��1/2�g��p� � �2�#��1/2�g��p� � E�g. �35�

Thus E��g� and �E��g� are in HC#
# . Therefore �m

# ��g� and �m
# ��g� are self-adjoint if

g � ����c
#3� is real. For obvious reasons, the maps g 
 �m

# ��g�,g 
 �m
# ��g� are

called the time-zero fields. From now on we will only use test functions of the form �g
in �m

# ��� and �m
# ��� and write �m

# �g� and �m
# �g� if g � S#��c

#3 instead of �m
# ��g� and

�m
# ��g�.
If f and g are ��c

#-valued functions in ����c
#3�, then

(X.70) implies that for � � F0,

	�m
# �f�,�m

# �g�
� � i Ext- "
Hm

�
f �p��g�p���p��d�m,�

# . �36�

For convenience and also so that our notation coincides with the standard
terminology,

we now transfer the fields we have constructed from the Fock space built up from
�2

#�Hm
# ,d�m,�

# � to the Fock space built up from �2
#���c

#3�. For notational simplicity, we
define for f � �2

#�Hm
# ,d�m,�

# �

a%�f� � �a��f���,a�f� � a��C#f�. �37�

First notice that each function f�p� � �2
#�Hm

# ,d�m,�
# � is in a natural way a function

f�p� � f���p�,p� on ��c
#3. For each f � �2

#�Hm
# ,d�m,�

# �, we define

�Jf��p� � f���p�,p�/ ��p� . �38�

J is a unitary map of �2
#�Hm

# ,d�m,�
# � onto �2

#���c
#3�, so 
#�J� is a unitary map of

�s��2
#�Hm

# ,d�m,�
# �� onto �s��2

#���c
#3��. The annihilation and creation operators on

�s��2
#���c

#3��, �a���, �a%���, are related to a��� and a%��� by the formulas



�a
f�p�

��p�
� 
#�J�a�f�
#�J��1

�a%
f�p�

��p�
� 
#�J�a%�f�
#�J��1

�39�

We use the unitary map 
#�J� to carry the Wightman fields over to �s��2
#���c

#3�� by
defining:(i) for ��c,fin

# -valued f � �fin
# ���c

#4�


m,��f� � 
#�J�
m,��f�
#�J��1 �

1
2

�a C�
# Ef

�
� ã%

Ef
�

�40�

(ii) for ��c,fin
# -valued f � �fin

# ���c
#3�

�m,��f� � 

#�J��m,��f�
#�J��1 �

1
2

�a C�
# E�f��

�
� ã%

E�f��
�

�41�

where C�
#
� JC#J�1 acts by C�

#
g �p� � g��p�. Having established this

correspondence,
we now drop the ~ and the bold face letters; from now on we will only deal with the

fields
on �s��2

#���c
#3�� and three-dimensional momenta. Further, we recall that the

restriction of
the four-dimensional Fourier transform that we have been using in this section to
functions of the form ��x0�g�x1,x2,x3� the usual three-dimensional Fourier transform.
Notice that

�
f � Ext-h! ,h � C#f� �42�

so C#f� � f� if and only if f is ��c
#-valued.

For f and g ��c
#-valued, (36) becomes

	�m
# �f�,�m

# �g�
 � i Ext- " f�x�g�x� d#3x. �43�

(43) is the space form of the canonical commutation relations (CCR).
In the Appendix to this section we prove that for each m � 0, this representation of the
CCR is irreducible and for different m, the representations are inequivalent. Thus, the
time-zero fields in the free scalar field theories give rise to different representation of

the
CCR.
As a final topic before turning to interacting fields we will show how the structures
developed above are related to the “fields” and “annihilation and creation
operators” introduced in physics texts. We let now

DSfin
# � �|� � F0,��n� � Sfin

# ���c
#3n�,n � � �44�

and for each p � ��c
#3 we define an operator a�p� on �s��2

#���c
#3�� with domain

DSfin
# by



�a�p����n��k1, . . . ,kn� � n � 1��n�1��p,k1, . . . ,kn�. �45�

The adjoint of the operator a�p� is not a #-densely defined operator since it is given
formally by

�a%�p����n��k1, . . . ,kn� � 1
n
�
i�1

n

��p � ki ���n�1��p,k1, . . . ,ki�1,ki�1, . . . ,kn�. �46�

However, a%�p� is a well-defined quadratic form on D�fin
# 
 D�fin

# . For example, if

�1 � �0,��1�, 0, . . .�,and �2 � �0,0,��2�, 0, . . .�, then

��2,a%�p��1� � 1
2

Ext- " ��2��k1,p���1��k1� � ��2��p,k1���1��k1� d#k1 . �47�

Remark 1.1.Note that the formulas

a�g� � Ext- "
��c

#3
a�p�g��p�d#p �48�

and

a%�g� � Ext- "
��c

#3
a%�p�g�p�d#3p �49�

hold for all g � Sfin
# ���c

#3� if the equalities are understood in the sense of quadratic
forms. That is, (48) means that for �1,�2 � DSfin

# we have

��1,a�g��2� � Ext- "
��c

#3
��1,a�p��2�g��p�d#3p �50�

and similarly for (X.76b).
Since a�p� : D�fin

# � D�fin
# the powers of a�p� are well-defined operators on D�fin

# .

As before we can write down a formal expression for �a%�p��n, but it does not make
sense as operator, only as ��c

#-valued quadratic form on D�fin
# 
 D�fin

# .

Notice that

��1,�a%�p��
n�2� � ��a�p��n�1,�2� �51�

so for each n, �a%�p��n and �a�p��n are formally adjoints in the sense of ��c
#-valued

quadratic forms. We could of course have defined the quadratic form �a%�p��n by (50)
and then calculated that it arises by taking the n-th power of the formal object given by
(45). Since a�p1� : D�fin

# � D�fin
# ,��1,a%�p2�a�p1��2� is a well-defined ��c

#-valued

quadratic form for all �p1,p2
 � ��c
#3 
 ��c

#3. Notice, however, that
��1,a�p1�a%�p2��2� does not make sense since a%�p2� is only a quadratic form. In
general any product � i�1

N1 a�f i� is a

well-defined operator from D�fin
# to D�fin

# and� i�1
N1 a%�f i� is a well-defined quadratic

form on D�fin
# 
 D�fin

# . Thus

�1, �
i�N1�1

N2

a%�pi� �
i�1

N1

a%��pi� �2 �52�

is also well-defined ��c
#-valued quadratic form on D�fin

# 
 D�fin
# . One can check

directly that if f � �fin
# ���c

#3� then as ��c
#-valued quadratic forms



�
i�N1�1

N2

a%�f i� �
i�1

N1

a%�f i� �

Ext- "
��c

#3N2
�

i�N1�1

N2

a%�pi� �
i�1

N1

a%��pi� �
i�1

N2

f i�pi � d#p1. . .d#pN2

�53�

and

N � Ext- "
��c

#3
a%�p�a�p�d#p �54�

The generator of time translations in the free scalar field theory of mass m is given by

H0 � Ext- "
��c

#3
��p�a%�p�a�p�d#p �54�

H0 is called the free Hamiltonian of mass m. (52), (53), and (54) involve no formal
manipulations, but are mathematical statements about quadratic forms.
Theorem X.44 Let n1 and n2 be nonnegative integers and suppose that
W � �2

# ��c
#3�n1�n2� . Then there is a unique operator TW on �s��2

#���c
#3�� so that

D�fin
# � D�TW� is a core for TW and

(a) as ��c
#-valued quadratic forms on D�fin

# 
 D�fin
#

TW � Ext- "
��c

#3�n1�n2�
W�k1, . . . ,kn1,p1, . . . ,pn2 � �

i�1

n1

a%�ki� �
i�1

n2

a�pi� d#n1kd#n2p �55�

(b) If m1 and m2 are nonnegative integers so that m1 � m2 � n1 � n2, then
�1 � N��m1/2TW�1 � N��m2/2 is a bounded operator with

��1 � N��m1/2TW�1 � N��m2/2� � C�m1,m2��W��2
#. �56�

In particular, if m1 � n1 and m2 � n2, then

��1 � N��n1/2TW�1 � N��n2/2� � C�m1,m2��W��2
#. �57�

(c) As ��c
#-valued quadratic forms on D�fin

# 
 D�fin
#

TW
� � Ext- "

��c
#3�n1�n2�

W�k1, . . . ,kn1,p1, . . . ,pn2 � �
i�1

n2

a%�ki� �
i�1

n1

a�pi� d#n1kd#n2p �58�

(d) If Wn �# W in �2
# ��c

#3�n1�n2� , then TWn �# TW strongly on D�fin
# .

(e) F0 is contained in D�TW� and D�TW
� �, and on vectors in F0, TW and TW

� are given
by the explicit formulas

�TW���l�n2�n1� � K�l,n1,n2�S 


Ext- "
��c

#3n2
W�k1, . . . ,kn1,p1, . . . ,pn2 ���l ��p1, . . . ,pn2,kn1�1, . . . ,kn1�l�n2 �d#n2p

�59�

�TW��n � 0 if n � n1 � n2

�TW
� ���l�n1�n2� � K�l,n2,n1�S 


Ext- "
��c

#3�n1�
W�k1, . . . ,kn1,p1, . . . ,pn2 ���l ��k1, . . . ,kn1,pn2�1, . . . ,pn2�l�n1 �d#n1k

�60�

�TW
� ��n � 0 if n � n2 � n1 where S is the symmetrization operator and



K�l,n1,n2� �
l!�l � n1 � n2�!
��l � n2�!�2

1/2

. �61�

Proof. For vectors in D�fin
# , we define TW� by the formula (X.82a). By the Schwarz

inequality and the fact that S is a projection,

�TW���l�n2�n1� 2
� K�l,n1,n2����l ��2�W�2. �62�

If we now define an operator TW
� �, on D�fin

# by using the formula in (62),

then for all � and � in D�fin
# one easily verifies that ��,TW�� � �TW

� �,��.

Thus, TW is #-closable and TW
� is the restriction of the adjoint of TW to D�fin

# .

From now on we will use TW to denote TW and TW
� to denote the adjoint of TW.

By the definition of TW,D�fin
# is a #-core and further, since TW is bounded on the

l-particle vectors in D�fin
# , we have F0 � D�TW�. Since the right-hand side of (59) is

also bounded on the l-particle vectors, (X.82a) represents TW on all l-particle vectors.
The proof of the statements in (e) about TW

� are the same.
To prove (b), let � � D�fin

# . Then by the above computation

��1 � N��m1/2TW�1 � N��m2/2���l�n2�n1� 2
�

K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2

2

���l ��2�W�2
�63�

so that

��1 � N��m1/2TW�1 � N��m2/2���l�n2�n1� �

l��

sup
K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2
���l ���W� � C�m1,m2����l ���W�

�64�

where

C�m1,m2� �
l��

sup
K�l,n1,n2�

�1 � l � n2 � n1�m1/2�1 � l�m2/2
� �# �65�

since m1 � m2 � n1 � n2. In all the sup’s only l so that l � n2 � n1 � 0 occur since
the other terms are annihilated by the action of TW. Thus, �1 � N��m1/2TW�1 � N��m2/2

extends to a hyper bounded operator on �s�H#� with norm less than or equal to
C�m1,m2�. If m1 � n1 and m2 � n2, then C�m1,m2� � 1.
To prove (d) we need only note that if � � �0, . . . ,��l �, 0, . . .� � D�fin

# and Wn �# W in �2
#,

then

�TWn� � TW�� � ��TWn�W��� � K�l,n1,n2��Wn � W����, �66�

where #-lim n��# K�l,n1,n2��Wn � W���� � 0.
Since D�fin

# consists of finite linear combinations of such vectors, we have shown that

TWn #-converges strongly on D�fin
# to TW if Wn �# W in �2

#.

To prove (a) let �1,�2 � D�fin
# with �1 � �0, . . . ,��l�n2�n1�, 0, . . .� and �1 �

�0, . . . ,��l �, 0, . . .�.
Then, if W � � i�1

n1 f i�ki � � i�1
n2 gi�ki � the definition of the form



� i�1
n1 a%�ki � � i�1

n2 ai�ki � shows that

��1,TW�2� � Ext- "
��c

#3n2
W�k1, . . . ,kn1,p1, . . . ,pn2 � 


�1, � i�1
n1 a%�ki � � i�1

n2 ai�ki � �2 d#n1kd#n2p
�67�

Since both sides of (X.83) are linear in W, the relationship continues to hold for the all
such W’s that are hyperfinite linear combinations of such products. Since

�1, � i�1
n1 a%�ki � � i�1

n2 ai�ki � �2 � �2
# ��c

#3�n1�n2� �68�

and since (d) holds, both the right- and left-hand sides of (X.83) are continuous linear
functionals on ��c

#3�n1�n2�. Since they agree on a #-dense set, they agree everywhere.
Finally, (68) extends by linearity to all of D�fin

# 
 D�fin
# .

This proves (a); the proof of (c) is similar. |
Finally, we note that as quadratic forms on D�fin

# we can express the free scalar field

and the time zero fields in terms of a%�k� and a�k� :


m,��x, t� �

1
�2�#�3/2 "

|p|��

�	Ext-exp���p�t � ipx�
a%�p� � 	Ext-exp����p�t � ipx�
a�p��
d#3p

2��p�
�69�

�m,�
# �x� � 1

�2�#�3/2 "
|p|��

�	Ext-exp��ipx�
a%�p� � 	Ext-exp�ipx�
a�p��
d#3p

2��p�
�70�

�m,�
# �x� � 1

�2�#�3/2 "
|p|��

�	Ext-exp��ipx�
a%�p� � 	Ext-exp�ipx�
a�p��
��p�

2
d#3p. �71�

2.Q#-space representation of the Fock space structures
In this section the construction of Q#-space and L2

#�Q#,d#��, another representation
of the Fock space structures are presented. In analogy with the one degree of
freedom case where �#���c

#� is isomorphic to L2
#���c

#,d#x� in such a way that 
S�1�
becomes multiplication by x, we will construct a #-measure space �Q#,�#
, with
��Q#� � 1,and a unitary map S : �s

#���c
#� � L2

#�Q#,d#�� so that for each f � HC#
# ,

S�#�f�S�1 acts on L2
#�Q,d#�#� by multiplication by a #-measurable function. We can

then
show that in the case of the free scalar field of mass m in 4-dimensional space-time,
V � SHI�g�S�1 is just multiplication by a function V�q� which is in Lp

#�Q,d#�� for each

p � �#.Let �fn�n�1
�#

be an orthonormal basis for H# so that each fn � H�#
# and let

�gk�k�1
N ,N � �# be a finite or hyperfinite subcollection of the �fn�n�1

�#
. Let PN be a set of

the all external hyperfinite polynomials Ext-P	u1, . . . ,uN
 and �N
# be the #-closure of the

set

�Ext-P	�#�g1�, . . . ,�#�gN�
|P � PN� �1�

in �s
#�H#� and define F0

N � �N
# � F0 From Theorem X.43 (and its proof) it follows that

�#�gk� and �#�gl�, for all 1 � k, l � N are essentially self-adjoint on F0
N and that



�Ext-exp	it�#�gk�
��Ext-exp	is�#�gl�
� �

�Ext-exp	�ist�kl 
��Ext-exp	is�#�gl�
��Ext-exp	it�#�gk�
�.
�2�

Thus we have a representation of the generalized Weyl relations in which the vector
�0 satisfies 	�#�gk�


2 � 	�#�gk�

2 � 1 �0 � 0 and is #-cyclic for the operators

��#�gk��k�1
N ,N � �#.Therefore there is a unitary map

�
S
�N�

: �N
# � L2

#���c
#N� so that

�
S
�N�

�#�gk�
�
S
�N� �1

� xk

�
S
�N�

�#�gk�
�
S
�N� �1

� 1
i

d#

dxk
#

�3�

and

�
S
�N�

Q0 � �#
�N/4 Ext-exp � Ext-�

k�1

N
xk

2

2
. �4�

It is convenient to use the Hilbert space

L2
# ��c

#N,�#
�N/2d#Nx Ext-exp � Ext-�k�1

N xk
2

2

instead of L2
#���c

#N� so let d#�k � �#
�1/2exp��xk

2/2� d#xk and define

�Tf��x� � �#
N/4 Ext-exp Ext-�k�1

N xk
2

2
f�x�. �5�

Then T is a unitary map of L2
#���c

#N� onto L2
# ��c

#N,Ext-�k�1
N d#�k

# and if we let

S�N� � T
�
S
�N�

we get

S�N� : �N
# � L2

# ��c
#N,Ext-�k�1

N d#�k
# ,

S�N��#�gk��S�N��
�1
� xk,

S�N��#�gk��S�N��
�1
� � xk

i
� 1

i
d#

d#xk
,

S�N�Q0 � 1,

�6�

where 1 is the function identically one.Note that each �k
# has mass one, which

implies that

Q0, Ext-�k�1
N Pk	�#�gk�
 Q0 �

"
��c

#N

Ext-�k�1
N Pk	xk
 Ext-�k�1

N d#�k
# �

Ext-�k�1
N "

��c
#

P	xk
d#�k
# � Ext-�k�1

N "
��c

#

�Q0,Pk	�#�gk�
Q0
,

�7�

where P1, . . . ,PN are external hyperfinite polynomials. This formula (7) can also be
proven by direct computations on �s

#�H#�.
Now it is easy to see how to construct �Q#,d#�#
. We define Q# � 
k�1

�# ��c
#.Take the

�#-algebra generated by hyper infinite products of #-measurable sets in ��c
# and set

�# � 'k�1
�#

�k
#.We denote the points of Q# by q � �q1,q2, . . .
. Then �Q#,d#�#
 is a

#-measure space and the set of functions of the form P�q1,q2, . . .�, where P is a



polynomial and n � �# is arbitrary, is #-dense in �2
#�Q#,d#�#�. Let P be a polynomial in

N � �# variables

P�xk1, . . . ,xkN � � Ext- �
l 1,...,l N

cl 1,...,l Nxk1

l 1 , . . . ,xkN

l N �8�

and define

S : P��#�fk1�, . . . ,�#�fkN��Q0 � P�qk1, . . . ,qkN �. �9�

Then

P��#�fk1�, . . . ,�#�fkN��Q0 � Ext-�
l,m

clcm�Q0,�
#�fk1� l 1�m1, . . . ,�#�fkN� l N�mNQ0� �

Ext-�
l,m

clcm "
��c

#N

qk1

l 1�m1 � � �qkN

l N�mN Ext-�
i�1

N

d#�ki
# � "

Q#

|P�xk1, . . . ,xkN �|
2d#�#

�10�

by (X.92) and the fact that each �k
# has mass one. Since Q0 is cyclic for polynomials

in the fields (Theorem X.42), S extends to a unitary map of �s
#�H#� onto �2

#�Q#,d#�#�.
Clearly

S�#�fk�S�1 � qk and SQ0 � 1. �11�

Theorem 1. Let �m,�
# �f�,� � ��c

#\��c,fin
# be the free scalar field of mass m (in

4-dimensional space-time) at time zero. Let g � �1
#���c

#3� � �2
#���c

#3� and define

HI,�,��g� � ���� " g�x�: �m,�
# �x�4 :d#3x, �12�

where ���� � ��c
#,���� � 0. Let S denote the unitary map of �s

#�H#� onto �2
#�Q#,d#�#�

constructed above. Then V � SHI,�,��g�S�1 is multiplication by a function V�,��q� which
satisfies:
(a) V�,��q� � �p

#�Q#,d#�#� for all p � �#.
(b) Ext-exp��tV�,��q�� � �1

#�Q#,d#�#� for all t � 	0,��.
Proof. We will prove (a). By Eq.() we get

�m,�
# �x� � 1

�2�#�3/2 "
|p|��

�	Ext-exp��ipx�
a%�p� � 	Ext-exp�ipx�
a�p��
d3p

2��p�
. �13�

Then �m,�
# �x� is a well-defined operator-valued function of x � ��c

#3. We define
: �m,�

# �x�4 : by moving all the a%’s to the left in the formal expression for �m,�
# �x�4.

By Theorem X.44 : �m,�
# �x�4 : is also a well-defined operator for each x � ��c

#3 and

: �m,�
# �x�4 : takes F0 into itself. Thus for each x � ��c

#3,

: �m,�
# �x�4 : � �m,�

# �x�4 � d2����m,�
# �x�2 � d0��� �14�

where the coefficients d2��� and d0��� are independent of x. For each x � ��c
#3,

S�m,�
# �x�S�1 is just the operator on #-measurable space �2

#�Q#,d#�#� which operates by
multiplying by the function

Ext-�
k�1

�#

ck�x,��qk �15�

where



ck�x,�� � �2�#��3/2 fk,Ext-exp�ipx����p���1/2 . �16�

Furthermore,

Ext-�
k�1

�#

|ck�x,��|2 � �2�#��3/2 ���p���1/2
2

2
, �17�

so S�m,�
# �x�4S�1and S�m,�

# �x�2S�1 are in �2
#�Q#,d#�#� and the �2

#�Q#,d#�#� norms are
uniformly bounded in x. Therefore, since g � �1

#���c
#3�, SHI,�,��g�S�1 operates on

�2
#�Q#,d#�#� by multiplication by an �2

#�Q#,d#�#� function which we denote by V�,��q�.
Consider now the expression for HI,��g�Q0.This is a vector �0,0,0,0,��4�, 0, . . .�

��4��p1,p2,p3,p4� � Ext- "
��c

#3

�g�x� Ext-exp �ix� i�1
4 pi d#3x

�2�#�3/2� i�1
4 �2��pi ��1/2

�

�
��g � i�1

4 ki

�2�#�9/2� i�1
4 �2��pi ��1/2

�18�

where |pi | � �, 1 � i � 4.We choose now the parameter � � ���� � 0 such that
���4��

2
� �, thus

�HI,�,�����g�Q0�2 � �, �19�

since �HI,�,�����g�Q0�2 � ��
�4��

2
. But, since SQ0 � 1, we get

�HI,�,�����g�Q0�2 � �SHI,�,�����g�S�1�
�2

# Q#,d#�# � �V�,�����q���2
# Q#,d#�# �20�

From (19) and Eq.(20) we get that �V�,�����q���2
# Q#,d#�# is finite. It is easily verify that

each P�q1,q2, . . . ,qn�,n � �# is in the domain of V�,�����q� and SHI,�,�����g�S�1 � V�,�����q�
on that domain. Since Q0 is in the domain of 	HI,�,�����g�


p for all n � �#, 1 is in the
domain of 	V�,�����q�


n for all n � �#. Thus, for all n � �#,V�,���� � �2n
# �Q#,d#�#�. Since

�#�Q#� � �#, V�,���� � �p
#�Q#,d#�#� for all p � �#.

Chapter X. A non-Archemedean Banach algebras and
C#

�-Algebras.
§1. A non-Archemedean Banach algebra B�H#�

§1.1. Basic Properties
Definition 1.1.An linear operator T on a non-Archemedean Hilbert space H# is a linear

map H# � H#.We can define a #-norm by

�T�# � supv�H#-�0�
�Tv�#

�v�#

�1.1�

if supremum in RHS of (1.1) exists.
This is a #-norm since
1. By definition of the #-norm on H#, it is always positive.
2. We have that T � 0 & �v � H#,Tv � 0 & �v � H# - �0�,
�Tv�#

�v�#

� 0 & �T�# � 0.



3. �λT�# � supv�H#-�0�
��Tv�#

�v�#

� |λ|supv�H#-�0�
�Tv�#

�v�#

� |λ|�T�

4. �T1 � T2�# � supv�H#-�0�
�T1v � T2v�#

�v�#

� supv�H#-�0�
�T1v�# � �T2v�#

�v�#

�

� supv�H#-�0�
�T1v�#

�v�#

� supv�H#-�0�
�T2v�#

�v�#

� �T1�# ��T2�#.

Definition 1.2. Let H# be a non-Archemedean Hilbert space over ��c
#. A linear map A.

H# � H# is called bounded in ��c
# operator iff �A�# �

��.

Definition 1.3. Let H# be a non-Archemedean Hilbert space over ��c
#. We denote by

B�H#� the set of all bounded in ��c
# operators A. H# � H#.

Definition 1.4. Algebra A is called an algebra over ��c
# if it is a vector space over ��c

#

and a binary map � . A 
 A � A Satisfying:
1. Left distrubitivity: �v,w,u � A	�v � w� � u � v � u � w � w

2. Right distrubitivity: �v,w,u � A	v � �w � u� � v � w � v � u

3. �v,w � A,�α,β � ��c

#	αβv � w � �αv� � �βw�

We note that B�H#� is an algebra over ��c

# where for A,B � B�H#�,λ � ��c
# we

define:
λA. H# � H#,v 
 λAv
A � B. H# � H#,v 
 Av� Bv
A � B. H# � H#,v 
 A�B��v��

In B�H#� we have the #-adjoint operator. This maps each A to the unique A�

such that for all v,w � H# we have �Av,w
# � �v,A�w
#. We denote the adjoint of an
operator A by A� and define the adjoint of a subset M � B�H#� by
M� � �A� � B�H#� , A � M�. The adjoint has the following key properties:
Lemma 1.4. Adjoint Properties (Algebraic)
�B,A � B�H#� we have
1. A� always exists is unique.
2. If A is bounded in ��c

#,then A� is also bounded in ��c
#.

3. A�� � A (Involutivity)
4. �A�# � �A��#

5. If A is invertible, A� also is, with �A���1 � �A�1��

6. �A � B�� � A� � B�,�λA�� � λA�

7. �AB�� � B�A�

8. �A�A�# � �A�#

Proof. 1. Let x � H# and consider the bounded in ��c
# linear functional f. H# � ��c

#,
f�v� 
 �Av,x
# we have �f� � �A�# �x�#. By generalized Riesz representation
theorem there exists a unique y � H# with f�v� � �v,y
#�v � H#. So we set A�x � y.
Then for any y,z � H# and �α � ��c

# we have:
�v,A��αy � z�
# � �Av,αy � z
# � α�Av,y
# � �Av,z
# � α��v,A�y
# � �v,A�z
# �
� �v,αA�y � A�z
# �v � H#. In particular, if we choose v � A��αy � z� � αA�y � A�z,

we see that �v�# � 0 � v � 0 � A� is linear.
2. Following from 1. we have
�A�x�# � �y�# � �f�# � �A�#�y�#.
3. We can see this as
�A��v,w
# � �v,A�w
# � �Av,w
#�v,w � H#.



4. Combining the estimate from above and involutivity, we have
�A���# � �A��# � �A�# � �A���#.
So we must have equality everywhere.
5. We have �v,�A�1��A�w
# � �A�1v,A�w
# � �AA�1v,w
# � �v,w
# �v,w � H#.

Hence, �A�1��A� � 1. The argument for A��A�1�� � 1 is the same.
6. This follows clearly from conjugate linearity in the second argument of an inner
product.
7. This is clear since, �ABv,w
# � �Bv,A�w
# � �v,B�A�w
# �v,w � H#.
8. For this we have �T�#

2 � sup/x/# �1�Tx�#
2 � sup/x/# �1|�Tx,Tx
#| �

sup/x/# �1|�T�Tx,x
|# � sup/x/# �1�T�Tx�#�x�# � �T�T�#.But also,
�T�T�# � �T��#�T�# � �T�#

2, and so there is equality everywhere.

§1.2 Types of Operators
Definition 1.2.1. A is called normal if A�A � AA�.
Definition 1.2.2. A is called positive if A � B�B for some B � B�H#�
Definition 1.2.3. A is called self #-adjoint if A� � A.
Lemma 1.2.1. Let A � B�H#�. Then A � A1 � iA2 where A1 and A2 are both self
#-adjoint.

Proof. Let A1 � A � A�

2
,A2 � iA� � iA

2
.

It is then clear from basic algebra.
Definition 1.2.4. U is called unitary if U�U � UU� � 1
Example 1.2.1. If U is unitary, we have �h,k � H#,�h,k
# � �Uh,Uk
#.This is
because �Uh,Uk
# � �h,U�Uk
# � �h,1k
# � �h,k
#.

Definition 1.2.5. A is called isometric if A�A � 1.
We also have a relaxed definition, a partial isometry.
Definition 1.2.6.A is called a partial isometry if it is an isometry on the orthogonal
complement of it’s kernel,i.e.A�Av � v,�v � Ker�A�� �
� �v � H#|�v,w
# � 0,�w � Ker�A��.

Definition 1.2.7. p � B�H#� is called a projection if p � p� � p2.
Example 1.2.2. Consider H# � l 2

#���� the set of all square summable ��c
#-valued

series. An example of a projection would be:
pn.H# � H#,�a1,a2, . . . . . ,an,an�1,an�2. . .� 
 �a1,a2, . . . ,an, 0,0, . . . .�.
We see this is self #-adjoint as �pna,b
# � Ext-�k�1

n akbk � �a,pnb
# and idempotent
as pn

2 � pn.
Lemma 1.2.2. Multiplication and #-norm property
�A,B � B�H#�,�A � B�# � �A�#�B�#

Proof. For all h � H#, we always have the estimate �Ah�# � �A�#�h�#.
Using this we have
�AB�# � suph�H-�0���AB�h�#/�h�# � suph�H-�0��A�Bh��#/�h�#

� suph�H-�0��A�#�Bh�#/�h�# � �A�#�B�#

Lemma 1.2.3. �B�H#�,���#� is complete, i.e. if �An�n��� � B�H#� is cauchy with
respect to the operator #-norm ���#, it #-converges in #-norm to some element
A � B�H#�.
Proof. Let �An�n��� be cauchy with respect to the operator #-norm. This means that
�
�
 � 0,
 � 0� �N � ��� 	n,m � N � �An � Am�# � 

.



In particular then �An� is bounded above, say by K � ��c,�
# . Now fix v � H# and let

N,m,n � ��� be as before. We have that
�Anv � Amv�# � �An � Am�#�v�# � �v�#.
Hence,�Anv�n��� is cauchy in H#. By completeness of H#, we have a #-limit and can
define A.H# � H#,v 
 #-lim n��� Anv, this is our candidate for our #-limit.
A is linear since (by algebra of #-limits)
A�αv � w� � #-lim n��� An�αv � w� � α �#- lim n��� Anv� � #-lim n��� Anw � αAv� Aw
and bounded in��c,�

# because
�Av�# � #-lim n����Anv�# � #-lim n����Anv�# � #-lim n����An�#�v�# � K�v�#.
Hence, A � B�H#�. Finally we show convergence in #-norm. Fix 
 � 0,
 � 0 and let
N � ��� be as in the definition of cauchy. If n � N we have:
�A � An�# � sup�v�#�1 �#- limm����Am � An�v�#

�
sup�v�#�1 #-limm�����Am � An�v�#�v�# � #-limm��� � 
.

Definition 1.2.8. A � B�H#� is #-compact if for all bounded subsets β of H# the
image of A restricted to β has #-compact #-closure:
A � B�H#� #-compact & �β bounded , #-Aβ is #-compact.
We denote by K#�B�H#�� the set of all #-compact operators in B�H#�.
Lemma 1.2.4. A is #-compact iff
��vα�α�X bounded � �Avα�α�X has a #-convergent subsequence.
Definition 1.2.9. For A � B�H#� the rank '�A� of A is the dimension of the range of A
Lemma 1.2.5. If A has rank N � ��, then we can write
A��� � Ext-�n�Nαn��,vn
#wn where �vn�n�N,�wn�n�N � H#,�αn�n�N � ��c

#

Proof. This follows immediately from the generalized Riesz representation theorem
noting that if �wn�n�N forms a basis of A�H#�, then �A �,wn
# is a linear functional
H# � ��c

#. So for some vn,�A �,wn
# � ��,vn
# so setting αn � 1/�wn�# we have

A � � Ext-�
n
αn�A �,wn
#wn � Ext-�

n�N
αn��,vn
#wn.

We denote by �#'�B�H#�� the set of hyperfinite rank operators in B�H#�.
Lemma 1.2.6. Any operator with hyperfinite rank is #-compact
Proof. Say A has hyperfinite rank, then if �vα�α�X is bounded, then �Avα�α�X is bounded,
and lies in a hyperfinite dimensional Hilbert space. By generalized Bolzano Weirstrass
theorem [1], we have that it omits a #-convergence subsequence so by lemma 1.2.5,
A is #-compact.
Theorem 1.2.1.. Let H1 � �h � H#|�h�# � 1� The following are equivalent:
1. A � �C , '�C� � ��� � �#'�B�H#�� where the #-closure is with respect to the
#-norm topology

2. A � K#�B�H#��
3. A�H1) has #-compact #-closure
Proof. 1 � 2.
If A � �C , '�C� � ��� then the #-compactness A is clear, since hyperfinite rank
operators are in K#�B�H#�� and K#�B�H#�� must be #-closed with respect to the #-norm
topology.
2 � 3.
This is clear by definition since H1 is bounded subset of H#.
3 � 1.
Say this did not hold, i.e. we had some A that has property 3 but not 1. Then, let



�Pα�α�A be a net of hyperfinite rank projections tending towards the identity map. We
have that PαA also must have hyperfinite rank, and so PαA �# A in #-norm sense.
Well, then there exists some 
 � 0,
 � 0 and some vα � H1 such that
��A � PαA�vα�# � 
.Since these vα are in H1, we can apply 3 to get some subnet such
that Avα �# v in #-norm. Then we have:
0 � 
 � ��A � PαA�vα�# � �v � Pαv � �1 � Pα��vα � v��# �. . .
. . .� �v � Pαv�# � ��1 � Pα��Avα � v��# � �1 � Pα�# ��v�# � �Avα � v�#� �# 0.
A contradiction. Hence, 3 � 1.
Corollary 1.2.1. A #-compact & A�� � Ext-�

n���
αn��,vn
#wn where �vn�n��� ,

�wn�n��� � H#, and �αn�n��� � ��c
# and s.t. #-lim n��� αn � 0.

The #-convergence on the RHS is with respect to the operator #-norm.

§1.3 Basic Spectral Theory
Spectrum is a generalisation of eigenvalues which is crucial for understanding

operator
algebras.Much of it is built upon whether operators or aren’t invertible.
Definition 1.3.1. A � B�H#� is said to be invertible if there exists a B � B�H#� such
that AB � BA � 1. If X is an algebra, we define Inv�X� � �x � X , x is invertible �.
Lemma 1.3.1. Neumann Series is #-convergent
Let �A�# � 1. Then, 1 � A is invertible with inverse

�1 � A��1 � Ext-�
n���

An. �1.3.1�

Where

Ext-�
n���

An � #- limN��� Ext-�
n�0

N
An �1.3.2�

where N � ��� .
Proof. The first question to ask is whether the series on the right hand side even
#-converges. It does as by lemma 1.2.2 one obtains

�Ext-�n���An�# � Ext-�n����An�# � Ext-�n����A�#
n � �1 � �A�#�

�1

Say it #-converges to B. Then, we see that because we have a telescoping sum

Ext-�
n�0

N
�An��1 � A� � 1 � AN�1 � �1 � A� Ext-�

n�0

N
An

Hence, it is sufficient to check that 1 � An �# 1 as n � ��. Fix 
 � 0,
 � 0, and
choose N � ��� ,N � Ext-log�A�#


 Then we have for n � N

�1 � An � 1�# � �An�# � �A�#
n � �A�#

N � 

Lemma 1.3.2. Inv�B�H#�� is #-open in B�H#�. Furthermore, the map
�1. Inv�B�H#�� � Inv�B�H#��,A 
 A�1

is #-continuous with respect to the operator #-norm.
Proof. Say A � Inv�B�H#��. Then, if �B � A�# � �A�1�#

�1, we have
�BA�1 � 1�# � ��B � A�A�1�# � �B � A�#�A�1� � 1

Which by lemma 1.3.1 gives
1 � �BA�1 � 1� � BA�1 � Inv�B�H#�� � BA�1A � B � Inv�B�H#��.
Then if we consider BA�1, we can note that 1/�1 �/ 1 � BA�1 /� � 1 and hence
�BA�1�# � Ext-�

n���
�1 � BA�1�#

n � Ext-�
n���

��A � B�A�1�#
n �

� Ext-�
n���

��A � B��#
n�A�1�#

n � 1/�1 � ��A � B��#�A�1�#�.



Therefore /�A�1 � B�1�# � �A�1�AB�1��1�B � A�A�1�# �
�A�1�#

2�B � A�#��AB�1��1�# � �A�1�#
2�B � A�#	1/�1 � ��A � B��#�A�1�#�


We can see then that as �A � B�# �# 0, �A�1 � B�1�# �# 0 as required.

Definition 1.3.2. (Spectrum)
Let A � B�H#�. We define the spectrum of A, denoted σ�A� by
σ�A�. � �λ � ��c

# , �A � λ � 1� � Inv�B�H#���, i.e. the set of all complex numbers
such that A � λ1 is not invertible. We denote the complement of σ�A� by ��A�.
Lemma 1.3.3. Spectrum is a generalisation of an eigenvalue �eigen�A� � σ�A��, i.e.
if λ is an eigenvalue of A,λ � σ�A�
Proof. Say λ is an eigenvalue of A. Then v � H# - �0� s.t. �A � λ�v � 0 However, by
linearity, �A � λ�0 � 0. As �A � λ� is not injective it cannot be invertible, hence λ � σ�A�
Corollary 1.3.1. Let H# be hyperfinitefinite dimensional. Then, if A � B�H#� we
have that spectrum agrees with the eigenvalues, i.e. eigen�A� � σ�A�.
Proof. By lemma 1.3.3, we only need to check the other direction. Up to choosing

bases, we can assume H# � ��c
#dim�H#� . In this case, B�H#� is just the

dim�H#� 
 dim�H#� square matrices. By standard results in linear algebra, we have that
�A � λ� � Inv�B�H#�� iff Ext-det�A � λ� � 0 iff λ is an eigenvalue.
Lemma 1.3.4. If A � B�H#� then σ�A� is #-closed as a subset of the complex plane

��c
#.
Moreover, it is a subset of the disc of radius �A�# centred at the origin.
Proof. Say λ � �A�#. Then, �λ�1�A�# � 1 so 1 � λ�1A is invertible by lemma 1.3.1.
Then, λ � σ�A�. Now examine σ�A�c � ��A� � �λ � ��c

#| A � λ � Inv�B�H#���.
Say λ � ��A�. By lemma 1.3.2 we have that there exists some 
 � 0,
 � 0 such that
�A � λ � B�# � 
 � B � Inv�B�H#��.

Now, we see that if λ �
�
λ � 
 we have:

A � λ � �A �
�
λ�

#
� λ �

�
λ � 


Hence, A �
�
λ � Inv�B�H#��. Then ��A� is #-open, and so σ�A� is #-closed.

We need the following lemmas to show that σ�A� 	 	 ever.
Lemma 1.3.5. Let A � B�H#�. Then let γ.B�H#� � ��c

# be an arbitrary linear
functional (γ � B�H#��). We have that the map
fAγ .��A� � ��c

#,λ 
 γ�1/�A � λ�� is #-analytic on ��A�, and has #-lim ���� fAγ�λ� � 0

Proof. For λ,λ0 � ��A� we have that
1

A � λ
� 1

A � λ0
� A � λ0 � A � λ

�A � λ��A � λ0�
� λ � λ0

�A � λ��A � λ0�
.

Then,

#-lim λ�# λ0

fAγ�λ� � fAγ�λ0�
λ � λ0

� γ 1
�A � λ��A � λ0�

� γ #- lim λ�# λ0

λ � λ0

�A � λ��A � λ0�
�. . .

Where we use linearity of γ in the first equality, and #-continiuty of γ in the second.
Then, by lemma 1.3.2 we have that

. . .� γ λ � λ0

#- lim λ�# λ0�A � λ��A � λ0�
� γ 1

�A � λ0�2 .

Hence, fAγ is #-analytic on ��A�. By the estimate
1

A � λ #
� 1

|�|
1

1 � λ�1A #
� 1

|�|
Ext-�

n���
�λ�1A�n

#
�



� 1
|�|

Ext-�
n���

��λ�1A�n�#
n � 1

|�| � �A�#

. .

It is clear that 1
A � λ

�# 0 as λ � �� and hence by #-continuity of fAγ we are done.

Theorem 1.3.1. If A � B�H#� then σ�A� 	 	.
Proof. Say �A � B�H#� suth that σ�A� � 	. For this A, we have that fAγ is:
(i) |fAγ�z�| bounded by positive constant K � ��c,�

#

(ii) fAγ�z� is #-entire function, that is fAγ�z� is a ��c
#-valued function #-holomorphic

on the whole ��c
#

(iii) fAγ�z� has #-lim ���� fAγ�λ� � 0.
The only map satisfying these three properties is the zero map. But since γ was
arbitrary, this implies that an arbitrary functional is the zero functional, which is
clearly a contradiction. Hence, σ�A� 	 	
In particular this means that σ�A� 	 eigen�A� if eigen�A� is empty.
Theorem 1.3.2. (Generalized Gelfand Mazur theorem)
If Inv�B�H#�� � B�H#� - �0�, Then B�H#� 0 ��c

#.
Proof. Let A � B�H#� then let λA � σ�A� we have A � λA � 0. So λA is unique. Our
isomorphism is then ψ.B�H#� � ��c

#A 
 λA.
Theorem 1.3.3. (Generalized Spectral Mapping Theorem)
Let A � B�H#�, f � ��c

#	z
. Then we have: σ�f�A�� � f�σ�A��.

Proof. Let λ � σ�A�f�z� � Ext-�
n�0

N
anzn. Then

f�A� � f�λ� � Ext-�
n�0

N
an�An � λn� � �A � λ� Ext-�

n�0

N
an Ext-�

j�n
�Ajλn�j�1� .

So f�λ� � σ�f�A��.Say µ � f�σ�A�� Then, we can write f�z� � µ � aN Ext-�
n�0

N
�z� λn� .

Then as µ � f�λ� 	 0 �λ � σ�A� (the zero operator isn’t invertible) we have that

λn � σ�A��n � N�. Therefore, f�A� � µ � aN Ext��
n�0

N
�A � λn� ,must be invertible,

and µ � σ�f�A��.
This theorem has many forms and generalises much more than for f being a
polynomial.
Definition 1.3.3. (Spectral Radius)
Given A in B�H#� the spectral radius, denoted r�A�, of A is defined by r�A� � supλ�σ�A�|λ|.

We note by lemma 1.3.4 the supremum exists and is attained. In fact, the following
lemma tells us what the spectral radius of a given operator is in terms of a #-limit.
Lemma 1.3.6. LetA � B�H#�. Then the #-limit: #-lim n��� �An�#

1/n exists, and is equal to
r�A�, the spectral radius of A.
Proof. By theorem 1.3.4 and lemma 1.3.4 we have that
	r�A�
n � r�An� � �An�# � r�A� � �An�#

1/n, n � �� � r�A� � #-lim inf n����An�#
1/n.

For the other direction, examine again the function from lemma 1.3.5, but this time
restricted to  � �z � ��c

#||z| � r�A��. We know that fAγ is analytic in  � ��A�. So

it has laurent expansion Ext-�
n��
�

anznand also that #-lim z��� fAγ�z� � 0. So in

fact, we have laurent expansion Ext-�
n���

an

zn . To determine the coefficients we

know that for z �  , A
z #

� 1 and hence, by lemma 1.3.1 one obtains

1
z� A

� 1
z�1 � z�1A�

� 1
z Ext-�

n�0

�� An

zn � Ext-�
n�0

�� An

zn�1 � Ext-�
n�1

�� An�1

zn .



Hence, fAγ�z� � γ 1
z� A

� γ Ext-�
n�1

�� An�1

zn � Ext-�
n�1

�� ��An�1�
zn .

So we have limn�� γ�An�1�
zn � 0, for all functionals γ � H#�. It follows that

#-lim n���
�An�1�#

|z|n
� 0 and so �z �  |z| � #-lim supn��� �An�#

1/n

then, �z � #- |z| � #-lim supn��� �An�#
1/n. In particular then,

r�A� � #-lim supn��� �An�#
1/n and so we are done.

Remark 1.3.1.If A is self adjoint, �A2�# � �A�#
2 so by induction �A2n�# � �A�#

2n

and therefore r�A� � #-lim n��� �A2n�#
1/2n

� �A�.

§1.4. l 2
#�G� and B�l 2

#�G��.
Definition 1.4.1. Let G be a discrete, �-countable group. Then define

l 2
#�G� � f.G � ��c

# , Ext-�g�G�f�g��2 � �� �1.4.1�

This is a non-Archimedean Hilbert space with respect to the inner product

�f , h
# � Ext-�g�Gf�g�h�g�. �1.4.2�

Lemma 1.4.1. Let g � G, f � l 2
#�G� then define g � f � l 2

#�G� by g � f�h� � f�g�1h�. This
defines a group action on l 2

#�G�.
Proof. Fix f � l 2

#�G�. We verify directly, �h,g1,g2 � G :
�g1 � g2� � f�h� � f��g1 � g2��1h� � f�g2

�1g1
�1h� � g2 � f�g1

�1h� � g1 � �g2 � f�h��.
Definition 1.4.1. Let g � G, we define Tg � B�l 2

#�G�� as Tg.l 2
#�G� � l 2

#�G�, f 
 g � f.
Where g � f is the group action as in lemma 1.4.1.
Lemma1.4.2. Tg has the following properties:
(i) Tg1 � Tg2 � Tg1�g2 (ii) Tg

� � Tg�1.

Proof. (i) This follows clearly from lemma 1.4.1.
(ii) Let f,h � l 2

#�G�. Then,
�Tgf , h
# � Ext-�

a�G
Tgf�a�h�a� � Ext-�

a�G
g � f�a�h�a� �

� Ext-�
a�G

f�g�1�ga��h�a� Ext-�
a�G

f�g�1a�h��ga�� �

� Ext-�
a�G

f�a�g�1 � h�a� � Ext-�
a�G

f�a�Tg�1h�a� � �f , Tg�1h

#
.

§1.5.Topologies on B�H#�.
In order to study a non-Archimedean von Neumann algebras, one needs to look into
useful topologies on B�H#�.Since all operators are bounded in ��c

# we have the
operator #-norm and therefore the induced topology.
Definition 1.5.1. #-Norm Topology.
Using this norm, we can define a metric topology, using the induced ��c

#-valued metric
d.B�H#� 
 B�H#� � R,d�T1,T2� � �T1 � T2�#.
This topology is useful for many reasons, but for the purposes of looking at non-
Archimedean von Neumann Algebras is somehow too “fine”. We need coarser
topologies to enable us to have nice examples.
Definition 1.5.2. Strong Operator Topology (s.o.t.)
We define the strong operator topology as the coarsest topology such that �v � H#

the map ψv.B�H#� � ��c
#,T 
 �Tv�# is #-continuous.



Example 1.5.1. For H# � ‘2(N), let Tn . H# � H# v 
 (v, en)en We have that Tn � 0 in
the s.o.t. but not in the #-norm topology.
Tn �/ 0 in #-norm sense, since /Tn/ � /Tn(en)/H# � /en/ � 1 �n.
However in the strong operator topology, we have that
Tn �# 0 & ψv�Tn� �# 0�v � H#

In this case, v � ‘2, so in particular the entries of v always tend to zero, i.e.
ψv�Tn� �# 0�v � H#.
This distinguishes the strong and the #-norm topologies. Making use of the adjoint, we
define a finer topology
Definition 1.5.3. Strong-�Operator Topology (s*.o.t.)
We define the strong-� operator topology as the coarsest topology such that �v � H#

the two maps

ψv.B�H#� � ��c
#,T 
 �Tv�# �1.5.1�

and

ψv
�.B�H#� � ��c

#,T 
 �T�v�# �1.5.2�

are both #-continuous.
And finally, making use of the inner product we define the weak operator topology:
Definition 1.5.4. Weak Operator Topology (w.o.t.)
We define the weak operator topology (w.o.t.) as the coarsest topology such that
�v,w � H# the map ψvw.B�H#� � ��c

#,T 
 |�v,Tw
#| is #-continuous.
Lemma 1.5.1. For the topologies as in Definitions 1.5.1, 1.5.2, 1.5.3 and 1.5.4 we
have that w.o.t. � s.o.t. � s-�.o.t � #-norm topology.
Lemma 1.5.2.A basis for the strong operator topology is given by
β � �N�A,�vi� i�1

N ,�|A � B�H#�vi � H# � 0�
where N�A,�vi� i�1

N ,�. � �B � B�H#�|��A � B�vi�# � i � 1,2, . . . . ,N�
Proof. First we need to check it is a basis for a topology.
(i) It covers B�H#� since for example
N�A,�0�, 1� � �B � B�H#�|��A � B�0�# � 1� � �B � B�H#�|�0�# � 1� � B�H#�.

(ii) It is closed under intersection since for C � N�A,�vi� i�1
N ,
� � N�B,��v i� i�1

N ,�
�.

We have that C � N�C,�vi� i�1
N � ��v i� i�1

N ,min�
 � ��C � A�vi�#,
�
� � ��C � B��v i�#��.

The only thing we need to verify for this is that (w.l.o.g.)

�D � N�C,�vi� i�1
N � ��v i� i�1

N , min�
 � ��C � A�vi�#,
�
� � ��C � B��v i�#��,

D � N�A,�vi� i�1
N ,
�.This is clear since for all i

��D � A�vi�# � ��D � C�vi�# � ��C � A�vi�# � 
 � ��C � A�vi�# � ��C � A�vi�# � 
.
Now we need to show that for all topologies such that �v � H# the map
ψv.B�H#� � ��c

#,T 
 �Tv�# is #-continuous, subsets of this form are #-open.
Noting that N�A,�vi� i�1

N ,� � � i�1
N ψvi

�1��Avi�# � 
,�Avi�# � 
�.This is clear.
Lemma 1.5.3. A basis for the weak operator topology is given by:
β � �N�A,�vn�n�N,�wn�n�N,
� , A � B�H#��vn�n�N,�wn�n�N � H#,
 � 0�.
Where N�A,�vn�n�N,�wn�n�N,
� � �B � B�H#�||��B � A�vn,wn
#| � 
�n � N�.
We omit the proof of this result. It is similar to the proof of the basis of the SOT.
Lemma 1.5.4. Let f.B�H#� � ��c

# be a linear functional. The following are equivalent:

(i) ��vn�n�N,�wn�n�N � H#, such that f�A� � Ext-�
n�N

�Avn,wn
# �A � B�H#�.



(ii) f is #-continious in the weak sense
(iii) f is #-continious in the strong sense
Proof. It is clear that the first implies the second, and by lemma 1.5.1 that the second
implies the third. Hence all we must show is that for all f is #-continious in the strong
sense then we can find �vn�n�N, �wn�n�N � H#, such that �A � B�H#� :
f�A� � Ext-�

n�N
�Avn,wn
# �A � B�H#�.Suppose f is #-continious in the strong sense,

then the inverse image of the #-open ball in��c
# is #-open in the strong operator

topology. Considering our basis elements, then there is some constant κ � 0 and

�vn�n�N such that |f�A�|2 � κ Ext-�
n
�Tvn�#

2 .Now consider the subspace of

Ext-H# ) H#. . .)H# given by �)n�N Avn|A � B�H#�� we can define a linear functional
on this set by )n�N Avn 
 f�A�.Then by the generalized Riesz representation theorem,
��wn�n�N such that f�A� � Ext-�

n�N
�Avn,wn��A � B�H#� as required.

§2.Non-Archemedean Banach algebras and C#
�-Algebras.

§2.1. Initial Definitions and #-Continious Functional
Calculus.

von Neumann Algebras are a specific type of C#
� algebra, and so it is important to

understand well the theory of C#
� algebras before non-Archemedean von Neumann

Algebras.
Definition 2.1.1.A non-Archemedean Banach algebra A# is a complex algebra over

field
��c

# which is a non-Archemedean Banach space under a ��c
#-valued #-norm which

is submultiplicative:

�xy�# � �x�#�y�# �2.1.1�

for all x,y � A#.
Definition2.1.2.An involution on a non-Archemedean Banach algebra A# is a
conjugate-linear #-isometric antiautomorphism of order two, usually denoted x � x�.
In other words,
1.�x��� � x,�x�� � �x�
2.�x � y�� � x� � y�,
3.�xy�� � y�x�,
4.�λx�� � λx�, for all x,y � A,λ � ��c

#.
Definition2.1.3.Spectrum (of an element of some a non-Archemedean algebra)
Let A# be some a non-Archemedean algebra and a � A# we define
σ�a� � �λ � ��c

# , a � λ1 is not invertible �.
Definition2.1.4.A Banach #-algebra is a non-Archemedean Banach algebra A# with

an
involution. An C#-algebra is a Banach #-algebra A# satisfying the C#

�-axiom: for all
x � A#

�x�x�# � �x�#
2. �2.1.2�

Example 2.1.1. B�H#� is a C#
� Algebra)

We see this is an immediate consequence of lemma 1.4
Lemma 2.1.1. K � B�H#� is a C#

� Algebra iff



(i) K is an algebra over ��c
#

(ii) K � K�

(iii) K is #-closed with respect to the #-norm topology.
Proof. It is clear that if K is a C#

� algebra it must be closed with respect to the #-norm
topology and an algebra. To see the other direction, we note that the only conditions
we must check are conditions of #-closure by lemma 1.4 all of the operations work
algebraically as they should. We have
1. K is #-closed under taking sums, scalar multiples and products as it is an algebra.
2. K is #-closed under taking adjoints by the second bullet point
3. K is #-closed with respect to the #-norm topology by the third bullet point.
Therefore, K is a C#

� algebra.
Example 2.2. K�B�H#�� is a C#

� algebra. This follows clearly from lemma 2.1.1 and
theorem
1.22, as K�B�H#�� � �A � B�H#� , '�A� � ��� � �'�B�H#�� and
�'�B�H#�� � �A � B�H#� , '�A� � ��� is a �-algebra.
Example 2.1.3. The set �'�B�H#�� is in general a �-subalgebra of B�H#� but is not a
C#
� algebra if H# is hyper infinite. This can be seen by considering an orthonormal

basis �ei� i�X and
considering pi to be the orthonormal projection into the line spanned by ei�pi�ej� � δ ij �
then the hyper infinite sequence �qN�N � �� where qN � Ext-� i�1

N pi #-converges in
#-norm to the identity, which would not be hyperfinite rank.
As promised, we return to spectral theory, with a more general version of theorem

1.34.
Theorem 2.1.1. #-Continious functional calculus
Let K1,K2 be C#

� algebras and A � K1 normal, then we have:
(i) The map ψ.C#�σ�A�� � K1f 
 f�A� is a homomorphism.
(ii) For all f � C#�σ�A�� we have σ�f�A�� � f�σ�A��
If Ψ.K1 � K2 is a C#

�-homomorphism, then Ψ�f�A�� � f�Ψ�A��
This of course raises a few questions, how for example, would one take the square

root of
an operator? For the purposes of these notes we don’t look too deeply into this, but

one
way to define this we can take any sequence fn � ��c

#	z
 which approximates f locally
uniformly well,and take f�A�. � #-lim n��� fn�A�.
Most of these definitions we get are intuitive, for example for f�z� � |z|2, we take
f�A� � A�A

§ 2.2 ��c
#-valued States

Definition 2.2.1. If K is a � algebra, a state is a linear ��c
#-valued functional that is

positive and normalised. That is: ω.K � ��c
# such that:

(i) ω�A�A� � 0�A � K
(ii) ω�1� � 1.
Notation 2.2.1. We denote the space of all states on A by S#�A�.
Throughout the rest of this subsection, K will refer to a C#

� algebra and we will consider
states on K.
Example 2.2.2. Let K � Mn���c

#�,n � �� the n 
 n matrices with complex coefficients.



Then for all A positive, ω�A�.K � ��c
#,B 


Ext-Tr�AB�
Ext-Tr�A�

.

Where Ext-Tr�C� is the external sum of the diagonal entries of C (or equivalently the
external sum of the eigenvalues of C) . Indeed, since Ext-Tr�AB� � Ext-Tr�BA� and
Ext-Tr�A� � 0 if A is positive,letting A � C�C we see also
Ext-Tr�AB�B� � Ext-Tr�BAB�� � Ext-Tr�BC�CB�� � Ext-Tr��CB����CB��� � 0.
So ω�A� is positive, it is also normalised clearly and therefore a state.
Definition 2.2.2. We say that a linear��c

#-valued functional ψ is hermitian if
�A � K ψ�A�� � ψ�A� .

We for some state ω are interested in the bilinear form fω.K 
 K � ��c
#,

�A,B� 
 ω�B�A�.
This is because it has many properties similar to an inner product. The first we show
is that states are hermitian, which implies something similar to conjugate symmetry
for fω.
Lemma 2.2.1.Let ω � S#�A� then ω is hermitian.
Proof. First suppose A � A�i.e. A is self #-adjoint. Then let
A� � Ext-�λ�σ�A�,λ�0λpλ,A� � Ext-�λ�σ�A�,λ�0��λ�pλ
Noting that both of these are positive, we have that
ω�A� � ω�A� � A�� � ��c

# � ω�A�� � ω�A� � ω�A�.
Then for any A � K we can write A � A1 � iA2 where A1,A2 are both self #-adjoint.
Then we have
ω�A�� � ω�A1� � iω�A2� � ω�A1� � iω�A2� � ω�A1� � iω�A2� � ω�A�.
Corollary 2.2.1. Let fω be the bilinear form as defined before. Then it is conjugate
symmetric i.e. fω�A,B� � fω�B,A�.
Proof. Using that states are hermitian we see clearly
fω�BA� � ω�A�B� � ω��A�B��� � ω�B�A� � fω�A,B�.
Next, we show the cauchy schwarz for states.
Lemma 2.2.2. (Cauchy Schwarz)
Let ω � S#�K�, then we have,|ω�AB��|2 � ω�A�A�ω�B�B�.
Proof. If B � 0 this is clear. Otherwise, by positivity we have for
C � ω�BB��A � ω�AB��B :
0 � ω�CC�� � ω��ω�BB��A � ω�AB��B��ω�BB��A� � ω�AB��B��� �. . . . . .�
� ω�BB���ω�BB��ω�AA�� � ω�AB��ω�BA�� � ω�AB��ω�AB�� � ω�AB��ω�AB���.
Then using that states are hermitian (lemma 2.13) we can simplify
. . .� ω�BB���ω�BB��ω�AA�� � |ω�AB��|2�.
Then by positivity, ω�BB�� � 0 and so ω�BB��ω�AA�� � |ω�AB��|2 � 0 as required.
Corollary 2.2.2.|fω�A,B�| � fω�A,A�fω�B,B� .

We see now that fω is very similar to an inner product, but fails on positive
definiteness, as seen in the following example.

Example 2.2.3. In M2���c
#�, we can set A �

1 0

0 0
.Then as A is positive we can

define the state ωA as before: ωA.M2���c
#� � ��c

#,B 
 Ext-Tr�AB�.

Then for B �
0 0

0 1
	 0 we have ωA�B�B� � ωA�B� � Ext-Tr�AB� � Ext-Tr�0� � 0.



This motivates the next definition.
Definition 2.2.3. We define for each ω � S#�K�
Jω � �A � K , ω�A�A� � fω�A,A� � 0�.
The fact that our candidate is not positive definite is not an issue, so long as we can
use some devices from abstract algebra (namely quotient objects) to “forget” about
the problem areas. For this, we need to find an appropriate ideal of K.
Lemma 2.2.3. Let Jω be as before. Then Jω is a left ideal.
Proof. Say A,B � Jω. Then
�A � B���A � B� � �A � B���A � B� � �A � B���A � B� � 2A�A � 2B�B
so 0 � fω�A � B,A � B� � 2fω�A� � 2fω�B� � 0. So Jω is a #-closed linear subspace.
We also see that for all A � Jω and B � K�BA���BA� � �B�#

2A�A, and so BA � Jω
Lemma 2.2.4. If ω is a positive linear functional on K, then the operator #-norm of ω,

�ω�# � supA�K-�0�
ω�A�
�ω�#

satisfies �ω�# � ω�1�.

Proof. We know that �ω�# � ω�1� since �1�# � 1.Now let A � K - �0�. We have that
�A � A��# 1 ��A � A�� � 0 and so ω�A � A�� � �A � A��#ω�1�. But also, we have

ω� A � A�

2
� � |ω�A�| � |ω�A��|

2
� |ω�A�| �

ω�A � A��
2

�
ω�A � A��

2
� ω�A � A��

2
�

�
ω�A � A��

2
.And so we have equality everywhere and that |ω�A�| �

ω�A � A��
2

.

Putting this together we have

|ω�A�| �
ω�A � A��

2
�
�A � A��#ω�1�

2
�
�A�# � �A��#ω�1�

2
� �A�#ω�1�.

And so �ω�# � ω�1�. In fact this relationship is equivalent.
Lemma 2.2.5. Let ω be a linear functional on K. The following statements are
equivalent
1. ω is positive
2. �ω�# � ω�1�.
Proof. 1.� 2. is lemma 2.18� 2. � 1.
Let A be positive, and say ω�A� � a � ib,a,b � ��c

#. Then for all t � ��c
# we have:

a2 � �b � t�ω�#�
2 � �A � it�#

2 � �A � it�#
2�ω�#

2 � ��A�#
2 � t2� �ω�#

2.
Substracting t2 /ω/2from both sides we have 2bt � �A�#

2 and hence b � 0.Then,
�A�#�ω�# �a � ω��A�# � A� � �ω�#��A�# � A�

#
� �ω�# �A�# So a � 0.

From the theory so far, we can relate the spectrum of some element A � K to some
states on K.
Lemma 2.2.6. Let A � K then for each λ � σ�A� there exists a state ωAλ.K � ��c

#

such that ωAλ�A� � λ.
Proof. We define the linear functional on the subspace ��c

# � A � ��c
# � 1 by

ω0�aA� b1� � aλ � b. It is clear then that ω0�aA� b1� � aλ � b � σ�aA� b1� and

hence by lemma 1.29 1 � ω0�1� � �ω0�# � supa,b���c
#

|aλ � b|
�aA� b1�#

� 1 .

Then by generalized Hahn-Banach theorem, there exists an extension of ω0 to K,ωAλ

with �ωAλ�# � 1 � ωAλ�1� by lemma 2.19, ωAλ is a state.
The next lemma shows us how even though we don’t have positive definiteness, we
can conclude an equivalence between A � 0 and ω�A� � 0�ω.
Lemma 2.21. Let K be a C#

� algebra, and A � K. Then we have



A � 0 & ω�A� � 0�ω � S#�K�.
Proof. � is clear by linearity of ω.
( can be seen by the string of implications
ω�A� � 0�ω � S#�K� � σ�A� � �0� � A � 0.
We see in fact there are a huge number of results in analogy to those discussed in
subsection 2.1 using that σ�A� � �ω�A� , ω � S#�K��. For example
Lemma 2.22. Let K be a C#

� algebra and let A � K.
(i) A � A� & ω�A� � ��c

#�ω � S#�K�
(ii) A � 0 & ω�A� � 0�ω � S#�K�.
Proof. (i)-(ii) ( follows since σ�A� � �ω�A� , ω � S#�K�� and � since ω is hermitian.
(i)-(ii) ( follows since σ�A� � �ω�A� , ω � S#�K�� and � since ω is positive.

§2.3.Representations and the generalized Gelfand-
-Naimark-Segal Construction.

Definition 2.3.1. Let K be a C#
� algebra. A representation is a �-homomorphism

π.K � B�H#�A 
 π	A

Definition 2.3.2. Let K be a C#

� algebra, represented in B�H#� by π. Suppose further
that H0

# � H# is a subspace such that �π	A
H0
#�A � K � H0

# (i.e. π is stable in H0
#).

Then the restriction of π to this subspace, π0.K � B�H0
#�A 
 π	A
 is called a

subrepresentation.
Example 2.3.1. For all representations π we always have the trivial subrepresentations
where we restrict the domain of π	A
 to �0� or H#

Definition 2.3.3. A representation π.K � B�H#�A 
 π	A
 is called irreducible if the only
subrepresentations are the restrictions to �0� or H# there are no nontrivial
subrepresentations.
Definition 2.3.4. (Equivalent Representations)
Say π1.K � B�H1

#�A 
 π1	A
π2.K � B�H2
#�A 
 π2	A


Are two representations of the same C#
� algebra such that there exists a unitary linear

map U.H1
# � H2

# such that �A � K.Uπ1�A� � π2U�A�
Then they are called equivalent.
Example 2.3.2. (Direct Sum over representations)
Say π i .K � B�H i

#�, i � N � �� are a finite or hyperfinite family of representations.
Then we can define a representation π.K � B �Ext-) i H i

#� A 
 π	A
 where if v is
uniquely decomposed into Ext-� ivi (where each vi � H i

#) we have
π	A
�v� � �iπ i	A
�vi�.Then for each iwe have a subrepresentation equivalent to the
representation in H i

#, given by the restriction of π to the subspace
0). . .)0) H i

# ) 0). . .)0.We can imagine representations like this in terms of
hyperfinite matrices:

π	A
�v� �

π1	A
 0 . . . 0

0 π2	A
 . . . 0

0 0 . . . 0

0 0 . . . πN	A


v1

v2

.

vN

We explore this concept later in greater detail.
Lemma 2.3.1. Let π.K � B�H#� be a representation and say v � H# has #-norm 1.



Then the map ωv.K � ��c
#A 
 �π	A
v,v�H# defines a state on K

Proof. It is clear that ωv is linear and by cauchy schwarz we have

|ωv�A�| � �π	A
v�#�v�# � �π	A
v�#�v�#
2 � �π	A
v�# �v�#.

So ωv is bounded in ��c
#. It is positive since �π	A�A
v,v
 � �π	A
v,π	A
v
 � �π	A
v�#

2.

And so by lemma 2.19 we have
�ωv�# � �π	1
v,v
# � �v,v
# � �v�#

2 � 1 as required.
In fact, every state on K arises in this fashion, as shown in the GNS construction.
We break down the proof of the GNS construction into a few lemmas.
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Lemma 2.3.2. The non-Archimedean Hilbert space completion of the space K/Jω
with respect to the ��c

#-valued inner product
�� , �
# .K/Jω 
 K/Jω � ��c

#�	A
,	B
� 
 ω�B�A� � fω�A,B�
is a non-Archimedean Hilbert space.
Proof. We have seen in lemma 2.17 that Jω is a left ideal. Therefore this quotient
object makes sense, and furthermore the inner product is well defined. It is clearly
linear in the first argument, as well as positive definite by lemma 2.14 and conjugate
symmetric by cororallary 2.13.1. Therefore it is an inner product on the quotient
space, and the Hilbert space completion defines a Hilbert space clearly.
Definition 2.3.5. Given a C#

� algebra K and a state ω, we define the Hilbert space
completion of K/Jω with respect to the inner product to be L2

#�K,ω�.
Lemma 2.3.3. Given K,ω as before, we can define a representation π.K � B�L2

#�K,ω��
Such that ω�A� � �π	A
1ω , 1ω�. Where 1ω � L2

#�K,ω� is the unit cyclic vector
Proof. For A � K we consider the map π0�A�.K/Jω � K/Jω	B
 
 	AB
.
It is clear to see since Jω is a left ideal that this is well defined and since
�π0	A
�B��#

2 � ω��AB���AB�� � �A�#
2ω�B�B� this extends to a bounded in ��c

#operator
π�A� � B�L2

#�K,ω�� Then we have that the map π.K � B�L2
#�K,ω��,A 
 π�A�.

Is a homomorphism clearly but moreover for all C,D � K,�	C
ω|π�A��	D
ω� �
� ω�D�A�C� � �π�A�	C
ω|	D
ω�.And so π is a �-homomorphism. Also, since
1ω � 	1
ω � K/Jω, we have �π�A�1ω , 1ω� � ω�1ω�A1ω� � ω�A�.
Theorem 2.33. (The non-Archimedean GNS construction)
Let K be a C#

� algebra. For every state ω � S#�K� then there is a
non-Archimedean Hilbert space L2

#�K,ω� and a unique (up to equivalence)
representation π.K � B�L2

#�K,ω�� such that ω�A� � �π	A
1ω , 1ω�,A � K.
Where 1ω � L2

#�K,ω� is the unit cyclic vector.
Proof. By lemma 2.32 it remains to show uniqueness.
Say ρ.A � B�H#� is representation with ι � H# cyclic and ω�A� � �ρ�A�ι, ι
# then we
can consider the map U0.K/Jω � H#,	A
 
 ρ�A�ι.We then would have
�U0�A�,U0�B�� � �ρ�A�ι,ρ�B�ι� � �ρ�B�A�ι, ι� � ω�B�A� � �	A
|	B
�.
So U0 is well defined, and an isometry. Furthermore for any A,B � K we have
U0�π�A�	B
ω� � U0�	AB
ω� � ρ�AB�ι � ρ�A�U0�	B
�.
So U0 extends to an isometry
U.L2

#�K,ω� � H# suth that �A � K : Uπ�A� � ρ�A�U
Since ι is cyclic , and we have ρ�K�ι � U�L2

#�K,ω�� it follows that U must be unitary.
The following cororallary tells us that we can think of any C#

� algebra as a subset of
B�H#� for some H#.



Corollary 2.33.1. Let K be a C#
� algebra. Then there exists a faithful representation

of K.
Proof. Let π be the direct sum over all GNS representations corresponding to states.
Then by lemma 2.21 this representation is faithful.
This result is very deep, and shows that there is a one to one correspondence.
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